JP2005519355A - 荒加工用システムおよび方法 - Google Patents

荒加工用システムおよび方法 Download PDF

Info

Publication number
JP2005519355A
JP2005519355A JP2003523442A JP2003523442A JP2005519355A JP 2005519355 A JP2005519355 A JP 2005519355A JP 2003523442 A JP2003523442 A JP 2003523442A JP 2003523442 A JP2003523442 A JP 2003523442A JP 2005519355 A JP2005519355 A JP 2005519355A
Authority
JP
Japan
Prior art keywords
tool
coordinates
subset
slices
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003523442A
Other languages
English (en)
Other versions
JP2005519355A5 (ja
Inventor
コールマン,グレン,アイ.
メリット,ケネス,ディー.
Original Assignee
サーフウェア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23218143&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005519355(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by サーフウェア インコーポレイテッド filed Critical サーフウェア インコーポレイテッド
Publication of JP2005519355A publication Critical patent/JP2005519355A/ja
Publication of JP2005519355A5 publication Critical patent/JP2005519355A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45145Milling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49008Making 3-D object with model in computer memory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49011Machine 2-D slices, build 3-D model, laminated object manufacturing LOM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

工作物から対象物を製造するためにコンピュータ数値制御機械を制御するためのコマンドを生成する(図2)自動化されたコンピュータにより実現される方法(図1)。

Description

関連出願への相互参照
この出願は、「段縮小加工のためのシステムおよび方法」と題された2001年8月21日に出願された米国仮出願第60/314,010号の利益を主張する。
発明の背景
本発明は、コンピュータ数値制御(CNC)機械に関し、特にCNC機械制御のためのコマンド生成方法および装置に関するものである。
コンピュータ数値制御(CNC)機械は、機械加工部品および金型を自動的に製造するために利用される。コンピュータの生成するコマンドに基づき、CNC機械は1または複数の切削工具を3次元的な空間において移動させ、加工、切削、中ぐりを行うかまたは工作物(ワーク)を所望の形状に形成する。工作物を所望の形状に形成することは、典型的には、各工具を一連の経路内で移動させ、工作物が所望の仕上げを有する所望の形状となるまでその素材を徐々に削りだす処理である。
コンピュータ支援製造(CAM)ソフトウェアは、CNC機械の切削工具を移動させるために使用するコンピュータコマンド作成の処理の大幅な自動化を可能にする。一般的に、CAMソフトウェアは、工作物の加工されるべき部分からその寸法を定義するとともに仕上げ部分の寸法を定義する2次元および3次元設計情報を取り込む。設計情報は、ユーザーにより手動入力されてもよく、またコンピュータ支援設計(CAD)ソフトウェアにより作成されるデータファイルから入力されてもよい。設計情報に基づき、CAMソフトウェアがユーザーにより選択される切削工具の組の各工具の一連の工具経路を生成し、機械加工部品を所望の形状に形成する。CAMソフトウェアは、工具経路の算出に加えて、通常ユーザーに工具送り速度および軸速度等の切削パラメータを提案するが、一般的に、提案された送り速度および軸速度のユーザーによる無効を可能とする。
CNC機械にとって非常に重要な点は、(1)設計情報からコンピュータコマンドが作成される速度、(2)所与の部品が加工される速度である。既知のCAMソフトウェアは、CNC機械の切削処理の速度を向上するために設計された数々の特徴を含む。しかしながら、加工速度の向上のための特徴は、一般的にコンピュータコマンドの作成時間の増加を犠牲にして可能になる。このような特徴は、溝防止、エッジ保護、スカロップ高さ制御、溝確認、急峻かつ浅い加工の分離、一体化した工具経路の検証、および残存ストック加工等を含み、これらのすべてが当該分野において周知である。
金型加工等に必要とされる複雑な荒加工のための工具経路を生成するために使用される既知のCAMソフトウェアは、複雑な加工部品を形成するために、一般的に(1)荒加工、(2)中仕上げ加工および(3)仕上げ加工の3段階の加工となるCNCコマンドを生成する。
荒加工処理は、しばしば連続する一定のZレベルでの工作物の平行かつ平面なスライスを削り出すことからなる。この処理は、一般的に「Zレベル荒加工」または「Zレベル一定の荒加工」として知られている。Zレベル荒加工処理は、大量の素材を比較的すばやく除去するために通常比較的大きな1または複数の(荒加工)工具を使用するが、非垂直または非水平なあらゆる表面上に、一連の「段(ステップ)」、または「テラス」も残す。Zレベル荒加工処理において単一の工具により形成された段の高さは、通常一定の値であり、段の高さは荒加工工具の切削の深さを決定する予め定められたパラメータの関数である。荒加工工具の切削の深さが深い程、結果として生じる段は高くなる。
各段の高さが一定に保たれるのとは対照的に、各段の「幅」は、工具の直径、工具のトポロジー(位相幾何学)、切削の深さ、および加工中の表面のトポロジーの関数として変化する。したがって、段の幅は曲面上では大きく異なり得る。表面が垂直に近づくにつれて段の幅は狭まる。表面が水平に近づくにつれて段は広くなる。
荒加工工具の大きさが比較的大きいと、CNC機械が工作物の素材に滑らかな曲面を切り込めない。さらに、最も単純な場合を除けば、荒加工工具が所与の平面スライスの細部を加工できないことが非常に多い。しかしながら、仕上げ加工は、所要の仕上げを得るために、仕上げ用工具に対する負荷を許容範囲内に保つ必要があり、したがって全体的に均一な工作物の表面が荒加工処理により残される必要がある。したがって、仕上げ加工を始める前に、(1)荒加工において生成された段の高さおよび幅は、許容可能な程度に小さな寸法に低減されなければならず、(2)その比較的大きな直径のために大きな工具では切削不可能である各スライス内の細部は、加工されなければならない。したがって、一般的に中仕上げ加工が、工作物加工の荒加工と仕上げ加工段階との間にCNC機械によって行われる。
中仕上げ加工は、仕上げ加工のために工作物を準備するための既知の技術であるが、通常残存ストック(REST)加工と呼ばれる処理を使用する。REST加工は、前に行われた荒加工切削の後に残された残存する素材を識別して、一般的に荒加工切削工具よりも小さい1または複数の工具を用いて残存するストック(原料)を除去する処理である。REST加工は、一般的に以下の工程を含む。
(1)仕上げの工作物の形状と既存の工具により切削された形状との差異が算出される。(2)ユーザーによって新たなより小さい工具が一般的に選択される。(3)残りの素材を効率的に切削するために、新たな工具の工具経路が算出される。(4)新たな工具を用いて残存する素材が切削される。(5)所望の表面均一化が得られるまで、この処理が連続的により小さい工具を用いて繰り返される。
既知のREST加工方法には、いくつかの欠点および非効率という問題がある。特に、通常のREST加工は、各工具が工作物の加工を終了した後に残る素材の3次元体積を算出する必要がある。体積算出は、次の工具の動きをプログラムして「空切削」または激しすぎる切削により工具を過負荷にすることを回避するために必要とされる。3次元体積の算出は、結果的にかなりの算出負荷となり、CAMソフトウェアプログラム出力を生成するために必要な時間が非常に長くなる。さらに、複雑な設計形状については、より大きい荒加工切削工具の初期の工具経路が、素材に非常に多くの未切削部分を残すことが多い。各連続するREST加工段にかなり小さい工具を使用すると、切削の深さが減少するとともにより小さい工具への交換のために素材除去の速度が遅くなる。または、連続する各REST加工の段に同一のサイズの工具を使用すると、非常に多くのプログラム時間が必要となる。工具除去速度を最大化するために中位のサイズのREST工具を選択すると、さらに小さい工具で付加的な反復作業を行う必要が生じる場合が多い。
仕上げ加工の準備のできた加工表面となる一連の工具経路を作成するとともに、
(1)CAMソフトウェアプログラムのプログラム作成に必要な人間による反復作業の時間量を短縮し、
(2)既存のCAMソフトウェアプログラムよりも速く工具経路を作成し、
(3)既存のCAMソフトウェアプログラムよりも速く複雑な加工部品の加工を行うことのできる工具経路を作成するようなCAMソフトウェアプログラムの必要性がある。
発明の概要
本発明は、工作物から対象物を製造するためにコンピュータ数値制御機械を制御するためのコマンドを生成する自動化されたコンピュータにより実現される方法、装置および製造物を含む。この方法は、(1)第1の工具を用いてZレベル平面スライス(薄層)の第1の組を加工するためにZ座標の第1の組を決定するステップと、(2)第1の工具を用いてZレベルの平面スライスの第2の組を加工するためにZ座標の第2の組を決定するステップとを含む。Z座標の第2の組は、1または複数のサブセット(部分集合)に区切られる。各サブセットは、Z座標の第1の組に属する隣接するZ座標の対に対応する。各サブセットのZ座標間の距離は、各サブセットに対応する隣接するZ座標の対のZ座標間の距離の単位分数である。
上述の発明の概要、並びに下記の発明の好ましい実施の形態の詳細な説明は、付属の図面とともに読まれるとさらによく理解されるであろう。発明を説明する目的で、図面においては現在好ましい実施の形態が示されている。しかし、本発明は、図示の厳密な構成および手段に限定されるものではないことを理解されたい。図面において、
図1は、好ましい実施の形態に係るコンピュータ数値制御(CNC)コンピュータプログラムの機能的ブロック図である。
図2は、ステップ110〜150を含む図1のCNCコンピュータプログラムのフローチャートである。
図3は、一般的パラメータを入力および表示するためのグラフィカルユーザー入力設定メニューを示す。
図4は、設定オプションを入力および表示するためのグラフィカルユーザーメニューを示す。
図5は、工具情報を入力および表示するためのグラフィカルユーザーメニューを示す。
図6は、工具1に関する切削制御パラメータを入力および表示するためのグラフィカルユーザーメニューを示す。
図7は、工具1に関する速度/送り制御パラメータを入力および表示するためのグラフィカルユーザーメニューを示す。
図8は、工具1に関する工具オプションを入力および表示するグラフィカルユーザーメニューを示す。
図9は、工具1に関する動作オプションパラメータを入力および表示するグラフィカルユーザーメニューを示す。
図10は、図2に示すステップ130のより詳細なフローチャートである。
図11は、図2に示すステップ140のより詳細なフローチャートである。
図12は、図2に示すステップ150のより詳細なフローチャートである。
発明の詳細な説明
以下図面を参照するが、いくつかの図を通して、同じ数字は同じ要素を示すように使用され、また不定冠詞「a」が使用される場合、1または複数量の要素を示す可能性がある。図1は、仕上げ加工の準備のできた表面仕上げを有する物理的対象物を製造するためにCNCコマンドを作成しかつCNC機械にそのCNCコマンドを与えるコンピュータ数値制御(CNC)コンピュータプログラム10の好ましい実施の形態の機能的ブロック図を示す。
本発明においては、以下に説明するように、連続する平行かつ一定のZレベル経路またはスライス(薄層)内において切削工具を移動させて工作物から素材を除去することにより、工作物の荒加工が達成される。したがって、本発明においては、まず1または複数の工具を用いて複数組のZレベルを切削するために、複数組のZ座標を算出する。本発明においては、その後、各Zレベルでの各工具の工具経路を作成する。最後に、本発明においては、各工具を順番に選択して各工具を各工具に関連する工具経路に沿って移動させる一連のコマンドを生成する。
好ましくは、CNCコンピュータプログラム10は、形成されるべき対象物およびそこからその対象物が形成される工作物に関する寸法の情報を取り込み、その寸法の情報を対象物および工作物を定義する模型(モデル)に変換するコンピュータ支援設計(CAD)コンピュータサブプログラム12を含む。好ましくは、その寸法のデータは、デジタイザー入力モジュール14を介して3Dデジタイザーから受け取られる。このようなCADサブプログラムおよび3Dデジタイザーは、当業者には周知である。あるいは、寸法データは、2Dタブレット、およびユーザーインターフェース16を介しての手動によるキー入力等のその他の既知の手段により入力されてもよい。さらに、当業者には明らかであるように、CADコンピュータサブプログラム12をCNCコンピュータプログラム10から分離することも可能である。
CNCコンピュータプログラム10は、また、コンピュータ支援製造(CAM)コンピュータサブプログラム18を含む。好ましくは、CAMコンピュータサブプログラム18は、CADコンピュータサブプログラム12の模型の出力を取り込む。CAMコンピュータサブプログラム18は、また、ユーザーにより提供される対象物の所望の仕上がり特徴に関する情報、および工作物から対象物を加工するために選択された工具に関する情報を取り込む。好ましくは、そのような情報は、ユーザーによりキーボードからまたは画像表示画面上の画面上ダイアログボックスを利用してマウスにより入力される。CAMコンピュータサブプログラム18の出力は、以下に詳しく説明するように、CNC機械による工具の自動選択、工作物の配置、工具経路、送り速度等を与える一連の指示である。好ましくは、CAMコンピュータサブプログラム18により生成された指示は、後処理コンピュータサブプログラム20によりコマンドセットに変換され、後処理コンピュータサブプログラム20がCAMコンピュータサブプログラム18により生成された指示を制御中の特定のCNCのコマンドセットに変換する。後処理コンピュータサブプログラム20の好ましい実施の形態は、CAMプログラム指示を種々の既知で市販のCNC機械へ変換することを可能にするデータベースを含む。
本発明を実施するためのCNCコンピュータプログラム10は、C、C++およびJavaを含めて(限定はされないが)、任意の適当なプログラミング言語で書かれてもよく、また、ここに記載された工程および技術を実行するために標準のプログラミング方法を使用して開発されることができる。
好ましくは、CNCコンピュータプログラム10は、周知のインターフェース規格のいずれか1つを使用してCNC機械コントローラーにインターフェースする一般的にパーソナルコンピュータと呼ばれる種類の開放型アーキテクチャを有するスタンドアロンのプログラム可能なコンピュータプラットフォーム上で実行される。好ましくは、パーソナルコンピュータには、インテル社製のPentiumIII(商標)マイクロプロセッサチップが使用される。好ましくは、パーソナルコンピュータは、ランダムアクセスメモリ、ハードディスク等の不揮発性メモリ、キーボード、マウスおよび画像表示装置も含む。好ましくは、CNCコンピュータプログラム10は、マイクロソフト社製のWindows(商標)オペレーティングシステムの下で動作する。しかしながら、CNCコンピュータプログラム10は、上述のハードウェアおよびソフトウェア環境に限定されるものではない。その他のコンピュータおよびオペレーティングシステム、例えばApple社製のものも、本発明の精神および範囲内で使用され得ることは、当業者には明らかであろう。あるいは、コンピュータプログラム10をCNC機械のコントローラと一体化することもできる。
次に、図2を参照すると、本発明に係る工作物から対象物を加工するための好ましい処理100が示されている。ステップ110において、対象物および工作物の3次元的な模型が、ユーザー入力および/または2Dおよび3D入力装置からの入力に基づき作成される。好ましくは、模型は、コンピュータ支援設計(CAD)コンピュ―タサブプログラム12により作成される。好ましくは、対象物の模型は、工作物の所望の仕上げ外形(幾何学的配置)に対応する工作物における境界の座標を提供する。その境界は、工作物の加工が行われる範囲の体積を確定する。好ましくは、その境界は、残すべきストック(原料)パラメータと組み合わせて、荒加工が仕上げ後の工作物の仕上げ外形に侵入しないことを確保する。工作物および対象物の模型の形成方法は、当業者には周知であり、ここでは簡略化のために繰り返されない。
好ましくは、CADサブプログラム12による対象物および工作物の模型の生成を除いて、処理100は、CAMサブプログラム18により実行される。工作物および対象物の模型の生成の他に、ステップ110は、(1)CNC機械、(2)工作物寸法および(3)工作物素材に関連する特定のパラメータ入力を含む。このようなパラメータは、(1)画面上の入力ダイアログボックスを用いてユーザーにより直接入力されてもよく、(2)CNCコンピュータプログラム10内に格納された既定値により予め決定されてもよく、または工作物および対象物の模型に基づきCADサブプログラム12から直接入力されてもよい。例えば、好ましい実施の形態においては、工作物の最大Z値(すなわち座標)および工作物の最小Z値が、CADサブプログラムにより作成された対象物の模型の寸法に基づき算出される。仕上げ後の対象物上の所望の表面公差、および荒加工処理の終わりに仕上げ処理のために工作物上に残すべきストックの量等、その他のパラメータは既定値として与えられ、それは、画面上の入力ダイアログボックスを介してユーザーにより無効にされてもよい。
ステップ120において、ユーザーは工作物の荒加工に使用されるべき工具を選択する。本発明の好ましい実施の形態においては、その工具は、図3〜9に示すように、画面上のダイアログボックスを介してユーザーにより選択される。好ましくは、CAMソフトウェアサブプログラム18は、工具選択ステップ120を容易にするために、工具データベースを含む。使用されるべき工具がデータベースにない場合、CNCコンピュータプログラム10は、新たな工具を定義し、その工具と関連するパラメータを与え、工具データベースへその情報を追加する。
工具選択ステップ120は、また、荒加工用に選択された各工具とともに使用されるべき加工パラメータを確定するための条件を含む。本好ましい実施の形態においては、各工具に関連する加工パラメータが図3〜9に示されている。図3〜9に示す用語の定義は、本明細書中の他の箇所においては定義されていないが、当業者にとっては周知のものであり、したがって、簡略化のためにここでは定義されていない。
CNCコンピュータプログラム10は、工作物の模型および対象物の模型の3次元的な画像を当業者には周知であるグラフィック表示技術を使用して表示する能力を含む。本好ましい実施の形態においては、ユーザーは、また、CNCコンピュータプログラム10に工作物の3次元的な画像を表示させるオプションを有し、その画像は選択された工具の最も高いZ座標で工作物を加工することにより除去されるべき素材を示す。そのようなプレビュー能力は、選択された工具のZ座標の算出(ステップ130)後のプログラム作成処理の間、および各スライスおよび各工具の(下記参照)工具経路の算出(ステップ140)の前に、選択された工具の工具情報ダイアログボックス(図5)上にあるプレビュー1番目のスライスボタンを選択することにより利用できる。平面スライスは、その平面スライスのZ座標に位置する陰影が施された2次元的平面として表示される。スライスプレビューは、工具および工具パラメータ選択に関して、「もしもの場合」の筋書きを行うために特に有用である。
再び図2を参照すると、コンピュータ数値制御機械の制御用コマンドを生成する好ましい方法が示され、その方法は、(1)平面スライスの1番目の組に属する各平面スライスを1番目の工具を用いて加工するための基礎として使用されるべきZ座標の1番目の組を決定するステップと、(2)平面スライスの2番目の組に属する各平面スライスを1番目の工具を用いて加工するための基礎として使用されるべきZ座標の2番目の組を決定するステップとを含み、平面スライスの2番目の組が少なくとも1つのサブセットに区切られ、その各サブセットが、Z座標の1番目の組に属する隣接するZ座標の異なる対に対応し、さらに各サブセットのZ座標間の距離が、少なくとも1つのサブセットに対応する隣接するZ座標の対のZ座標間の距離の単位分数である。
ステップ130においては、各選択された工具n=1〜Nについての平面スライスの組{Sn}の各スライスについてZ座標が算出される。平面スライスの組、{Sn}は、下記のように、高さ固定(FH)スライス、段縮小(SR)スライス、完全(FS)スライス、および段縮小―M(SRM)スライスからなる。
ステップ130は、図10により詳細に示される。ステップ130.4において、CNCコンピュータプログラム10は、現在の工具番号パラメータnを1に等しく設定する。ステップ130.6においては、1番目の工具T1についての1番目のFHスライスS1のZ座標が、工作物の最大Z値より下の工具T1の最大段高さ(MSH)距離で算出される。1番目の(最も高い)スライスより下のその他のFHスライスのZ座標が次に算出される。好ましくは、FHスライスのZ座標は、CNCコンピュータサブプログラム10により、小数点6位以内になるように算出されることにより、結果としてFH(およびSR、FSおよびSRM)平面スライスの段高さ(隣接するZ座標間の距離)が、実質的に均一となる。好ましくは、その他の各平面スライスのZ座標は、工具T1についての最終スライスMに達するまで、前のスライスよりも下の工具T1のMSH距離に設定される。このようにして、ステップ130.6は、工具T1についての平面スライス{S1,m=1M}のZ座標のサブセットを作成する。式中、スライスS1,mは、最も低いZ座標を有し、S1,Mは、工具T1についてのFHスライスのサブセットにおける最終スライスを表す。段サイズを、工具T1のMSHに等しくすることが好ましい。
CNCコンピュータプログラム10の好ましい実施の形態において、FHスライスの段高さは一定の値であり、工具T1のMSHに等しい。各工具のMSHは、工具T1を含めて、工具データベース内のデータから決定される。しかしながら、ユーザーは各工具のMSHを任意に変更してもよく、それによりFHスライスの段高さをより適当な値に変更することができる。さらに、m=1〜Mの範囲に渡ってFHスライスの段サイズは不均一にされてもよく、それでも発明の範囲内である。
ステップ130.8において、現在の工具番号nは、最終工具Nの工具番号と比較される。現在の工具番号nが最終工具Nの番号でない場合、n番目の工具のMSHがステップ130.10においてn+1の工具のMSHと比較される。n+1の工具のMSHがn番目の工具のMSH未満である場合、n番目の工具について算出された各スライスに対応しかつ各スライスのZ座標の上に位置する各サブセットの段縮小(SR)スライスのZ座標が、ステップ130.12において算出される。本好ましい実施の形態においては、所与の工具Tn についての各段縮小スライスのZ座標間の距離は、工具Tn についての現在のスライスのZ座標間の距離の最大単位分数(例、1/2、1/3、1/4…)に等しく、工具Tn についての現在のスライスのZ座標間の距離は、また、次に連続する工具Tn+1の最大段高さ(MSH)パラメータより小さい。言い換えれば、工具nについての各FHスライスに関しては、各FHスライスの厚みが工具Tn についての最大段高さMSHnに基づいて算出される場合、段縮小スライス間の距離は、工具Tnの現在の切削の深さとして算出され、その切削の深さは、工具Tn+1 についての最大段高さMSHn+1で割った工具Tn についての切削の深さMSHnの比を四捨五入した整数で割ったものである。結果的に、各サブセット内の段縮小(SR)スライスのZ座標は、対応するFH平面スライスの上部および下部Z座標内に等しい間隔で配置される。
ステップ130.13において、n<Nの場合、CNCコンピュータプログラム10は、工具Tn+1 についてのFHスライスのZ座標を、計算されたばかりの工具Tn についてのSRスライスのZ座標に設定する。n=Nの場合、工具Tn+1 についてのFHスライスのZ座標は算出されない。ステップ130.10において、工具Tn+1のMSHが工具Tn のMSH以上であると決定された場合、およびステップ130.20において、n<Nである場合、工具Tn+1 についてのFHスライスのZ座標は工具Tn についてのFHスライスのZ座標に設定され、工具Tnは段縮小通路を行わない。n=Nの場合、工具Tn+1 についてのFHスライスのZ座標は算出されない。
以下、最も低い(最も負である)FHまたはSR平面スライスのZ座標と切削されるべき工作物のトポロジーの最も低いZ成分(残すべきストック値を引いた)との間の距離を底部までの深さ(DTB)と呼ぶ。1番目またはそれに続くいずれかの工具のMSHがDTBに均等に分割されない場合、最も低い平面スライスと工作物の最も低いZ成分との間の距離が、最低値のFHまたはSR平面スライスより上の平面スライス間の距離と等しくならない。その距離は非常に小さい値から工具のMSHよりもわずかに小さい値にまで及ぶ。ステップ130.14において、現在の(n番目)工具のMSHがDTBと比較される。n番目の工具のMSHが、n−1の工具について算出された最も低い平面スライスのDTB未満である場合、その他の平面スライスのZ座標が、n―1の工具について算出された最も低い平面スライスと切削されるべき工作物のトポロジーの最も低いZ成分との間でn番目の工具のMSHを用いて算出される(ステップ130.16)。最も低いFHまたはSR平面スライスより下の平面スライスを完全(FS)スライスと呼ぶ。n番目の工具のMSHがDTB以上である場合、ステップ130.16は省略される。
ステップ130.22において、現在の工具の番号nが最終の工具の番号と比較される。現在の工具が最終工具でない場合、nの値はステップ130.24において増分される。ここで、工具Tnにより加工されるべき前に作成されたSRスライスのために確定されたZ座標が、工具Tn+1により加工されるべきSRスライスの単位分数を算出するための基礎となる。したがって、ステップ130.8、130.10、130.12、130.13、130.14、130.16、130.22および130.24は、その後、N番目の工具を含めて各工具により切削されるべき各スライスについてZ座標が算出されるまで、繰り返される。
上記のように、n番目の工具についての段縮小(SR)スライスの切削の深さは、n+1の工具のMSHに基づく。現在の工具nが最終工具Nである場合、Z座標の値は、1番目の仕上げ工具に適合するような表面を達成することに基づいて、工具/加工パラメータの選択時(ステップ120)に、ユーザーにより確定された最終工具についての最終工具最大段高さ(FTMSH)パラメータ(図4)の値に基づく。あるいは、最終段縮小スライスの切削の深さを制御するために任意の値が使用されてもよく、初期の仕上げ工具のMSHをユーザーが特定してもよい。したがって、ステップ130.8において、現在の工具が最終工具Nであると判定された場合、ステップ130.18においてMSHn+1の値がFTMSHパラメータに設定される。FTMSHパラメータを用いて算出されるSRスライスのZ座標を、特に、段縮小―M(SRM)スライスと呼ぶ。
ステップ130が終わると、CNCコンピュータプログラム10はステップ140へ進む。ステップ140において、各FHスライス、SRスライス、FSスライス、およびSRMスライスについて各選択された工具についての一連のX,Y座標データを含む工具経路が、当該技術分野において周知の工具経路算出アルゴリズムを用いて算出される。各平面スライスの座標データは、それに、その平面スライスを切削するためにどの工具が使用されるべきかを示す対応する工具データを関連付けている。本好ましい実施の形態においては、FH、SR、FSおよびSRMスライスの組の工具経路が、Zの高い順に配列された単一かつ分類されたアレイとして格納される。当業者には明らかであるように、工具経路は、本発明の精神および範囲から逸脱しなければ、例えば各工具毎に分離されたアレイにする等、異なる方法で格納されることも可能である。
ステップ140においては、輪郭経路およびポケット経路の2種類の工具経路が算出される。ポケット工具経路は、前の工具が素材を切削しなかったZ座標における平面スライス全体を切削するための基礎として使用される。したがって、ポケット工具経路は、FHおよびFSレベルの荒加工のために使用される。1番目の工具についてのポケット工具経路は、ステップ130.6において1番目の工具について求められたFHスライスZ座標を用いて算出され、1よりも大きい工具番号を有する工具についてのポケット工具経路は、ステップ130.20において算出されたZ座標値を用いて算出される。FSスライスについての経路は、ステップ130.16において算出されたZ座標値を用いて算出される。輪郭工具経路は、前の工具により切削されたスライスの残存ストックを切削するための基礎として使用される。各工具nについての輪郭工具経路は、n−1番目の工具について求められた最小段サイズ(例えば、FH、SR、SRMまたはFSのいずれか)のZ座標を用いて算出される。輪郭工具経路は、n番目の工具を用いてn−1番目の工具によって残されたコーナー(角)を除去するために使用される。段縮小経路は、ステップ130.12においてその段縮小座標が算出された各工具について算出される。SRMスライスについての経路は、ステップ130.12のFTMSHに基づいてステップ130.12において算出されたZ座標を使用する。
各Z座標についての各工具の経路は、部品の境界および素材の境界に基づく。特定のZ座標における部品境界は、残すべきストックのパラメータのために調整された、特定のZ座標の平面スライスと対象物の模型との交差点により形成されるX,Y座標の組である。特定のZ座標における素材境界は、次のより低いFHスライスのZ座標における部品境界X,Y座標の組であり、その特定のスライスのZ座標に対して垂直に突出している。したがって、除去されるべき素材の量は、単純に特定のZ座標における部品境界と素材境界との差に基づいている。当業者であれば、ステップ140において決定された経路が、同一または近似のZ座標における既に算出された平面スライスの座標に基づいており、対象物の模型に対する工作物の3次元的な残りの体積の算出には基づいていないことが認識されるであろう。素材境界および部品境界に基づいて輪郭およびポケット工具経路を算出するための特定のアルゴリズムは当該技術分野において周知であり、ここでは簡略化のために繰り返されない。
次に、図11を参照すると、ステップ140の詳細が説明されている。ステップ140.2において、CNCコンピュータプログラム10は、工具番号nを1の値に設定する。ステップ140.4において、1番目の工具についての各FHスライスについて工具経路が算出される。ステップ140.6において、各SRレベルにおける工具経路が、1番目の工具による次の加工のために算出される。ステップ140.8において、工具番号が次の工具Tn+1に設定される。ステップ140.10において、n+1の工具の工具直径が、n番目の工具の直径と比較される。n+1の工具の直径がn番目の工具Tnの直径未満である場合、ステップ140.12において、Tn+1工具についての輪郭工具経路が、Tn工具により加工されたスライスのコーナーを除去するために算出される。
ステップ140.14において、現在の工具番号が最終工具番号Nと比較される。現在の工具番号がN未満である場合、ステップ140.4〜140.14が、各平面スライスについての工具経路が算出されるまで繰り返される。N>1およびn>1の場合、ステップ140.4は、FHおよびFSスライス両方についてのポケット経路の算出を含み、ステップ140.6は、SRおよびSRMスライスの両方についての輪郭経路の算出を含む。n=Nの場合、ステップ140は、最後に不揮発性メモリ内のすべての工具についてのすべての経路を格納することにより終了する(ステップ140.16)。
すべてのスライスが、必ずしも、次の工具を用いて、または同一の工具のSRスライス上において、それらについて算出された工具経路を有するとは限らないであろう。工具経路を算出するか否かの決定は、除去される必要のある素材の量、最小除去ストックパラメータおよび最小工具移動パラメータに依存する。除去される必要のある素材の量が、スライス全体またはその一部上で最小除去ストックパラメータまたは最小工具移動パラメータ以下である場合、スライスのその一部に工具経路が与えられることはないであろう。したがって、「完全な」輪郭経路を得るスライスがある一方で、「部分的な」輪郭経路(または多数の部分的な通路)を得るスライスもあり、さらに全く輪郭経路を得ないスライスもあるであろう。実際に、残存する素材の量は所与のスライス上で大幅に異なり得るため、残存する素材の量によっては、1を超える完全な輪郭経路が必要とされる可能性も、または1以上の完全な経路と1以上の部分的な経路との組み合わせが必要とされる可能性もある。
ステップ150において、(図2を参照)、CNCソフトウェアプログラム10の出力は、各選択された切削工具を好ましい順で移動させるためにCNCコマンドを作成しその後CNC機械に出力することにより、工作物に対して加工作業を行う。好ましくは、CNCコマンドは、CAMサブプログラム18により作成されたコマンドに基づき後処理サブプログラム20により出力される。好ましくは、後処理サブプログラム20は、CAMサブプログラム18の出力を切削工具および/または工作物の動きの制御のために特定のCNC機械により使用されるCNCコマンドに変換する。本好ましい実施の形態において、種々のCNC機械に対するCNC変換指示のデータベースは、CNCコンピュータサプブログラム10の一部である。
図12は、ステップ150をさらに詳しく記載する。ステップ150.2においては、CNCコンピュータプログラム10が、工作物を加工するための1番目の工具T1を選択する。ステップ150.4においては、特定の送り速度のポケット通路(Zレベル荒加工、体積加工または体積荒加工とも呼ばれる)が、工具T1を用いて各Zレベル平面スライスにおいて行われる。ステップ150.6においては、現在の工具番号が最終工具の工具番号と比較される。現在の工具が最終工具番号と等しい場合、ステップ150.8においてSRMスライスが加工され、ステップ150.18において荒加工処理が終了する。
現在の工具が最終工具でない場合、ステップ150は、SRスライスおよび前にポケット加工されたFSスライスの輪郭加工(プロファイル加工またはプロファイリングとも呼ばれる)を、工具Tn を用いて続ける(ステップ150.10)。ステップ番号150.12においては、FSスライスが工具Tn を用いてポケット加工される。ステップ150.14において、工具番号は1だけ増分される。ステップ150.6〜150.14は、その後、工具番号が最終工具番号Nに達するまで繰り返される。好ましくは、各工具のMSH未満の切削の深さを有する段縮小スライスを加工する各工具の送り速度は、その工具のMSHにおいてスライスを加工するために特定された速度を超えて自動的に高められることが好ましい。より好ましくは、送り速度は、加工中のスライスの各サブセットにおける平面スライスの隣接するZ座標間の距離の比およびスライスを加工する工具の最大段高さに基づく。好ましくは、スライスは、Z順位の低い順に加工される。しかしながら、スライスはZ順位の高い順に加工されることも可能であり、それでも本発明の精神および範囲内である。
使用の際には、ユーザーは図3〜9に示すダイアログボックスを使用して工作物の加工のために使用するべき工具を選択する。ユーザーは一度にすべての工具を選択し、工具のZ座標を算出し(ステップ130)、すべての工具経路の組の算出を開始する前に各工具についての1番目のスライスをプレビューすることにより選択された工具による加工の結果をプレビューしてもよい。または、オペレータは工具を一つずつ選択し、次の工具を選択する前に結果をプレビューしてもよい。
当業者には理解されるであろうが、本発明は工作物の荒加工を行うための改良された方法である。この改良された方法は、Zレベル荒加工により作成された段高さを縮小するための反復処理を利用し、その結果実質的に高さが均一であるとともにその工具経路のZ、YおよびZ座標の値が正確に分かる一連の段が得られる。段の座標値が正確に分かるため、残存する素材の実際の境界が、いずれかの所与の時点で明確に分かる。したがって、本発明は、次の切削を算出するためのパラメータを決定するために、各切削後に残存する素材の体積を別々に算出することを必要としない。
本発明は、どのようなハードウェアおよびソフトウェアの組み合わせで実現されてもよい。コンピュータにより実現される装置として実現される場合、本発明は上記のすべてのステップおよび機能を実行するための手段を用いて実現される。
本発明は、例えば、コンピュータ使用可能媒体を有する製造物(例えば、1または複数のコンピュータプログラム製品)に含まれ得る。この媒体には、例えば本発明のメカニズムを提供および容易にするためのコンピュータ読み取り可能プログラムコード手段が具体化されている。この製造物は、コンピュータシステムの一部として含まれてもよく、別売りされてもよい。
当業者には、上記の実施の形態が、その広い発明的概念から逸脱することなく変更され得ることが認識されるであろう。したがって、本発明は開示された特定の実施の形態に限定されないが、本発明の精神および範囲内の改良をカバーするよう意図される。


Claims (51)

  1. 工作物から対象物を製造するためにコンピュータ数値制御機械を制御するためのコマンドを生成する自動化されたコンピュータにより実現される方法であって、前記方法は、
    第1の工具を用いてZレベル平面スライスの第1の組を加工するためにZ座標の第1の組を決定するステップと、
    第1の工具を用いてZレベルの平面スライスの第2の組を加工するためにZ座標の第2の組を決定するステップとを備え、Z座標の第2の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットは、Z座標の第1の組に属する隣接するZ座標の対に対応し、各対応するサブセットのZ座標間の距離は、隣接するZ座標の対のZ座標間の距離の単位分数である。
  2. 第1の組に属する隣接するZ座標間の距離は実質的に等しい、請求項1記載の方法。
  3. 第1の組に属する隣接するZ座標間の距離は第1の工具の最大段高さパラメータに実質的に等しい、請求項2記載の方法。
  4. 少なくとも1つのサブセットの各隣接するZ座標間の距離は、第2の工具の最大段高さが第1の工具の最大段高さよりも小さい場合、第2の工具の最大段高さパラメータに基づく、請求項3記載の方法。
  5. 単位分数は、第2の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項4記載の方法。
  6. 第1の工具を用いてZレベル平面スライスの第1の組およびZレベル平面スライスの第2の組を加工するための工具経路を作成するステップをさらに含む、請求項1記載の方法。
  7. Zレベル平面スライスの第2の組は、Zレベル平面スライスの第1の組よりも高い送り速度で加工される、請求項6記載の方法。
  8. Zレベル平面スライスの第2の組を加工するための送り速度は、Z座標の第2の組の各サブセットの隣接するZ座標間の距離と第1の工具の最大段高さとの比に基づく、請求項7記載の方法。
  9. 平面スライスの第2の組を加工するための工具経路は、平面スライスの第1の組の素材境界に基づき、工作物の残存体積に基づくものでない、請求項6記載の方法。
  10. 第2の工具を用いてZレベル平面スライスの第3の組を加工するためのZ座標の第3の組を決定するステップをさらに含み、Z座標の第3の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットはZ座標の第2の組に属する隣接するZ座標の対に対応し、各少なくとも1つのサブセットに属する各Z座標間の距離は、少なくとも1つのサブセットに対応する隣接するZ座標のZ座標間の距離の単位分数である、請求項1記載の方法。
  11. 各少なくとも1つのサブセットの各隣接するZ座標間の距離は、第3の工具の最大段高さが第2の工具の最大段高さよりも小さい場合、第3の工具の最大段高さパラメータに基づく、請求項10記載の方法。
  12. 単位分数は、第3の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項11記載の方法。
  13. 第2の工具を用いてZレベル平面スライスの第2の組およびZレベル平面スライスの第3の組を加工するための工具経路を作成するステップをさらに含む、請求項1記載の方法。
  14. Zレベル平面スライスの第3の組は、Zレベル平面スライスの第2の組よりも高い送り速度で加工される、請求項13記載の方法。
  15. Zレベル平面スライスの第3の組を加工するための送り速度は、Z座標の第3の組の各サブセットの隣接するZ座標間の距離と第2の工具の最大段高さとの比に基づく、請求項14記載の方法。
  16. 平面スライスの第3の組を加工するための工具経路は、平面スライスの第2の組の素材境界に基づき、工作物の残存体積に基づくものでない、請求項13記載の方法。
  17. 工作物の製造のための工具経路全体を算出する前に、選択された工具により加工されるべき素材を示す工作物の3次元的画像を作成する方法であって、
    工具を選択するステップと、
    選択された工具により工作物が加工されるべき最も高いZレベル座標におけるZレベル平面スライスを算出するステップと、
    工作物の3次元的な画像を工作物の画像から区別された平面スライスで表示するステップとを含む。
  18. 工作物から対象物を製造するためにコンピュータ数値制御機械を制御するためのコマンドを生成する自動化されたコンピュータにより実現される装置であって、前記装置は、
    第1の工具を用いてZレベル平面スライスの第1の組を加工するためにZ座標の第1の組を決定する手段と、
    第1の工具を用いてZレベルの平面スライスの第2の組を加工するためにZ座標の第2の組を決定する手段とを備え、Z座標の第2の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットは、Z座標の第1の組に属する隣接するZ座標の対に対応し、各対応するサブセットのZ座標間の距離は、隣接するZ座標の対のZ座標間の距離の単位分数である。
  19. 第1の組に属する隣接するZ座標間の距離は実質的に等しい、請求項18記載の装置。
  20. 第1の組に属する隣接するZ座標間の距離は第1の工具の最大段高さパラメータに実質的に等しい、請求項19記載の装置。
  21. 少なくとも1つのサブセットの各隣接するZ座標間の距離は、第2の工具の最大段高さが第1の工具の最大段高さよりも小さい場合、第2の工具の最大段高さパラメータに基づく、請求項20記載の装置。
  22. 単位分数は、第2の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項21記載の装置。
  23. 第1の工具を用いてZレベル平面スライスの第1の組およびZレベル平面スライスの第2の組を加工するための工具経路を作成する手段をさらに含む、請求項18記載の装置。
  24. Zレベル平面スライスの第2の組は、Zレベル平面スライスの第1の組よりも高い送り速度で加工される、請求項23記載の装置。
  25. Zレベル平面スライスの第2の組を加工するための送り速度は、Z座標の第2の組の各サブセットの隣接するZ座標間の距離と第1の工具の最大段高さとの比に基づく、請求項24記載の装置。
  26. 平面スライスの第2の組を加工するための工具経路は、平面スライスの第1の組の素材境界に基づき、工作物の残存体積には基づくものでない、請求項23記載の装置。
  27. 第2の工具を用いてZレベル平面スライスの第3の組を加工するためのZ座標の第3の組を決定する手段をさらに含み、Z座標の第3の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットはZ座標の第2の組に属する隣接するZ座標の対に対応し、各少なくとも1つのサブセットに属する各Z座標間の距離は、少なくとも1つのサブセットに対応する隣接するZ座標のZ座標間の距離の単位分数である、請求項18記載の装置。
  28. 各少なくとも1つのサブセットの各隣接するZ座標間の距離は、第3の工具の最大段高さが第2の工具の最大段高さよりも小さい場合、第3の工具の最大段高さパラメータに基づく、請求項27記載の装置。
  29. 単位分数は、第3の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項28記載の装置。
  30. 第2の工具を用いてZレベル平面スライスの第2の組およびZレベル平面スライスの第3の組を加工するための工具経路を作成する手段をさらに含む、請求項18記載の装置。
  31. Zレベル平面スライスの第3の組は、Zレベル平面スライスの第2の組よりも高い送り速度で加工される、請求項30記載の装置。
  32. Zレベル平面スライスの第3の組を加工するための送り速度は、Z座標の第3の組の各サブセットの隣接するZ座標間の距離と第2の工具の最大段高さとの比に基づく、請求項31記載の装置。
  33. 平面スライスの第3の組を加工するための工具経路は、平面スライスの第2の組の素材境界に基づき、工作物の残存体積に基づくものでない、請求項30記載の装置。
  34. 工作物の製造のための工具経路全体を算出する前に、選択された工具により加工されるべき素材を示す工作物の3次元的画像を作成する装置であって、
    工具を選択するステップと、
    選択された工具により工作物が加工されるべき最も高いZレベル座標におけるZレベル平面スライスを算出するステップと、
    工作物の3次元的な画像を工作物の画像から区別された平面スライスで表示するステップとを含む。
  35. 工作物から対象物を製造するためにコンピュータ数値制御機械を制御するためのコマンドを生成する製造物であって、前記製造物は、次の方法を実行するためにコンピュータが実行可能な指令を保持するコンピュータ読み取り可能な媒体を含み、
    前記方法は、
    第1の工具を用いてZレベル平面スライスの第1の組を加工するためにZ座標の第1の組を決定するステップと、
    第1の工具を用いてZレベルの平面スライスの第2の組を加工するためにZ座標の第2の組を決定するステップとを備え、Z座標の第2の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットは、Z座標の第1の組に属する隣接するZ座標の対に対応し、各対応するサブセットのZ座標間の距離は、隣接するZ座標の対のZ座標間の距離の単位分数である。
  36. 第1の組に属する隣接するZ座標間の距離は実質的に等しい、請求項35記載の製造物。
  37. 第1の組に属する隣接するZ座標間の距離は、第1の工具の最大段高さパラメータに等しい、請求項36記載の製造物。
  38. 少なくとも1つのサブセットの各隣接するZ座標間の距離は、第2の工具の最大段高さが第1の工具の最大段高さよりも小さい場合、第2の工具の最大段高さパラメータに基づく、請求項37記載の製造物。
  39. 単位分数は、第2の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項38記載の製造物。
  40. 第1の工具を用いてZレベル平面スライスの第1の組およびZレベル平面スライスの第2の組を加工するための工具経路を作成するステップをさらに含む、請求項35記載の製造物。
  41. Zレベル平面スライスの第2の組は、Zレベル平面スライスの第1の組よりも高い送り速度で加工される、請求項40記載の製造物。
  42. Zレベル平面スライスの第2の組を加工するための送り速度は、Z座標の第2の組の各サブセットの隣接するZ座標間の距離と第1の工具の最大段高さとの比に基づく、請求項41記載の製造物。
  43. 平面スライスの第2の組を加工するための工具経路は、平面スライスの第1の組の素材境界に基づき、工作物の残存体積には基づくものでない、請求項40記載の製造物。
  44. 第2の工具を用いてZレベル平面スライスの第3の組を加工するためのZ座標の第3の組を決定するステップをさらに含み、Z座標の第3の組は少なくとも1つのサブセットに区切られ、各少なくとも1つのサブセットはZ座標の第2の組に属する隣接するZ座標の対に対応し、各少なくとも1つのサブセットに属する各Z座標間の距離は、少なくとも1つのサブセットに対応する隣接するZ座標のZ座標間の距離の単位分数である、請求項35記載の製造物。
  45. 各少なくとも1つのサブセットの各隣接するZ座標間の距離は、第3の工具の最大段高さが第2の工具の最大段高さよりも小さい場合、第3の工具の最大段高さパラメータに基づく、請求項44記載の製造物。
  46. 単位分数は、第3の工具の最大段高さパラメータよりも小さい各少なくとも1つのサブセットの隣接するZ座標間の距離となる最も大きい単位分数である、請求項45記載の製造物。
  47. 第2の工具を用いてZレベル平面スライスの第2の組およびZレベル平面スライスの第3の組を加工するための工具経路を作成するステップをさらに含む、請求項35記載の製造物。
  48. Zレベル平面スライスの第3の組は、Zレベル平面スライスの第2の組よりも高い送り速度で加工される、請求項47記載の製造物。
  49. Zレベル平面スライスの第3の組を加工するための送り速度は、Z座標の第3の組の各サブセットの隣接するZ座標間の距離と第2の工具の最大段高さ値との比に基づく、請求項48記載の製造物。
  50. 平面スライスの第3の組を加工するための工具経路は、平面スライスの第2の組の素材境界に基づき、工作物の残存体積に基づくものでない、請求項47記載の製造物。
  51. 工作物の製造のための工具経路全体を算出する前に、選択された工具により加工されるべき素材を示す工作物の3次元的画像を作成する製造物であって、前記製造物は、次の方法を実行するためにコンピュータが実行可能な指令を保持するコンピュータ読み取り可能な媒体を備え、
    前記方法は、
    工具を選択するステップと、
    選択された工具により工作物が加工されるべき最も高いZレベル座標におけるZレベル平面スライスを算出するステップと、
    工作物の3次元的な画像を工作物の画像から区別された平面スライスで表示するステップとを含む。
JP2003523442A 2001-08-21 2002-08-19 荒加工用システムおよび方法 Pending JP2005519355A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31401001P 2001-08-21 2001-08-21
PCT/US2002/026213 WO2003019454A1 (en) 2001-08-21 2002-08-19 System and method for rough milling

Publications (2)

Publication Number Publication Date
JP2005519355A true JP2005519355A (ja) 2005-06-30
JP2005519355A5 JP2005519355A5 (ja) 2008-05-22

Family

ID=23218143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003523442A Pending JP2005519355A (ja) 2001-08-21 2002-08-19 荒加工用システムおよび方法

Country Status (4)

Country Link
US (1) US6704611B2 (ja)
EP (1) EP1419474A4 (ja)
JP (1) JP2005519355A (ja)
WO (1) WO2003019454A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107019A1 (en) * 2002-07-18 2004-06-03 Shyam Keshavmurthy Automated rapid prototyping combining additive and subtractive processes
US6895298B2 (en) * 2003-01-17 2005-05-17 The Boeing Company Multi-axis cutter diameter compensation for numeric control machine tools
US6968256B2 (en) * 2003-08-15 2005-11-22 General Electric Company Method for processing manufactured parts
US20060129271A1 (en) * 2004-12-14 2006-06-15 Pravin Khurana System, method, and article of manufacture for generating a CAD model indicating an amount of material added or removed from a part to form a feature in the part
US7450127B2 (en) * 2005-03-23 2008-11-11 Hurco Companies Inc. Method of tolerance-based trajectory planning
US8340807B1 (en) * 2005-04-14 2012-12-25 Time Wise Solutions, Llc Rapid production turnkey system and related method
US9002501B1 (en) * 2005-04-14 2015-04-07 Time Wise Solutions, Llc Rapid production turnkey system and related method
US7761183B2 (en) * 2006-02-13 2010-07-20 Sullivan Douglas G Methods and systems for producing numerical control program files for controlling machine tools
US7933677B2 (en) * 2006-08-04 2011-04-26 Hurco Companies, Inc. System and method for surface finish management
CN101501589B (zh) * 2006-08-04 2011-11-23 赫克公司 用于工具使用管理的系统和方法
US8024068B2 (en) 2006-08-04 2011-09-20 Hurco Companies, Inc. Machine tool control system
US8725283B2 (en) * 2006-08-04 2014-05-13 Hurco Companies, Inc. Generalized kinematics system
US20080174037A1 (en) * 2007-01-18 2008-07-24 Micro-Star Int'l Co., Ltd Patterning method
US20120148810A1 (en) * 2007-01-18 2012-06-14 Micro-Star Internationa'l Co., Ltd. Patterning method
US7957830B2 (en) * 2008-06-10 2011-06-07 Proto Labs, Inc. CNC instructions for solidification fixturing of parts
CN101811271A (zh) * 2009-02-19 2010-08-25 鸿富锦精密工业(深圳)有限公司 切削装置及其切削加工方法
JP4689745B2 (ja) * 2009-08-19 2011-05-25 ファナック株式会社 工作機械の工具ベクトル表示装置
US9317030B2 (en) 2009-12-21 2016-04-19 Truemill, Inc. Material entry tool path for cutting a starting hole that extends in the vertical axis
IT1401373B1 (it) * 2010-08-06 2013-07-18 Fidia Spa Sistema predittivo di controllo e visualizzazione virtuale per una macchina utensile a controllo numerico
EP2673678A1 (en) 2011-02-11 2013-12-18 Ecole Polytechnique Fédérale de Lausanne (EPFL) High speed pocket milling optimisation
US8489224B2 (en) 2011-02-28 2013-07-16 Solidcam Ltd. Computerized tool path generation
US9690282B2 (en) 2011-02-28 2017-06-27 Solidcam Ltd. Computerized tool path generation
DE102011017101A1 (de) * 2011-04-14 2012-10-18 Weber Maschinenbau Gmbh Breidenbach Produktionsanlage zum Portionieren von Lebensmitteln
US8676372B1 (en) * 2011-07-19 2014-03-18 The Boeing Company Tool path generation for machining operations
US10052726B2 (en) * 2011-12-14 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Method for creating machining data for use in hybrid ultraprecision machining device, and hybrid ultraprecision machining device
WO2013192219A2 (en) 2012-06-19 2013-12-27 D.P. Technology Corp. Cam integrated cnc control of machines
JP6333385B2 (ja) * 2013-08-29 2018-05-30 ソリッドカム リミテッド コンピュータ化されたツールパス生成
US10139814B2 (en) * 2014-01-23 2018-11-27 Performance Sk8 Holding Inc. System and method for manufacturing a board body
US10556309B1 (en) * 2016-03-24 2020-02-11 Proto Labs Inc. Methods of subtractively manufacturing a plurality of discrete objects from a single workpiece using a removable fixating material
KR101886209B1 (ko) * 2016-04-19 2018-08-08 (주)휴맥스 미디어 서비스 제공 장치 및 방법
CN112509170A (zh) * 2020-12-29 2021-03-16 明和精密模具(常熟)有限公司 一种采集模具生产现场数据的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647204A (en) * 1987-06-30 1989-01-11 Fanuc Ltd Preparation of nc data for rough working
US5184306A (en) 1989-06-09 1993-02-02 Regents Of The University Of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
US5329457A (en) * 1993-04-15 1994-07-12 General Electric Company Comprehensive three-dimensional rotary tool point compensation
US5432704A (en) 1993-11-23 1995-07-11 Clemson University Adaptive lamina generation for shape dependent process control and/or object decomposition

Also Published As

Publication number Publication date
WO2003019454A1 (en) 2003-03-06
US6704611B2 (en) 2004-03-09
US20030040834A1 (en) 2003-02-27
EP1419474A1 (en) 2004-05-19
EP1419474A4 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP2005519355A (ja) 荒加工用システムおよび方法
Yazar et al. Feed rate optimization based on cutting force calculations in 3-axis milling of dies and molds with sculptured surfaces
JP5890907B2 (ja) 加工工程決定方法および加工工程設計装置
WO2013051432A1 (ja) 生産計画装置および生産計画方法
EP2148258B1 (en) Simulation or modeling method of cutting, program for that method, and medium recording that program
CN1289988C (zh) 用于生成加工数据的方法和装置
PETER et al. COMPARISON OF PROGRAMMING PRODUCTION OF THIN WALLED PARTS USING DIFFERENT CAM SYSTEMS.
JP2010027018A (ja) 加工情報作成装置、方法及びプログラム
US10838400B2 (en) Toolpath generation by demonstration for computer aided manufacturing
Popescu et al. Direct toolpath generation based on graph theory for milling roughing
Lefebvre et al. 3D morphing for generating intermediate roughing levels in multi-axis machining
CN112100823A (zh) 刀具纳米级精度设计制造方法
JP4608237B2 (ja) 等高線加工方法
WO2009101688A1 (ja) 放電加工装置
WO2021033490A1 (ja) 加工条件を決定するための方法及び装置
WO2010094022A1 (en) Method for rapid prototyping
EP4005717A1 (en) Method and device for electrical discharge machining
Tuli Path planning and simulation of 3D printer machine tool for development of prototypes
US20210373524A1 (en) Forming stylus tool design and toolpath generation module for 3 axis computer numerical control manufacturing processes
Sedighi et al. Classification of the feed-rate optimization techniques: a case study in minimizing CNC machining time
JP2865609B2 (ja) 鍛造品の前工程での形状決定方法および鍛造用金型の設計方法
Gomes et al. Evaluation of 5-axis HSC dynamic behavior when milling TiAl6V4 blades
JP2792764B2 (ja) 数値制御データ編集装置
Pal Remaining stock computation for 3D-machining in parametric regime
Abbas et al. Automatic Tool Path Generation for Parametric Surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080305

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317