JP2005524378A - 同期および双方向可変周波数電力変換システム - Google Patents

同期および双方向可変周波数電力変換システム Download PDF

Info

Publication number
JP2005524378A
JP2005524378A JP2004502452A JP2004502452A JP2005524378A JP 2005524378 A JP2005524378 A JP 2005524378A JP 2004502452 A JP2004502452 A JP 2004502452A JP 2004502452 A JP2004502452 A JP 2004502452A JP 2005524378 A JP2005524378 A JP 2005524378A
Authority
JP
Japan
Prior art keywords
power
power conversion
frequency
phase angle
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004502452A
Other languages
English (en)
Inventor
コジョリ,ハッサン・エイ
ジョウ,ジョージ・ユー
ワン,ジェン
マ,ジャック・ダミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2005524378A publication Critical patent/JP2005524378A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

可変電圧可変周波数電力管理システムを必要とする可変速度駆動などの広い可変周波数システムまたは能動負荷に好適な同期双方向能動電力調整システム(11)を開示する。個々にAC−DC、DC−ACに使用できる、または可変電圧および/または広い可変周波数電力管理システムに好適なAC−DC−AC電力変換用にまとめてカスケード接続できる共通パワーエレクトロニクス基本構成要素(100、200)(ハードウェアとソフトウェアの両方のモジュールブロック)を提示する。共通制御ソフトウェア基本構成要素(2、5)は、デジタル環境内で開発され実装されるデジタル制御戦略/アルゴリズムおよびデジタル位相ロックループの方法および装置を含み、共通パワーパスモジュール型パワーエレクトロニクス基本構成要素(100、200)のスイッチング要素(3、6)のゲーティングパターンを提供する。

Description

本出願は、参照により内容全体が本明細書に特に組み込まれている、2002年4月30日に出願された米国仮出願第60/376572号の35 U.S.C.§119(e)の優先権を主張する。
本発明は、電力変換に関するものであり、より具体的には、同期および双方向可変周波数(VF)電力変換システムに関するものである。
本明細書には新しい制御構造/アルゴリズムおよびデジタル位相ロックループが提示される。本発明は、定常状態および動的性能が優れている2つのそのようなユニットをカスケード接続することにより能動整流(AC−DC)または電力変換(DC−AC)またはAC−AC電力変換のいずれかのための電力潮流の双方向制御を行う。その結果得られる電力調整機器は、標準化されたパワーエレクトロニクスの基本要素および制御構造/アルゴリズムを導入した結果、拡張可能、再構成可能であって、効率がよく、コスト、重量、およびサイズを実質的に低減して、容易に組み込むことができる。主要な特徴として以下のものがある。
320〜800Hzと広い周波数でVF発電/利用のため電力を調整する電力変換機器。
デジタル電力変換および/または負荷調整を行うAC−DC、DC−AC、またはAC−DC−AC用の双方向同期能動整流器/インバータ。
従来単一または複数の受動整流ユニットにより得られていた高いDCバス電圧を供給するDC電圧ブーストおよび調整。
電力源および/または負荷AC側(入力または出力)で得られる力率。
受動型フロントエンドフィルタおよびバックエンドフィルタのサイズを縮小し、DCリンクバスのサイズを小さくする能動フィルタリング。
電力は、従来、固定周波数(FF)で発電され、航空宇宙産業およびその他の産業ではさまざまな種類の線形および非線形負荷に印加される。可変速度駆動は、駆動システムの速度制御用に可変電圧−可変周波数(VVVF)調整電力を供給するのに電力調整が必要になる代わりに、軽い負荷条件により節電と高い効率を実現する。公益事業および一般産業では、電力の配給に50/60Hzの電気系統を使用しているが、航空宇宙産業では、軍事および商業用途に400Hzの電気系統を使用してきた。最近、これらの旧来の固定周波数(FF、つまり、400Hz)発電機は、320から800Hzの間の周波数の電力を供給する可変周波数(VF)発電機に徐々に置き換えられつつある。可変周波数に移行する理由に挙げられるのは、効率、重量、および経済性である。一定の周波数を維持するには、交流発電機の速度が一定に保たれなければならない。これは、発電機が航空機のエンジンのシャフトに付いている場合は容易な作業ではない。一定周波数を維持するには、重く、高価なサブシステムを追加する必要があり、電力システムの全体的な効率が下がる。代わりに、航空宇宙産業向けの可変周波数電源が使用される場合がある。しかし、このアプローチでは、ある種の負荷は供給周波数の変動に敏感であるため基本的問題を課す。
能動的、受動的を問わずさまざまな種類の負荷は、供給周波数および電圧量の変動に敏感である。このような負荷の一例として、航空宇宙用ポンプ/ファンの用途がある。航空宇宙用の可変周波数(VF)電力システムでは、周波数の変動は2:1以上の比になる場合がある。代表的なファン/ポンプ負荷用の電力は周波数の立方に比例するので、このVF電力システムでは、負荷は、定格の8倍となる電力需要に晒され、その結果損傷する。さらに、電源の電圧量が低下すると、負荷側では、電力が一定に保たれている場合、より多くの電流を引き込もうとする。このため、負荷が過熱し、最後の破損に至る可能性がある。したがって、これらの敏感な負荷に対する可変電圧可変周波数電源の悪影響を緩和するために、入力側で可変電圧および可変周波数AC電力または無調整DC電力を受け取ることができる高度な電力変換機器が必要であり、これにより、航空宇宙およびその他の産業用途のために多数の高性能の「数多くの電気的負荷」に必要なように同期固定または可変周波数調整電力を供給する。
最初にVF入力電力を中間DC電力に変換し、次にインバータを使用し、オン/オフ制御モードまたは可変速度/周波数システムにおける負荷の要求条件に応じて所望の固定または可変周波数に合わせてDC電力を調整することにより、VF電力への特定の負荷の周波数感度に関連する問題を緩和するさまざまな電力変換ソリューションが技術文献に掲載されている。これらのシステムの例として以下のものがある。
受動フィルタと併用する6パルス受動整流
高調波抑制用に2、3、または4個の受動3相整流器を多相オートトランスおよび追加フィルタと併用する12、18、および24パルス整流器
単一チャネル能動整流
多チャネル能動整流
可変周波数システムでは、ほとんどの従来技術は、AC−DC電力変換に単純な3相受動ダイオード整流を使用して、旧来の能動整流器の複雑な実装を回避している。航空宇宙産業およびその他の産業の用途に能動整流を使用しようとしても、これらのシステムの設計が複雑であったり、内在する故障モード、および過大なコストのせいで使用できなかった。最近、航空宇宙産業用途に能動整流器ソリューションが提案されている。特に、D.E.Bakerにより開発された米国特許第6038152号で開示されている手法には、以下の問題がある。
この制御方法では、安定化されたDCバス電圧が得られない。
この制御方法は、通常の3相ダイオード整流レベルよりも高い値を出すためには使用できない。
提案されている方法では、固定4パルスゲーティングパターンを使用するが、高いダイナミック性能を持ち、スイッチング周波数が非常に低いため実時間でACシステム電圧の基本波成分を制御できる閉ループゲーティングパターン制御を活かすことができない。したがって、この方法は、可変速度駆動などの高ダイナミック性能のDC−AC負荷には適していない。
メモリベースのゲーティングパターンの実装は、フィードフォワード事前計算スイッチングパターンに基づいており、想定されたシステムモデルから逸脱した場合はリアルタイムでの誤り訂正が可能でない。
さらに、この引用文献では、VFシステムに対し航空宇宙産業が課している電力品質要件を満たすスイッチング周波数が10kHzである能動整流器の実装は、電力損失が過大であるため実用的ではなく、実現できないことを示唆している。
電力品質条件を満たし、固定周波数AC電力システムアプリケーション用のデジタル能動整流器を提案するさまざまな種類のAC−DCコンバータ用の従来技術による能動整流技術には、いくつかの欠点がある。具体的にいうと、制御構造/アルゴリズムは複雑であり、コントローラパラメータのチューニングはわかりにくく、その実装はデジタル信号処理の高いスループットを要求するため、費用効果が劣るという点である。さらに、制御されるデバイスに対し20kHzと非常に高いスイッチング周波数であるため、フィルタコンポーネントを大きくし、過剰な熱管理を行う必要があり、その結果、システム全体のコストと重量が著しく増大する。
航空宇宙産業の可変周波数システムの320〜800Hzと広い変動範囲に好適な堅牢な制御方法および適切な同期を欠いているため、従来技術による能動整流器/インバータを航空宇宙産業の大電力変換/利用アプリケーションの実現可能なソリューションとして受け入れることは困難であった。これらの従来の電力変換システムは、信頼性が劣り、コストが過剰に要求され、また重量もあり、電力密度も低い。従来技術による電力変換機器は、電力密度、信頼性、および最小熱管理の要件がかなり改善されている費用効果のある次世代型電力変換機器用にモジュール型基本構成要素をサポートしようにも簡単に拡張できなかったり、柔軟でなかったり、構成可能でなかったりする。最後に、既存の電力変換機器の大半の梱包、製造、および保守は、単調な作業であり、時間もかかり、費用もかかる。
制御構造/アルゴリズムの最適化された実装では、システムの可変周波数を測定し、電力調整機器と電源(AC−DC)または負荷(DC−AC)またはその両方(AC−DC−AC)との同期を正常にとるために、正確で実装しやすい位相ロックループ(PLL)を必要とする。システム周波数が測定された後、技術文献においてよく知られているように、リアルタイム回転基準フレーム角度が計算され、その後これは標準回転ベクトル(abcからアルファ/ベータへ)および静止時間不変基準フレーム(アルファ/ベータからd/qへ)変換およびその逆の変換(つまり、abcからd−q静止基準フレームへの逆変換)に使用される。これらの変換は、電力調整システム(つまり、AC−DC能動整流器またはDC−ACインバータ)の制御されるデバイスのゲーティングパターンの生成およびDCバス電圧および力率補正などのシステム変数の適切な調整および閉ループ制御に必要である。
パワーエレクトロニクスベースのシステムでは、PLLの出力はクロック信号であり、これにより、AC側の周波数(f)が変化するときにA/D変換システムのサンプリング周波数をリアルタイムで調整することができる。さらに、回転ベクトルから静止基準フレームへの変換およびその逆の変換には、リアルタイム位相角情報が必要である。ほとんどのPLLでは、リアルタイム位相遅延角度は、時間について角周波数(2Πf)を積分することにより得られる。
パワーエレクトロニクスシステム用にさまざまな種類のアナログおよびデジタルPLLシステムが提案され、使用されている。アナログPLLは、これまでに、連続時間領域において明確に定義されたモデルから始めて、線形制御理論によりうまくモデル化され開発されてきた。しかし、パワーエレクトロニクスシステムは、サンプリングされるデータシステムであり、非線形である。線形制御理論およびモデリングは、非常に高いサンプリングレートでしか使用することができない。スイッチング周波数が高いと、デジタル信号処理スループットも高い必要があり、実装費用が高くつき、過剰なスイッチング周波数損失のため効率が落ちる。これには、かさばる、高価な熱管理システムが必要である。実用上の理由から、非常に高いスイッチング周波数は、こうした問題があること、さらに主に電力調整システムに使用されるIGBTなどの現行の高出力半導体デバイスは20kHzを遥かに下回るスイッチング周波数に制限されるという事実により、手ごろであるとはいえない。非線形デジタル位相ロックループ(DPLL)システムの開発および実装は、非線形および離散制御理論が複雑であるため、パワーエレクトロニクスシステムに対しては実現されていない。
従来技術のPLLは、以下の理由により、幅広い可変周波数電力システムには適当でない。
周波数追跡機能が限られている
ループフィルタを設計し、必要なコントローラ(ほとんどの場合、比例積分、つまりPIコントローラ)のパラメータをチューニングするのは困難である
安定解析および実装は、測定時間遅延があること、また非線形システムは二次システムとしてモデル化されるだけだという事実から、簡単ではない
さらに、アナログPLLの従来技術の実装は、OPアンプのオフセット、ドリフト、およびパラメータ変動に左右される。デジタルPLLは、高サンプリングレートを必要とし、何回ものオンライン計算を必要とし、さらに実装が困難である。
モータ制御アプリケーション向けに電力変換システムを構成するのに必要なコンポーネント、デバイス、機器、およびシステムは多い。スタンドアロンのモータコントローラは、関連するすべての制御装置、保護回路、熱管理、入力および出力コネクタを備えるインバータを含み、シャーシ内に適切に収納されている。モータコントローラのコスト、重量、サイズ、効率、および信頼性は、電力定格、デューティサイクル、冷媒、環境要件の複雑な関数として表され、またそれらの主要サブアセンブリ/機能の実現の仕方および相互に関する分割の仕方、製造および保守を容易にするパッケージへのまとめ方に大きく影響される。
従来のパワーエレクトロニクスベースのモータコントローラは、以下の主要サブアセンブリ/機能を備える。
論理回路用電源
パワーエレクトロニクスコントローラ
制御戦略/アルゴリズム
パワーパスインバータ(およびAC−DC−ACの場合は整流器)デバイス/モジュール
信号測定(電流、電圧、温度、速度など)および絶縁
ゲートドライバ
電源相互接続
論理相互接続
パワーシーケンス、保護調整、およびフォルトトレランス回路
入力および出力用のEMIおよび電力品質フィルタ
熱管理
DCリンクコンデンサ
モータ駆動のタイプとサイズ(DC装置、誘導機、PMSM、巻き磁界SM、SRMなど)
制御装置I/O
シャーシ。
以下の要件/考慮事項も、モータコントローラの設計および製造に大きな影響を及ぼすであろう。
速度制御の方法(ホール効果/リゾルバまたはセンサレス方式)
電気機械システム(モータ/発電機)との統合のレベル
一括集中制御回路と分散制御回路
環境要件
従来の航空宇宙用モータコントローラの操作は非常に精密である。しかし、これらの電力変換技術は、以下の点で問題があるため、将来の商用輸送用途にはイネーブルに使用できない。
重すぎるため電力密度が非常に低い
カスタムメードの部品およびアプローチであるためコスト高である
コンポーネント点数が多すぎ、またヘルスモニタリングおよび保護調整を欠いているため信頼性が低い
パワーエレクトロニクスデバイスおよび関連するフィルタにおける電力損失が多すぎるため効率が低い
機能ブロックの分割が多すぎ、また設計の分割/統合がまずいのでサイズが大きくなっている
このような「従来の」モータ制御装置技術がこうした問題に悩まされる理由のいくつかを以下に示す。
「論理回路電源」が別々であり、多くの電圧レベルが利用される
「一括集中制御装置」概念が複数の制御基板および論理回路/電源相互接続で使用され、これにより、主にアナログ回路または最適化されていないカスタムメードのデジタル回路を双方向および広い可変周波数電力システム用に最適化されていない比較的低いデジタル信号処理スループットの制御構造/アルゴリズムと併用してモータを制御する。
離散デバイスにより実現されたパワーパスインバータはカスタムメードであり非常に高価である
かさばるセンサおよび費用のかかる方法が信号測定(電流、電圧、温度、速度など)および高電圧信号絶縁に使用される
ゲートドライバ回路設計は、用途毎にカスタムメードであり、デバイスレベルで障害モードを効果的に処理するのに必要なすべての保護機能および診断機能を備えているわけではない。
かさばる高価な電源相互接続の広範な使用(例えば、バスバー)
115V、400Hzの270VDCおよびAC電圧のDCバス。主要な制限は、DCバスは自然な3相ダイオード整流により得られ、著しく低いまたは高い場合があるという事実であり、ACシステムは400Hz固定周波数でなければならない。
高価で脆い論理回路相互接続が広範に使用される
BITは制限され、包括的なパワーシーケンス(ソフトスタート/ストップ、およびライドスルーなど)保護調整機能、ヘルスモニタリングおよび予後診断およびフォルトトレランス回路を欠いているため、機能性能および/または信頼性が低い
入力および出力用のかさばり、高価なEMIおよび電力品質フィルタ
かさばり、高価なカスタムメードの熱管理機能
エネルギー密度が低い高電圧コンデンサは、カスタムメードであり、バルク「DCリンク」コンデンサとして使用される。これらは、温度に依存しており、コストが高く、パッケージングが困難である。
開発されたモータ制御装置は、異なるタイプおよびサイズのモータ駆動(誘導機、永久磁石同期装置(PMSM)、および巻き磁界SM)を収められるほどの柔軟性はない。
電力密度が低いためシャーシを大型にする必要があり、また異なるサブアセンブリをパッケージングするために過剰な体積が必要である
本発明では、航空宇宙産業およびその他の産業において可変周波数電源および/または可変速度モータ制御装置用の双方向同期電力変換システムを実現するための新しい制御構造/アルゴリズムおよびデジタル位相ロックループが提示される。上記の識別されたモータ制御装置の欠陥の解消に取り組み、さらに組み込みを容易にし、次世代の航空宇宙および一般産業用途向けの電力調整システム全体のコストを下げ重量を減らす、モータ制御装置用の従来技術による電力変換機器のさらなる改良と精密化を提示する。
さらに、本発明では、航空宇宙産業および一般産業において可変周波数電源および/または可変速度モータ制御装置用の双方向同期電力変換システムを実現するためのデジタル位相ロックループおよび制御戦略/アルゴリズムを提示する。
したがって、本発明では、可変周波数電力変換システムで使用する同期および双方向電力変換モジュールを提示し、電力変換モジュールはACおよびDC電圧および電流センサから信号を受け取り、電力スイッチングデバイスへのゲーティング信号を発生し、電力スイッチングデバイスのAC側とDC側との間の電力潮流を制御するデジタルコントローラを備え、デジタルコントローラはルックアップテーブルに基づきフィードフォワード予測システムを使用してシステム可変周波数を追跡するデジタル位相ロックループを備える。
さらに、可変周波数電力変換システム用のデジタル位相ロックループ(DPLL)を実装するための方法および装置も提示される。この方法および装置は、3相電圧可変周波数入力の基準位相角および推定位相角に基づいて基準位相角誤り信号を決定することを含む。可変周波数入力の測定された周波数は、位相角誤り信号に基づいて決定される。測定された周波数は、位相角ステップ、サンプリング周波数、および位相角遅延を生成するルックアップテーブルへの入力として使用され、推定位相角は、位相角ステップおよび推定位相角の事前値を使用して離散積分器により生成され、補正された位相角は、推定位相角および位相角遅延を使用して生成される。
さらに、組み込みを容易にし、次世代の航空宇宙および他の産業用途向けの電力調整システム全体のコストを下げ重量を減らす、モータ制御装置用の従来技術による電力変換機器のさらなる改良と精密化も提示される。
本発明およびその利点の詳細な内容は、付属の図面と併せて以下の説明を読むと明らかになるであろう。
本発明のいくつかの態様は、付属の図に関して随伴する説明の中で開示されている。
好ましい実施形態では、新しい制御構造/アルゴリズムおよびデジタル位相ロックループおよびパワーエレクトロニクス設計、高電圧および電流信号の感知および絶縁、制御アーキテクチャおよび制御アルゴリズムの複数の態様を、可変電圧可変周波数(VVVF)AC電力または入力側のDC電源から入力電力を受け取り、任意の種類の線形/非線形、受動、または能動負荷を作動させるのに必要に応じて制御固定周波数またはVVVF電力を出力に送ることができる一般化された電力変換機器のデジタル制御装置の実装、パワーシーケンシング、保護、診断監視およびオペレーションとともに開示する。特に、開示されている共通電力変換機器モジュール(AC−DC、DC−AC、またはAC−DC−AC用)は、最高の電力密度、最高の信頼性を持ち、電力変換機器全体の製造および保守の熱管理、パッケージング、容易さを著しく改善する、費用効果の高い次世代(NG)電力変換機器の拡張性の高い、柔軟な、構成可能モジュール型基本構成要素を実現する。
これらの共通電力変換機器技術は、以下のような多くの航空宇宙および地上業務用途のための次世代(NG)の集積ユーティリティ/制御装置を実現する際に使用される。
電力システム(EPS)可変周波数発電および配電システム
次世代型環境制御システム(ECS)(Bleed Electric/TurboGenおよびVCSシステム)
「More Electric Aircraft」(MEA)および「Power By Wire」イニシャティブをサポートする油圧、空気圧、およびユーティリティシステム用の電力変換機器および/またはモータ(誘導、同期、またはBLDGまたはスイッチトリラクタンスモータ)コントローラ
NGデジタル電力変換/デジタル負荷管理および利用
NGギャレー冷却モータ制御
NG APU始動およびノーブリード主エンジン始動
磁気ベアリング制御装置
能動フィルタ
電気式スラストリバーサ
電気自動車推進力(地上、海上、空中)
本発明は、対象となる航空宇宙および産業用途向けの電力密度、信頼性、および費用効果の高い電力変換機器を実現し、ほぼ正弦波の入力および/または出力波形を持ち、最軽量のフィルタコンポーネントを備え、能動または受動負荷との間の双方向電力潮流の供給および制御を行う同期AC−DCおよび/またはDC−AC電力変換機能を含む。本発明は、航空宇宙可変周波数電力システム(320〜800Hzと広い周波数)に好適である。実施形態は、高度な可変電圧可変周波数(VVVF)同期能動フロントエンド整流器を含み、この整流器は、AC電源から得られる自然な電圧整流よりも高いDCリンク電圧ブースト、デジタル電力変換、デジタル負荷管理、能動フィルタリングおよび/または減衰、リアルタイム力率(PF)補正、および航空宇宙仕様に準拠する電力品質(例えば、通常5ないし8%のある限界よりも下の電圧および電流全高調波歪み(THD))などの特徴を持つ。
追加実施形態としては、誘導モータ、同期装置、またはブラシレスDC(BLDG)モータ、またはその他の受動負荷などの能動モータ負荷を含む任意の種類の負荷に電力を供給するVVVFまたは固定周波数/電圧出力を備える高度なインバータを含む。システムインテグレーション機能は、1つの回路カードアセンブリに収めた電源、ゲートドライバ、感知、信号絶縁および調整の機能、「ACシステムのサグ」および/または電気の瞬断に耐えられるライドスルー機能、および電力変換システムからの一時的自由電流/電圧を入力および出力のところで供給する効率のよいソフトスタート方式をすべて集積化したものである。
電力瞬断の直面した場合、ライドスルー機能により電力変換システムは、著しい過渡電流または時間遅延(速度が0まで降下するのを待つのに必要)なしにオペレーションを適切に再開でき、これは、通常「コールドスタート」と呼ばれる。従来の電力変換機器/モータコントローラシステムでは、電力瞬断が生じた場合、保護機能がせいぜい電力システムの問題を検出し、システムをシャットダウンするだけである。モータ/負荷は、電気機械式負荷の速度から生じる著しい問題および他の種類の能動負荷の逆起電力のせいで通常生じる同期問題のため、電力が復旧した直後には再度通電することはできない。モータ制御装置の場合、速度を障害前の状態に戻す前に時間遅延を入れるコールドスタートが必要である。いくつかの用途では、これらの時間遅延および厄介なトリップは許容できない。
図1Aは、本発明による同期および双方向可変周波数AC−DC−AC電力変換システム11のモジュールの上位レベルのブロック図を示しており、これにより電力変換機器は安全かつ制御可能な方法で回生できる。フロントエンド100は、入力フィルタ1、入力スイッチ3(例えば、ダイオード、SCR、IGBT、MCT、MOSFET、IPMなど)および関連する入力制御装置2を含む。フロントエンド100は、DC電力を出力セクション200に供給する、DCリンクコンデンサ4を備える。出力スイッチ6(例えば、SCR,IGBT、MCT、MOSFET、IPMなど)は、DCリンク4に結合され、出力制御装置5により制御されるとおりオペレーションモードに応じてDCリンク4から電流を引き込み、かつ/またはそれに電流を供給する。出力フィルタ7では、負荷(例えば、モータ)に/負荷から渡されるスイッチングされた電力の調整を行う。双方向システム内の電力(つまり、回生)は、負荷の中に流れるとともに負荷から流れ出る。したがって、当業者であれば、出力および入力のラベルは規約によるものであり、モジュールの機能を制約するものでないことを理解するであろう。システム内の他のモジュールは、制御装置2、5、制御インターフェース8、ゲートドライバなどに電力を供給する電源9を含む。制御インターフェース8は、入力および出力制御装置と上位レベルの制御システム(例えば、中央制御コンピュータ)とのインターフェースのために使用される。ヒートシンク10は、電子コンポーネント、特に、スイッチングデバイス内の電力スイッチング損失が高いため著しい熱を発生する入力スイッチ3および出力スイッチ6を冷却する。以下では、これらのモジュールの特定の態様について説明する。
図1Bは、出力/インバータモジュール200および関連する相互接続コンポーネントのブロック図である。もう一度、出力という用語はオペレーションモードに関係しており、出力モジュール200のオペレーションを制限するものではない。モジュール200は、高電圧および大電流で動作するDCリンク4に結合されている。DCリンク4は、オペレーションモードに応じて電力を供給または受け取ることができる。28VDC入力はさらに、制御/論理回路電源電圧を発生するためにも供給される。しかし、電源はモジュール200の内部要求条件に合わせて電圧を発生するので、制御電圧はシステム仕様にかなっているものであればどのようなものでもよいが、これについては以下で詳述する。システムフィードバック/感知機能は、DCリンクからのDC電圧および電流信号、負荷204(例えば、モータ)の3相電圧および電流を含み、また制御されるデバイスの閉ループオペレーションまたは電子コミュテーションに対し負荷204からの位置/速度フィードバックも含むことができる。電力スイッチ202(例えば、接触器、回路遮断器など)を使用して、負荷204を絶縁することができる。電力スイッチ202は、出力モジュール202から制御される。最後に、オペレータインターフェース/システムコントローラ206は、(例えば、シリアル通信、パラレル通信、ディスクリート制御線などで)出力モジュール200に接続されて動作し、モータ速度、位置コマンドなどの情報を出力コントローラとの間でやり取りすることができる。
さまざまなオペレーションモードにおいて、システムはAC−DC電力変換(モードI)、DC−AC電力変換(モードII)、およびAC−DC−AC電力変換(モードIII)の機能を備える。図1Bに例示されているように、出力モジュールがモードIIで動作している場合、DCリンクは電力を供給し、出力モジュール200はそれをVVVF3相電力に変換し、負荷204に供給する。それとは逆に、モードIでは(例えば、直接AC−DC電力変換または回生制動)、電力は3相VVVF電源/負荷からDCリンク4に流れる。出力モジュール200の電力スイッチは、負荷204からの電力を変換し、電力をDCリンクに供給する。モードIでは、DCリンクは出力モジュール200から電流を受け取る。
図1Cは、フロントエンド/入力モジュール100および関連するコンポーネントの詳細図を例示している。3相VVVF電源/負荷101は、電力をモードIのフロントエンドモジュールに供給する。電圧および電流感知回路102は、フロントエンド入力で電圧および電流を測定し、対応する出力信号を発生する。これらの信号およびDC電圧/電流感知回路120からの信号は、コントローラ2を高電圧から絶縁し、コントローラ2で使用するのに必要なだけ信号をスケーリングする信号絶縁および調整回路104に通される。コントローラ2は、適切なゲーティング信号を発生し、双方向電力潮流を供給する電力変換ブリッジ3のスイッチングを制御する。DCリンク4は、DCバス107の間に接続されているリンクコンデンサ109およびソフトスタート回路108を含む。当業者であれば、フロントエンド/入力モジュール100が出力モジュール200のオペレーションをミラー化することを理解するであろう。特に、モードIでは、フロントエンド/入力モジュール100は、電源101からAC電力を受け取り、DCに変換して、DCリンク4に供給する。同様に、モードIIでは、DCリンク4は電流をフロントエンド/入力モジュール100に供給し、このモジュールはそれを変換して、電流をAC電源101に送り返す。モジュールは独立動作が可能であるが、組み合わせた場合(例えば、図1A)、モードIIIのオペレーションが実行でき、電力は両方向でACからDCに、そしてACに変換される。
図2は、電力変換システムの一実施形態の詳細システムブロック図を例示している。電力変換システムは、整流器/入力側またはインバータ/出力側のいずれにも使用できる。図2は、さらに、標準化された電力変換システムの構成に対する構造化された層別化アプローチを例示している。それぞれの層は、システムハードウェア/ソフトウェアの統合を円滑にするモジュール方式で取り扱われる電源変換システムのいくつかの態様を表す。これらの層の中の要素の大半は、すでに、図1A〜Cに関して説明されており、したがって、ここではさらに詳しくは説明しない。制御電源9は独立動作し、PCEで必要な制御/論理回路供給電圧レベル(例えば、5V、15V)を供給する。制御電源9は、単一の外部電圧(例えば、28V)を使用して、適切な制御電圧を電力変換システムに供給するのに必要なすべての変換/スケーリングを実行する。例示されている次の層は、駆動電源および制御基板であり、これは、インテリジェント型パワーモジュール(IPM)ドライバ電源50およびデジタルコントローラ2、5(例えば、DSP)を含む。絶縁および感知層は、信号絶縁および調整回路104を含む。パワーパス層は、電力スイッチング回路3、6および集積DCリンク4およびソフトスタート回路108を備える。フィルタ層は、AC負荷/電源250への/からの電力を調整する入力/出力フィルタ1/7を形成する誘導性および容量性素子を含む。センサ層は、集積ACセンサ102およびDCリンクセンサ120を含む。センサは、信号絶縁および調整回路104を介してコントローラ2、5にフィードバックを供給する。センサからのフィードバックにより、報告、データ収集が可能であり、コントローラは電力スイッチング回路3、6用の適切なゲーティング/スイッチングパターンを決定することにより電力潮流を双方向で調整することができる。それぞれのモジュールは、モードIまたはモードIIのいずれかで動作し、DCリンク4およびAC電源250へ/から電力を引き込む/供給することができる。さらに、2つのモジュールを組み合わせることができ、コントローラ2、5を組み合わせで動作し完全なモードIIIシステムを実現するように構成することができる。コントローラはデジタル式でありインテリジェント型であるため、制御ソフトウェアは、整流器またはインバータレギュレータのいずれかとして動作するように簡単に構成することができる。用途に応じて、追加信号(例えば、モータ制御での速度/位置フィードバック)を使用して、電力スイッチング回路3、6のコントローラ2、5およびゲーティングのオペレーションを決定する。しかし、これらの信号は、絶縁および調整回路および制御ソフトウェアを介してモジュールに容易に組み込まれる。
図3は、電源9の詳細図である。例示されている実施形態では、28V電源はDC/DCコンバータ90で5V制御電力に変換される。5V制御電源を使用して、追加DC/DCコンバータ92および94に電力を供給し、この制御/論理回路電源設計の主要な態様の1つである分散方式でPCEモジュール上の各サブシステムについて他の供給電圧から絶縁/他の供給電圧に変換する。例えば、5Vから5VへのDC/DCコンバータ92は、信号絶縁および調整回路への5V電力の絶縁および供給を行うのに使用できる。さらに、5Vから15VへのDC/DCコンバータ94を使用して、共通5V電源の15Vへの絶縁および変換を行い、使用時点で15V電力をゲートドライバに供給する。電圧および配電方式は、説明のみを目的として示されており、本発明は図に示されている構成に限られない。当業者であれば、説明されている電源が集積化された分散電源を示しており、例示されているように、外部電源レベルを1つだけ使用し、したがって、外部システムからの複数の電源(例えば、28V、15V、5Vなど)を必要としない。したがって、別々の外部電源は不要であり、低電圧電源バスが取り除かれ、それらのバス接続は1つだけにまとめられる。さらに、集積電源では、絶縁、制御、およびモジュールに必要な電源のモジュールへの組み込みを行える。したがって、モジュールの交換性および設計柔軟性が高められる。例えば、IPMを使用するモジュールは、ディスクリートIGBTをスイッチングデバイスとして使用するモジュールとは異なる電圧条件を持つことがある。しかし、必要な電圧は使用時に分散方式で集積電源9で内部的に発生するため、いずれのモジュールも、電源電圧(例えば、28V)を変えずに使用することが可能である。
図4は、本発明の一実施形態による電流および電圧感知回路を例示している。高精度分流器1022は、それらの抵抗器間に発生する電圧を使用してVVVF電源/負荷101の電流を検出する。この電圧は、絶縁および信号調整回路104に送られ、そこで、信号の絶縁、フィルタ、およびスケーリングが行われる。当業でよく知られている他の種類の電流感知も使用できる、絶縁および信号調整器回路104からの絶縁されスケーリングされた電源/負荷101の電流信号は、コントローラ2、5の集積A/Dコンバータに供給され、コンバータは信号をデジタルコントローラ2、5により使用可能なデジタル形式に変換する。同様に、集積分圧器1024は、VVVF電源/負荷101の電圧に比例する電圧を供給する。分圧器1024からの電圧信号は、信号調整回路104内で絶縁され、フィルタ/スケーリングされる。絶縁および信号調整器回路104からの絶縁されスケーリングされた電源/負荷101の電圧信号は、コントローラ2、5の集積A/Dコンバータに供給され、コンバータは信号をデジタルコントローラ2、5により使用可能なデジタル形式に変換する。その後、コントローラ2、5は、追加センサまたはコンポーネントなしで、電圧および電流信号から追加情報(例えば、位相、力率(PF)など)を導くことができる。
コスト低減、重量削減、信頼性向上の著しいこの設計の主要な態様の1つは、多数の複雑なハードウェア機能/コンポーネントが1つの回路カードアセンブリ84(図8)に集積化されるという事実であり、この回路カードアセンブリは、
3相AC電流およびAC電圧のすべての感知機能、
DCリンク電流および電圧のすべての感知機能、
感知されたすべての信号の信号調整および絶縁回路、
インテリジェント型パワーモジュール(IPM)のオン/オフ制御を行い、IPMの動作状態を監視するすべての保護/状態信号を送るためのすべてのゲートドライバ回路の信号絶縁、
IPMモジュールのDCリンク端子のすぐ近くの分散DCリンクスナバコンデンサ、
集積化された分散制御/論理回路電源、
ソフトスタート回路および関連制御装置、
すべての論理回路/制御装置相互接続、
すべてのパワーパスバスバーを含む。
図5Aは、本発明の一実施形態によるAC−DCまたはDC−AC電力変換機器の入力または出力フィルタに使用することができる一般的な意味における共通の基本構成要素のフィルタ構成を例示している。フロントエンド電力変換フィルタ機能に使用した場合、この入力フィルタ構成は、VVVF電源の1つの相で1つのリードにそれぞれ接続される3本の導線1102の第1の集まりを持ち、他のリードはY接続コンデンサ1104の集まりと導線1106の第2の集まりに接続される。3本の導線からなる第2の集まりは、ブーストインダクタとして動作し、AC−DC能動整流器の入力側の他のリードに接続され、3相VVVF電力をコンバータブリッジに供給する。コンデンサ1104はそれぞれ、電力の一方の相に接続され、コンデンサ1104の他のリードは、共通接続となる。逆電力潮流モードでは、このフィルタ構成は、インバータの出力への出力フィルタ機能を持ち、正弦波に近い波形を負荷に供給する。この一般化されたフィルタ構成の変更形態も、用途に応じて可能であり、入力/出力フィルタの必要なコンポーネントは、電力品質および以下のEMI要求条件および制限に基づいて選択し、定格を設定することができる。
全高調波歪み(通常、5ないし8%)、
個々の高調波の最大許容可能な大きさ、
伝導性および放射エミッション。これらのフィルタの構成要素は必要なものである。
本発明の一実施形態では、後述の新しい最適制御構造/アルゴリズムおよびデジタル位相ロックループは10kHz(航空宇宙VF用途)とかなり低いスイッチング周波数で動作し、すべてのオペレーションモードの下で高速なダイナミック応答および安定した/予測可能な無共振性能を示す。このため、設計者は、このフィルタの交差周波数を類似の用途に対し同じ構成をとる従来のフィルタと比べてかなり高い値に設定することができる。本発明のこの態様では、最小のフィルタ要求条件および少ない熱管理の双方向および同期および広帯域可変周波数動作用の共通電力変換機器を実現し、その結果、電力調整機器全体のコスト、重量、およびサイズは著しく低減される。
図5Bは、それぞれインバータブリッジ/電力スイッチングデバイスの一方の相と1つのリードで接続される3本の導線1702からなる第1の集まりを持つフィルタ構成を例示しており、他のリードはコンデンサ1704の集まりおよび負荷に接続されている。コンデンサ1704はそれぞれ、電力の一方の相に接続され、コンデンサ1704の他のリードは、共通接続となる。当業者であれば、図5Bは導線の第2の集まりがハイパスされる同じ一般的な「T」フィルタ構成を反映していることを理解するであろう。したがって、フィルタ1および7は、上述のように、電力変換システムの入力および出力側の両方でシステムの高調波歪みを低減するのに役立つように設計することができる。
図6は、本発明の一実施形態による共通基本構成要素のデジタルコントローラのブロック図である。例示されている構成では、コントローラ2、5はプロセッサ1202(例えば、マイクロコントローラ、DSPなど)を含む。A/Dコンバータ1206は、外部アナログ入力を受け取って変換し、その後、デジタル形式でプロセッサ1202に送る。デジタルシグナルプロセッサ1202は、I/Oインターフェース1204を介して、ディスクリートI/Oと外部システムおよびモジュール上の他のコンポーネントとのインターフェースをとることができる。フロントAC−DC電力変換またはバックエンドDC−AC逆変換用の空間ベクトルパルス幅変調(SV_PWM)は、当業ではよく知られている。例えば、空間ベクトルパルス幅変調については、Zhou,G.Y.、Kojori,H.、およびWu,B.による論文「Comparison of Pulse Width Modulation (PWM) Techniques for Advanced Aerospace Load Power Management Applications(航空負荷電力管理アプリケーション用のパルス幅変調技術の比較)」、Honeywell 2002−01−3183で説明されており、参照によりその全体が本明細書に組み込まれている。したがって、SV_PWMについては本明細書で詳述しない。
SV_PWMは、共通論理回路電源電圧でデジタルシグナルプロセッサ1202からのゲーティング信号へゲート制御信号を発生するために使用され、後で電力インターフェース基板84上で調整され絶縁され、その後、IPMに適用され、正しい電圧および電流レベルの適切なゲート信号を供給し、個々の電力スイッチングデバイスのゲートを駆動する。実装を簡単にするため、モータコントローラ専用設計のカスタムDSPが使用され、図6に示されている機能すべてがDSPに組み込まれるという主な利点がある。図6に例示されているコントローラアーキテクチャは、入力コントローラ2または出力コントローラ3として両方の動作が可能である。プロセッサ1202はソフトウェアにより容易に再構成することができ、またすべての信号変換/インターフェースデバイスはコントローラに組み込まれるため、コントローラは、所望の機能を実装するように容易に適合させることができる。
図7は、本発明の一実施形態による集積/分散DCリンクおよびスナバコンデンサ基板を例示している。プラス端子402およびマイナス端子404は、電力スイッチングデバイスに接続する。プラス端子406およびマイナス端子408は、外部デバイスまたは他のモジュールのDCリンク端子に接続する。DCリンク基板410は、DCバスのインダクタンスが最小になるように積層板になっている。費用効果のある形で集積コンデンサを大きくするために必要に応じて、コンデンサンスがかなり小さい複数の低損失薄膜コンデンサ412をDCバス間に並列に接続する。このアプローチは、内部等価インダクタンスを低減し、熱損失をより均等に多数の小さなコンデンサに分散し冷却効果を高めるという利点をさらに持つ。それとは別に、複数のスナバコンデンサを電力インターフェース基板84上で直接使用し、正しいコンデンサンスの外部バルクコンデンサを使用してDCリンクを構成することができる。電力インターフェース基板84に加えてDCリンク基板86を必要とする第1のアプローチが好ましいが、それは、コストが高くつくのと引き換えにリードの等価コンデンサンスをかなり小さくできるからである。DCバスのプラス側は、プラス端子402および406に接続し、DCバスのマイナス側はマイナス端子404および408に接続する。コンデンサ412は、DCバスへのライドスルーおよびフィルタリングの両方のエネルギー貯蔵機能を果たし、電力スイッチングデバイスのスイッチングによるリップルを低減する。
本発明の他の態様では、「電圧ブースト」が可能であるためかなり高いDCリンク電圧(270VDCのバイポーラ型配置で350VDCまたは540VDC、つまり±270VDC)を実現する。したがって、DCリンクコンデンサのサイズは著しく縮小される。同じ電力定格では、DCリンク電圧が高くなるほど必要な電流は少なくなるため、電力変換機器内の伝導電力損失が低減される。これら2つの要因の組み合わせが、システム全体のサイズ、重量、およびコストの削減に寄与する。
図8は、システムハードウェア層の上面図である。層80はヒントシークである。電源および電力スイッチングデバイスは、層82上に配置されている。インターフェース基板は、層84に配置されている。分散DCリンクコンデンサバンクは、層86に配置され、デジタルコントローラ基板は、層88に配置されている。システムハードウェア層は、ヒートシンクへの熱伝達を最適にし、物理的占有面積および高さプロフィールを小さくして、電力および体積密度を高くするように構成されている。
本発明のいくつかの態様を、従来の電力変換システムの電源トポロジ、オペレーションモード、制御構造および制御アルゴリズムに関して以下の節で説明する。
電源トポロジ
固定周波数(FF)または可変周波数電源からAC/DCまたはDC/AC電力変換のための同期および双方向電力変換システムの簡略化された最上位レベルのシステムブロック図が図9Aに示されている。3相「AC電源」901は、同期双方向AC/DCコンバータ902に接続され、DC電力を負荷903に供給する。電力潮流は、AC電源901からDC負荷903へ、左から右へである。AC/DCコンバータ902は、6個の能動デバイス(IGBTなど)と6個の逆ダイオードが1つのインテリジェント型パワーモジュール(IPM)内に集積化された標準電圧源インバータ(VSI)である。IPM技術により、内部ゲーティング絶縁機能、ゲーティング電源、短絡保護回路、デバイス電源不足電圧保護機能、および過電圧保護機能を備えるフォールトトレラント型の集積電圧源インバータが実現される。IPM技術は、電圧源インバータのパワーパスセクションの実装および保護機能を著しく簡素化し、またAC−DCまたはDC−AC電力変換のための共通基本構成要素として使用される。図9Bは、モードIおよびモードIIの電力潮流を例示している。
図9Cは、同期AC−DCまたはDC−AC電力調整機器の双方向機能を示す簡略化されたブロック図を示している。電力潮流は、AC−DCコンバータ内で左から右とすることができるが、同じ回路を使用して、電力潮流が右から左へであるDC−AC電力変換を実現することも可能である。「負荷」901は、3相フィルタ904を通じて同期双方向AC−DCコンバータ902に接続される。コンバータ902は、DCリンクコンデンサ905を通じてDC安定化DC電力をDCバスに供給するか、または逆電力潮流モードで、DC電源905から電力を受け取り、3相フィルタ904を通じて調整されたAC電力を負荷901に供給する。2つのこのようなシステムが互いにカスケード接続されている場合、AC−DC−AC電力変換機器の電源トポロジは、図9Aおよび9Bに示されている共通電源電子回路基本構成要素に基づいて得られる。
以下の節では、この共通電子回路基本構成要素および新しい制御アルゴリズム(CA)およびデジタル位相ロックループ(DPLL)のオペレーションモードについて詳述する。
オペレーションモード
図1に示されている同期電力変換機器のオペレーションモードは3種類ある。
モードI:同期AC−DC電力変換機器(PCE)
モードII:同期DC−AC電力変換機器
モードIII:同期AC−DC−AC電力変換機器
モードI:同期AC−DC電力変換機器
モードIでは、図9Cに示されているように、電力変換システムは、3相可変電圧、可変周波数入力(VVVF)901を単位入力力率(PF)で調整された一定のDC出力905に変換し、それと同時に現在の全高調波歪み(THD)を最小にする。このモードでは、電力潮流の方向はAC側からDC側(左から右)である。
モードII.同期DC−AC電力変換機器
モードIIでは、電力変換システムは、最小の電流全高調波歪み(THD)の場合に必要に応じてDCリンク入力905を3相可変/固定電圧および可変/固定周波数出力901に変換する。このモードでは、電力潮流の方向はDC側からAC側(右から左)である。
モードIII.AC−DC−AC電力変換機器
システムでは、2つの提示されているシステムを共通内部DCリンクに接続するモードIおよびモードIIのPCEを使用し、図1に例示されているようにAC−ACコンバータを形成するが、全般的に、3相可変/固定電圧および/または可変/固定周波数入力を3相可変/固定電圧および可変/固定周波数出力に変換する。このモードでは、電力は左から右、または右から左とすることができる。
以下の節では、制御構造について説明する。制御構造は、上で説明したオペレーションモードのそれぞれ(つまり、モードI、モードII、およびモードIII)についてそれぞれの電力変換機器にコマンドおよび制御信号を伝達する方法を記述する。
図9Dは、モードIの制御構造例示している。AC/DC PCEシステムコントローラ910は、オペレーションに対する命令を送り、AC/DC PCEシステムコントローラ912からステータス情報を受け取る中央システムコントローラ912に接続されている。モードIIでは、図9Eに示されているように、DC/AC PCEシステムコントローラ950は、オペレーションに対する命令を送り、DC/AC PCEシステムコントローラ950からステータス情報を受け取る中央システムコントローラ912に接続されている。図9Fでは、モードIIIのオペレーションが示されている。AC/DC PCEコントローラ910およびDC/AC PCEコントローラ950は、オペレーションに対する命令を送り、PCEシステムコントローラ910および950からステータス情報を受け取る中央システムコントローラ912に接続されている。テストおよびデバッグ時に、3つのオペレーションモードに対するPCEは、実際のシステム内の該当する中央コントローラの代わりにスタンドアロンPCに接続することができる。
図10は、モードIとモードIIの両方のPCEに適用可能な制御戦略/アルゴリズムの詳細な共通ブロック図を例示している。制御戦略/アルゴリズムの新しい態様は以下のものを含む。
すべてのオペレーションモードに対する共通制御戦略、
オペレーションモード毎にPCEの同期する広い周波数にわたるオペレーションを可能にする新しいデジタル位相ロックループ(DPLL)、
簡略化された定常状態モデルのみを使用する従来のモデルとは異なり、実際の動的PCE電気系統モデルに基づいて能動整流または逆変換を行う共通制御アルゴリズム、
ACシステムの自然のダイオード整流よりもかなり高い値までのDCリンク電圧ブースト(例えば、115V FFまたはVF電力システムで、±270VDC)、
電源または負荷側の力率補正、
新しい最適な制御構造/アルゴリズムおよびデジタル位相ロックループは、10kHzとかなり低いスイッチング周波数で動作し(航空宇宙用途では320〜800Hzと広い可変周波数)、その結果、フィルタコンポーネントおよびIPMに対する熱管理要求条件は緩和される。
すべてのオペレーションモードで(VF用途の)双方向および同期電力変換のデッドビート発振が生じる従来技術とは異なり、安定した、発振のない高速なダイナミック応答、
電圧および電流の能動整流器(AC−DCモードIの電力変換)の直流および直交成分(913および918のd−q成分)に、100Hzとかなり低い遮断周波数を持つローパスフィルタを使用するのは、本発明の共通ブロック制御戦略/アルゴリズムの他の主要な態様の1つである。これによりさらに、システムの小/大信号のダイナミック性能が向上し、大きなフィルタを使用しなくても電源品質性能を高められる。
このため、設計者は、入力/出力フィルタの交差周波数を類似の用途に対し同じ構成をとる従来のフィルタと比べてかなり高い値に設定することができる。
前記の機能を使用することにより本発明は、最小のフィルタ要求条件および少ない熱管理の双方向および同期および広帯域可変周波数動作用の共通電力変換機器を実現し、その結果、電力調整機器全体のコスト、重量、およびサイズは著しく低減される。
制御戦略ブロックおよび関連する内部制御アルゴリズムは、図6に示され、またすでに説明されているように、デジタルシグナルプロセッサで実装される。モードI PCE(つまり、AC−DC能動整流)では、本発明の一実施形態による制御戦略/アルゴリズム910は、感知されたすべてのアナログ信号、つまり、3相入力AC電流(917の入力)、3層AC側電圧(912の入力)、DCリンク電圧(Z、911の入力)を受け取り、DSP(図6)を使用し、リアルタイムSV_PWM 914実装を使ってIPMの個々のデバイスに対するゲーティングパターンを計算する。サンプリング周波数は、DPLLブロックで内部的に調整され、サンプリング周期(T_s)が、その結果生成され、内部デジタルシグナルプロセッサおよびA/Dコンバータのために更新され使用される。
セクション911は、DC電圧を安定化する能動電力制御セクションを例示している。セクション912は、3相電圧信号を2相電圧VαおよびVβに変換する。セクション913は、VαおよびVβを受け取って、それらをVdおよびVqに変換し、基準信号Vd_refおよびVq_refをセクション914に供給する。セクション914は、空間ベクトル変調を使用してゲーティング制御信号を供給するPWM電圧安定化セクションである。セクション915は、VαおよびVβを受け取り、デジタルPLLに渡される位相角θを計算するAC位相ロックループである。以下では、デジタルPLL実装を詳述する。セッション916は、力率制御ブロックである。セクション917は、同期補正を実行する。セクション918では、3相電流信号を2相電流信号IαおよびIβに変換し、その後、IdおよびIqに変換する。セクション919は、IqおよびId信号をフィルタし、Iq信号を力率制御ブロック916に、IqおよびId信号をセクション913に供給してフィードフォワード計算を行う電流減結合ブロックである。
図10は、さらに、DC−AC電力変換についても当てはまり、また制御戦略/アルゴリズムに関する同じ説明は、DCバス電圧または速度または位置などの他の出力変数(ブロック911の入力にZとして示されている)の調整の代わりに閉ループ方式で制御できる点を除き、モードII PCEにも当てはまる。モードIIのオペレーションに対する同期電気機械負荷などの能動負荷については、従来、速度または位置(ホール効果またはリゾルバ)センサを使用して、インバータ(PCE)と負荷との適切な同期をとっている。通常、同期信号は、他の補助回路から導かれ、図10には、ブロック912への測定され調整された信号入力として示されている。このタイプのセンサベースの制御方法を実行する補助回路の詳細は、従来技術でよく知られており、したがってここでは示さない。
図11は、本発明の一実施形態による一般的なコントローラ構造910を例示しており、速度(ω)は入力Zとして使用される。セクション951は、能動電力制御(例えば、速度/トルク/電流安定化)を実行する。セクション952は、3相電圧信号を2相電圧VαおよびVβに変換する。セクション953は、VαおよびVβを受け取って、それらをVdおよびVqに変換し、フィードフォワード基準信号Vd_refおよびVq_refをセクション954に供給する。セクション954は、空間ベクトル変調を使用してゲーティング制御信号を供給するPWM電圧安定化セクションである。セクション955は、位置センサ/推定器である。センサが使用される場合、位相角θは、電気機械デバイス(例えば、リゾルバ、符号器など)からのフィードバックにより決定される。それとは別に、位置推定器を使用すると、電気機械式センサを使用する必要がなくなるが、追加ソフトウェアを必要とする。セクション956〜959は、機能については図10に関して説明されたセクション916〜919に類似しているためここでは繰り返さない。
他の好ましい実施形態では、図11は、モータ逆起電力(ブロック952への入力電圧)または線電流(ブロック955へのアルファ−ベータ電流)などの容易に利用可能な端子電気的情報を使用することにより能動電気機械負荷に位置/速度センサレス制御法が可能であることを示している。
図12は、本発明の一実施形態によるAC−DC−AC電力システムのシステムソフトウェアおよび通信の代表的ブロック図である。整流器/入力側ソフトウェア910およびインバータ/出力側ソフトウェア950は、同期通信プロトコルを介して通信する。同期通信プロトコルにより、コントローラのリアルタイム調整が可能である。インバータソフトウェアは、さらに、第2の非同期プロトコルを介してシステムコントローラ902と通信する。システムコントローラ902は、さらに、同期通信プロトコルを介して整流器ソフトウェア910と通信する。制御およびスイッチング機能に加えて、整流器902およびインバータ950ソフトウェアシステムは、さらに、PCEのデジタルパワーシーケンシング、診断、監視、およびオペレーションのルーチンも備える。
整流器/入力側ソフトウェア910構造は、AC電源の可変入力周波数で動作するように設計されているPLLモジュールを含む。以下では、PLLモジュールについて詳述する。同期通信モジュールは、シリアルポートの割り込みを使ってシリアルポートで実装される。A/D変換モジュールは、A/Dコンバータ、DC/AC電圧、およびAC電流感知、条件および較正の設定を含む。パワーシーケンスモジュールは、適切にオペレーションが実行されるように電源スイッチオン/オフ手順を制御し、さらに、障害検出および保護機能も含む。以下では、パワーシーケンスモジュールについて詳述する。主ルーチンは、整流器のオペレーションの通常ループである。PWM割り込みルーチンは、制御アルゴリズムおよびPWM生成用の主割り込みルーチンである。この割り込みサイクルは、スイッチング周波数に関係している。
インバータ/出力側ソフトウェア構造950は、シリアルポート割り込みを使用してシリアルポート上に実装される同期通信モジュールおよびホスト/システムコントローラ902と通信するため他のシリアルポート上に実装されるUART(非同期)通信モジュールを含む。A/D変換モジュールは、A/Dコンバータ、DC/AC電圧、および電流感知、条件および較正の設定を含む。パワーシーケンスモジュールは、適切にオペレーションが実行されるように電源スイッチオン/オフ手順を制御し、さらに、障害検出および保護機能も含む。主ルーチンは、インバータのオペレーションの通常ループである。PWM割り込みルーチンは、制御アルゴリズムおよびPWM生成用の主割り込みルーチンである。この割り込みサイクルは、スイッチング周波数に関係している。制御戦略およびアルゴリズムは、前記の節で概要を述べたようにいくつかの違いがある。主要な違いの1つは、ローパスフィルタとその遮断周波数、さらに、能動整流器では電源の周波数はデジタルPLLにより追跡されるという事実である。モードIIのオペレーションでは、コントローラはインバータの出力電圧の周波数を制御し、能動電気機械負荷の逆起電力との同期をとることができる。しかし、他の用途では、位置制御または単に可変電圧可変周波数電源を使用することができ、これは、インバータ出力電圧/電流の電圧および周波数を独立に制御することにより達成できる。図12の前記の説明および詳細は、単に説明を目的としているだけであり、当業者であれば、多数の他の通信方式を実装できることを理解するであろう。
図13は、PCE 100、200とシステムコントローラ912とのインターフェースを例示している。例示されているように、電源/負荷のAC電圧および電流およびDCリンクのDC電圧および電流は、A/Dコンバータにより取得され、AC電圧、電流、および周波数、DC電圧などのそれらの信号から導出される情報はシステムコントローラ902に供給される。追加制御およびステータス信号は、PCE 100、200とシステムコントローラ902との間でやり取りされる。スタート、ストップ、および速度コマンド(PC_Speed)などの制御信号は、システムコントローラ912を介してユーザからPCE 100、200モジュールに伝達することができる。システムステータス、アラーム、および障害信号も、PCE 100、200内で、例示されているようにシステムコントローラ902に伝達される。追加信号(例えば、温度およびラン/デバッグ)も、システムコントローラ912とPCEとの間で伝達することができる。図13の前記の説明および詳細は、単に説明を目的としているだけであり、当業者であれば、多数の他の構成を実装できることを理解するであろう。
図14は、本発明の一実施形態によるオペレータインターフェースの例を示している。制御、ステータス、障害、およびアラーム情報は、例示されているように、機能に関してグループにまとめられている。グループ1401は、制御ボタンを示す。グループ1402は、システムパラメータを示す。グループ1403は、システムステータスインジケータを示す。グループ1404は、アラームステータスインジケータを示す。グループ1405は、障害ステータスインジケータを示し、グループ1406は、通信ビット表示を示す。当業者であれば、例示されているすべての信号が必要なわけではなく、また本発明が例示されている信号に限定されないことを理解するであろう。信号は、必要に応じて、PCEおよびPCEが使用されるシステムに関連する限り、追加または削除することができる。したがって、信号およびグループは、単に、説明のために用意されており、本発明を制限することを目的としているわけではない。
図15は、本発明の一実施形態による電力変換システムのパワーシーケンシングおよび監視の全体的な制御流れ図を例示している。この包括的パワーシーケンシングおよび管理システムを使用すると、システムコントローラ/ユーザ912から電力変換システムへコマンド/制御信号を伝達し、電力システム全体のステータスおよびその適切なオペレーションを監視し、報告として送り返すことができる。このルーチンは、ステップ1500でウォッチドッグタイマーの起動および設定を行う。システムコントローラからの通信はステップ1510で受信される。ステップ1520で、A/Dコンバータが起動され、値が読み取られる。ステップ1530で、デジタル位相ロックループ(DPLL)のソフトウェアが実行され、ロックステータスのチェックがステップ1540で行われる。システムがロックに失敗すると、プロセスは、ステップ1545でウォッチドッグタイマーがタイムアウトになったかどうかをチェックする。タイマーがタイムアウトでなければ、システムはステップ1535で再びPLLのステータスをチェックする。タイマーがタイムアウトになった場合、ステップ1555でPLLエラーがログに記録される。ステップ1540で、ロックが設定されている場合、同期フレームの周波数および角度は、ステップ1550で決定される。その後、ステップ1560で、モード選択が、パワーシーケンスに基づいて決定される。ステップ1570で、選択されたモードは作用する(例えば、ACからDCへの電力潮流)。ステップ1580で、PCEはシステムコントローラステータス、アラーム、システムパラメータなどに再び通信する。最後に、ステップ1590で、ウォッチドッグタイマーのクリアが行われる。
図16は、本発明の一実施形態による電力変換機器のパワーシーケンスの流れ図である。制御アルゴリズムが起動し、ステップ1605でシステムのイネーブルステータスをチェックする。システムがイネーブルになっていない場合、システムはステップ1610でストップモードに入り/そこに留まる。システムがイネーブルになっていると仮定して、システムは、障害にフラグが立てられているかどうかステップ1615で調べる。システム障害が示された場合、システムはステップ1620の障害モードに入る。ステップ1620でシステム障害が示されていない場合、ステップ1625でアラームステータスがチェックされる。アラームが示された場合、システムはステップ1630でアラームモードに入る。アラームが示されていない場合、ステップ1635で電力中断状態のチェックが行われる。電力中断した場合(例えば、回路遮断器が開く)、システムはステップ1640で電力中断モードに入る。電力中断状態が負であれば、システムはステップ1650でランモードに入る。どのような状態に遭遇しようと(例えば、ストップ、アラーム、電力中断、およびラン)、システムステータスはステップ1660で更新される。当業者であれば、本発明は図16に例示されている一般化された流れ図のシーケンスに限られず、図に示されている特定のステップに限られないことを理解するであろう。例えば、複数のアラームおよび障害レベルを含めることも可能である。したがって、図16および関連する図17〜19の流れ図は、単に説明のみを目的として提示されており、制限することを目的として提示されているわけではない。
図17は、障害モードの一般的流れ図である。ステップ1621で、障害モードがセットされる。ステップ1622で、他のモードインジケータがクリアされる。ステップ1623で、障害テーブル情報は更新され、示された障害情報が保管される。駆動イネーブルはステップ1624でクリアされ、プロセスは図16に示されているように戻り、システムステータスを更新する。
図18は、アラームモードの一般的流れ図である。ステップ1631で、アラームモードがセットされる。ステップ1632で、他のモードインジケータがクリアされる。ステップ1633で、アラームテーブル情報は更新され、示されたアラーム情報が保管される。システムはアラームモードで動作できるため、駆動部を操作するために必要な制御オペレーションは、ステップ1634から1636で起動される。駆動部はステップ1637でイネーブルにされ、プロセスは図16に示されているように戻り、システムステータスを更新する。図19は、電力中断モードの一般的流れ図である。ステップ1641で、電力中断モードがセットされる。ステップ1642で、他のモードインジケータがクリアされる。システムは電力中断モードで動作できるため、駆動部を操作するために必要な制御オペレーションは、ステップ1643から1645で起動される。回路遮断器、ソフトスタータ、およびPWMはステップ1646でイネーブルにされ、プロセスは図16に示されているように戻り、システムステータスを更新する。
図20は、本発明の一実施形態によるデジタルPLLの流れ図である。ステップ2010で、未処理の角度θが計算される。ステップ2020で、角度誤差が計算される。角度誤差は、許容可能ロック誤差と比較される。角度誤差が大きい場合、ステップ2035でPLL_lockインジケータはクリアされ、大きくない場合、ステップ2040でPLL_lockインジケータはセットされる。PLLロックが確定した後、ステップ2050で周波数が計算され、ステップ2060で周波数ベースのルックアップテーブルがアクセスされる。ルックアップテーブルから取り出された値を使用し、ステップ2070で位相ステップ、位相補正、およびサンプリング時間を決定する。ステップ2080で、PLL角度は位相ステップおよび位相補正値を使用して更新される。デジタルPLLの詳細な説明は以下のとおりである。
パワーエレクトロニクスベースのシステムでは、A/D変換システムのサンプリング周波数に対するクロック信号は、AC側の周波数が変化するのに合わせて調整する必要がある。広い周波数変動のある可変周波数システムでは(航空宇宙用VFシステムの場合のように2:1またはそれ以上)、これにより、DPLLのループフィルタおよび安定したオペレーションの実装に際して問題が生じる。
本発明の一態様は、システムの基本周波数が変化するとともにリアルタイムサンプリング周波数およびその結果のサンプリング時間間隔を推定し調整することを目的として提示されている。さらに、電力調整機器のスイッチング周波数は一定に保たれる。さらに1つのシステム基本周期におけるサンプルの総数は、適切な安定したオペレーションとデッドビート発振の防止のため偶数として常に保たれる。
非線形DPLL法のリアルタイム実装は自明ではない。図21Aは、入力と出力を示すDPLL 915(図10に例示されているような)の簡略化された最上位レベルのブロック図表現である。DPLLへの入力は、図10のブロック912からのAC側システム電圧のアルファ/ベータ成分である。これらは、AC側電圧(2110、2111、2112)を測定し、D/Aコンバータを通じてデジタルワードに変換することにより得られる。図21Bを参照すると、本発明の一態様では、3次元ルックアップテーブル2122を作成することにより非線形DPLL 915の何回もの複雑な計算を簡略化している。ルックアップテーブル2122は、事前に計算され、フィードフォワード予測方式で実装される。ルックアップテーブル2122への入力は測定された周波数2121であり、出力は、サンプリング周波数/周期2124、デジタル実装の補正のための位相角遅延2125のリアルタイム測定値、およびデジタル積分の実装のための増分位相角ステップ測定2123に対する事前計算された推定値である。ルックアップテーブル2122のこれらの出力を決定する方法は、当業ではよく知られており、したがって、本明細書では詳述しない。
DPLLの簡略化されたブロック図表現は、図21Bに示されている。DPLLは、固定周波数または可変周波数電源/負荷を同期方式で能動電力変換機器に接続する。*記号は、サンプリングデータシステムで参照されているように、サンプルおよびゼロ次ホールドの後のサンプリングされたデータ値を表す。第1に、3相中性電圧(Va、Vb、およびVc)2110が測定され、これら3つのアナログ信号は、サンプル&ホールドおよびA/Dコンバータを通じてデジタル信号に変換される(それぞれ、2111、2112、および2113)。その後、標準abc−アルファ/ベータ変換2114を使用して、同期回転基準フレームが確定される。V_alpha(Vα)2115およびV_beta(Vβ)2116から、逆タンジェント2117をとることで基準角度を計算する。ブロック2117および加算ブロック2119は、位相角誤差信号(theta_error)を決定する入力セクションを形成し、この信号はディスクリートPIコントローラ2120に送られてf*2121を供給し、さらにこれは可変周波数(基本成分)のリアルタイムサンプリングデータ値である。この可変周波数2121は、3次元ルックアップテーブル2122に供給される。f入力毎に、3つの値、デルタ(シータ)2123として示されている位相角ステップ、およびサンプリング周波数2124、およびシータ遅延2125が得られる。このルックアップテーブル2122は、リアルタイム計算を簡素化するため所望の分解能で所望の範囲のいくつかの周波数について事前に計算される(例えば、システム要求条件およびルックアップテーブルに使用されるメモリに応じて1Hzから40Hzまでの間隔)。これにより、非線形DPLLの実装が著しく簡素化される。ブロック2127および2128は、推定位相角の離散積分を実行する離散積分器を形成する。サンプル&ホールド制御信号は、以下の2つの設計基準を満たすようにリアルタイムで調整される、サンプリング周波数2124により生成される。
1.10kHz程度と低いスイッチング周波数、
2.偶数のサンプリング間隔N(つまり、T_sを1/fで除算した値は偶数でなければならない)。
例えば、VFシステムの基本周波数が320から780Hzの範囲で変化する場合、Nの値はそれぞれ32から14まで変化する。最後に、正確な角度計算は、デジタル実装に内在する時間遅延を説明するために位相角遅延(theta_delay*)2125を推定位相角(theta_PLL*)2135に組み込むことにより得られる(この場合1.5×T_s)。
DPLLは、制御アルゴリズムの実装に使用され、時間変動成分(回転基準フレーム内のアルファおよびベータ成分)を時間不変成分(静止基準フレーム内のd−q成分)に変換するために、またその逆の変換にも使用される、角度のリアルタイム測定を正確に行う。
デジタルPLLの構造は、図21Aおよび21Bに例示されている。上述のように、ルックアップテーブル2122の出力は、サンプリング周波数、位相角遅延、および位相角ステップを含む。サンプリング周波数/時間は、デジタル位相ロックを使用する電流コントローラのサイクル時間である。これは、周波数に基づくルックアップテーブル2122内の事前計算された値に基づいて制御ステップ毎に更新される。
位相角遅延は、1つの制御サイクルにおける実際の角度と遅延角度との間の遅延時間である。これは、電流制御電圧源インバータで使用される電流コントローラに対する電圧角度と電流角度との間の遅延時間として解釈することもできる。角度遅延は、デジタル実装により生じ、デジタルサンプリング、信号調整でのローパスフィルタリングなどの要因を含む。これは、周波数に基づくルックアップテーブル2122内の事前計算された値に基づいて制御ステップ毎に更新される。
位相角ステップは、前の推定PLL角度(θPLL(n−1))と現在の推定PLL角度(θPLL(n))との間の積分ステップである。これは、元々の積分の概念からの周波数倍数サンプリング時間として解釈することもできる。位相角ステップは、周波数に基づくルックアップテーブル2122内の事前計算された値に基づいて制御ステップ毎に更新される。
以下の表は、デジタルPLLのさまざまなモジュールの機能についてまとめたものである。各表は、各モジュールの出力を確定するために使用される入力および計算を記述している。角度基準計算器2118は以下のように定義される。
Figure 2005524378
Vα(n)およびVβ(n)は、前述の説明で述べられているようにAC電圧入力から生成される。PLL PIコントローラ2120は以下のように定義される。
Figure 2005524378
PLLは、比例利得定数を表し、STPLLは、ラプラス変換複素周波数変数SとPLL PIコントローラ2120の積分器時定数TPLLとの乗算を表す。ブロック2127および2128により形成される離散積分器は以下のように定義される。
Figure 2005524378
ルックアップテーブル2122は以下のように定義される。
Figure 2005524378
位相角補正2130は以下のように決定される。
Figure 2005524378
本発明の一態様として上述の可変周波数電力調整機器用に開発されたDPLLは以下の点で従来技術と異なる。
システム可変周波数を追跡するためにルックアップテーブルに基づくフィードフォワード予測法が使用される。
ルックアップテーブルへの入力は、測定されたシステム周波数であり、以下の3つの出力がある。
1.サンプリング周波数および間隔
2.デジタル実装の補正のための位相遅延のリアルタイム測定
3.デルタ角度測定
電力調整機器用に、スイッチング周波数は一定に保たれる。
1つのシステム基本周期内のサンプル総数が連続的に監視され、偶数として保たれるため、デッドビート発振を防止することにより2:1の広い周波数範囲にわたり適切な安定したオペレーションが行われる。
実装位相遅延の補正は組み込まれており、対応する誤差はサンプル点毎に補償される。
DPLLの閉ループ制御は、最小の遅延時間で、増分位相遅延角度の予測積分を通じて適切なダイナミック応答により達成される。
値の事前計算により複雑な数値計算を回避し、それらの記憶には、実装を容易にする3次元ルックアップテーブルが使用される。
全可変周波数範囲にわたってこのDPLLのダイナミック性能が優れ、安定しているため、これを用いないとパワーエレクトロニクスシステムのパワーパスセクション内に大きなフィルタコンポーネントを必要とする従来技術の安定性問題が緩和される。
本発明の前記の説明から、当業者であれば、本発明が多くの態様において従来技術を改良することを理解するであろう。これらの改良の一部は以下のようにまとめられる。
同期双方向能動電力調整システムは、共通パワーエレクトロニクス基本構成要素(パワーパス)として設計されており、AC−DC、DC−ACに個々に使用したり、AC−DC−AC電力変換のためまとめてカスケード接続することが可能である。システムは以下を備える。
可変周波数システムの能動整流(モードIオペレーション)用の電力変換機器、
DC電源からの可変電圧可変周波数電力管理システム(モードIIオペレーション)を必要とする可変速度駆動などの能動負荷用の電力変換機器、
可変電圧可変周波数電力管理システム(モードIIオペレーション)を必要とする可変速度駆動などの能動負荷用の電力変換機器。
航空宇宙産業およびその他の産業の広い可変周波数システムのデジタル位相ロックループの方法および装置は、以下の際立った特徴を持つ。
オペレーションモード毎にPCEの同期する広い周波数にわたるオペレーションを可能にするデジタル位相ロックループ(DPLL)、
システム可変周波数を追跡するためにルックアップテーブルに基づくフィードフォワード予測法が使用される。
電力調整機器用に、スイッチング周波数は実質的に一定に保たれる。
デッドビート発振を防止することにより2:1以上と広い周波数範囲にわたって適切な安定したオペレーションが行われる。1つのシステム基本周期内のサンプルの総数は、連続的に監視され、偶数として保たれる。
実装位相遅延の補正は組み込まれており、対応する誤差はサンプル点毎に補償される。
DPLLの閉ループ制御は、最小の遅延時間で、増分位相遅延角度の予測積分を通じて適切なダイナミック応答により達成される。
値の事前計算により複雑な数値計算を回避し、それらの記憶には、実装を容易にする3次元ルックアップテーブルが使用される。
全可変周波数範囲にわたってDPLLのダイナミック性能が優れ、安定しているため、これを用いないとパワーエレクトロニクスシステムのパワーパスセクション内に大きなフィルタコンポーネントを必要とする従来技術の安定性問題が緩和される。
能動整流または逆変換を行う共通制御アルゴリズムは、簡略化された定常状態モデルのみを使用する従来のモデルとは異なり、実際の動的PCE電気系統モデルに基づいている。制御アルゴリズムは以下を行う。
ACシステムの自然のダイオード整流よりもかなり高い値までのDCリンク電圧ブースト(例えば、115V FFまたはVF電力システムで、±270VDC)、
必要に応じて、電源または負荷側の力率補正、
新しい最適な制御構造/アルゴリズムおよびデジタル位相ロックループは、10kHzとかなり低いスイッチング周波数で動作する。(航空宇宙産業向けの320から800Hzと広い周波数範囲の場合)フィルタコンポーネントおよびIPMの熱管理要件はその結果低減される。
すべてのオペレーションモードで双方向および同期電力変換の(VF用途のデッドビート発振が生じる従来技術とは異なり)、安定した、発振のない高速なダイナミック応答、
電圧および電流の直流および直交成分に対し100Hzとかなり低い遮断周波数を持つローパスフィルタを能動整流器(モードIオペレーション)に使用すると、システムの小信号/大信号ダイナミック性能がさらに向上し、電力品質/EMI性能も改善し、しかも大きなフィルタを必要としない。
入力/出力フィルタの交差周波数は、類似の用途の同じ構成の従来のフィルタと比較してかなり高い値に設定することができ、これによりさらに、フィルタリングコンポーネントのサイズおよびコストが低減される。
共通制御アルゴリズム(ソフトウェア)および共通パワーパスパワーエレクトロニクス基本構成要素(ハードウェア)の結果として、電力定格を加減することで、効率のよい、再構成可能な、柔軟で、拡張性のあるフォルトトレラントパワーエレクトロニクスシステムを実現することができる。同期および双方向機能により、これらの共通モジュール(ハードウェアおよびソフトウェア)のシームレスな並列−直列オペレーションが行われ、電力定格の加減を容易に行うことができる。
本発明の他の態様では、モータ制御装置用の従来技術による電力変換機器の改良および精密化を提示し、複雑なハードウェア機能/コンポーネントを1つの回路カードアセンブリに集積化することで、信頼性を高め、組み込みを容易にし、次世代航空宇宙産業およびその他の産業用途向けに電力調整システム全体のコストおよび重量を低減する。これらは以下の特徴を含む。
3相AC電流およびAC電圧のすべての感知機能、
DCリンク電流および電圧のすべての感知機能、
感知されたすべての信号の信号調整および絶縁回路、
インテリジェント型パワーモジュール(IPM)のオン/オフ制御を行い、IPMの動作状態を監視するすべての保護/状態信号を送るためのすべてのゲートドライバ回路の信号絶縁、
IPMモジュールのDCリンク端子の近くにあるACシステムおよび分散DCリンクスナバコンデンサの自然なダイオード整流よりもかなり高いDCリンク電圧、
集積化された分散制御/論理回路電源、
集積化されたソフトスタート回路および関連制御装置、
すべての論理回路/制御装置相互接続、
該当するすべてのパワーパスバスバーおよび相互接続。
前述の説明は単に本発明の原理を例示しているだけである。当業者であれば、本明細書には明確に説明されていないまたは示されていないが、本発明の範囲を具現化する、さまざまな配置を考案することができることは理解されるであろう。例えば、ハードウェアおよびソフトウェアモジュールの配置および指定は、例示のため与えられており、複数のモジュールを組み合わせて1つの集積化プラットフォームにまとめたり、例示されているのとは異なるが、それでも同じ機能オペレーションを実現する、さまざまな組み合わせでさらに分割することも可能である。そのため、上述の電力変換システムは、ハードウェアおよびソフトウェアモジュールの例示されている配置または構成に限定されない。したがって、本発明の範囲は、前述の説明により制限されず、付属の請求項によってのみ定められる。
本発明によるAC−DC−AC用途のための同期および双方向可変周波数電力変換システムのモジュールの上位レベルのブロック図である。 本発明の一実施形態による共通電力変換モジュールおよび関連する相互接続コンポーネントのブロック図である。 本発明の一実施形態によるフロントエンド/入力共通電力変換(AC−DCまたはDC−AC用)モジュールおよび関連コンポーネントの詳細図である。 本発明の一実施形態によるコンポーネントの統合を例示する電力変換システムの一実施形態の詳細ブロック図である。 本発明の一実施形態による分散論理回路用電源の図である。 本発明の一実施形態による高電圧信号絶縁回路を併用する3相電流および電圧感知回路の図である。 図5Aは、本発明の一実施形態による入力および出力フィルタ構成の図である。図5Bは、本発明の一実施形態による入力および出力フィルタ構成の図である。 本発明の一実施形態によるデジタルコントローラのブロック図である。 本発明の一実施形態による集積/分散DCリンクコンデンサ基板の図である。 本発明の一実施形態によるシステムハードウェア層の上面図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるモードI、II、およびIIIのAC−DC電力変換機器(PCE)制御構造およびトポロジの図である。 本発明の一実施形態によるAC−DCコントローラの詳細制御構造の図である。 本発明の一実施形態によるインバータコントローラの詳細制御構造の図である。 本発明の一実施形態によるAC−DC−AC電力システムのシステムソフトウェアおよび通信のブロック図である。 本発明の一実施形態による電力変換機器とシステムコントローラとのインターフェースを例示する図である。 本発明の一実施形態によるシステムのオペレーションコマンドを制御し、適切なオペレーションであるか監視するオペレータインターフェース画面の図である。 本発明の一実施形態による電力変換システムの全体的な制御流れ図である。 本発明の一実施形態による電力変換システムのパワーシーケンスの流れ図である。 本発明の一実施形態による障害モードの全体的な流れ図である。 本発明の一実施形態によるアラームモードの全体的な流れ図である。 本発明の一実施形態による電力中断モードの全体的な流れ図である。 本発明の一実施形態によるデジタルPLLの流れ図である。 本発明の一実施形態によるすべての入力および出力を示すDPLLの簡略化された上位レベルのブロック図表現である。 本発明の一実施形態によるDPLLの実装方法の詳細を示す簡略化されたブロック図表現である。

Claims (14)

  1. 可変周波数電力変換システム(11)で使用する同期および双方向電力変換モジュール(100、200)であって、
    ACおよびDC電圧および電流センサ(102)から信号を受け取り、電力スイッチングデバイス(3、6)へのゲーティング信号を発生して電力スイッチングデバイス(3、6)のAC側とDC側との間の電力潮流を制御するデジタルコントローラ(2、5)を備え、デジタルコントローラ(2、5)はルックアップテーブル(2122)に基づくフィードフォワード予測システムを使用してシステム可変周波数を追跡するデジタル位相ロックループ(DPLL)(915)を備える、
    電力変換モジュール(100、200)。
  2. 整流器(AC−DC)またはインバータ(DC−AC)として動作するように構成可能である、請求項1に記載の同期および双方向電力変換モジュール(100、200)。
  3. 整流器として構成され、AC−DC−AC電力変換を行うインバータとして構成されている他の電力変換モジュール(100、200)と組み合わされる、請求項2に記載の同期および双方向電力変換モジュール(100、200)。
  4. 1つのシステム基本周期内のサンプルの総数は連続的に監視され、偶数として保たれる、請求項1に記載の同期および双方向電力変換モジュール(100、200)。
  5. システム可変周波数は、320から800Hzまでの範囲で変化し、サンプルの総数はそれに応じて調整され、電力スイッチングデバイス(3、6)用の一定のスイッチング周波数を得る、請求項4に記載の同期および双方向電力変換モジュール(100、200)。
  6. 実質的に一定のスイッチング周波数が電力スイッチングデバイス(3、6)に対し保持される、請求項1に記載の同期および双方向電力変換モジュール(100、200)。
  7. 320から800Hzのシステム周波数範囲に対して約10kHzのスイッチング周波数で動作する、請求項6に記載の同期および双方向電力変換モジュール(100、200)。
  8. さらに、
    システム電圧および電流の直流および直交成分に対し100Hzのオーダーの遮断周波数を持つ能動整流器用のローパスフィルタ(1、7)を備える、請求項7に記載の同期および双方向電力変換モジュール(100、200)。
  9. 可変周波数入力の基準位相角および推定位相角に基づいて基準位相角誤差信号を決定する入力セクション(2117、2119)と、
    位相角誤差信号に基づいて可変周波数入力の測定された周波数を決定するPIコントローラ(2120)と、
    測定された周波数を使用して、位相角ステップ、サンプリング周波数、および位相角遅延を決定するルックアップテーブル(2122)とを備え、
    推定位相角は、位相角ステップおよび推定位相角の事前値を使用して離散積分器により生成され、
    補償位相角は、推定位相角および位相角遅延を使用して生成される、
    可変周波数電力変換システム(11)用のデジタル位相ロックループ(DPLL)(915)。
  10. ルックアップテーブル(2122)は、3次元ルックアップテーブルである、請求項9に記載のデジタル位相ロックループ(915)。
  11. 測定された周波数および位相角ステップ、サンプリング周波数、および位相角遅延に関係するルックアップテーブル(2122)内に格納された値は事前に計算される、請求項10に記載のデジタル位相ロックループ(915)。
  12. ルックアップテーブル(2122)に格納される値は、測定された周波数の離散間隔について計算され、離散間隔は、1Hzから40Hzまでの範囲である、請求項11に記載のデジタル位相ロックループ(915)。
  13. 1つのシステム基本周期内のサンプルの総数は連続的に監視され、偶数として保たれる、請求項9に記載のデジタル位相ロックループ(915)。
  14. 可変周波数入力は、320から800Hzまでの範囲で変化し、サンプルの総数はそれに応じて調整され、電力スイッチングデバイス(3、6)用の一定のスイッチング周波数を得る、請求項13に記載のデジタル位相ロックループ(915)。
JP2004502452A 2002-04-30 2003-04-29 同期および双方向可変周波数電力変換システム Ceased JP2005524378A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37657202P 2002-04-30 2002-04-30
US10/404,513 US6850426B2 (en) 2002-04-30 2003-04-01 Synchronous and bi-directional variable frequency power conversion systems
PCT/US2003/013159 WO2003094334A2 (en) 2002-04-30 2003-04-29 Synchronous and bi-directional variable frequency power conversion systems

Publications (1)

Publication Number Publication Date
JP2005524378A true JP2005524378A (ja) 2005-08-11

Family

ID=29406761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004502452A Ceased JP2005524378A (ja) 2002-04-30 2003-04-29 同期および双方向可変周波数電力変換システム

Country Status (4)

Country Link
US (1) US6850426B2 (ja)
EP (1) EP1500182A2 (ja)
JP (1) JP2005524378A (ja)
WO (1) WO2003094334A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506783A (ja) * 2006-10-17 2010-03-04 エアバス・フランス 航空機内に搭載された少なくとも1つの誘導機に電力を供給するための装置及び方法
KR101265738B1 (ko) * 2007-10-31 2013-05-21 존슨 컨트롤스 테크놀러지 컴퍼니 가변속도 드라이브용 공통 모드 및 차동 모드 필터
JP2014087128A (ja) * 2012-10-22 2014-05-12 Cosel Co Ltd 電源装置と電源システム及びその通信方法
JP2015515245A (ja) * 2012-03-01 2015-05-21 アルストム テクノロジー リミテッドALSTOM Technology Ltd 制御回路
CN109716611A (zh) * 2016-07-29 2019-05-03 通用电气航空系统有限责任公司 用于功率系统架构的方法和模块化系统
JP7494765B2 (ja) 2021-03-12 2024-06-04 トヨタ自動車株式会社 連系インバータおよび連系インバータの製造方法

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074228A1 (fr) * 1999-05-28 2000-12-07 Kabushiki Kaisha Yaskawa Denki Procede de commande de regime pour moteur synchrone et procede d'identification de constante
FI112006B (fi) * 2001-11-14 2003-10-15 Kone Corp Sähkömoottorikäyttö
US7164590B2 (en) * 2002-07-29 2007-01-16 International Rectifier Corporation Power transfer system with reduced component ratings
US6737833B2 (en) * 2002-07-31 2004-05-18 Honeywell International Inc. Voltage control of an HR-PMG without a rotor position sensor
US20050174087A1 (en) * 2004-02-10 2005-08-11 Koyo Seiko Co., Ltd. Control magnetic bearing device
JP2004173482A (ja) * 2002-11-05 2004-06-17 Kokusan Denki Co Ltd 磁石発電機を備えた発電装置
US7394445B2 (en) * 2002-11-12 2008-07-01 Power-One, Inc. Digital power manager for controlling and monitoring an array of point-of-load regulators
US7456617B2 (en) * 2002-11-13 2008-11-25 Power-One, Inc. System for controlling and monitoring an array of point-of-load regulators by a host
US6833691B2 (en) * 2002-11-19 2004-12-21 Power-One Limited System and method for providing digital pulse width modulation
US7669419B2 (en) * 2002-12-07 2010-03-02 Energetix Group Limited Electrical power supply system
US7266709B2 (en) * 2002-12-21 2007-09-04 Power-One, Inc. Method and system for controlling an array of point-of-load regulators and auxiliary devices
US7882372B2 (en) * 2002-12-21 2011-02-01 Power-One, Inc. Method and system for controlling and monitoring an array of point-of-load regulators
US7737961B2 (en) * 2002-12-21 2010-06-15 Power-One, Inc. Method and system for controlling and monitoring an array of point-of-load regulators
US7836322B2 (en) * 2002-12-21 2010-11-16 Power-One, Inc. System for controlling an array of point-of-load regulators and auxiliary devices
US7249267B2 (en) * 2002-12-21 2007-07-24 Power-One, Inc. Method and system for communicating filter compensation coefficients for a digital power control system
US7673157B2 (en) 2002-12-21 2010-03-02 Power-One, Inc. Method and system for controlling a mixed array of point-of-load regulators through a bus translator
US7743266B2 (en) * 2002-12-21 2010-06-22 Power-One, Inc. Method and system for optimizing filter compensation coefficients for a digital power control system
US7373527B2 (en) * 2002-12-23 2008-05-13 Power-One, Inc. System and method for interleaving point-of-load regulators
US7023190B2 (en) * 2003-02-10 2006-04-04 Power-One, Inc. ADC transfer function providing improved dynamic regulation in a switched mode power supply
US7710092B2 (en) * 2003-02-10 2010-05-04 Power-One, Inc. Self tracking ADC for digital power supply control systems
US7080265B2 (en) * 2003-03-14 2006-07-18 Power-One, Inc. Voltage set point control scheme
US6936999B2 (en) * 2003-03-14 2005-08-30 Power-One Limited System and method for controlling output-timing parameters of power converters
US7113065B2 (en) * 2003-09-30 2006-09-26 Rockwell Automation Technologies, Inc. Modular inductor for use in power electronic circuits
GB2406979B (en) * 2003-10-07 2006-03-15 Alstom Linear motor system
US7262521B2 (en) 2003-12-31 2007-08-28 Pratt & Whitney Canada Corp. Variable AC voltage regulation control method and apparatus
US7372682B2 (en) * 2004-02-12 2008-05-13 Power-One, Inc. System and method for managing fault in a power system
DE102004022947B3 (de) * 2004-05-10 2005-12-22 Infineon Technologies Ag Verfahren zur Ansteuerung von pulsweitengesteuerten, induktiven Lasten und Ansteuerschaltung hierfür
CA2568280C (en) * 2004-05-27 2009-12-15 Siemens Energy & Automation, Inc. Auxiliary bus system
JP4049126B2 (ja) * 2004-06-09 2008-02-20 ソニー株式会社 モータ駆動回路、電子機器およびモータ駆動方法
US20060019748A1 (en) * 2004-07-21 2006-01-26 Aruze Corp. Communication unit and sales management method of a gaming machine using the communication unit
FI119579B (fi) * 2004-08-13 2008-12-31 Abb Oy Menetelmä jännitevälipiirillisessä taajuusmuuttajassa ja taajuusmuuttaja
US7782009B2 (en) * 2004-08-24 2010-08-24 Rockwell Automation Technologies, Inc. Adjustable speed drive protection
US7808763B2 (en) * 2004-08-24 2010-10-05 Rockwell Automation Technologies, Inc. Adjustable speed drive protection
US7116067B2 (en) * 2004-09-21 2006-10-03 Honeywell International Inc. Power converter controlling apparatus and method providing ride through capability during power interruption in a motor drive system
US20060120001A1 (en) * 2004-12-03 2006-06-08 Weber William J Modular power supply assembly
US7141956B2 (en) * 2005-03-18 2006-11-28 Power-One, Inc. Digital output voltage regulation circuit having first control loop for high speed and second control loop for high accuracy
US7554310B2 (en) * 2005-03-18 2009-06-30 Power-One, Inc. Digital double-loop output voltage regulation
US7239115B2 (en) * 2005-04-04 2007-07-03 Power-One, Inc. Digital pulse width modulation controller with preset filter coefficients
US7099165B1 (en) * 2005-04-12 2006-08-29 Hamilton Sundstrand Corporation Network harmonic scrubber
US7112944B1 (en) 2005-04-19 2006-09-26 Honeywell International Inc. Electrical power system for multi-use power conditioning and engine start
US7327149B2 (en) * 2005-05-10 2008-02-05 Power-One, Inc. Bi-directional MOS current sense circuit
US20060267527A1 (en) * 2005-05-26 2006-11-30 Khopkar Rahul V System, apparatus and method for driving permanent magnet electrical machine
US7190143B2 (en) * 2005-05-27 2007-03-13 Rockwell Automation Technologies, Inc. Pulse width modulation (PWM) rectifier with variable switching frequency
WO2007011862A2 (en) * 2005-07-15 2007-01-25 Southwest Windpower, Inc. Wind turbine and method of manufacture
FR2888956B3 (fr) * 2005-07-22 2008-07-11 Wittenstein Ag Systeme d'attenuation de dephasages et d'harmoniques entre au moins une source d'energie et au moins un moteur electrique sans balais.
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
US7715698B2 (en) * 2005-08-31 2010-05-11 Thor Power Corporation Control electronics for brushless motors
US7081734B1 (en) * 2005-09-02 2006-07-25 York International Corporation Ride-through method and system for HVACandR chillers
US20070070668A1 (en) * 2005-09-26 2007-03-29 The Boeing Company Programmable electrical power systems and methods
US7443142B2 (en) * 2005-12-21 2008-10-28 Temic Automotive Of North America, Inc. Active rectification of alternator output without using a position sensor
US7456695B2 (en) * 2006-01-10 2008-11-25 General Electric Company Apparatus, method and computer program product for tracking information in an electric grid
US8672732B2 (en) 2006-01-19 2014-03-18 Schneider Electric It Corporation Cooling system and method
US7746024B2 (en) * 2006-03-07 2010-06-29 Hamilton Sundstrand Corporation Electric engine start system with active rectifier
JP4931458B2 (ja) * 2006-04-06 2012-05-16 日立オートモティブシステムズ株式会社 電力変換装置
FI118555B (fi) * 2006-05-22 2007-12-14 Verteco Ltd Kestomagneettigeneraattorin ohjaus
US20070278984A1 (en) * 2006-05-31 2007-12-06 Rodwan Tarek Adra 2-Phase switched reluctance device and associated control topologies
US7629705B2 (en) * 2006-10-20 2009-12-08 General Electric Company Method and apparatus for operating electrical machines
US7612514B2 (en) * 2006-11-09 2009-11-03 Honeywell International Inc. Architecture and a multiple function power converter for aircraft
US7721564B2 (en) * 2006-11-21 2010-05-25 B/E Aerospace, Inc. Wild frequency avionic refrigeration system and controller therefor
WO2008070852A2 (en) * 2006-12-07 2008-06-12 Northern Power Systems, Inc. Modular power converters usable alone or in a multiphase power converter
US8014110B2 (en) * 2007-01-22 2011-09-06 Johnson Controls Technology Company Variable speed drive with integral bypass contactor
US7970497B2 (en) * 2007-03-02 2011-06-28 Honeywell International Inc. Smart hybrid electric and bleed architecture
US7646160B2 (en) * 2007-04-26 2010-01-12 Ford Global Technologies, Llc Sensor calibration and parameter identification in a multi-phase motor drive
US8513911B2 (en) 2007-05-11 2013-08-20 Converteam Technology Ltd. Power converters
GB2449119B (en) * 2007-05-11 2012-02-29 Converteam Technology Ltd Power converters
EP2147585B1 (en) 2007-05-15 2016-11-02 Schneider Electric IT Corporation Method and system for managing facility power and cooling
US20080288201A1 (en) * 2007-05-18 2008-11-20 Eric Gregory Oettinger "methods and apparatus to measure a transfer function of a control system"
US7525211B2 (en) * 2007-06-19 2009-04-28 Marvin Russell H Control system for twin turbine wind power generating system
US7834637B2 (en) 2007-09-21 2010-11-16 Honeywell International Inc. Method and apparatus for generalized AC and DC arc fault detection and protection
US7683568B2 (en) * 2007-09-28 2010-03-23 Rockwell Automation Technologies, Inc. Motor drive using flux adjustment to control power factor
US7786708B2 (en) * 2007-10-05 2010-08-31 Pratt & Whitney Canada Corp. Starter/generator system with control to address a voltage rise
US8174853B2 (en) 2007-10-30 2012-05-08 Johnson Controls Technology Company Variable speed drive
US7957166B2 (en) 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
US7834613B2 (en) * 2007-10-30 2010-11-16 Power-One, Inc. Isolated current to voltage, voltage to voltage converter
US7893650B2 (en) * 2008-01-29 2011-02-22 Azure Dynamics, Inc. Method and system for multiphase current sensing
DE102008015036A1 (de) * 2008-03-14 2009-09-17 E.G.O. Elektro-Gerätebau GmbH Vorrichtung und Verfahren zur Ansteuerung von Induktionsheizeinrichtungen eines Induktionskochfeldes
US7911180B2 (en) * 2008-07-31 2011-03-22 GM Global Technology Operations LLC Single-phase phase locked loop suitable for use in a hybrid vehicle charging system and method for charging a hybrid vehicle from a single-phase power source
US20100063786A1 (en) * 2008-09-11 2010-03-11 Harke Michael C Co-Simulation Process
US8659185B2 (en) * 2008-09-29 2014-02-25 General Electric Company Method and apparatus for an electrical bus leveling unit
US8238130B2 (en) * 2008-09-30 2012-08-07 General Electric Company Low-mass, bi-directional DC-AC interface unit
US8193756B2 (en) * 2008-10-03 2012-06-05 Johnson Controls Technology Company Variable speed drive for permanent magnet motor
US8159802B2 (en) * 2008-11-17 2012-04-17 Lockheed Martin Corporation 3-phase power factor corrected AC to DC filtered switching power supply
US20100164442A1 (en) * 2008-12-31 2010-07-01 Omer Vikinski Dynamic adjustment of power converter control
US7869234B2 (en) * 2009-03-25 2011-01-11 Ametek, Inc. Poly-phase AC/DC active power converter
US8164314B2 (en) * 2009-05-07 2012-04-24 Toyota Motor Engineering & Manufacturing North America, Inc. Distributed capacitor bank controllers and methods thereof
US8228046B2 (en) * 2009-06-16 2012-07-24 American Power Conversion Corporation Apparatus and method for operating an uninterruptible power supply
US8742814B2 (en) 2009-07-15 2014-06-03 Yehuda Binder Sequentially operated modules
US8602833B2 (en) 2009-08-06 2013-12-10 May Patents Ltd. Puzzle with conductive path
US8373309B2 (en) * 2009-08-19 2013-02-12 Schweitzer Engineering Laboratories Inc Systems and methods for asynchronous sampling data conversion
US8378644B2 (en) * 2009-08-28 2013-02-19 Hamilton Sundstrand Corporation Active rectification for a variable-frequency synchronous generator
US8046109B2 (en) * 2009-12-16 2011-10-25 General Electric Company Method and systems for operating a wind turbine
US8334670B2 (en) * 2010-03-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus to monitor an electric motor control circuit
DE102010029951A1 (de) * 2010-06-10 2011-12-15 Aloys Wobben Verfahren zum Einspeisen elektrischer Energie in ein dreiphasiges Wechselspannungsnetz
EP2598425B1 (en) * 2010-07-30 2020-02-26 Otis Elevator Company Elevator regenerative drive control referenced to dc bus
US8638059B2 (en) 2010-08-11 2014-01-28 Dayton-Phoenix Group, Inc. Control for multi-phase induction motor
US8335096B2 (en) 2010-11-12 2012-12-18 Don Roy Sauer Rectifier less bidirectional AC to DC converter
FR2967847B1 (fr) * 2010-11-23 2015-06-26 Hispano Suiza Sa Procede et architecture de traitement de l'energie electrique regeneree d'un aeronef.
US8994349B2 (en) * 2010-12-03 2015-03-31 The Boeing Company Synchronous rectifier bi-directional converter
US8804388B2 (en) * 2010-12-06 2014-08-12 Hamilton Sundstrand Corporation Active rectification control
US8174150B2 (en) * 2010-12-13 2012-05-08 General Electric Company System and method for control of a grid connected power generating system
US8631275B2 (en) * 2010-12-28 2014-01-14 Vestas Wind Systems A/S Controller arrangement of an electrical power transfer system of a wind turbine
US8878389B2 (en) 2011-01-11 2014-11-04 Schneider Electric It Corporation Method and apparatus for providing uninterruptible power
US8970183B2 (en) 2011-01-14 2015-03-03 Hamilton Sundstrand Corporation Overvoltage limiter in an aircraft electrical power generation system
WO2012161844A1 (en) * 2011-02-28 2012-11-29 B-Squares Electrics LLC Electronic module, control module, and electronic module set
CN102368667B (zh) * 2011-03-25 2013-10-16 杭州士兰微电子股份有限公司 离线式ac-dc控制电路和包含该控制电路的转换电路
US8786262B2 (en) 2011-07-25 2014-07-22 Rolls-Royce Corporation Systems and methods for synchronous power generation
JP5762869B2 (ja) * 2011-07-26 2015-08-12 住友重機械工業株式会社 射出成形機
US8896248B2 (en) * 2011-07-27 2014-11-25 Regal Beloit America, Inc. Methods and systems for controlling a motor
US20130039431A1 (en) * 2011-08-12 2013-02-14 Electronics And Telecommunications Research Institute Power-scalable encoding/decoding apparatus and method
US9597607B2 (en) 2011-08-26 2017-03-21 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US11330714B2 (en) 2011-08-26 2022-05-10 Sphero, Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US9019718B2 (en) 2011-08-26 2015-04-28 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US8884464B2 (en) 2011-08-29 2014-11-11 Schneider Electric It Corporation Twin boost converter with integrated charger for UPS system
CN103036529B (zh) 2011-09-29 2017-07-07 株式会社大亨 信号处理装置、滤波器、控制电路、逆变器和转换器系统
DK2575252T3 (en) 2011-09-29 2018-10-08 Daihen Corp Signal processor, filter, power converter for power converter circuit, connection inverter system and PWM inverter system
CN104137660B (zh) 2011-12-22 2017-11-24 施耐德电气It公司 用于在电子系统中预测温度值的系统和方法
AU2011384046A1 (en) 2011-12-22 2014-07-17 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
JP6000558B2 (ja) 2012-01-27 2016-09-28 住友重機械工業株式会社 射出成形機及びコンバータ
JP2013199099A (ja) * 2012-03-26 2013-10-03 Sumitomo Heavy Ind Ltd 射出成形機及びコンバータ
GB2515434B (en) * 2012-04-16 2019-06-26 Abb Schweiz Ag A method for estimating motor parameter in a load commutated inverter arrangement, and a load commutated inverter arrangement therefor
US8982587B2 (en) * 2012-04-23 2015-03-17 Hamilton Sundstrand Corporation Compensating ripple on pulse with modulator outputs
US9190846B2 (en) 2012-04-27 2015-11-17 General Electric Company Power quality management system and methods of controlling phase unbalance
GB2503262B (en) * 2012-06-20 2020-04-01 Nidec Control Techniques Ltd System and method for managing recovery of control in an electrical system
TWI568149B (zh) 2012-07-12 2017-01-21 台達電子工業股份有限公司 電能轉換裝置及其控制方法
CN103546053B (zh) * 2012-07-12 2016-08-03 台达电子工业股份有限公司 电能转换装置及其控制方法
US8929111B2 (en) * 2012-10-22 2015-01-06 Hamilton Sundstrand Corporation System and method for common-mode elimination in a multi-level converter
US8872372B2 (en) 2012-11-30 2014-10-28 General Electric Company Method and systems for operating a wind turbine when recovering from a grid contingency event
US20140300303A1 (en) * 2013-04-04 2014-10-09 Hamilton Sundstrand Corporation Systems and methods for arc detecting and extinguishing in motors
FR3005744B1 (fr) * 2013-05-14 2015-08-21 Airbus Operations Sas Systeme et procede de test d'integrite d'un reseau electrique dans un aeronef
US8907607B1 (en) * 2013-07-30 2014-12-09 Adda Corp. Soft start circuit for a forward/reverse rotation fan
US9148042B2 (en) * 2013-10-01 2015-09-29 Rockwell Automation Technologies, Inc. Method and apparatus for detection of drive misconfiguration in a multi-axis configuration
US9793788B2 (en) * 2013-12-20 2017-10-17 General Electric Company Energy storage system for renewable energy source
JP6336031B2 (ja) * 2014-02-19 2018-06-06 三菱電機株式会社 直流電源装置および、それを備えた電動機駆動装置、ならびに、それを備えた冷凍サイクル適用機器
CN104135172B (zh) * 2014-08-05 2016-08-24 西南交通大学 一种单相系统无锁相环瞬时功率计算及无锁相环频率补偿算法
US9876442B2 (en) * 2014-10-10 2018-01-23 The Regents Of The University Of California Robust single-phase DC/AC inverter for highly varying DC voltages
US9502964B2 (en) * 2014-12-16 2016-11-22 Intel Corporation Systems and methods for skewing DC/DC converter phases to mitigate spurs
US10355611B2 (en) * 2014-12-22 2019-07-16 Flex Power Control, Inc. Multi-functional power management system
FR3040840B1 (fr) * 2015-09-04 2018-11-02 Schneider Electric Industries Sas Systeme de demarrage progressif d'un moteur electrique
WO2017048279A1 (en) 2015-09-18 2017-03-23 Halliburton Energy Services, Inc. Multiple supply voltage motor assembly
US10608545B2 (en) 2015-10-05 2020-03-31 Resilient Power Systems, LLC Power management utilizing synchronous common coupling
WO2017062381A1 (en) * 2015-10-05 2017-04-13 Resilient Power Systems, LLC Power management utilizing synchronous common coupling
CN106787875B (zh) * 2015-11-20 2019-12-17 台达电子企业管理(上海)有限公司 脉冲驱动系统及脉冲驱动方法
EP3185407A1 (en) * 2015-12-23 2017-06-28 ABB Schweiz AG Dc/ac converter with lvrt control
FR3055418B1 (fr) * 2016-08-24 2018-09-14 Safran Aircraft Engines Procede de test integre du fonctionnement electrique de l'inversion de poussee d'un turboreacteur d'un aeronef, et systeme associe
US10277114B2 (en) * 2016-09-19 2019-04-30 Black & Decker Inc. Single stage isolated power converter
CN109981018B (zh) * 2017-12-27 2021-01-29 上海大郡动力控制技术有限公司 无位置传感器永磁同步电机的起动及矢量控制方法
CN108111077B (zh) * 2018-01-12 2019-07-26 湖南大学 永磁同步电机的容错预测定子磁链控制方法及系统
EP3514910A1 (de) * 2018-01-19 2019-07-24 Nordex Energy GmbH Verfahren zum betrieb einer windenergieanlage
DE102018116442A1 (de) * 2018-07-06 2020-01-09 Wobben Properties Gmbh Verfahren und Windenergieanlage zum Bedämpfen niederfrequenter Schwingungen in einem elektrischen Versorgungsnetz
US10541598B1 (en) * 2018-08-03 2020-01-21 Hamilton Sundstrand Corporation DC power generating system with voltage ripple compensation
US11616844B2 (en) 2019-03-14 2023-03-28 Sphero, Inc. Modular electronic and digital building systems and methods of using the same
CN110233574A (zh) * 2019-05-14 2019-09-13 哈尔滨工业大学 一种lcc谐振变换器的暂态功率调节控制方法
CN111211584A (zh) * 2020-01-17 2020-05-29 安徽国锦电力工程有限公司 一种电力输变电工程的用电设备功率智能分配系统
CN112269059B (zh) * 2020-09-27 2023-06-06 深圳供电局有限公司 电网带负荷测试方法、装置、计算机设备和存储介质
RU2754962C1 (ru) * 2020-12-15 2021-09-08 Общество с ограниченной ответственностью «ТРАНСМАШ» Программно-аппаратные методы прогнозирования критических состояний транзисторов в преобразователе частоты
CN113161989B (zh) * 2021-04-27 2022-11-04 长城电源技术有限公司 数字电源及其故障检测电路、方法及计算机可读存储介质

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US118001A (en) * 1871-08-15 Improvement in roof-brackets
US4005362A (en) * 1976-01-26 1977-01-25 Fortino Samuel S Electrical circuit continuity tester
US4728806A (en) 1986-12-05 1988-03-01 Westinghouse Electric Corp. DC link variable speed constant frequency power source paralleling controls
US4823290A (en) 1987-07-21 1989-04-18 Honeywell Bull Inc. Method and apparatus for monitoring the operating environment of a computer system
US5008801A (en) 1989-12-11 1991-04-16 Sundstrand Corporation VSCF power conversion system using an output autotransformer
US5281905A (en) 1989-12-14 1994-01-25 Sundstrand Corporation Induction machine based hybrid aircraft engine starting/generating power system
FI90294C (fi) 1990-05-03 1994-01-10 Kone Oy Menetelmä tasasuuntaajan tasajännitteen säätämiseksi
US5317498A (en) 1992-07-09 1994-05-31 Sundstrand Corporation Electrical power generation system
US5521787A (en) 1993-07-28 1996-05-28 Sundstrand Corporation Differential current fault protection for a system utilizing a power conversion unit exhibiting balanced load characteristics
US6134127A (en) 1994-05-18 2000-10-17 Hamilton Sunstrand Corporation PWM harmonic control
US5627744A (en) 1996-02-02 1997-05-06 Sundstrand Corporation Converter enhanced variable frequency power bus architecture
US5764502A (en) 1996-05-28 1998-06-09 Sundstrand Corporation Integrated electric power system
US5814903A (en) 1996-09-13 1998-09-29 Lockheed Martin Corporation Programmable gain for switched power control
US6023134A (en) 1996-10-25 2000-02-08 Daimlerchrysler Aerospace Airbus Gmbh Power conversion system for bi-directional conversion between hydraulic power and electrical power
JP3551672B2 (ja) 1996-12-25 2004-08-11 松下電器産業株式会社 Pwmコンバータ
US5912552A (en) 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
US5977645A (en) 1997-06-30 1999-11-02 Sundstrand Corporation Aircraft secondary power system
US5959852A (en) 1997-12-19 1999-09-28 Rockwell International Unity power factor power supply for use with variable frequency power sources
US6124646A (en) 1998-02-11 2000-09-26 Alliedsignal Inc. Aircraft air conditioning system including electric generator for providing AC power having limited frequency range
US5939800A (en) 1998-02-11 1999-08-17 Alliedsignal Inc. Aircraft electrical power system including air conditioning system generator
WO1999041830A1 (en) 1998-02-13 1999-08-19 The Texas A & M University System Method and system for ride-through of an adjustable speed drive for voltage sags and short-term power interruptions
US6031738A (en) * 1998-06-16 2000-02-29 Wisconsin Alumni Research Foundation DC bus voltage balancing and control in multilevel inverters
US6330668B1 (en) 1998-08-14 2001-12-11 Dallas Semiconductor Corporation Integrated circuit having hardware circuitry to prevent electrical or thermal stressing of the silicon circuitry
US6326758B1 (en) 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US6038152A (en) 1998-12-03 2000-03-14 Baker; Donal E. Active rectifier utilizing a fixed switching pattern
US6150731A (en) 1999-02-16 2000-11-21 Electric Boat Corporation Integrated high frequency marine power distribution arrangement with transformerless high voltage variable speed drive
US6324486B1 (en) 1999-03-01 2001-11-27 Agilent Technologies, Inc. Method and apparatus for adaptively learning test error sources to reduce the total number of test measurements required in real-time
US6122575A (en) 1999-06-30 2000-09-19 Hamilton Sundstrand Corporation APU troubleshooting system
WO2001011763A1 (en) 1999-08-06 2001-02-15 The Regents Of The University Of California Unified constant-frequency integration control of three-phase power factor corrected rectifiers, active power filters, and grid-connected inverters
US6370050B1 (en) 1999-09-20 2002-04-09 Ut-Batelle, Llc Isolated and soft-switched power converter
US6157168A (en) 1999-10-29 2000-12-05 International Business Machines Corporation Secondary power supply for an uninterruptible power system
US6201715B1 (en) 2000-03-28 2001-03-13 Honeywell International Inc. Synchronous frame regulation to extract a positive sequence component of a line voltage
US6243277B1 (en) 2000-05-05 2001-06-05 Rockwell Collins, Inc. Bi-directional dc to dc converter for energy storage applications
WO2001091279A1 (en) * 2000-05-23 2001-11-29 Vestas Wind Systems A/S Variable speed wind turbine having a matrix converter
US6366483B1 (en) 2000-07-24 2002-04-02 Rockwell Automation Technologies, Inc. PWM rectifier having de-coupled power factor and output current control loops
JP3934050B2 (ja) 2000-10-10 2007-06-20 プリマリオン, インコーポレイテッド 高度にフェーズ化されたパワーレギュレーションのためのシステムおよび方法
US6341073B1 (en) 2000-11-16 2002-01-22 Philips Electronics North America Corporation Multiple valley controller for switching circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506783A (ja) * 2006-10-17 2010-03-04 エアバス・フランス 航空機内に搭載された少なくとも1つの誘導機に電力を供給するための装置及び方法
KR101265738B1 (ko) * 2007-10-31 2013-05-21 존슨 컨트롤스 테크놀러지 컴퍼니 가변속도 드라이브용 공통 모드 및 차동 모드 필터
JP2015515245A (ja) * 2012-03-01 2015-05-21 アルストム テクノロジー リミテッドALSTOM Technology Ltd 制御回路
JP2014087128A (ja) * 2012-10-22 2014-05-12 Cosel Co Ltd 電源装置と電源システム及びその通信方法
CN109716611A (zh) * 2016-07-29 2019-05-03 通用电气航空系统有限责任公司 用于功率系统架构的方法和模块化系统
JP2019523626A (ja) * 2016-07-29 2019-08-22 ジーイー・アビエイション・システムズ・エルエルシー 電力システム構成のための方法およびモジュールシステム
CN109716611B (zh) * 2016-07-29 2023-04-11 通用电气航空系统有限责任公司 用于功率系统架构的方法和模块化系统
JP7494765B2 (ja) 2021-03-12 2024-06-04 トヨタ自動車株式会社 連系インバータおよび連系インバータの製造方法

Also Published As

Publication number Publication date
US20030218887A1 (en) 2003-11-27
EP1500182A2 (en) 2005-01-26
US6850426B2 (en) 2005-02-01
WO2003094334A2 (en) 2003-11-13
WO2003094334A3 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP2005524378A (ja) 同期および双方向可変周波数電力変換システム
JP5191051B2 (ja) パワーコンバータ
US7471525B2 (en) Converter and power converter that becomes it with the converter
JP4022630B2 (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
CN106655947B (zh) 一种提高小容量直流母线电容电压暂态稳定性的永磁同步电机控制算法
Pires et al. A multilevel fault-tolerant power converter for a switched reluctance machine drive
JP2021532719A (ja) モータ可変周波数駆動システム及びマルチエアコン
Rahoui et al. Virtual flux estimation for sensorless predictive control of PWM rectifiers under unbalanced and distorted grid conditions
JP5063379B2 (ja) 電力変換装置、及び電力変換装置用モジュール、並びに、空気調和機及び冷凍装置
Tenca et al. Current source topology for wind turbines with decreased mains current harmonics, further reducible via functional minimization
US20180205334A1 (en) Rotating switching strategy for power converters
US20210021224A1 (en) Power conversion device, motor driving system, and control method
EP3568907B1 (en) Switching strategy for increased efficiency of power converters
WO2023009652A1 (en) Systems and methods for control of nonisolated bidirectional power converters
CN110247617A (zh) 基于功率分配法的永磁同步电机模块化驱动器的主动热管理方法
Nikouie et al. Torque-ripple minimization for permanent-magnet synchronous motors based on harmonic flux estimation
Zhou et al. A Multilayer Software-Defined System for High-Performance Electric Vehicle Energy Conversion
KR101049930B1 (ko) 공기조화기의 전동기 구동장치
CN111371225A (zh) 一种双绕组永磁电机发电系统及其控制方法
Malinowski et al. Control of three-phase PWM rectifiers
Tenca et al. Reduced cost current-source topology improving the harmonic spectrum through on-line functional minimization
CN110768546B (zh) 一种单相整流器及其控制方法
Patin et al. Predictive control of a doubly-fed induction generator connected to an isolated grid
US20240258934A1 (en) Extending capacitor lifetime in a power converter
Pang et al. Online field current estimation for brushless synchronous starter/generator considering the rectifier commutation mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090129

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20090521