JP2005514998A - 光学系の削摩矯正の最適化方法および関連方法 - Google Patents

光学系の削摩矯正の最適化方法および関連方法 Download PDF

Info

Publication number
JP2005514998A
JP2005514998A JP2003560609A JP2003560609A JP2005514998A JP 2005514998 A JP2005514998 A JP 2005514998A JP 2003560609 A JP2003560609 A JP 2003560609A JP 2003560609 A JP2003560609 A JP 2003560609A JP 2005514998 A JP2005514998 A JP 2005514998A
Authority
JP
Japan
Prior art keywords
wavefront
data
wavefront data
measured
eyeball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003560609A
Other languages
English (en)
Other versions
JP2005514998A5 (ja
Inventor
アルフレッド キャンピン,ジョン
エイチ. ペティット,ジョージ
Original Assignee
アルコン,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルコン,インコーポレイティド filed Critical アルコン,インコーポレイティド
Publication of JP2005514998A publication Critical patent/JP2005514998A/ja
Publication of JP2005514998A5 publication Critical patent/JP2005514998A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • A61F9/00806Correction of higher orders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00846Eyetracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • A61F2009/00857Calibration of the laser system considering biodynamics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00878Planning
    • A61F2009/0088Planning based on wavefront

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Laser Surgery Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Laser Beam Processing (AREA)
  • Eyeglasses (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【解決手段】 測定済波面データを、視力欠陥を矯正するための削摩特性へと変換するシステムおよび方法は、業界公知の方法により異常眼球に関する測定済波面データを準備する段階を含む。上記測定済波面データは、既に治療された眼球に関する蓄積データと相関される。次に、上記相関段階に基づき上記測定済波面データに対して調節が加えられる。この調節は、上記相関段階に基づき上記測定済波面データに対して加えられる。この調節は、当該調節済波面データから角膜削摩特性を計算する波面データ補正アルゴリズムに対する入力のために調節済波面データを形成すべく用いられる。上記波面データ補正アルゴリズムは、たとえば、調節済係数を備えたゼルニケ多項式としてモデル化され得る。

Description

関連出願に対する相互参照
本出願は、“近視眼波面治療の最適化(Myopic Wavefront Treatment Optimization)”と称されて2002年1月14日に出願された仮出願第60/348,586号と、それ自体が“削摩効果関数を補償することで屈折矯正手術の削摩特性を最適化する方法(Optimizing Refractive Surgery Ablation Profiles by Compensating for Ablation Effectiveness Function)”と称されて2000年3月22日に出願された仮出願第60/191,187号の優先権を主張する“光学系の削摩矯正の最適化方法および関連方法(Optimization of Ablation Correction of an Optical System and Associated Methods)”と称されて2001年3月22日に出願された出願第09/814,398号との優先権を主張するが、これらの全ては本発明と同様に本出願人が所有すると共に、言及したことにより本明細書中に援用される。
本発明は光学収差の測定および矯正方法に関し、より詳細には、人間の眼球などの光学系(optical system)の他覚的(objective)な測定および矯正の最適化を実験的かつ包括的に達成するシステムおよび方法に関する。
実像焦点を有する光学系は、平行光を受けてそれを一点に焦点合わせし得る。斯かる光学系は、たとえば人間および動物の眼球などの様に自然状態で見出され得るか、または、たとえば実験室システム、誘導システムなどの様に人工とされ得る。いずれの場合にも光学系における収差(aberration)は、その系の性能に影響し得る。
完全なまたは理想的な人間の眼球は、衝当する光ビームを、該眼球の網膜から、水晶体および角膜を含む該眼球の光学要素(optics)を通して拡散的に反射する。斯かる理想的な眼球が弛緩状態にありすなわち近視野焦点の提供に対処していない場合、反射光は一連の平面波として眼球を出射する。しかし現実の眼球は典型的に、眼球を出射する反射光波の変形もしくは歪曲を引き起こす異常性(aberration)を有する。異常眼球(aberrated eye)は、歪曲された波面の結果として、衝当する光ビームを、該眼球の網膜からその水晶体および角膜を通して拡散的に反射する。
当業界においては、角膜の曲率を改変する光屈折式角膜切除法(PRK)およびLASIK手術により、集光欠陥のレーザ矯正を実施することが公知である。斯かる方法は典型的に、角膜組織を削摩する193nmのエキシマ・レーザを採用する。マナリン等(Munnerlyn et al.)(雑誌、白内障屈折矯正手術、1988年、第14巻(1)、第46〜52頁(J. Cataract Refract. Surg. 14(1), 46-52, 1988))は、所望の屈折矯正を達成すべく除去されるべき組織の特定体積を決定する式を呈示している。またフレー(Frey)(米国特許第5,849,006号)は、所望の屈折矯正を行うべく所望体積の組織を除去する小寸スポット・レーザを用いる方法を教示している。
本出願と同様に本出願人が所有すると共にその開示内容は言及したことにより本明細書中に援用される“波面分析を用いて光学系を他覚的に測定かつ矯正する装置および方法(Apparatus and Method for Objective Measurement and Correction of Optical Systems Using Wavefront Analysis)”と称された米国特許出願第09/566,668号においては、異常眼球から発せられた歪曲波面を近似すべくゼルニケ多項式(Zernike polynomial)を使用することが教示されている。この手法において波面W(x,y)は、CiZi(x,y)のiを0からnまで変化させ且つCiは加重係数でありかつZi(x,y)は所定次数までのゼルニケ多項式として、個々の多項式の加重合計として表現される。図8Aに示された如く、測定された術前波面70はアルゴリズム71により処理されて治療特性72を形成し、該治療特性は次に異常眼球を治療する角膜削摩システムへと送信される。
本発明は、眼球の視力欠陥を矯正する光学的矯正システムから成る第1実施例を包含する。上記システムは、眼球から発せられる波面に応じる波面分析器であって、基準波面と上記波面との間の光学距離差を決定する波面分析器を備える。上記システムは更に、上記距離差と径方向依存削摩効率とに基づき光学的矯正を行う変換器を備える。上記効率補正は、A+Bρ+Cρ2+Dρ3+…+Xρnという形態の補償多項式を用い、式中、ρは光学領域特有な正規化半径であって角膜の中央部分から測定されて光学的矯正領域の縁部にて1の値に到達するという正規化半径であり、且つ、nは径方向効率を正確に記述すべく用いられる最高次多項式である。
角膜に対しては、角膜物質を削摩すべく十分なパワーを有するレーザ・ビームが導向される。上記光学的矯正は、選択量の角膜物質の除去により、該光学的矯正に基づく所望の角膜形状変化を生成することで達成される。
本発明の第2実施例は、測定済波面データを、視力欠陥を矯正する削摩特性へと変換する方法に関している。該方法は、業界公知の方法により異常眼球に関する測定済波面データを準備する段階を備える。上記測定済波面データは、既に治療された眼球に関する蓄積データと相関される。次に、上記相関段階に基づき上記測定済波面データに対して調節が加えられる。この調節は、当該調節済波面データから角膜削摩特性を計算する波面データ補正アルゴリズムに対する入力のために調節済波面データを形成すべく用いられる。上記波面データ補正アルゴリズムはたとえば、先に開示された如くゼルニケ多項式から成り得るが、これは限定として意図されるものでない。
構造および動作方法の両者に関して本発明の更なる目的および利点と共に本発明を特徴付ける特徴は、添付図面に関して用いられる以下の記述から更に良好に理解されよう。各図面は例示および説明を目的としており、本発明の限界の定義としては意図されないことを明確に理解すべきである。本発明により達成されるこれらのおよび他の目的ならびに提供される利点は、添付図面に関して以下の説明を読破すれば更に十分に明らかとなろう。
本発明の好適実施例の説明は、図1乃至図15に関して示される。
眼球の視覚的欠陥を矯正する当該システムおよび方法は波面分析器を含むが、これは好適実施例においては、その内容は言及したことにより本明細書中に援用される本出願と同様に本出願人が所有する同時係属の出願第09/664,128号に記述されたのと同様のシステム10(図1)である。該装置10は、小径レーザ・ビーム14を生成すべく用いられる光放射を発生するレーザ12を含む。レーザ12は、眼球に対して安全な波長およびパワーの(ビーム14に対して点線で表される)平行レーザ光ビームを発生する。眼科的用途に対し、適切な波長としては可視スペクトル全体および近赤外スペクトルが挙げられる。一例として、適切な波長は550-、650-および850-nmの有用な波長を含む約400〜1,000nmの範囲内とされ得る。可視スペクトルは眼球が機能する条件であることから概略的には可視スペクトルにおける操作が望ましいが、一定の用途においては近赤外スペクトルが利点を提供することもある。たとえば、測定が行われていることを患者が認識しなければ、患者は更にリラックスし得る。光放射の波長に関わらず、眼科的用途においてパワーは眼球に安全なレベルへと制限されねばならない。レーザ放射に関して適切な眼球安全露出レベルは、レーザ製品に対する米国連邦性能基準(U.S. Federal Performance Standard)に見られる。もし、眼球ではなく光学系に関して分析が実施されるのであれば、検査波長範囲は論理的にその系の企図性能範囲を含むべきである。
レーザ光ビーム14の小径平行コアを選択するためには、使用が望まれるサイズのレーザ・ビーム18を除きレーザ光ビーム14の全てを遮断すべく虹彩絞り16が用いられる。本発明に関し、レーザ・ビーム18は約0.5〜4.5mmの範囲であって一例として1〜3mmが典型的であるという直径を有する。相当に異常な眼球は更に小径のビームを使用する一方、僅かな異常性のみを有する眼球は更に大径のビームにより評価され得る。レーザ12の出力発散性に依存し、ビーム経路内には該ビームの平行化を最適化すべくレンズが位置され得る。
本明細書中において一例として記述されるレーザ・ビーム18は、眼球120の光学要素(たとえば角膜126、瞳孔125および水晶体124)を通して該レーザ・ビーム18を網膜122に焦点合わせすべく作用する焦点合わせ用光学的系列22に対して偏光感応ビームスプリッタ20を通される偏光ビームである。尚、白内障処置を受けた患者では水晶体124が存在しないことは理解される。但し、このことは本発明に影響しない。
光学的系列22はレーザ・ビーム18を、眼球の視力が最も鋭敏な眼球の中心窩123にてまたはその近傍にて光の小寸スポットとして作像する。尚、上記光の小寸スポットは対象者の視力の別の見地に関連する収差を決定すべく網膜122の別の部分から反射され得ることを銘記されたい。たとえば上記光のスポットが中心窩123を囲繞する網膜122の領域から反射されたとすれば、その場合には対象者の周辺視力に関する収差が特に評価され得る。全ての場合において上記光のスポットは、網膜122上に準回折限界像(near-diffraction-limited image)を形成すべく寸法設定され得る。故に、レーザ・ビーム18により中心窩123にて生成される上記光のスポットは直径が約100μmを超えず、典型的には10μmのオーダーである。
網膜122から戻るレーザ・ビーム18の拡散反射は、眼球120を通過して戻る放射線を表す実線24により表される。波面24は光学的系列22に衝当してそれを通過し、偏光感応ビームスプリッタ20に衝当する。故に波面24は偏光感応ビームスプリッタ20にて転回され、ハートマン−シャック(Hartmann-Shack)(H-S)波面分析器などの波面分析器26へと導向される。概略的に波面分析器26は、波面24の傾斜、すなわち所定個数の(x,y)直交座標におけるxおよびyに関する偏微分値(partial derivative)を測定する。この偏微分値情報は次に、加重された一連のゼルニケ多項式などの数式表現により元の波面を復元もしくは近似すべく用いられる。
入射するレーザ・ビーム18およびビームスプリッタ20の夫々の偏光状態は、波面分析器26のセンサ部分に到達する迷レーザ放射(stray laser radiation)の量を最小化する。一定の状況においては、(たとえば網膜122などの)所望ターゲットから戻る放射線と比較して迷光放射は十分に小さくなり得ることから、偏光仕様は不要である。
本発明は、広範囲な視力欠陥に適合され得ることから、眼球収差の測定に関して新たなレベルのダイナミック・レンジを達成する。ダイナミック・レンジの増強は、光学的系列22、および/または、波面分析器26の波面センサ部分により達成される。光学的系列22は、第1レンズ220、平坦ミラー221、ポロ・ミラー(Porro mirror)222および第2レンズ224を含むが、それらの全てはレーザ・ビーム18および波面24の経路に沿い位置している。第1レンズ220および第2レンズ224は、固定位置に保持される同一のレンズである。ポロ・ミラー222は矢印223により表される如く線形移動することで、レンズ220および224間の光学距離を変更し得る。但し、本発明は平坦ミラー221およびポロ・ミラー222の特定配置に限定されず、且つ、本発明の教示および利点から逸脱せずに他の光学的配置が使用され得ることを理解すべきである。
ポロ・ミラー222の“零点(zero position)”は、眼球120を較正用平行光源により置き換えて完全平面波110などの基準波面を提供することで識別される。斯かる光源は、波面分析器26の結像平面を覆う直径までビーム・テレスコープ(beam telescope)により拡大されたレーザ・ビームであって、波面分析器26が該レーザ光を平行化されていると検出するまでポロ・ミラー222が調節されるというレーザ・ビームにより実現され得る。尚、ポロ・ミラー222によりもたらされる光学距離長の変化はジオプトリ(diopter)単位で較正されることで、近似的な球面ジオプトリ補正(spherical dioptric correction)が行われ得ることを銘記されたい。
屈折力の所望の変更を行う際に特定のビーム特性(beam profile)の治療効率を実験的に決定すべく、既知の削摩特性および既知のレーザ・ビーム・フルーエンス特性を以て生体内で人間の角膜の削摩に関するデータが収集された。上記で論じられた波面測定の自覚性(subjectivity)の精度および欠如は光学的結果を決定すべく、故に、特定の削摩特性の実効治療効率を決定すべく使用された。期待された収差内容の変化からの一切の偏差は、角膜表面の全体に亙る削摩効果における相対差に起因すると考えられ得る。
近視および遠視の名目的削摩特性の両方を用いた臨床データから、一般化された単一の削摩効果関数が導出された。上記データは、それらの内容は言及したことにより本明細書中に援用される米国特許第5,849,006号および第5,632,742号に開示された如きエキシマ・レーザ狭幅ビーム走査スポットを用いて獲得された名目的削摩特性から収集された。
本発明の径方向に対称的な減衰関数は、近視眼(図2)および遠視眼(図3)に関し、正規化された径方向角膜位置に対する企図削摩深度および達成削摩深度のグラフを分析することで決定された。上述された如く該削摩効果関数は、多項式形態A+Bρ+Cρ2+Dρ3+…+Xρnを有する。特定実施例において上記関数はA+Bρ+Cρ2+Dρ3+Eρ4の形態を有し、3.25mmの光学領域半径に対して代表的な係数A≒0.95、B≒0、C≒-0.3、D=-0.25およびE=0.3を有している。上記削摩効果関数は実際の削摩速度、すなわち例えばパルス毎に除去される組織のマイクロメータ値において一切の径方向依存性を含んでいる。但しそれはまた、径方向依存様式にて光学的結果に影響し得る、角膜の光学特性における一切の生体力学的効果もしくは内在的変動も取入れている。
上記減衰関数もしくは効率関数は次に、角膜深度の所望変化(名目的削摩特性)を選択し且つこれを上記減衰関数で除算することで、上記治療特性を改変すべく使用される。これにより、削摩されたときに所望変化に帰着する新たな特性が得られる。
特定実施例において上記減衰は、削摩特性のゼルニケ記述を算出すると共に、レーザ・ビーム送給システムに入力された上記減衰特性により該ゼルニケ多項式を除算することで達成される:
P入力(ρ,θ)=P所望(ρ,θ)/(A+Bρ+Cρ2+Dρ3+…+Xρn)
rmax=3.25mmというこの関数の単純形態のグラフ1-0.3r2(図4A)において、径方向依存削摩効率は、角膜表面上においてr=0であるという中心箇所の近傍における約1の値から、上記中心箇所から所定距離に在るr≒3.25mmにおける約0.7の値まで変化する。
図4Bには、上記減衰関数の更に詳細な一形態であり更に複雑な形状を有する0.95-0.3r2-0.25r3+0.3r4が示される。特定の治療用レーザ・システムに適用されるこの特定関数は、そのデバイスのビーム・エネルギなどの詳細に依存し得る。故に、上記減衰関数多項式における各係数は、特定の治療条件に対する結果を最適化すべく調節され得る。
好適には光学的矯正は更に、上記波面が通過する媒体の屈折率に基づく。特定実施例において上記変換器は上記波面のゼルニケ再現(Zernike reconstruction)を用いて距離差を提供すると共に、該距離差は、角膜物質の屈折率と空気の屈折率との間の差により除算される。上記光学的矯正は眼球の角膜表面の曲率の規定改変(prescribed alteration)であり、且つ、眼球の角膜表面の再構成により達成される光学的矯正は角膜の表面全体の結果的な形状を考慮しない規定改変に基づいている。
例示的なレーザ・ビーム送給システム5(図5)すなわちレーザ・ビーム送給および眼球追尾システムは、たとえば、その内容は言及したことにより本明細書中に援用されると共に本出願と同様に本出願人が所有する米国特許第5,980,513号に教示されたシステムから成り得る。システム5のレーザ・ビーム送給部分は、治療用レーザ源500、投影用光学機器510、X-Y並進ミラー光学機器520、ビーム並進制御器530、ダイクロイック・ビームスプリッタ200およびビーム角度調節用ミラー光学機器300を含む。レーザ・パルスは、好適には分散されたシーケンスで、削摩もしくは侵食されるべき領域の全体に亙る単射(shot)として分布されることから、対象物もしくは角膜の所望形状が達成される。好適には、パルス化されたレーザ・ビームは角膜表面上において空間的に変位された複数の位置へと単射を導向すべくシフトされることで、空間的に分布された複数の削摩スポットを形成する。これらのスポットの各々はたとえば2.5または1.0mmの所定直径を有し得ると共に、たとえば該スポットに亙るガウス分布形状もしくは概略的に平坦な分布形状により定義される強度分布を有し得る。
システム5のビーム送給部分の作動時に、レーザ源500は投影用光学機器510に入射するレーザ・ビーム502を生成する。投影用光学機器510は、実施されつつある特定の処置の要件に依存してビーム502の焦点に対する直径および距離を調節する。
投影用光学機器510を出射した後でビーム502はX-Y並進ミラー光学機器520に衝当し、其処でビーム502は、ビーム並進制御器530により支配される並進用の2本の直交軸心の各々に沿い独立的に並進もしくはシフトされる。制御器530は典型的に、実施されつつある特定の眼科的処置に依存するビーム502の所定群の2次元並進もしくはシフトを以てプログラムされたプロセッサである。並進のX軸およびY軸の各々は、並進ミラーにより独立的に制御される。
システム5の眼球追尾部分は、眼球移動センサ100、ダイクロイック・ビームスプリッタ200およびビーム角度調節用ミラー光学機器300を含む。センサ100は、眼球移動の量を決定すると共に、眼球移動に沿い追尾するためにミラー310および320を調節すべくこの量を用いる。これを行うためにセンサ100は先ず、ダイクロイック・ビームスプリッタ200を通り送出されるべく選択された光エネルギ101-Tを送出する。同時に、特定の治療処置に従うビーム並進を受けた後でビーム502は、(たとえば193-nmの波長のレーザ・ビームである)該ビーム502をビーム角度調節用ミラー光学機器300へと反射すべく選択されたダイクロイック・ビームスプリッタ200に衝当する。
光エネルギ101-Tは、それがビーム角度調節用ミラー光学機器300に衝当するときに該光エネルギがビーム502と平行である如く整列される。本明細書中で用いられる“平行な”という語句は、光エネルギ101-Tおよびビーム502が一致しもしくは共直線的であり得るという可能性を包含することは理解される。光エネルギ101-Tおよびビーム502の両者は、光学機器300により相互に対応して調節される。故に光エネルギ101-Tおよびビーム502は、それらが眼球120に入射するときに、それらの平行関係を保持する。X-Y並進ミラー光学機器520は並進におけるビーム502の位置を光学機器300から独立してシフトすることから、ビーム502と光エネルギ101-Tとの間の平行関係は特定の眼科的処置の全体に亙り維持される。
上記ビーム角度調節用ミラー光学機器は、独立的に回転するミラー310および320から成る。ミラー310は矢印314に示された如く軸心312の回りで回転可能である一方、ミラー320は矢印324により示された如く軸心322の回りで回転可能である。軸心312および322は相互に対して直交する。この様にして、ミラー310は(たとえば上下(elevation)の)第1平面内において光エネルギ101-Tおよびビーム502を掃引し得る一方、ミラー320は上記第1平面に直交する(たとえば左右(azimuth)の)第2平面内において光エネルギ101-Tおよびビーム502を独立的に掃引し得る。ビーム角度調節用ミラー光学機器300の出射時に、光エネルギ101-Tおよびビーム502は眼球120に衝当する。
ミラー310および320の移動は典型的に、サーボ制御器/モータ駆動器316および326により夫々行われる。概略的に駆動器316および326は、眼球移動センサ100からの測定エラーが大きいときに迅速に反応し得るべきであり、更に、定常状態エラーおよび過渡的エラーの両方を実質的に排除すべく低周波(DC)から約100ラジアン/秒まで非常に高い利得を提供せねばならない。
より詳細には眼球移動センサ100は、瞳孔の中心(もしくは医師が選択した瞳孔の中心からのオフセット)と、ミラー310が指向される箇所との間のエラーの測定値を提供する。
眼球120から反射された光エネルギ101-Rは、センサ100における検出のために光学機器300およびビームスプリッタ200を介して戻り進行する。センサ100は、反射エネルギ101-Rにおける変化に基づいて眼球移動の量を決定する。ビーム角度調節用ミラー光学機器300に対しては、眼球移動の量を表すエラー制御信号がセンサ100によりフィードバックされる。上記エラー制御信号は、該エラー制御信号をゼロにすべくミラー310および320の移動もしくは再整列を支配する。これを行う際に、光エネルギ101-Tおよびビーム502は眼球移動に対応して移動される一方、瞳孔の中心に対するビーム502の実際位置はX-Y並進ミラー光学機器520により制御される。
ビームスプリッタ200の特性を利用すべく、光エネルギ101-Tは治療用レーザ・ビーム502とは異なる波長とされねばならない。上記光エネルギは好適には、眼球120に対する外科医の視認を阻害もしくは妨害しない様に可視スペクトルの外側に位置すべきである。更に、もし本発明が眼科的手術処置において用いられるなら、光エネルギ101-Tは米国国家規格協会(ANSI)により定義された如く“眼球安全的”とされるべきである。上記要件は種々の光波長が満足するが、一例として光エネルギ101-Tは、900-nm波長領域における赤外線光エネルギから成り得る。この領域における光は上述の基準を満足し、更に、容易に入手可能で経済的に手頃な光源により生成される。斯かるひとつの光源は、50-nsのパルスにて10nJのANSI定義の眼球安全パルスを生成すべく4kHzで動作する高パルス反復速度のGaAsの905-nmレーザである。小寸スポット(<2.5mm)を使用するという100〜1,000mJ/cm2のフルーエンスの範囲の193-nm削摩を用いる角膜削摩システムもまた使用され得る。一好適実施例は、1.0mm未満のスポットおよび400〜600mJ/cm2のピーク・フルーエンスを利用する。
故に本発明のこの見地は、削摩効率関数を逆調または相殺することで、実際に所望された形状の角膜除去体積が獲得されるのを許容して理想的な光学的結果をもたらし得る補償型補正関数(compensating correction function)を提供するシステムおよび方法を提供することが理解され得る。
本発明の第2実施例は、測定済波面データを、眼球120に関する矯正レーザ手術で使用される削摩特性へと変換するシステムおよび方法から成る。上記データはたとえば図1に概略的に示された如きシステム10を用いて収集され得るが、これは限定として意図されるものでない。上記システムおよび方法は、測定済波面データを、測定された視力欠陥を矯正する削摩特性へと変換するためのものである。上記削摩特性は次に図5に示された如きシステム5を用いて眼球120へと送給されるが、これは限定として意図されるものでない。図6および図8Bのシステム60は、測定された術前波面65と、識別されたトレンドから計算された治療調節パラメータ66とから入力波面64が如何に計算されるかを示している。
本発明のこの見地においては、術前および術後に収集されたデータであって、本発明の削摩特性計算を行うソフトウェア・パッケージ63が常駐するプロセッサ62と電子的に通信するデータベース61内に記憶されたデータを分析することで、地域非特異的トレンド(site-nonspecific trend)が識別された。当業者であれば、斯かるシステム60は地域により変化し得ると共に上記の如く地域特異的トレンドが識別され得ることを理解されよう。
上述された如くアルゴリズム67(図8B)は、治療レーザ・ビームが角膜中心から離間移動するにつれて径方向に減少する削摩効果を補償することで、適切な収差矯正を適用する。上記アルゴリズムの目的は、本明細書中に記述された如く矯正レーザ手術に対する基礎として用いられたときに理想的な光学的結果に繋がる治療特性68をもたらすべく改変された入力波面を算出することである。
先に論じられたアルゴリズムは、近視および遠視矯正の両方に関して使用されると共に両方の範囲の亙り良好な臨床結果を生み出し、これまでに知られた治療システムよりも相当に少ない術後球面収差が生成されることが示されている。但し上記アルゴリズムは両形式の矯正に使用されるために開発されたことから、それらの一方に特有な一切の効果(たとえば術後治癒応答、生体力学的力など)は上記共通アルゴリズム内に最適には係数化されないこともある。
もし上記効果が一貫しており(すなわち特定の手術箇所、マイクロ・ケラトーム(microkeratome)などに対して固有でなく)且つ予測可能(すなわち単純な数式表現により正確に記述される)ならば、それらに対処する特定方法700は、図7のフローチャートに示された如く上記治療アルゴリズム対する目標波面入力を調節することである。この方法は立証されたアルゴリズムを維持すると同時に、好適実施例においては目標波面に対する近視矯正に特有な固定調節を自動的に付加することで、近視手術結果を最適化する。これは限定として意図されるものでなく、上記システムは遠視手術に対しても等しく良好に適用され得る。
方法700は、複数の異常眼球に関して術前および術後の波面データを測定する段階(ブロック701)と、測定された術前および術後波面データをデータベース61に記憶する段階(ブロック702)とを備える。術前波面データは第1半径上で測定されると共に、術後波面データは第1半径より小さな第2半径上で測定される。代表的な第1および第2半径は夫々3.25mmおよび2.5mmから成るが、これらは限定として意図されるものでない。
上記術前データ群および術後データ群の一方は次に、該術前データおよび術後データの他方に対するサイズ整合を達成すべくスケール調節される(ブロック703)。臨床的な試行においては、術後データのスケール・アップと術前データのスケール・ダウンとの間に測定可能な相違は見出されなかった。
次に、測定済波面データは未治療の異常眼球120に関して収集される(ブロック704)。次に、基準波と上記波面との間の光学距離差が決定される(ブロック705)。上記測定済波面データおよび記憶されたデータは、複数の係数を備えた多項式としてモデル化される(ブロック706)。好適実施例において上記多項式は、ゼルニケ多項式から成る。
上記測定済波面データは、既に治療された眼球に関してデータベース61に記憶された蓄積データと相関される(ブロック707)。好適には各係数は、上記記憶データの一個以上の係数と相関される。
次に、上記相関に基づいて上記測定済波面データに対して調節が加えられることで、波面データ補正アルゴリズムに入力される調節済波面データが形成される(ブロック708)。このアルゴリズムは次に、角膜削摩特性を計算すべく用いられる(ブロック709)。
次に図9乃至図15を参照し、上記分析的方法および代表的臨床結果が示される。上記分析に含まれた眼球は、4つの地域からの118個の眼球を含むと共に3ヶ月の追随データが入手可能な近視集団から成る。各眼球に対するデータは、同一の時的間隔における眼位計による屈折力測定と共に、術前および3ヶ月検査における波面測定値を含んでいた。
代表的実施例における波面測定は670nmの波長を用いる図1に示された如きデバイスにより為されるが、これは限定として意図されるものでない。術前波面は3.25mm半径上で復元され、レーザ削摩の光学領域に整合している。上記光学領域内における評価に影響する周辺波面データを回避すべく、術後データは更に小寸の半径すなわち2.5mm上で処理される。術前データと術後データの直接比較を許容すべく、上記データ群の一方は他方のデータ群の単位円サイズへとスケール調節される。両方のスケール調節が試験され、両方の寸法に関して発見事項は一致した。本明細書中には、2.5mmのデータから3.25mmへのスケール・アップに対する結果が含まれる。
種々のゼルニケ項において試行された変化は、3ヶ月時点で実際に達成されたものと比較された。全てのデータは3.25mmの光学領域半径へとスケール調節されてから、術後ゼルニケ係数が術前値から減算された。その差は、手術毎の目標を残存収差ゼロとして、術前値に対して分析された。波面収差における試行変化および達成変化は統計的に分析されることで、正もしくは負のいずれかの相当の相関が識別された。各入力項は、各出力項に対してチェックされた。
達成された収差変化とひとつ以上の試行収差変化との間に相当の相関が存在した場合、最小二乗適合分析が適用されて最適な線形関係が決定された。たとえば、もしゼルニケ項CMにおいて達成された変化がCMおよび第2収差CNの両方における試行変化に相当に依存することが見出されたなら、トレンド分析の結果は最良適合線形関係を記述する方程式であろう:
達成されたCM=A(試行されたCM)+B(試行されたCN)+K
式中、AおよびBは最良適合線形依存性であり且つKは定数オフセット項である。
もし何らかの有意なトレンドが明らかとなれば上記データは、最大の集団からの眼球と他の4つの地域からの残存眼球とを夫々含む2つの下位集団に分割された。上記データは次に、これらの2つの下位集団に対して再分析されると共に、組み合わされた更に大きな集団と比較されることで、上記トレンドが各地域に亙り一貫していることが確実とされた。
図9には、N=118に対して眼位計検査に基づく術前(横座標)と3ヶ月術後(縦座標)の等価球面屈折力(spherical equivalent refraction)間の関係がグラフ化されている。該結果は術前近視に対してそれほど相関していない。最良適合線は実質的に水平であり僅かに負に変位していることが理解され得る。試行された近視矯正範囲の全体に亙り、平均で約1/4ジオプトリまでの僅かな過小相関(undercorrelation)に向かう傾向がある。この発見事項は、上記データを表1に示された如く地域的下位集団へと分割したときに存続した。この差は小さいが、波面における目標近視矯正が1/4ジオプトリだけ増加されたならば適合調整治療は改善され得ると確信される。
Figure 2005514998
種々の波面収差において試行変化と達成変化とを比較すると、有意な発見事項は以下のものである:
・線形回帰分析は、二次波面収差の各々の試行矯正と達成矯正との間に高度の相関を示した(すなわち焦点不良、1次傾斜非点収差、および、水平/垂直1次非点収差−C3、C4およびC5)。
・水平/垂直非点収差に対応するC5項に対し、一貫した小さなオフセット(すなわち最良適合線形関係における小さな定数項)が在った。
・全ての3次収差(球面収差、2次傾斜非点収差、および、水平/垂直2次非点収差−C6乃至C9)ならびに2つのtetrafoil4次収差(C13およびC14)における達成変化は全てが各々における試行変化に対して正に相関されたが、相関係数は二次項に見られるものよりも小さかった。
・残る3つの収差(C10、C11およびC12)における達成変化は特有であった、と言うのも、それらは他の収差(C3、C4およびC5)ならびにそれら自体における試行変化に対して相当に相関されたからである。
・他のいずれの収差も有意な相互相関は呈さなかった。
図10は、試行された焦点不良矯正(defocus correction)(C3)に対して達成された焦点不良矯正(C3)の関係をグラフ化している。118個の眼球の全てに対し、達成変化は平均して試行変化の89.89%であり、高度の相関が在る。この発見事項は、表2に示された如く上記データが2つの下位集団に分割されたときにも存在した。
Figure 2005514998
図11は、再びN=118とし、試行された傾斜非点収差(oblique astigmatic aberration)(C4)に対して達成された傾斜非点収差(C4)をグラフ化している。平均して、試行矯正の97%が達成された。表3に示された如く、異なる下位集団に対してこの百分率矯正には小さな相違が在った。
Figure 2005514998
図12は、再びN=118とし、試行された水平/垂直非点収差の矯正(C5)に対して達成された水平/垂直非点収差の矯正(C5)をグラフ化している。此処でも傾斜は略々1であり且つ矯正は相当に高いが、線形回帰線には有限のオフセットが在る。この発見事項は、表4に示された如く、下位集団分析において一貫して観察された。
Figure 2005514998
球面収差項(C10)における達成変化は試行された球面収差矯正に対して正の相関があったが、試行された焦点不良矯正に対して更に正の相関があった。図13には、N=118による後者の関係が示される。表5には、異なる下位集団に対する最良相関関係が示される。
Figure 2005514998
図14に示された如く、2次傾斜非点収差項(C11)における達成変化は1次傾斜非点収差(C4)における試行変化に対して最も正の相関が在り、試行されたC11変化がそれに続いた。表6には、上記関係に対する回帰係数が示される。
Figure 2005514998
図15に示された如く、水平/垂直2次非点収差項(C12)における達成変化は1次水平/垂直非点収差(C5)における試行変化に対して最も正の相関が在り、試行されたC12変化がそれに続いた。表7には、組み合わされた関係に対する回帰係数が示される。小さな負のオフセットも見られた。
Figure 2005514998
目標とする上記各式を開発するために使用された一般的な数学手法は以下の如くである。特定の収差における試行変化(試行CN)と、その項における達成変化(達成CN)との間の最終的トレンドを考察する:
達成CN=a(試行CN)+b (1)
これは、
試行CN=[(達成CN)-b]/a (2)
を意味する。
もし達成変化を測定済波面エラー(測定CN)と等しくすることが目的であれば、上記治療アルゴリズムに対する目標値入力(目標CN)は:
目標CN=[(測定CN)-b]/a (3)
である。
高次の各項に対し、達成収差変化が一個以上の試行パラメータにリンクされる場合には伝統的な数学手法が取られる。出発式は式(1)と類似している:
達成CN=a(試行CN)+c(試行CX)+b
これにより、
達成CN=a[(達成CN)-c(試行CX)-b]/a
となる。しかし、考慮している3つの高次収差の全てに対し、aにおける不確定性はcのそれより大きい。全ての3つの場合において、aは1より小さい正数であり、試行CNにおける増加に帰着する。それは、係数における変化を比較的に適度に維持すべく、1に等しく設定される。この点から、論理は式(3)を作成すべく用いられたのと同一である。3.25mmの単位円半径に基づき治療に対して使用される最終的な目標関数は:
1.目標C3=1.11(測定されたC3)+0.000714
2.目標C4=1.03(測定されたC4)
3.目標C5=1.04(測定されたC5)+0.000715
4.目標C10=(測定されたC10)+0.055(測定されたC3)+0.000035
5.目標C11=(測定されたC11)+0.18(測定されたC4)
6.目標C12=(測定されたC12)+0.15(測定されたC5)
(1)におけるオフセットは、3.25mmの単位円半径上に亙る約1/4ジオプトリの焦点不良エラーに対応する。(3)におけるオフセットは、同一量の混合非点収差に対応する。(4)におけるオフセットは(1)におけるオフセットの故に存在する;すなわち、焦点不良オフセットの僅かな割合が高次関係に持ち越される。(6)においてオフセットは無い、と言うのも、C12に対するトレンドにおけるオフセットは(3)からの持ち越しオフセットにより無効化されたからである。
上記の説明においては簡潔さ、明瞭性および理解のために一定の語句が使用されたが、それらの語句からは先行技術の要件を越える不要な限定は意味されない、と言うのも、斯かる語句は本明細書中において説明目的で使用され且つ広範囲に解釈されることが企図されるからである。更に、本明細書中で図示かつ記述された装置の実施例は例示的であり、本発明の有効範囲が構造の厳密な詳細に限定されるのではない。
本発明を記述してきたが、当業者に対して自明である本発明の好適実施例の構造、作用および用途、本発明により実現される好適で新規かつ有用な成果、新規で有用な構造、および、それらの合理的な機械的均等物は、添付の各請求項に示される。
眼球収差を決定するシステムの概略図である。 近視眼に対する径方向位置の関数としての所望削摩深度および達成削摩深度のグラフである。 遠視眼に対する径方向位置の関数としての所望削摩深度および達成削摩深度のグラフである。 本発明の削摩効率関数のグラフであり:図4Aはrmax=3.25mmとして1-0.3r2をプロットしている。 本発明の削摩効率関数のグラフであり:図4Bは0.95-0.3r2-0.25r3+0.3r4をプロットしている。 眼球に対して削摩用レーザ・ビームを送給するシステムの概略図である。 目標調節を取入れた波面案内式治療の概略図である。 本発明の第2実施例のフローチャートである。 測定済術前波面から治療特性までのデータフローである。 測定済術前波面および治療調節データから治療特性までのデータフローである。 術前屈折力に対する術後屈折力のグラフである。 試行された焦点不良矯正に対する達成された焦点不良矯正のグラフである。 試行された傾斜非点収差矯正に対する達成された傾斜非点収差矯正のグラフである。 試行された水平/垂直非点収差矯正に対する達成された水平/垂直非点収差矯正のグラフである。 試行された焦点不良矯正に対する達成された球面収差矯正のグラフである。 試行された1次傾斜非点収差矯正に対する達成された2次傾斜非点収差矯正のグラフである。 試行された水平/垂直1次非点収差矯正に対する達成された水平/垂直2次非点収差矯正のグラフである。

Claims (24)

  1. 異常眼球に関する測定済波面データを準備する段階と、
    上記測定済波面データを、既に治療された眼球に関する蓄積データと相関させる段階と、
    上記相関段階に基づき上記測定済波面データに対して調節を加え、当該調節済波面データから角膜削摩特性を計算する波面データ補正アルゴリズムに対する入力のために調節済波面データを形成する段階とを備えて成る、
    測定済波面データを、視力欠陥を矯正するための削摩特性へと変換する方法。
  2. 前記波面データ準備段階は、眼球から発せられる波面を分析する段階と、基準波面と上記波面との間の光学距離差を決定する段階とから成る、請求項1記載の方法。
  3. 前記相関段階に先立ち、
    複数の異常眼球に関する術前測定済波面データをデータベースに記憶する段階と、
    角膜削摩矯正治療に続き上記複数の異常眼球に関する術後測定済波面データを上記データベースに記憶する段階とを更に備え、
    前記相関段階は上記データベースからの蓄積データにアクセスする段階を備える、
    請求項1記載の方法。
  4. 前記記憶段階に先立ち、術前波面データおよび術後波面データを測定する段階を更に備えて成る、請求項3記載の方法。
  5. 前記測定段階は、第1半径上で術前波面データを測定する段階および上記第1半径より小さな第2半径上で術後波面データを測定する段階を備える、請求項4記載の方法。
  6. 前記測定段階に続き、前記術前データおよび前記術後データの一方をスケール調節することで、上記術前データおよび上記術後データの他方とのサイズ整合を達成する段階を更に備えて成る、請求項5記載の方法。
  7. 前記測定済波面データを、複数の係数を備える多項式としてモデル化する段階を更に備え、
    前記相関段階は、各係数を、各々が複数の係数を備える多項式から成る前記蓄積データの夫々の係数に相関させる段階から成る、請求項1記載の方法。
  8. 前記多項式はゼルニケ多項式から成る、請求項7記載の方法。
  9. 前記波面矯正アルゴリズムは、近視、遠視の少なくとも一方により特徴付けられ眼球であって高次収差により支配される眼球を矯正し得る、請求項1記載の方法。
  10. 前記調節は実質的に地域非依存的である、請求項1記載の方法。
  11. 前記調節は地域依存的である、請求項1記載の方法。
  12. 基準波面と複数の異常眼球の各々に対する波面との間の術前光学距離差を決定するために、各眼球から発せられる波面を分析する段階と、
    基準波面と上記複数の眼球の各々に対する波面との間の術後光学距離差を決定するために、矯正的角膜削摩に続き各眼球から発せられる波面を分析する段階と、
    術前および術後に分析された上記波面をデータベースに記憶する段階とを備える、
    異常視力の矯正のための角膜削摩の前後における蓄積波面データのデータベースを確立する方法。
  13. 前記分析段階は、異常眼球および矯正済眼球の各々に対する測定済波面を、複数の係数を備える多項式としてモデル化する段階を備える、請求項12記載の方法。
  14. 前記多項式はゼルニケ多項式から成る、請求項13記載の方法。
  15. 異常眼球に関する測定済波面データを準備する段階と、
    上記測定済波面データを、既に治療された眼球に関する蓄積データと相関させる段階と、
    上記相関段階に基づき上記測定済波面データに対して調節を加え、当該調節済波面データから角膜削摩特性を計算する波面データ補正アルゴリズムに対する入力のために調節済波面データを形成する段階と、
    上記眼球上にレーザ・ビームを導向して角膜を削摩する段階と、
    上記眼球の回りにおけるパターンであって上記角膜削摩特性に基づくパターンで上記レーザ・ビームを移動する段階とを備えて成る、
    眼球の角膜に関する屈折矯正を実施する方法。
  16. プロセッサと、
    上記プロセッサに常駐し、
    測定済波面データを、既に治療された眼球に関する蓄積データと相関させ、且つ、
    上記相関段階に基づき上記測定済波面データに対して調節を加え、当該調節済波面データから角膜削摩特性を計算する波面データ補正アルゴリズムに対する入力のために調節済波面データを形成し得るソフトウェアとを備えて成る、
    測定済波面データを、視力欠陥を矯正するための削摩特性へと変換するシステム。
  17. 前記ソフトウェアは更に、前記波面データ補正アルゴリズムを適用し得る、請求項16記載のシステム。
  18. 前記ソフトウェアは更に、基準波面と前記波面との間の光学距離差を決定し得る、請求項16記載のシステム。
  19. 前記測定済波面データは第1半径上で測定された術前波面データおよび上記第1半径より小さな第2半径上で測定された術後波面データから成り、上記術前波面データおよび上記術後波面データはそれらの間のサイズ整合を達成すべくスケール調節される、請求項16記載のシステム。
  20. 前記ソフトウェアは更に、前記測定済波面データを複数の係数を備える多項式としてモデル化し得ると共に、
    前記相関は、各係数を、各々が複数の係数を備える多項式から成る前記蓄積データの少なくとも一個の係数に相関させる段階を備える、請求項16記載のシステム。
  21. 前記多項式はゼルニケ多項式から成る、請求項20記載のシステム。
  22. 前記波面矯正アルゴリズムは、近視、遠視の少なくとも一方により特徴付けられ眼球であって高次収差により支配される眼球を矯正し得る、請求項16記載のシステム。
  23. 前記調節は実質的に地域非依存的である、請求項16記載のシステム。
  24. 前記調節は地域依存的である、請求項16記載のシステム。
JP2003560609A 2002-01-14 2003-01-08 光学系の削摩矯正の最適化方法および関連方法 Pending JP2005514998A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34858602P 2002-01-14 2002-01-14
US10/238,919 US7044944B2 (en) 2000-03-22 2002-09-10 Optimization of ablation correction of an optical system and associated methods
PCT/US2003/000515 WO2003060568A2 (en) 2002-01-14 2003-01-08 Optimization of ablation correction of an optical system and associated methods

Publications (2)

Publication Number Publication Date
JP2005514998A true JP2005514998A (ja) 2005-05-26
JP2005514998A5 JP2005514998A5 (ja) 2008-10-16

Family

ID=26932080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003560609A Pending JP2005514998A (ja) 2002-01-14 2003-01-08 光学系の削摩矯正の最適化方法および関連方法

Country Status (11)

Country Link
US (1) US7044944B2 (ja)
EP (1) EP1465539B1 (ja)
JP (1) JP2005514998A (ja)
AT (1) ATE347851T1 (ja)
AU (1) AU2003235646B2 (ja)
BR (1) BR0306860A (ja)
CA (1) CA2471882A1 (ja)
DE (1) DE60310367T2 (ja)
ES (1) ES2277079T3 (ja)
MX (1) MXPA04006603A (ja)
WO (1) WO2003060568A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099275A (ja) * 2006-10-10 2008-04-24 Alcon Inc データの圧縮および符号化方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA67870C2 (uk) * 2002-10-04 2004-07-15 Сергій Васильович Молебний Спосіб вимірювання хвильових аберацій ока
DE102004014181A1 (de) 2004-03-23 2005-10-06 Carl Zeiss Meditec Ag Material-Bearbeitungsvorrichtung und -verfahren
US9352415B2 (en) * 2005-02-15 2016-05-31 Carl Zeiss Meditec Ag Method for generating an ablation program, method for ablating a body and means for carrying out said method
US7929140B2 (en) * 2005-05-18 2011-04-19 Axsun Technologies, Inc. Spectroscopy probe and material processing system
US20070142826A1 (en) * 2005-12-16 2007-06-21 Alex Sacharoff Modification of laser ablation treatment prescription using corneal mechanical properties and associated methods
US8685006B2 (en) 2006-11-10 2014-04-01 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
US8623038B2 (en) * 2007-04-26 2014-01-07 Carl Zeiss Meditec Ag Re-treatment for ophthalmic correction of refraction
AU2008251316B2 (en) 2007-05-11 2014-05-29 Amo Development, Llc Combined wavefront and topography systems and methods
US8403919B2 (en) 2007-06-05 2013-03-26 Alcon Refractivehorizons, Inc. Nomogram computation and application system and method for refractive laser surgery
US7976163B2 (en) 2007-06-27 2011-07-12 Amo Wavefront Sciences Llc System and method for measuring corneal topography
US7988290B2 (en) * 2007-06-27 2011-08-02 AMO Wavefront Sciences LLC. Systems and methods for measuring the shape and location of an object
US7654672B2 (en) * 2007-10-31 2010-02-02 Abbott Medical Optics Inc. Systems and software for wavefront data processing, vision correction, and other applications
CA2718778A1 (en) * 2008-02-26 2009-09-03 Richard G. Glogau Diagnostic skin mapping by mrs, mri, and other methods
WO2010005458A1 (en) * 2008-07-10 2010-01-14 Indiana University Research & Technology Corporation Ophthalmic apparatuses, systems and methods
DE102008047400B9 (de) * 2008-09-16 2011-01-05 Carl Zeiss Surgical Gmbh Augenchirurgie-Messsystem
US8459795B2 (en) 2008-09-16 2013-06-11 Carl Zeiss Meditec Ag Measuring system for ophthalmic surgery
US7988293B2 (en) * 2008-11-14 2011-08-02 AMO Wavefront Sciences LLC. Method of qualifying light spots for optical measurements and measurement instrument employing method of qualifying light spots
EP2465004A2 (en) * 2009-08-13 2012-06-20 BAE Systems PLC Head up display system
US10582846B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10582847B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10583039B2 (en) * 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10500092B2 (en) * 2010-12-30 2019-12-10 Amo Wavefront Sciences, Llc Treatment planning method and system for controlling laser refractive surgery
US8622546B2 (en) 2011-06-08 2014-01-07 Amo Wavefront Sciences, Llc Method of locating valid light spots for optical measurement and optical measurement instrument employing method of locating valid light spots
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
CN103162846B (zh) * 2013-02-07 2015-02-18 中国科学院光电技术研究所 一种构建Zernike多项式像差模式与Walsh函数像差模式之间系数转换矩阵的方法
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US11147710B2 (en) * 2017-02-10 2021-10-19 Alcon Inc. Calculation of actual astigmatism correction and nomographs for corneal laser treatment
DE102017124547B4 (de) * 2017-10-20 2020-01-02 Carl Zeiss Meditec Ag Mikroskop

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420228A (en) 1980-06-12 1983-12-13 Humphrey Instruments, Inc. Method and apparatus for analysis of corneal shape
FR2566140B1 (fr) 1984-06-15 1986-09-05 Onera (Off Nat Aerospatiale) Dispositif d'analyse et de correction de surfaces d'onde en temps reel a interferometre a polarisation
US4669466A (en) 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
US4750818A (en) 1985-12-16 1988-06-14 Cochran Gregory M Phase conjugation method
US5106183A (en) 1987-11-25 1992-04-21 Taunton Technologies, Inc. Topography measuring apparatus
US5221834A (en) 1991-06-28 1993-06-22 Eastman Kodak Company Method for providing feedback correction for an imaging device
US5339121A (en) 1991-11-01 1994-08-16 Visx, Incorported Rectilinear photokeratoscope
US5233174A (en) 1992-03-11 1993-08-03 Hughes Danbury Optical Systems, Inc. Wavefront sensor having a lenslet array as a null corrector
US5841511A (en) 1992-06-02 1998-11-24 Eyesys Technologies, Inc. Method of corneal analysis using a checkered placido apparatus
US5452031A (en) 1993-05-05 1995-09-19 Boston Eye Technology, Inc. Contact lens and a method for manufacturing contact lens
US5849006A (en) 1994-04-25 1998-12-15 Autonomous Technologies Corporation Laser sculpting method and system
US5632742A (en) 1994-04-25 1997-05-27 Autonomous Technologies Corp. Eye movement sensing method and system
US5493391A (en) 1994-07-11 1996-02-20 Sandia Corporation One dimensional wavefront distortion sensor comprising a lens array system
US5684545A (en) 1995-07-07 1997-11-04 New Mexico State University Technology Transfer Corp. Adaptive optics wave measurement and correction system
US5782822A (en) * 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US5822035A (en) 1996-08-30 1998-10-13 Heidelberg Engineering Optische Messysteme Gmbh Ellipsometer
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6302876B1 (en) 1997-05-27 2001-10-16 Visx Corporation Systems and methods for imaging corneal profiles
CA2311818C (en) 1997-11-21 2002-10-01 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US6280435B1 (en) 1998-03-04 2001-08-28 Visx, Incorporated Method and systems for laser treatment of presbyopia using offset imaging
US6129722A (en) * 1999-03-10 2000-10-10 Ruiz; Luis Antonio Interactive corrective eye surgery system with topography and laser system interface
US6245059B1 (en) 1999-04-07 2001-06-12 Visx, Incorporated Offset ablation profiles for treatment of irregular astigmation
US6322216B1 (en) 1999-10-07 2001-11-27 Visx, Inc Two camera off-axis eye tracker for laser eye surgery
US6234631B1 (en) * 2000-03-09 2001-05-22 Lasersight Technologies, Inc. Combination advanced corneal topography/wave front aberration measurement
US6394999B1 (en) 2000-03-13 2002-05-28 Memphis Eye & Cataract Associates Ambulatory Surgery Center Laser eye surgery system using wavefront sensor analysis to control digital micromirror device (DMD) mirror patterns
AR032312A1 (es) * 2000-03-22 2003-11-05 Alcon Inc Optimizacion de la correccion por ablacion de un sistema optico y metodos asociados
US6460997B1 (en) 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099275A (ja) * 2006-10-10 2008-04-24 Alcon Inc データの圧縮および符号化方法
JP4746020B2 (ja) * 2006-10-10 2011-08-10 アルコン,インコーポレイティド データの圧縮および符号化方法

Also Published As

Publication number Publication date
WO2003060568A3 (en) 2004-04-01
US7044944B2 (en) 2006-05-16
CA2471882A1 (en) 2003-07-24
DE60310367T2 (de) 2007-09-27
AU2003235646A1 (en) 2003-07-30
AU2003235646B2 (en) 2007-03-15
WO2003060568A2 (en) 2003-07-24
EP1465539A2 (en) 2004-10-13
EP1465539B1 (en) 2006-12-13
BR0306860A (pt) 2004-11-03
MXPA04006603A (es) 2004-10-04
EP1465539A4 (en) 2005-03-09
US20030078753A1 (en) 2003-04-24
ATE347851T1 (de) 2007-01-15
DE60310367D1 (de) 2007-01-25
ES2277079T3 (es) 2007-07-01

Similar Documents

Publication Publication Date Title
JP2005514998A (ja) 光学系の削摩矯正の最適化方法および関連方法
JP2005514998A5 (ja)
US6569154B2 (en) Optimization of ablation correction of an optical system and associated methods
EP2658489B1 (en) Improved treatment planning method and system for controlling laser refractive surgery
US10238537B2 (en) Systems and methods for correcting high order aberrations in laser refractive surgery
US6887231B2 (en) Control program for a device for photorefractive corneal surgery of the eye
JP2003533277A5 (ja)
US8182471B2 (en) Intrastromal refractive correction systems and methods
US6394605B1 (en) Fogging method for a wavefront sensor
JP4699677B2 (ja) 強化される波面アブレーションシステム
Alekseev et al. Expanding of Excimer Laser Photoablation’s Functionality in Ophthalmology
PT1465539E (pt) Optimização da correcção da ablação de um sistema óptico

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080530

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303