JP2005524948A - 改良されたカソードを有するアルカリ電池 - Google Patents

改良されたカソードを有するアルカリ電池 Download PDF

Info

Publication number
JP2005524948A
JP2005524948A JP2004504313A JP2004504313A JP2005524948A JP 2005524948 A JP2005524948 A JP 2005524948A JP 2004504313 A JP2004504313 A JP 2004504313A JP 2004504313 A JP2004504313 A JP 2004504313A JP 2005524948 A JP2005524948 A JP 2005524948A
Authority
JP
Japan
Prior art keywords
battery
cathode
graphite
weight
agcuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004504313A
Other languages
English (en)
Inventor
キラコドゥ、エス.ナンジュンダスワミー
フランシス、ワン
ジャユ、サイモン、シュー
カヒ、エイレム
ジェイムズ、ロゼル
Original Assignee
ザ ジレット カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ジレット カンパニー filed Critical ザ ジレット カンパニー
Publication of JP2005524948A publication Critical patent/JP2005524948A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/34Silver oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

亜鉛を含んでなるアノード、アルカリ電解質溶液、セパレータ、およびAgCuO、AgCuまたはそれらのいずれかの混合物から選択された酸化銀銅、を含んでなるカソードを有するアルカリ電池。カソードは、導電率を改良するために、好ましくはグラファイト系炭素も包含する。グラファイト系炭素は、天然、または膨脹化グラファイトおよびグラファイト系炭素繊維を包含する合成のグラファイトを含んでなることができる。炭素ナノ繊維は中央平均直径が500ナノメートル未満であることが望ましい。

Description

本発明は、酸化銀銅AgCuOまたはAgCuもしくはそれらの混合物を含んでなるカソード混合物を含む水性アルカリ電池に関するものである。
従来のアルカリ電気化学的電池は、亜鉛を含んでなるアノードおよび二酸化マンガンを含んでなるカソードを有する。電池は、典型的には円筒形のケーシングから形成されている。ケーシングに、最初は広がった開放末端および対向する閉鎖末端が形成されている。電池の内容物を供給した後、絶縁プラグを備えた末端キャップを開放末端中に挿入する。ケーシング縁部を絶縁プラグ縁部の上に折り曲げ、絶縁プラグの周囲でケーシングを半径方向に圧縮して密封することにより、電池を閉鎖する。電池ケーシングの一部は、閉鎖末端で正端子を形成する。
一次アルカリ電気化学的電池は、典型的には亜鉛アノード活性材料、アルカリ電解質、二酸化マンガンカソード活性材料、および典型的にはセルロースまたはセルロース系およびポリビニルアルコール繊維から製造された電解質透過性のセパレータフィルムを包含する。アノード活性材料は、例えば通常のゲル化剤、例えばナトリウムカルボキシメチルセルロースまたはアクリル酸共重合体のナトリウム塩、と混合した亜鉛粒子、および電解質を含むことができる。ゲル化剤は、亜鉛粒子を分散させ、それらの粒子同士を接触した状態に維持する役目を果たす。典型的には、アノード活性材料の中に挿入された導電性金属の爪がアノード集電装置として作用し、これが負端子末端キャップに接続される。電解質は、アルカリ金属水酸化物、例えば水酸化カリウム、水酸化ナトリウムまたは水酸化リチウム、の水溶液でよい。カソードは、典型的には、導電率を高めるために導電性添加剤、典型的にはグラファイト材料、と混合された粒子状二酸化マンガンを電気化学的活性材料として含む。所望により、重合体状結合剤、および他の添加剤、例えばチタン含有化合物、をカソードに加えることができる。
カソードに使用される二酸化マンガンは、好ましくは、硫酸マンガンと硫酸の浴の直接電解により製造される電解二酸化マンガン(EMD)である。EMDは、高密度および高純度を有するので、好ましい。EMDの抵抗はかなり低い。導電性材料をカソード混合物に加え、個々の二酸化マンガン粒子間の導電率を改良する。その様な導電性添加剤は、二酸化マンガン粒子と、カソード集電装置としても作用する電池ハウジングとの間の導電率も改良する。適当な導電性添加剤としては、例えば導電性炭素粉末、例えばアセチレンブラックを包含するカーボンブラック、フレーク状の結晶性天然グラファイト、膨脹化または剥離処理した(exfoliated)グラファイトを包含するフレーク状の結晶性合成グラファイト、が挙げられる。グラファイト、例えばフレーク状の天然または膨脹化グラファイト、の抵抗率は、典型的には約3x10−3オーム−cm〜4x10−3オーム−cmでよい。
一次アルカリバッテリーは、高い放電容量(すなわち長い耐用寿命)を有するのが望ましい。市販電池のサイズは固定されているので、より大量の電極活性材料を電池の中に充填することにより、電池の耐用寿命を延長できることが知られている。しかし、その様な手法には実用的な限界があり、例えば電極活性材料を電池中に過密に充填すると、電池放電の際の電気化学的反応速度が低下し、かえって耐用寿命が短くなる。他の悪影響、例えば電池の分極も起こり得る。分極は、電解質および電極の両方の中でイオンの移動度を制限し、それによって電池性能および耐用寿命を低下させる。典型的には、非電気化学的活性材料、例えば重合体状結合剤または導電性添加剤、の量を減少させることにより、カソード中に含まれる活性材料の量を増加させることは可能であるが、カソード中に十分なレベルのバルク導電率を確保するには、十分な量の導電性添加剤を維持しなければならない。従って、十分なレベルの導電率を与えるのに必要な導電性添加剤の量により、活性カソード材料全体が大きく制限される。
電池は、通常の放電速度(drain rate)、例えば約50ミリAmp〜500ミリAmp、の下で長い耐用寿命を有し、約0.5〜2.0Amp、例えば約0.5Amp〜1.5Amp、の電流速度における高電力用途でも十分な性能を発揮するのが望ましい。その様な高電力用途は、約0.5〜1.5ワット、あるいはさらに高い約2.0ワットまでの電力吐出に相当する。従来の亜鉛/MnO電池では、必要な電流消費または電力吐出が高電力体制に移行するにつれて、アノード/カソード活性材料の使用が低下している。
その様なアルカリ電池は、商業的に広く普及しているが、これらの電池を改良するか、あるいは、通常用途、例えばフラッシュライト、ラジオ、オーディオレコーダーおよび携帯CDプレーヤー、において信頼性のある性能および長い耐用寿命を示すと共に、高電力用途においても従来の亜鉛/MnO電池よりさらに優れた性能を発揮する、新しい型の電池を開発する必要がある。
本発明は、亜鉛を含んでなるアノード、および化合物AgCuOまたはAgCuもしくはAgCuOとAgCuのいずれかの混合物から選択された酸化銀銅を含んでなるカソード混合物を有する一次(再充電不可)電気化学的アルカリ電池に関するものである。ここで使用する用語「酸化銀銅」は、他に指示がない限り、化合物AgCuO、AgCuまたはそれらの混合物を意味するものとする。アノードおよびカソードは、アルカリ水溶液、好ましくはKOH水溶液を含む。本発明のその様な電池は、ここでは便宜的にZn/酸化銀銅アルカリ電池と呼ぶことができる。酸化銀銅は、好ましくは平均粒子径が約1〜100ミクロンである粉末の形態にある。カソード混合物は、導電性材料、例えばフレーク状結晶性天然グラファイト、または膨脹化グラファイトおよびグラファイト系炭素ナノ繊維を包含するフレーク状結晶性合成グラファイトを含む。ここで使用する用語グラファイト系炭素ナノ繊維は、中央平均(mean average)直径が1000ナノメートル未満(1000x10−9メートル未満)であるグラファイト系炭素繊維を意味する。(ここで使用する用語「平均」または「中央平均」は、他に指示がない限り、「算術中央平均」を意味する。)好ましくは、グラファイト系炭素ナノ繊維は、中央平均直径が500ナノメートル未満、より好ましくは300ナノメートル未満である。好ましくは、グラファイト系炭素ナノ繊維は、中央平均直径が約50〜300ナノメートル、典型的には約50〜250ナノメートルである。カソード混合物は、KOH水溶液を含み、好ましくは水中KOH濃度が約30〜40重量%、好ましくは35〜45重量%である。
本発明のZn/酸化銀銅アルカリ電池では、アノードは、従来の亜鉛/MnOアルカリ電池で商業的に使用されている様な通常のゲル化された亜鉛アノード組成物を含んでなることができる。例として、これに限定するものではないが、カソードは、市販の亜鉛/MnOアルカリ電池で使用されている様な、MnOを含んでなる従来のカソードと同じ組成物を含んでなることができるが、ただし、MnO全部または一部を、ここに開示するAgCuOまたはAgCu化合物、またはAgCuOとAgCu化合物のいずれかの混合物で置き換えることができる。AgCuOは、アルカリ電池中のカソードとして使用した場合に優位性を有することが確認された。AgCuO中の銅は+3の原子価を有し、銀は+1の原子価を有する。Cu+3およびAg+1は、放電の際に金属銅および金属銀への還元に利用される。その結果、AgCuOは高い理論的比容量、すなわち526ミリAmp−時間/gを有する。これは、MnOの理論的比容量308ミリAmp−時間/gよりはるかに高く、AgOの理論的比容量436ミリAmp−時間/gまたはAgOの理論的比容量117ミリAmp−時間/gよりも高い。さらに、AgCuO化合物中に銀(Ag+1)および(Cu+3)が存在することにより、Zn/AgCuOアルカリ電池の運転電圧プロファイルがZn/MnOまたはZn/CuOアルカリ電池より高くなる。AgCuは、銅の原子価が+2(Cu+2)であり、これはAgCuO化合物中の銅の原子価+3(Cu+3)よりも低く、従って、理論的比容量が412ミリAmp−時間/gであり、これはAgCuOの比容量526ミリAmp−時間/gよりも低い。
Zn/酸化銀銅アルカリ電池は、例えば放電速度約50〜600ミリアンペアにおける通常用途でZn/MnO電池よりも、運転電圧プロファイルが高く、耐用寿命が長い。また、Zn/酸化銀銅アルカリ電池は、例えば約0.5〜1.5Ampの電流消費における高電力用途または約0.5〜1.5ワットの電力用途で高速度能力も示す。例えば、約1Ampの放電速度では、AgCuOの理論的容量の約75〜80%をZn/AgCuOアルカリ電池で利用することができる。それにも関わらず、+3の銅原子価を有するAgCuO(またはAgCu)は、水中またはKOH電解質水溶液中で十分に安定している。AgCuOに関して、この化合物は、室温ならびに約−29℃〜46℃(−20°F〜115°F)の周囲温度における通常の電池貯蔵中に、水中または水性KOH電解質中で反応し、Cu+3原子価の重大な劣化を引き起こすことはない。
好ましい態様では、酸化銀銅(AgCuOまたはAgCuもしくはそれらの混合物)は、カソード混合物の約82〜90重量%を構成する。その様な実施態様では、酸化銀銅は、カソード中の二酸化マンガンをすべて置き換えることができる。従来のZn/MnOアルカリ電池の性能も、酸化銀銅を使用し、アルカリ電池中に従来使用されているMnOの量の一部を置き換えることにより改良することができる。その様な場合、酸化銀銅はMnOとと共にカソード中に混合することができる。AgCuOを単独で、またはMnOとの混合物で使用するいずれの場合も、カソード中のグラファイト系導電性材料は、カソードの約2〜10重量%、好ましくはカソードの約4〜10重量%、を構成するのが望ましい。グラファイト系導電性材料は、膨脹化グラファイトまたは天然グラファイトを単独で、またはそれらのいずれかの混合物で含んでなることが望ましい。その様な場合、グラファイト系導電性材料は、カソードの約3〜10重量%、好ましくは約4〜10重量%を構成する。グラファイト系導電性材料は、膨脹化グラファイトのみ、または天然グラファイトのみ、もしくはグラファイト系炭素ナノ繊維のみを含むことができるが、天然グラファイト、膨脹化グラファイトおよびグラファイト系炭素ナノ繊維をいずれかの組合せで、またはそれらの混合物で含むこともできる。その様な場合、グラファイト系導電性材料は、好ましくはカソードの約4〜10重量%を構成する。KOH水溶液は、好ましくはカソード混合物の約5〜10重量%を構成する。KOH水溶液自体は、約30〜40重量%のKOH、好ましくは約35〜40重量%のKOH、および約2重量%の酸化亜鉛を含んでなるのが望ましい。
一態様で、本発明のアルカリ電池は、亜鉛を含んでなるアノードおよびAgCuOの形態にある酸化銀銅をMnOとの混合物で含んでなるカソード混合物を有する。その様な電池、例えばAAサイズ電池、は、亜鉛を含んでなるアノードおよび二酸化マンガンを含んでなるカソードを有する、同じサイズの従来のアルカリ電池と比較して、約500〜1000mAmpの放電速度で高い容量(mAmp−時間)および高いエネルギー出力(mワット−時間)を示す。この優位性は、他のサイズの円筒形電池、例えばAAAA、AAA、CおよびDサイズ電池ならびにAA電池にも当てはまるであろう。別の態様で、本発明のアルカリ電池は、亜鉛を含んでなるアノードおよびAgCuの形態にある酸化銀銅を含んでなるカソード混合物を有する。その様な電池、例えばAAサイズ電池、は、亜鉛を含んでなるアノードおよび二酸化マンガンを含んでなるカソードを有する、同じサイズの従来のアルカリ電池と比較して、約500〜1000mAmpの放電速度で高い容量(mAmp−時間)および高いエネルギー出力(mワット−時間)を示す。この優位性は、他のサイズの円筒形電池、例えばAAAA、AAA、CおよびDサイズ電池ならびにAA電池にも当てはまるであろう。
別の態様で、本発明のアルカリ電池は、亜鉛を含んでなるアノードおよびAgCuの形態にある酸化銀銅を含んでなるカソード混合物を有する。その様な電池、例えばAAサイズ電池、は、亜鉛を含んでなるアノードおよび二酸化マンガンを含んでなるカソードを有する、同じサイズの従来のアルカリ電池と比較して、約500〜1000mAmpの放電速度で高い容量(mAmp−時間)および高いエネルギー出力(mワット−時間)を示す。この優位性は、他のサイズの円筒形電池、例えばAAAA、AAA、CおよびDサイズ電池ならびにAA電池にも当てはまるであろう。
これらの実施態様は、再充電不可の電池に関するものであるが、AgCuOを含んでなり、AgCuに部分的に放電され、そのAgCuが今度はAgCuOに再充電される様に設計された変性カソードを有する再充電可能な電池を製造することもできる。その様な電池は、酸化亜鉛に放電され、亜鉛に再充電され得る亜鉛アノードを有するアルカリ電池でよかろう。
本発明のカソード混合物を使用する代表的なアルカリ電池を図1に示す。アルカリ電池810は、閉鎖末端814および開放末端816を有する、鋼製、好ましくはニッケルめっきした鋼製の細長い円筒形ケーシング820を含んでなる。電池には、好ましくはカソード活性材料として機能する酸化銀銅(AgCuO、AgCuまたはそれらの混合物)を含んでなる本発明のカソード混合物812が充填されている。
化合物AgCuO中の銅は+3の原子価を有し、銀は+1の原子価を有する。Cu+3およびAg+1は、電池放電の際に金属銅および金属銀への還元に利用される。その結果、AgCuOは高い理論的比容量、すなわち526ミリAmp−時間/gを有する。(これは、下記の様に計算される、すなわち1電子は1.602x10−19クーロンの電荷を有する。アボガドロ数に基づき、1モルあたり6.023x1023個の分子がある。1クーロン=1Amp−secである。電池放電の際にAgCuO分子の理論的還元は1分子あたり4電子に基づくと仮定する。すると、理論的容量、AgCuO1モルあたりのミリ−Amp、は、4電子/分子x6.023x1023個の分子/モルx1.602x10−19クーロン/電子=4x9.649x10クーロン/モルまたは4x9.649x10Amp−sec/モルである。AgCuOの分子量は203.5である。従って、AgCuOの理論的容量は、4x9.649x10Amp−sec/モルx1時間/3600secx1モル/203.5g=0.526Amp/g=526ミリAmp/gである。化合物AgCuの理論的比容量はより低く、約412ミリAmp−時間/gである。
カソード混合物812は、導電性材料、好ましくはグラファイト系導電性材料、例えばフレーク状結晶性天然グラファイトまたはフレーク状結晶性合成グラファイト、好ましくは膨脹化グラファイトまたはグラファイト系炭素ナノ繊維およびそれらの混合物、を含む。
ここで使用する用語「グラファイト」または「グラファイト系材料」は、天然および合成結晶性グラファイト、膨脹化グラファイト、グラファイト系炭素、およびグラファイト系炭素繊維を包含するものとする。グラファイト系炭素は、X線回折により測定して互いに平行に積み重ねられた、六角形に配置された炭素原子の層からなる秩序付けられた三次元グラファイト結晶構造を特徴とする。International Committee for Characterization and Terminology of Carbon (ICCTC, 1982)、Journal Carbon 出版、Vol. 20, p.445に規定されている様に、グラファイト系炭素は、構造欠陥と無関係にグラファイトの同素体形態にある元素状炭素からなる様々な物質を包含する。ここで使用する用語グラファイト系炭素は、この様式で解釈する。
用語炭素繊維は、長さと直径の比が4を超える、典型的には8を超える炭素の細長いストランドを意味する。炭素繊維の長さと直径の比は、はるかに高くても、例えば100以上でもよい。ここで使用する用語「天然結晶性グラファイト」は、最少限度に加工した、すなわち実質的にその地質学的に発生した天然結晶形態にあるグラファイトを意味する。ここで使用する用語「合成グラファイト」は、合成的に製造された、または加工されたグラファイトを意味する。ここで使用する用語「合成グラファイト」は、他に指示がない限り、膨脹化された形態のグラファイト(剥離処理された膨脹化グラファイトを包含する)およびグラファイト系炭素ナノ繊維も含むものとする。用語「膨脹化グラファイト」は、認められた専門用語であり、例えば米国特許第5,482,798号に一般的に言及されているグラファイトの形態である。さらに、ここで使用する膨脹化グラファイトは、天然および/または合成の非膨脹化グラファイトを加工し、一軸的に膨脹した結晶格子を持たせることにより形成できる。一軸的膨脹の程度は、膨脹したグラファイト粒子が完全に剥離(すなわち薄層に分離)できる様に、十分に大きくすることができる。グラファイトに関して一般的に使用される用語「フレーク状」(すなわち天然または合成フレーク状グラファイト)は、その様なグラファイトが板状の膨脹していない粒子形態を有することを反映している。
グラファイト系導電性材料をAgCuO活性材料に加え、本発明のカソードを形成する。グラファイト系導電性材料は、カソード混合物の約2〜10重量%、好ましくはカソードの約4〜10重量%を構成するのが望ましい。グラファイト系導電性材料は、膨脹化グラファイトまたは天然グラファイトを単独で、またはそれらのいずれかの混合物で含んでなるのが望ましい。その様な場合、グラファイト系導電性材料は、カソードの約3〜10重量%、好ましくはカソードの約4〜10重量%を構成する。グラファイト系導電性材料は、膨脹化グラファイトのみ、または天然グラファイトのみ、もしくはグラファイト系炭素ナノ繊維のみを含むことができるが、天然グラファイト、膨脹化グラファイトおよびグラファイト系炭素ナノ繊維を、いずれかの組合せまたはそれらの混合物で含むこともできる。その様な場合、グラファイト系導電性材料は、カソードの約4〜約10重量%を構成するのが望ましい。KOH水溶液は、カソード混合物の約5〜約10重量%を構成するのが望ましい。膨脹化グラファイトは、単独で、またはAgCuOカソード活性材料に加える天然グラファイトとの混合物で使用された場合に、望ましいグラファイト系導電性材料を与えることが確認された。しかし、グラファイト系炭素ナノ繊維も、上記の様にグラファイト系導電性材料の一部を形成するために加えることができる。その様なグラファイト系炭素ナノ繊維自体は、公開された文献に開示されており、具体的な製造方法は、例えば米国特許第5,594,060号、第5,846,509号、および第6,156,256号に記載されている。
ここで使用する用語グラファイト系炭素繊維は、International Committee for Characterization and Terminology of Carbon (ICCTC, 1982)、Journal Carbon 出版、Vol. 20, p.445に規定されている様に、グラファイト系炭素構造を有する炭素繊維を意味する。ここで使用するグラファイト系炭素ナノ繊維は、中央平均(mean average)直径が1000ナノメートル未満(1000x10−9メートル未満)であるグラファイト系炭素繊維を意味する。ここで使用する用語「平均」または「中央平均」は、他に指示がない限り、「算術中央平均」を意味する。好ましくは、グラファイト系炭素ナノ繊維は、中央平均直径が500ナノメートル未満、より好ましくは300ナノメートル未満である。好ましくは、グラファイト系炭素ナノ繊維は、中央平均直径が約50〜300ナノメートル、典型的には約50〜250ナノメートルである。本発明のカソード混合物812に有用なグラファイト系炭素ナノ繊維は、中央平均直径が好ましくは約300ナノメートル未満、好ましくは約50〜250ナノメートル、典型的には約200ナノメートルである。炭素ナノ繊維の中央平均長さは、好ましくは約0.5〜300ミクロン、典型的には約200ミクロンである。グラファイト系炭素ナノ繊維は、BET表面積が約15〜50m/g、典型的には15〜30m/gでよい。その様なグラファイト系炭素ナノ繊維は、その様な繊維ストランドの凝集物を包含する個別の繊維ストランドの形態でよい。本発明のカソード混合物812に使用するのに好ましいグラファイト系炭素ナノ繊維は、Applied Sciences, Cedarville, OhioからPR19HT炭素繊維の名称で市販されている気相成長グラファイト系炭素繊維である。その様なグラファイト系炭素ナノ繊維は、例えばここに参考として含めるApplied Sciencesの米国特許第6,156,256号、第5,846,509号、および第5,594,060号に記載されている炭化水素蒸気熱分解法により製造することができる。得られる炭素ナノ繊維は、International Committee for Characterization and Terminology of Carbon (ICCTC, 1982)、Journal Carbon 出版、Vol. 20, p.445に規定されている様に、グラファイト系炭素構造を有する。上記の特許文献に記載されている気相成長炭素繊維は、炭化水素、例えばメタン、の、温度約1000℃以上での気相反応熱分解により製造することができる。炭化水素が関与する気相反応は、非酸化性気流中で金属粒子、典型的には鉄粒子、と接触させることにより行われる。鉄粒子は、グラファイト系炭素構造を有する非常に細い個別の炭素繊維(例えば炭素ナノ繊維)の成長に触媒作用する。得られる炭素繊維は、PR19HTグラファイト系炭素ナノ繊維(Applied Sciences)の商品名で市販されている様な、非常に小さい直径(ナノ繊維)、例えば50〜300ナノメートルを有することができる。
グラファイト系炭素ナノ繊維中に埋め込まれた残留触媒不純物である鉄(または他の金属)不純物は、ナノ繊維を形成した後、繊維を温度約2500℃〜3100℃で加熱することにより、容易に除去できることが確認されている。その様な加熱は、金属不純物を蒸発させ、炭素繊維、特に繊維の表面をさらにグラファイト化することができる。最終的に、金属含有量が200ppm未満、好ましくは100ppm未満、より好ましくは50ppm未満である、精製されたグラファイト系炭素ナノ繊維が得られる。(金属の用語は、元素状、イオン性または化合物中で化学的に結合しているすべての金属を包含する)その様なグラファイト系炭素ナノ繊維は、AgCuOカソード活性材料に加えるべきグラファイト系炭素材料の一部を形成することができる。例えば、その様なグラファイト系炭素ナノ繊維は、上記の様な天然グラファイトまたは膨脹化グラファイトと混合することができる。
AgCuOを含んでなるカソード混合物812は、KOH電解質水溶液を含むが、該混合物は、該混合物を電池の中に挿入する前に、水性KOHを混合することにより、湿式で製造することができる。例えば、ケーシング820をカソード混合物で充填し、カソード混合物の中央部分をくり抜き、図1に示す様な輪状カソード812を残すことができる。湿ったカソード混合物は、電池中で圧縮することができる。あるいは、湿った混合物を圧縮してディスク812aにしてから電池の中に挿入し、次いで所望により電池の中でさらに圧縮することもできる。あるいは、酸化銀銅、および所望によりグラファイト材料を加えて先ず乾燥混合することにより、カソード混合物812を製造することができる。乾燥混合物を電池ケーシング820の中に圧縮するか、またはディスク形状のブロック812aに圧縮し、これを積み重ねて電池の中に挿入してもよい。セパレータシート890を、カソードディスク812aの内側表面に接する様に配置することができる。セパレータ890は、セルロース系フィルムまたはポリビニルアルコールおよびレーヨン繊維を含んでなる不織材料製のフィルムから製造することができる。セパレータ890は、その様な不織材料の単層でも、不織材料に接着したセロハン層を有する複合材料でもよい。不織材料は、典型的にはポリビニルアルコール繊維およびレーヨン繊維含むことができる。セパレータ890は、セロハン層がカソード812またはアノード815に隣接する様に配置することができる。亜鉛/酸化銀アルカリ電池に従来使用されているセパレータを、酸化銀銅を含んでなるカソード812を有する本電池810におけるセパレータ890に有利に使用できる。セパレータ890は、ポリエチレンメンブラン上にメタクリル酸を放射線グラフト化することにより製造できる。その様な形態にあるセパレータ890は、銅および銀イオンのアノード室への移動を遅延させる。AgCuOは、水性水酸化カリウムに対して僅かに(例えば約1重量%)可溶である。従って、AgCuOから出る少量の銀および銅イオンが、カソード混合物815中に存在する水性水酸化カリウム電解質中の溶液中に存在する。グラフト化されたセパレータは、銀および銅イオンのカソードからアノードへの移動を遅延させる傾向があるので、特に好ましい。水性KOH電解質を乾燥カソード上に注ぐことができ、その際、電解質はセパレータおよびカソードに吸収される。次いで、アノード材料815を電池に加えることができる。
酸化銀銅(AgCuO)は、KOHの酸化性溶液およびKを使用し、硝酸銀(AgNO)と硝酸銅(CuNO)の反応を温度約90℃で行うことにより、製造することができる。上記反応による合成方法は、J. Curda, W. KleinおよびM. Jansen、「AgCuOSynthesis, Crystal Structure,...」、Journal of Solid State Chemistry, Vol. 162, pp.220-224 (2001)に記載されている。特に、上記文献中に記載されている様に、KOH3.0gおよびK1.5gを水150mlに入れた溶液を90℃で加え、AgNO(Merck、99%)1.205g(5mMol)およびCu(NO.3HO0.85g(5mMol)の飽和水溶液を反応させることにより、微結晶AgCuOを合成することができる。微結晶AgCuOは、沈殿物として生じる。AgCuOの独特な微結晶構造は、上記文献の図6に例示されている。AgCuO沈殿物を濾別し、脱イオン水で洗浄し、70℃で空気乾燥させる。AgCuOを形成する別の手段(上記文献中に言及されている)は、K. Adelsberger, J. Curda, S. VenskyおよびM. Jansenの文献、J. Solid State Chem., Vol. 158, p.82 (2001)中に報告されている様に、AgCuの水性懸濁液を酸化することである。AgCuの製造方法は、K. Adelsberger et al., 上記J. Solid State Chem., Vol. 158, p.82に、下記の様に記載されている、すなわち「AgCuの黒色結晶は、AgO(酸性AgNO溶液から沈殿)とCuO(Aldrich、99%)の、高酸素圧での固体状態反応により製造することができる。二元酸化物を1:1モル比で混合し、次いでステンレス鋼製オートクレーブ中に配置した銀製るつぼ中で3〜5日間アニールすることができる。最適反応温度および酸素圧力は、それぞれ500℃および200Mpaである。7M KOH水溶液1ミリリットルを促進剤として加える。AgCuの微結晶黒色粉末は、AgNO(Merck, p.a., 99.5%)
およびCu(NO.3HO(Panreac, p.a., 99.98%)の水溶液から、NaOH溶液(3M)4mlを加えることにより沈殿する。沈殿物を空気中、90℃で24時間乾燥させる。」
上記の様にして製造された酸化銀銅をカソード混合物812に使用することができる。カソード812に使用する酸化銀銅は、平均粒子径(乾燥)が約1〜100ミクロンの粉末である。酸化銀銅、AgCuOは、約1〜100ミクロンの粒子径に対して、実密度が約7.1g/cc、BET表面積が約10〜100m/gである。AgCuの実密度は約7.0g/ccである。固体の実密度は、試料の重量を実体積で割ったものである。試料の実体積は、実際の体積から、粒子間および粒子の細孔中にある空気により占有される容積を差し引いたものである。BET表面積(m/g)(Brunauer, Emmett, Tailor法)は、この分野で認められているガス(窒素および/または他のガス)多孔度測定法による粒子表面積の標準測定である。BET表面積は、粒子の外側表面上および粒子内の、適用した時にガスの吸着および脱着に利用できる開放細孔により限定される部分の総表面積を測定する。
アノード815は、亜鉛および水性KOH電解質を含んでなる。アノード中の電解質は、KOH、ZnOおよびゲル化剤の従来の混合物を含んでなる。亜鉛は、アノード活性材料として作用する。アノードおよびカソードは、例えばポリビニルアルコールおよびセルロース系繊維状材料を含んでなる、従来のイオン多孔質セパレータ890により分離することができる。電池810を充填した後、絶縁プラグ860を開放末端816の中に挿入する。絶縁プラグ860は、ポリプロピレン、タルク充填ポリプロピレン、スルホン化ポリエチレンまたはナイロン製でよい。プラグ860はその中に、典型的には小円形、長円形または多角形の薄い部分865を有することができる。薄い部分865は、破壊し、それによって電池中にある過剰のガスを放出する様に設計できる破壊可能なメンブランとして機能する。これは、例えば電池が過剰の熱または苛酷な操作条件にさらされた場合に、電池中に蓄積する過剰のガス圧に対して保護する。プラグ860は、図に示す様に周辺部の段差818に沿ってスナップ状に適合し、プラグが開放末端816中の所定の位置に固定されるのが好ましい。ケーシング820の周縁部827は、絶縁プラグ860の上部の上に折り曲げられる。紙の絶縁ワッシャー880がケーシング820の折り曲げられた周縁部827の上に貼り付けられる。絶縁ワッシャー880は、ポリエチレン被覆された紙ワッシャーでよい。端子末端キャップ830が集電装置840のヘッドに溶接される。次いで、細長い集電装置840が、絶縁プラグ860の開口部844の中に、末端キャップ830が絶縁ワッシャー880に接する様に挿入され(押し込まれ)る。集電装置840は、集電装置材料として有用であることが分かっている導電性の様々な公知の金属、例えば黄銅、スズめっきされた黄銅、青銅、銅またはインジウムめっきされた黄銅、から選択することができる。試験電池には、黄銅の集電装置840を使用した。集電装置840を開口部844の中に挿入する前に、通常のアスファルトシーラントを前もって集電装置の周りに塗布するとよい。ケーシング820の周囲にはフィルムラベル870を貼り付ける。端子末端キャップ830がアルカリ電池810の負端子となり、ケーシング820の閉鎖末端にある小部分825が正端子になる。
図1に示す電池810は、AA電池でよい。しかし、図に示すアルカリ電池は、特定のサイズに限定されるものではない。従って、本発明は、AAAA、AAA、CおよびDサイズの円筒形アルカリ電池、ならびにボタンサイズまたはあらゆるサイズまたは形状のプリズム形アルカリ電池にも適用される。アルカリ電池810は、カソード812が酸化銀銅およびグラファイト材料を含んでなる本発明のカソード混合物を使用して製造される以外は、どの特定の電池化学物質または電池サイズにも限定されるものではない。上記の電池(図1)は、AAAA、AAA、AA、CまたはD電池でよい。これらの標準電池サイズは、この分野で認められており、American National standards AssociationまたはヨーロッパでInternational Electrotechnical Commission (IEC)により規定されている。ここで言及するAA円筒形電池は、American National Standards Institute (ANSI)のバッテリー規格ANSI C18.1M, Part 1-1999により、正から負端子先端までの全長が49.2mm〜50.5mmであり、電池外径が13.5mm〜14.5mmであると定められている標準的な全体寸法を有する。
従って、電池810は、添加水銀ゼロ(電池総重量100万部あたり50部未満の水銀、好ましくは電池総重量100万部あたり10部未満の水銀)である従来のアルカリ電池亜鉛アノード化学物質、およびその変形を含むことができる。その様な代表的な化学物質は、例えばここに参考として含める米国特許第5,401,590号に開示されている。本発明の電池810は、好ましくは添加量の鉛を含まず、従って、実質的に鉛を含まなくてよい、すなわち総鉛含有量が30ppm未満、好ましくはアノードの総金属含有量の15ppm未満である。
ゲル化した亜鉛アノード、および酸化銀銅カソード活性材料(AgCuO、AgCuまたはそれらの混合物)を含んでなる本発明のカソードを有するアルカリ電池は、図2に示す様なボタンまたはコイン電池110の形態で製造することもできる。電池110は、本発明のカソード混合物を含んでなるカソード170を包含することができる。その様なカソード混合物は、酸化銀銅82〜90重量%、グラファイト、例えば膨脹化グラファイト、約4〜10重量%、および水性KOH電解質(水性KOH電解質はKOH濃度が30〜40重量%、好ましくはKOH濃度が35〜40重量%である)約5〜10重量%を含んでなることができる。水性KOH電解質は、好ましくは約2重量%のZnOも含む。カソード混合物は、所望により約0.1〜0.5重量%のポリエチレン結合剤も含んでなることができる。
アノード材料150は、亜鉛合金粉末62〜69重量%(インジウムを含む99.9重量%亜鉛)、KOH38重量%およびZnO約2重量%を含んでなるKOH水溶液、B.F. Goodrichから「CARBOPOL C940」の商品名で市販の架橋したアクリル酸重合体ゲル化剤(例えば0.5〜2重量%)およびGrain Processing Co.から「Waterlock A-221」の商品名で市販の、デンプン骨格上にグラフト化された加水分解ポリアクリロニトリル(0.01〜0.5重量%)、Rhone-Poulencから「RM-510」の商品名で市販のジオニルフェノールホスフェートエステル界面活性剤(50ppm)を含んでなる。亜鉛合金の平均粒子径は、好ましくは約30〜350ミクロンである。アノード中の亜鉛のかさ密度(アノード気孔率)は、アノード1立方センチメートルあたり約1.75〜2.2グラム亜鉛である。アノード中の電解質水溶液の体積%は、アノードの約69.2〜75.5体積%である。亜鉛合金粉末はほとんど全部が亜鉛から構成され、電気化学的には亜鉛として機能するので、ここで使用する用語亜鉛は、その様な亜鉛合金粉末も包含するものとする。
セパレータ160は、セパレータ160に関して上に説明した様な従来のイオン多孔質セパレータでよい。例で参照する、図2に示す具体的な実施態様では、セパレータ160は、セルロースの外側層およびセルロース系(レーヨン)およびポリビニルアルコール繊維から構成された不織材料の内側層を含んでなる。セルロースの外側層はカソード電極に接している。
図2に示すボタン電池110では、開放末端132および閉鎖末端38を有する、ディスク形状の円筒形ハウジング130が形成されている。ハウジング130は、ニッケルめっきされた鋼から形成されている。電気絶縁部材140、好ましくは中空コアを有する円筒形の部材、が、絶縁部材140の外側表面がハウジング130の内側表面に接触し、内張する様に、ハウジング130の中に挿入される。あるいは、ハウジング130の内側表面を重合体状材料(該重合体状材料は固化し、ハウジング130の内側表面と接触する絶縁体140を形成する)で被覆することができる。絶縁体140は、様々な熱的に安定した絶縁材料、例えばナイロンまたはポリプロピレン、から形成することができる。
酸化銀銅(AgCuO)、グラファイト、水性電解質を含んでなるカソード混合物170は、従来の混合装置中、常温で、均質な混合物が形成されるまで単純に混合することにより、製造することができる。グラファイトは、フレーク状結晶性天然グラファイト、フレーク状結晶性合成グラファイト、膨脹化グラファイトまたはそれらのいずれかの混合物でよい。カソード170は、ハウジング130の閉鎖末端138の内側表面と接触する層または圧縮されたディスクとして形成する。セパレータシート160をカソード170の上に配置する。電解質がセパレータシート160およびカソード170を通って十分に浸透する様に、水性電解質をさらに加えることができる。粒子状亜鉛、KOH電解質水溶液(KOH35〜40重量%およびZnO2重量%)、およびゲル化剤を含んでなるアノード混合物150の層をセパレータシート160に塗布する。好ましくはニッケルめっきされた鋼から形成されたアノードカバー120をハウジング130の開放末端132の中に挿入する。黄銅、スズめっきされた黄銅、青銅、銅またはインジウムめっきされた黄銅のシートを含んでなるアノード集電装置115を所望によりアノードカバー120の内側表面に溶接することができる。ハウジング130の周縁部135を絶縁部材140の露出された絶縁体縁部142の上に折り曲げる。周縁部135が絶縁体縁部142の中に食い込み、ハウジング130を閉鎖し、その中の電池内容物を密封する。アノードカバー120は、電池の負端子としても機能し、ハウジング130の閉鎖末端138は電池の正端子として機能する。
試験用円筒形ボタン電池110は、例えば直径15.0mmおよび厚さ6.98mmを有する様に製造することができる。
試験用ボタン電池110では、セパレータ160は、セルロース系(レーヨン)およびポリビニルアルコール繊維の不織材料の内側層およびセロハンの外側層からなる従来のイオン多孔質セパレータでよい。各試験電池には、粒子状亜鉛を含んでなる同じアノード混合物を使用することができる。カソード組成物は変えることができる。電池の性能、耐用寿命(ミリアンペア−時間)およびエネルギー出力(ミリワット−時間)は、特定の電流、ミリAmpまたは電流密度ミリAmp/cm(アノード/カソード界面における電流密度)で、特定のカットオフ電圧、例えば0.9ボルト、に放電することにより、測定することができる。
下記の例で報告する試験では、試験電池は、図1に示す型のAA円筒形電池810であった。亜鉛を含んでなるアノードおよびMnOを含んでなるカソードを使用する比較試験(例1)の場合、AAサイズ電池810は、亜鉛のミリアンペア−時間容量(亜鉛1グラムあたり810ミリアンペア−時間に基づく)をMnOのミリアンペア−時間容量(MnO1グラムあたり308ミリアンペア−時間に基づく)で割った値が約1になる基準でバランスさせた。亜鉛を含んでなるアノードおよび酸化銀銅(AgCuO)または(AgCu)を含んでなるカソードを使用して試験した電池(例2)では、AAサイズ電池810を、亜鉛のミリアンペア−時間容量(亜鉛1グラムあたり810ミリアンペア−時間に基づく)を、カソード混合物中の酸化銀銅およびMnOのミリアンペア−時間容量(AgCuO1グラムあたり526ミリアンペア−時間、AgCu1グラムあたり412ミリアンペア−時間、およびMnO1グラムあたり308ミリアンペア−時間に基づく)で割った値が1を僅かに超える基準でバランスさせた。
例1
(比較−亜鉛アノード、MnO カソード)
810(図1)で示す一般的形状を有する試験用円筒形AA電池を製造した。試験用電池810は、亜鉛合金粉末62〜69重量%(インジウムを含む亜鉛99.9重量%)、KOH38重量%およびZnO約2重量%を含んでなるKOH水溶液、B.F. Goodrichから「CARBOPOL C940」の商品名で市販の架橋したアクリル酸重合体ゲル化剤(例えば0.5〜2重量%)およびGrain Processing Co.から「Waterlock A-221」の商品名で市販の、デンプン骨格上にグラフト化された加水分解ポリアクリロニトリル(0.01〜0.5重量%)、Rhone-Poulencから「RM-510」の商品名で市販のジオニルフェノールホスフェートエステル界面活性剤(50ppm)を含んでなるアノード815で製造した。亜鉛合金の平均粒子径は、好ましくは約30〜350ミクロンである。アノード中の亜鉛のかさ密度は、アノード1立方センチメートルあたり約1.75〜2.2グラム亜鉛である。アノード中の電解質水溶液の体積%は、アノードの約69.2〜75.5体積%である。セパレータ890は、レーヨンおよびポリビニルアルコールを含んでなる外側層(カソード812に面する)およびアノード815に面するセロハンの内側層を使用する従来の二重層セルロース系セパレータであった。
カソード812は、下記の代表的な組成、すなわち電解二酸化マンガン(例えばKerr-McGee製のTrona D)80〜87重量%、膨脹化グラファイト(Timcal E-BNB90、BET表面積24.3m/g)4〜10重量%、KOH濃度約35〜40重量%のKOH水溶液5〜10重量%、を有する。カソード812は、MnO9.59グラムを有し、亜鉛の理論的容量をMnOの理論的容量で割った値が約1になる様に、上記の様に計算したアノード815中の亜鉛の量でバランスさせた。例1に使用した具体的なカソード組成物は、下記の通りである。
Figure 2005524948
注1 体積%への換算は、下記の実密度、すなわちMnO(EMD)4.48g/cc、膨脹化グラファイト (Timcal E-BNB90) 2.25g/cc、および36重量%KOH水溶液1.35g/cc、を使用して行うことができる。
例1のAA電池810を、一定速度250ミリAmp(電流密度約21ミリAmp/cm)でカットオフ電圧0.9ボルトに放電させた。別の試験では、例1の新しいAA電池810のバッチを一定速度1Ampで放電させた。
250ミリAmpの放電で、カットオフ電圧0.9ボルトで得られた容量は、2227ミリAmp−時間であった。MnOの比容量は、1グラムあたり232ミリAmp−時間であった。この電池のエネルギー出力は2004ミリワット−時間であった。
1Ampの放電で、カットオフ電圧0.9ボルトで得られた容量は、917ミリAmp−時間であった。MnOの比容量は、1グラムあたり95.5ミリAmp−時間であった。この電池のエネルギー出力は825ミリワット−時間であった。
例2
カソード812が、酸化銀銅(AgCuO)を含んでなる本発明の下記のカソード混合物から形成される以外、例1と同様にして試験用AAサイズ電池810を製造した。ゲル化した亜鉛を含んでなるアノード組成物は、例1で使用したものと同一であった。電池は、AgCuO10.3グラムを有し、亜鉛の理論的容量をAgCuOの理論的容量で割った値が約1になる様に、バランスさせた。MnOをAgCuOで置き換えた以外は、同じカソード組成物を使用した。膨脹化グラファイトの形態にあるグラファイト材料を加えた。
Figure 2005524948
注1 体積%値への換算は、下記の実密度、すなわちAgCuO7.1g/cc、膨脹化グラファイト (Timcal E-BNB90) 2.25g/cc、および36重量%KOH水溶液1.35g/cc、を使用して行うことができる。
例2のAA電池810を、一定速度250ミリAmp(電流密度約21ミリAmp/cm)でカットオフ電圧0.9ボルトに放電させた。別の試験では、例2の新しいAA電池のバッチを一定速度1Ampで放電させた。
250ミリAmpの放電で、カットオフ電圧0.9ボルトで得られた容量は、2947ミリAmp−時間であった。AgCuOの比容量は、1グラムあたり287ミリAmp−時間であった。この電池のエネルギー出力は2652ミリワット−時間であった。
1Ampの放電で、カットオフ電圧0.9ボルトで得られた容量は、2210ミリAmp−時間であった。AgCuOの比容量は、1グラムあたり207ミリAmp−時間であった。この電池のエネルギー出力は1989リワット−時間であった。
例3
カソード812が、酸化銀銅(AgCu)を含んでなる本発明の下記のカソード混合物から形成される以外、例1と同様にして試験用AAサイズ電池810を製造した。ゲル化した亜鉛を含んでなるアノード組成物は、例1で使用したものと同一であった。電池は、AgCu9.86グラムを有し、亜鉛の理論的容量をAgCuOの理論的容量で割った値が1を僅かに超える様に、バランスさせた。MnOをAgCuで置き換えた以外は、同じカソード組成物を使用した。膨脹化グラファイトの形態にあるグラファイト材料を加えた。
Figure 2005524948
注1 体積%値への換算は、下記の実密度、すなわちAgCu7.1g/cc、膨脹化グラファイト (Timcal E-BNB90) 2.25g/cc、および36重量%KOH水溶液1.35g/cc、を使用して行うことができる。
例2のAA電池810を、一定速度250ミリAmp(電流密度約21ミリAmp/cm)でカットオフ電圧0.9ボルトに放電させた。別の試験では、例3の新しいAA電池のバッチを一定速度1Ampで放電させた。
250ミリAmpの放電で、カットオフ電圧0.9ボルトで得られた容量は、2247ミリAmp−時間であった。AgCuOの比容量は、1グラムあたり228ミリAmp−時間であった。この電池のエネルギー出力は2584ミリワット−時間であった。
1Ampの放電で、カットオフ電圧0.9ボルトで得られた容量は、1143ミリAmp−時間であった。AgCuOの比容量は、1グラムあたり116ミリAmp−時間であった。この電池のエネルギー出力は1315ミリワット−時間であった。
これらの例の性能結果を、250ミリAmpに関して表1に、1Ampに関して表4に示す。
Figure 2005524948
Figure 2005524948
表1に示す様に、酸化銀銅カソード活性材料(例2)を含み、250ミリAmpで放電した本発明のアルカリ電池は、同じ速度で放電した同じサイズの従来のZn/MnOアルカリ電池より高い容量および高い電力吐出を示す。酸化銀銅カソードを含む本発明のアルカリ電池の容量および電力吐出増加は、表2に示される様に、より高い放電速度1Ampでより顕著である。
本発明を特定の実施態様に関して説明したが、無論、本発明の概念の中で変形が可能である。従って、本発明はこれらの特定の実施態様に限定されるものではなく、請求項およびその等価物により規定される。
本発明のカソードを有する細長い円筒形アルカリ電池の切り取った断面図。 本発明のカソードを有する円筒形ボタンアルカリ電池の断面図。

Claims (31)

  1. ハウジング、正および負端子、アノード活性材料を含んでなるアノード、アルカリ電解質水溶液、セパレータ、およびAgCuOおよびAgCuおよびそれらのいずれかの混合物からなる化合物の群から選択されたカソード活性材料を含んでなるカソードを含んでなる電気化学的電池。
  2. 前記電池が再充電不可である、請求項1に記載の電池。
  3. 前記アノード活性材料が亜鉛を含んでなる、請求項1に記載の電池。
  4. 前記電解質溶液が水酸化カリウムを含んでなる、請求項1に記載の電池。
  5. 前記カソードが、グラファイト系炭素をさらに含んでなる、請求項1に記載の電池。
  6. 前記グラファイト系炭素が膨脹化グラファイトを含んでなる、請求項5に記載の電池。
  7. 前記グラファイト系炭素が、直径500ナノメートル未満のグラファイト系炭素ナノ繊維を含んでなる、請求項5に記載の電池。
  8. 前記炭素ナノ繊維の中央平均直径が約50〜300ナノメートルである、請求項7に記載の電池。
  9. 前記炭素ナノ繊維の中央平均長さが約0.5〜300ミクロンである、請求項8に記載の電池。
  10. 前記グラファイト系炭素が前記カソードの4〜10重量%を構成する、請求項5に記載の電池。
  11. 前記カソードが、約82〜90重量%のAgCuOを含んでなる、請求項1に記載の電池。
  12. 前記カソードが、約82〜90重量%のAgCuを含んでなる、請求項1に記載の電池。
  13. 前記カソード活性材料が、平均粒子径約1〜100ミクロンの粒子状形態にある、請求項1に記載の電池。
  14. 前記電池が、総電池重量の100万分の50重量部未満の水銀を含んでなる、請求項1に記載の電池。
  15. 前記グラファイト系炭素ナノ繊維が、炭素の100万分の200重量部未満の金属を含んでなる、請求項7に記載の電池。
  16. アノード活性材料を含んでなるアノード、アルカリ電解質水溶液、セパレータ、およびAgCuOを含んでなるカソードを含んでなる電気化学的電池。
  17. 前記電池が再充電不可である、請求項16に記載の電池。
  18. 前記アノード活性材料が亜鉛を含んでなる、請求項16に記載の電池。
  19. 前記AgCuOが、前記カソードの約3〜15重量%を構成する、請求項16に記載の電池。
  20. 前記電解質溶液が水酸化カリウムを含んでなる、請求項16に記載の電池。
  21. 前記カソードが膨脹化グラファイトをさらに含んでなる、請求項16に記載の電池。
  22. 前記膨脹化グラファイトが前記カソードの4〜10重量%を構成する、請求項21に記載の電池。
  23. 前記電池が、総電池重量の100万分の50重量部未満の水銀を含んでなる、請求項16に記載の電池。
  24. アノード活性材料を含んでなるアノード、アルカリ電解質水溶液、セパレータ、およびAgCuを含んでなるカソードを含んでなる電気化学的電池。
  25. 前記電池が再充電不可である、請求項24に記載の電池。
  26. 前記アノード活性材料が亜鉛を含んでなる、請求項24に記載の電池。
  27. 前記AgCuが、前記カソードの約3〜15重量%を構成する、請求項24に記載の電池。
  28. 前記電解質溶液が水酸化カリウムを含んでなる、請求項24に記載の電池。
  29. 前記カソードが膨脹化グラファイトをさらに含んでなる、請求項24に記載の電池。
  30. 前記膨脹化グラファイトが前記カソードの4〜10重量%を構成する、請求項29に記載の電池。
  31. 前記電池が、総電池重量の100万分の50重量部未満の水銀を含んでなる、請求項24に記載の電池。
JP2004504313A 2002-05-06 2003-05-05 改良されたカソードを有するアルカリ電池 Ceased JP2005524948A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/139,552 US6753109B2 (en) 2002-05-06 2002-05-06 Alkaline cell with improved cathode
PCT/US2003/013962 WO2003096443A2 (en) 2002-05-06 2003-05-05 Alkaline cell with improved cathode ­

Publications (1)

Publication Number Publication Date
JP2005524948A true JP2005524948A (ja) 2005-08-18

Family

ID=29269564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004504313A Ceased JP2005524948A (ja) 2002-05-06 2003-05-05 改良されたカソードを有するアルカリ電池

Country Status (7)

Country Link
US (1) US6753109B2 (ja)
EP (1) EP1504478A2 (ja)
JP (1) JP2005524948A (ja)
CN (1) CN100407481C (ja)
AU (1) AU2003231299A1 (ja)
BR (1) BR0309640A (ja)
WO (1) WO2003096443A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515757A (ja) * 2003-12-12 2007-06-14 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド 電気化学セル
JP2008251402A (ja) * 2007-03-30 2008-10-16 Dowa Electronics Materials Co Ltd 電池用正極活物質、該電池用正極活物質を用いた電池、及び該電池用正極活物質の製造方法
WO2017138742A1 (ko) * 2016-02-12 2017-08-17 주식회사 이엠따블유에너지 이차전지

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878489B2 (en) * 2002-05-06 2005-04-12 The Gillette Company Lithium cell with improved cathode
US7179310B2 (en) * 2003-07-03 2007-02-20 The Gillette Company Zinc/air cell with improved anode
AR045347A1 (es) 2003-08-08 2005-10-26 Rovcal Inc Celda alcalina de alta capacidad
US7160647B2 (en) * 2003-12-22 2007-01-09 The Gillette Company Battery cathode
AR047875A1 (es) 2004-06-04 2006-03-01 Rovcal Inc Celdas alcalinas que presentan alta capacidad
TWI459616B (zh) * 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
US20110206777A1 (en) * 2010-02-20 2011-08-25 Vellore Institute Of Technology Inorganic oxide nano materials as anti-microbial agents
US8298706B2 (en) 2010-03-12 2012-10-30 The Gillette Company Primary alkaline battery
US8303840B2 (en) * 2010-03-12 2012-11-06 The Gillette Company Acid-treated manganese dioxide and methods of making thereof
US20110219607A1 (en) * 2010-03-12 2011-09-15 Nanjundaswamy Kirakodu S Cathode active materials and method of making thereof
US20110223477A1 (en) * 2010-03-12 2011-09-15 Nelson Jennifer A Alkaline battery including lambda-manganese dioxide and method of making thereof
US9570741B2 (en) 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
US8703336B2 (en) 2012-03-21 2014-04-22 The Gillette Company Metal-doped nickel oxide active materials
US9028564B2 (en) 2012-03-21 2015-05-12 The Gillette Company Methods of making metal-doped nickel oxide active materials
US9793542B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
WO2016123596A1 (en) * 2015-01-30 2016-08-04 Nanomaterials Discovery Corporation Zinc-air prismatic battery configuration
AU2018266709B2 (en) 2017-05-09 2023-01-05 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
DE102018212409A1 (de) 2017-11-16 2019-05-16 Siemens Aktiengesellschaft Kohlenwasserstoff-selektive Elektrode
CN115432701A (zh) * 2022-09-29 2022-12-06 乌兰察布市大盛石墨新材料股份有限公司 导电石墨粉及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU557244B2 (en) * 1984-02-20 1986-12-11 Matsushita Electric Industrial Co., Ltd. Zinc alkali cell
JPS60175368A (ja) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd 亜鉛アルカリ一次電池
EP0185497B1 (en) * 1984-12-12 1988-04-20 Matsushita Electric Industrial Co., Ltd. Zinc-alkaline battery
US5162169A (en) * 1987-10-27 1992-11-10 Battery Technologies Inc. Catalytic recombination of hydrogen in alkaline cells
DE527793T1 (de) * 1990-05-09 1994-12-08 Battery Technologies Inc Katalytische rekombination von wasserstoff in alkalischen batterien.
US5516604A (en) 1995-02-13 1996-05-14 Duracell Inc. Additives for primary electrochemical cells having manganese dioxide cathodes
US6251539B1 (en) * 1999-06-14 2001-06-26 The Gillette Company Alkaline cell with improved anode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515757A (ja) * 2003-12-12 2007-06-14 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド 電気化学セル
JP2008251402A (ja) * 2007-03-30 2008-10-16 Dowa Electronics Materials Co Ltd 電池用正極活物質、該電池用正極活物質を用いた電池、及び該電池用正極活物質の製造方法
WO2017138742A1 (ko) * 2016-02-12 2017-08-17 주식회사 이엠따블유에너지 이차전지

Also Published As

Publication number Publication date
WO2003096443A3 (en) 2004-03-04
EP1504478A2 (en) 2005-02-09
AU2003231299A8 (en) 2003-11-11
WO2003096443A2 (en) 2003-11-20
CN100407481C (zh) 2008-07-30
BR0309640A (pt) 2005-03-01
AU2003231299A1 (en) 2003-11-11
CN1653631A (zh) 2005-08-10
US20030207174A1 (en) 2003-11-06
US6753109B2 (en) 2004-06-22

Similar Documents

Publication Publication Date Title
US6759166B2 (en) Alkaline cell with improved cathode
JP4694561B2 (ja) オキシ水酸化ニッケルカソードと亜鉛アノードとを包含するアルカリ電池
US6753109B2 (en) Alkaline cell with improved cathode
EP2545604B1 (en) Primary alkaline battery
JP6262320B2 (ja) 金属ドープされた酸化ニッケル活性材料
US8303840B2 (en) Acid-treated manganese dioxide and methods of making thereof
CA2335386C (en) Carbon fibril aggregates
JP2015516649A (ja) 金属ドープされた酸化ニッケル活性材料を作製する方法
EP2828910B1 (en) Metal-doped nickel oxide active materials
JP2005536018A (ja) ラムダ−及びガンマ二酸化マンガンを含むアルカリ蓄電池
JP4024538B2 (ja) 改良されたアノードを有するアルカリ電池
US6841302B2 (en) Alkaline cell with improved cathode
US8003258B2 (en) Alkaline cell with improved anode
US6730436B2 (en) Alkaline cell with improved cathode
JP2008532256A (ja) 電池
US6808847B2 (en) Alkaline cell with improved cathode including copper hydroxide and a sulfur additive
WO2013157181A1 (ja) アルカリ電池
JP2004139909A (ja) 密閉型ニッケル亜鉛一次電池
JP4503790B2 (ja) アルカリ電池
JP2009081038A (ja) ニッケル水素二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100219

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100618