JP2005350696A - Method for manufacturing copper alloy for terminal and connector - Google Patents

Method for manufacturing copper alloy for terminal and connector Download PDF

Info

Publication number
JP2005350696A
JP2005350696A JP2004170505A JP2004170505A JP2005350696A JP 2005350696 A JP2005350696 A JP 2005350696A JP 2004170505 A JP2004170505 A JP 2004170505A JP 2004170505 A JP2004170505 A JP 2004170505A JP 2005350696 A JP2005350696 A JP 2005350696A
Authority
JP
Japan
Prior art keywords
mass
heat treatment
alloy material
cold rolling
subjecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004170505A
Other languages
Japanese (ja)
Other versions
JP3864965B2 (en
Inventor
Hirosato Takano
浩聡 高野
Yoshinori Yamamoto
佳紀 山本
慶平 ▲冬▼
Kiyouhei Fuyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004170505A priority Critical patent/JP3864965B2/en
Publication of JP2005350696A publication Critical patent/JP2005350696A/en
Application granted granted Critical
Publication of JP3864965B2 publication Critical patent/JP3864965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper alloy which has high strength, high yield strength and a high springing property together with satisfactory bending formability, has a crystal structure with little anisotropy, and has high strength and high conductivity so as to be most amenable to a material for a terminal and a connector. <P>SOLUTION: The method for manufacturing the copper alloy for the terminal and the connector comprises the steps of: preparing an alloy material comprising 1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% P, 0.05-1.0 mass% Sn and the balance Cu, so that the mass ratio of Ni to Si can satisfy Ni/Si=4.5 to 5.5; subjecting it to a first cold rolling of cold-rolling the alloy material into a thickness of 1.1 to 1.2 times thicker than the objective final sheet thickness; subsequently subjecting it to the first heat treatment of heating the cold-rolled alloy material to 700 to 850°C and cooling it to 300°C or lower at a rate of 25°C/minute; subsequently subjecting it to a second cold rolling of cold-rolling it into the objective final sheet thickness; and then subjecting it to the second heat treatment of heating it to 400 to 500°C and holding it at the temperature for 30 minutes to 3 hours. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強度、耐力、ばね性、及び導電性に優れた端子・コネクタ用銅合金の製造方法、特に、その優れた強度、耐力及びばね性と良好な曲げ加工性とを両立し、尚且つ結晶組織の異方性を小さくする端子・コネクタ用銅合金の製造方法に関するものである。   The present invention provides a method for producing a copper alloy for terminals / connectors excellent in strength, proof stress, spring property, and electrical conductivity, in particular, achieving both excellent strength, proof stress, spring property and good bending workability, and The present invention relates to a method for producing a copper alloy for terminals and connectors that reduces the anisotropy of the crystal structure.

近年、携帯電話やノートPCなどの電子機器において小型、薄型化および軽量化が進行し、使用される端子・コネクタ部品もより小型で電極間ピッチの狭いものが使用されるようになっている。こうした小型化によって、使用される材料もより薄肉になっているが、薄肉でも接続の信頼性を保つ必要性から、より高強度でより高いばね性を持った材料が要求されている。同時にコネクタ部品は複雑な曲げ加工が施されるため、曲げ加工時の割れを防ぐために伸びの高い良好な加工性を示すことも要求される。また、こうしたばね性や曲げ加工性において材料の圧延方向と圧延直交方向で特性差があることは好ましくなく、どの方向でも良好な特性を示すことが重要である。   In recent years, electronic devices such as mobile phones and notebook PCs have become smaller, thinner, and lighter, and the terminal / connector parts used are also smaller and have a narrow pitch between electrodes. Due to such miniaturization, the material used has become thinner, but a material having higher strength and higher springiness is required because of the need to maintain the connection reliability even with the thin wall. At the same time, since the connector part is subjected to complicated bending, it is also required to exhibit good workability with high elongation in order to prevent cracking during bending. Further, it is not preferable that there is a difference in characteristics between the rolling direction and the orthogonal direction of rolling in such spring property and bending workability, and it is important to show good properties in any direction.

一方、機器の高機能化に伴う電極数の増加や通電電流の増加によって、発生するジュール熱も多大なものになりつつあり、従来以上に導電率が高い材料への要求が強まっている。こうした高導電率材は、通電電流の増加が急速に進んでいる自動車向けの端子・コネクタ材で強く求められている。   On the other hand, due to the increase in the number of electrodes and the increase in energization current due to the higher functionality of equipment, the generated Joule heat is becoming enormous, and there is an increasing demand for materials having higher conductivity than before. Such a high conductivity material is strongly demanded for a terminal / connector material for automobiles in which an increase in energization current is rapidly progressing.

従来、こうした端子・コネクタ用の材料としては黄銅や燐青銅が一般的に使用されている。   Conventionally, brass and phosphor bronze are generally used as materials for such terminals and connectors.

しかしながら、従来広く使用されている黄銅や燐青銅は、前記したコネクタ材に対する要求に十分応えられない問題が生じている。即ち、黄銅は強度、ばね性および導電性が不足し、そのためコネクタの小型化および通電電流の増加に対応できない。また、燐青銅はより高い強度とより高いばね性を有するが、導電率が20%IACS程度と低いため通電電流の増加に対応できない。更に、燐青銅は耐マイグレーション性に劣るという欠点もある。マイグレーションとは電極間に結露などが生じた際、陽極側のCuがイオン化して陰極側に析出し、最終的に電極間の短絡に至る現象であり、自動車のように高湿環境で使用されるコネクタで問題となるとともに、小型化により電極間ピッチが狭くなっているコネクタでも注意を要する問題である。   However, brass and phosphor bronze that have been widely used conventionally have a problem in that they cannot sufficiently meet the requirements for the connector material described above. That is, brass lacks strength, springiness, and conductivity, and therefore cannot cope with downsizing of the connector and increase in energization current. Phosphor bronze has higher strength and higher springiness, but cannot handle the increase in energization current because the conductivity is as low as about 20% IACS. Furthermore, phosphor bronze has a drawback that it is inferior in migration resistance. Migration is a phenomenon in which Cu on the anode side ionizes and deposits on the cathode side when condensation occurs between the electrodes, eventually leading to a short circuit between the electrodes. This is a problem with a connector that requires attention, and even with a connector whose pitch between electrodes has become narrow due to miniaturization.

斯かる黄銅や燐青銅の持つ問題を改善する材料として、例えば、特許文献1や特許文献2に示されるようなCu‐Ni‐Siを主成分とする銅合金が提案されている。
特許第2572042号公報 特許第2977845号公報
As a material for improving such problems of brass and phosphor bronze, for example, a copper alloy mainly composed of Cu—Ni—Si as shown in Patent Document 1 and Patent Document 2 has been proposed.
Japanese Patent No. 2572042 Japanese Patent No. 2977745

しかし、従来のCu‐Ni‐Siを主成分とする銅合金の製造方法によれば、良好な強度とばね性を実現しようとすると、曲げ加工性の悪化や結晶組織の異方性が強くなるという問題がある。   However, according to the conventional method for producing a copper alloy containing Cu-Ni-Si as a main component, if an attempt is made to achieve good strength and springiness, the bending workability deteriorates and the crystal structure anisotropy increases. There is a problem.

従って、本発明の目的は、高い強度、耐力及びばね性と良好な曲げ加工性とを両立し、尚且つ結晶組織の異方性が小さく、端子・コネクタ用の材料に最適な高強度・高導電性の銅合金の製造方法を提供することにある。   Therefore, the object of the present invention is to achieve both high strength, proof stress and spring property and good bending workability, and also has a small crystal structure anisotropy, which is optimal for materials for terminals and connectors. It is providing the manufacturing method of an electroconductive copper alloy.

本発明によると、1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施す工程、及び
前記第1の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法を提供する。
According to the present invention, 1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% A step of preparing an alloy material composed of P, 0.05 to 1.0 mass% of Sn, and the balance of Cu, and the mass ratio of Ni and Si being Ni / Si = 4.5 to 5.5,
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
Performing a first heat treatment for cooling the alloy material after the first cold rolling to 700 to 850 ° C. and then cooling it to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute; Including a step of subjecting the alloy material after the heat treatment to a second cold heat treatment to a final final plate thickness and then performing a second heat treatment of heating to 400 to 500 ° C. and holding for 30 minutes to 3 hours. The manufacturing method of the copper alloy for terminals and connectors characterized by these.

また、本発明によると、1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施し、更に続けて400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程、及び
前記第2の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、300〜500℃に加熱する第3の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法を提供する。
Further, according to the present invention, 1.0 to 5.0 mass% Ni, 0.2 to 1.0 mass% Si, 1.0 to 5.0 mass% Zn, 0.003 to 0.3 mass The process of preparing the alloy raw material which consists of mass% P, 0.05-1.0 mass% Sn, and the remainder Cu, and the mass ratio of Ni and Si is Ni / Si = 4.5-5.5. ,
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
The alloy material after the first cold rolling is heated to 700 to 850 ° C., then subjected to a first heat treatment for cooling to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute, and then continuously 400 to 500 A step of performing a second heat treatment that is heated to ℃ and held for 30 minutes to 3 hours, and after subjecting the alloy material after the second heat treatment to a second cold rolling to a desired final thickness, The manufacturing method of the copper alloy for terminals and connectors characterized by including the process of performing the 3rd heat processing heated to 300-500 degreeC is provided.

更にまた、本発明によると、1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、1種あたり0.01〜1.0質量%で総量が0.01〜4.0質量%に設定されたMg、Ti、Cr、Zrの内から選択された少なくとも1種の添加成分、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施す工程、及び
前記第1の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法を提供する。
Furthermore, according to the present invention, 1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0. Mg, Ti, 3% by mass of P, 0.05 to 1.0% by mass of Sn, 0.01 to 1.0% by mass per type, and a total amount of 0.01 to 4.0% by mass, A step of preparing an alloy material consisting of at least one additive component selected from Cr and Zr, and the balance Cu, wherein the mass ratio of Ni and Si is Ni / Si = 4.5 to 5.5;
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
Performing a first heat treatment for cooling the alloy material after the first cold rolling to 700 to 850 ° C. and then cooling it to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute; Including a step of subjecting the alloy material after the heat treatment to a second cold heat treatment to a final final plate thickness, followed by a second heat treatment that is heated to 400 to 500 ° C. and held for 30 minutes to 3 hours. The manufacturing method of the copper alloy for terminals and connectors characterized by these.

更にまた、本発明によると、1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、1種あたり0.01〜1.0質量%で総量が0.01〜4.0質量%に設定されたMg、Ti、Cr、Zrの内から選択された少なくとも1種の添加成分、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施し、更に続けて400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程、及び
前記第2の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、300〜500℃に加熱する第3の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法を提供する。
Furthermore, according to the present invention, 1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0. Mg, Ti, 3% by mass of P, 0.05 to 1.0% by mass of Sn, 0.01 to 1.0% by mass per type, and a total amount of 0.01 to 4.0% by mass, A step of preparing an alloy material consisting of at least one additive component selected from Cr and Zr, and the balance Cu, wherein the mass ratio of Ni and Si is Ni / Si = 4.5 to 5.5;
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
The alloy material after the first cold rolling is heated to 700 to 850 ° C., then subjected to a first heat treatment for cooling to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute, and then continuously 400 to 500 A step of performing a second heat treatment that is heated to ℃ and held for 30 minutes to 3 hours, and after subjecting the alloy material after the second heat treatment to a second cold rolling to a desired final thickness, The manufacturing method of the copper alloy for terminals and connectors characterized by including the process of performing the 3rd heat processing heated to 300-500 degreeC is provided.

前記第1の熱処理は前記合金素材を銅中に十分固溶させ冷却中に粗大な析出物が再形成されることを防ぎ、
前記第2の熱処理はNiとSiの化合物を生成し銅中に微細な形状で析出させることを含むことが好ましい。
The first heat treatment sufficiently dissolves the alloy material in copper to prevent coarse precipitates from being re-formed during cooling,
The second heat treatment preferably includes generating a Ni and Si compound and precipitating it in copper in a fine shape.

本発明の製造方法による銅合金材は、高導電率で高い強度、耐力及びばね性と優れた曲げ加工性とを両立し、結晶組織の異方性が小さい特徴も有するため、本発明は端子・コネクタ部品についてその製造技術の向上を安価で高特性の材料を供給するという面から支え、その発展に大きく寄与することができる。   Since the copper alloy material according to the manufacturing method of the present invention has both high conductivity, high strength, proof stress, spring property, and excellent bending workability, and also has a feature of low crystal structure anisotropy, the present invention is a terminal. -Supporting the improvement of manufacturing technology for connector parts from the aspect of supplying low-cost and high-performance materials, can greatly contribute to the development.

図1は、本発明の端子・コネクタ用銅合金の製造プロセスの一例を示すフローチャートである。
(ステップ1)
FIG. 1 is a flowchart showing an example of a manufacturing process of a copper alloy for terminals and connectors according to the present invention.
(Step 1)

本発明による端子・コネクタ用銅合金の製造方法は、1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、及び残部のCuから成り、前記NiとSiの質量比がNi/Si=4.5〜5.5である銅合金を素材として用いる。さらに、1種あたり0.01〜1.0質量%で総量が0.01〜4.0質量%に設定されたMg、Ti、Cr、Zrの内から選択した1種以上の成分を含むと、より良好な特性が期待できる。   The manufacturing method of the copper alloy for terminals and connectors according to the present invention is 1.0 to 5.0 mass% Ni, 0.2 to 1.0 mass% Si, 1.0 to 5.0 mass% Zn, It consists of 0.003-0.3 mass% P, 0.05-1.0 mass% Sn, and the balance Cu, and the mass ratio of Ni and Si is Ni / Si = 4.5-5.5. A copper alloy is used as a material. Furthermore, when one or more kinds of components selected from Mg, Ti, Cr, and Zr, which are set to 0.01 to 4.0% by mass and 0.01 to 4.0% by mass per type, are included. Better properties can be expected.

ここで、NiはSiと共に添加することによってSi化合物を形成して材料中に分散析出する。NiとSiの組成比を特定の範囲Ni/Si=4.5〜5.5に規定することにより、導電率を低下させる銅中の固溶元素量を抑えながら、析出物の分散強化による効果で強度とばね性を向上させることができる。更に、Siの添加量は0.2質量%未満では効果的なSi化合物が形成されず、1.0質量%を超えて添加すると導電性に対する悪影響が大きくなる。よって、Siの組成範囲は0.2〜1.0質量%に規定する。このSiの組成範囲に対して効果的に化合物を形成させ、高強度と高導電性を両立させるためには、Niの組成範囲を1.0〜5.0質量%にし、かつそのNiとSiの質量比がNi/Si=4.5〜5.5になるように規定する必要がある。Niの含有量が組成範囲の下限を下回る場合、化合物の形成量が不十分になり、強度とばね性が不足する。また、Niの含有量が組成範囲の上限を超える場合は、余剰のNiが銅中に固溶して導電率を低下させる。更に、Ni量がSi量の4.5倍未満になる場合は、化合物形成時にSiが過剰になり、5.5倍を超える場合は逆にNiが過剰になる。斯かる過剰成分は銅中に固溶状態で存在するため、導電率を害する結果となる。   Here, Ni is added together with Si to form a Si compound and is dispersed and precipitated in the material. By regulating the composition ratio of Ni and Si to a specific range Ni / Si = 4.5 to 5.5, the effect of strengthening the dispersion of precipitates while suppressing the amount of solid solution elements in copper that lowers the conductivity The strength and springiness can be improved. Furthermore, if the addition amount of Si is less than 0.2% by mass, an effective Si compound is not formed. If the addition amount exceeds 1.0% by mass, the adverse effect on conductivity increases. Therefore, the composition range of Si is defined as 0.2 to 1.0 mass%. In order to effectively form a compound with respect to the composition range of Si and to achieve both high strength and high conductivity, the composition range of Ni is set to 1.0 to 5.0% by mass, and the Ni and Si It is necessary to define the mass ratio of Ni / Si = 4.5 to 5.5. When the Ni content is below the lower limit of the composition range, the amount of compound formation becomes insufficient, and the strength and springiness are insufficient. Moreover, when content of Ni exceeds the upper limit of a composition range, excess Ni will dissolve in copper and will reduce electrical conductivity. Furthermore, when the Ni amount is less than 4.5 times the Si amount, Si becomes excessive during compound formation, and when it exceeds 5.5 times, Ni becomes excessive. Such an excess component is present in a solid solution state in copper, resulting in an adverse effect on conductivity.

また、Pの添加量を0.003質量%未満にすると十分な量のP化合物を形成することができず、満足できる強度が得られない。0.3質量%を超えて添加すると鋳造時にP化合物の偏析に起因する鋳塊割れが起こりやすくなる。よって、Pの組成範囲は0.003〜0.3質量%に規定する。   On the other hand, if the amount of P added is less than 0.003% by mass, a sufficient amount of P compound cannot be formed, and satisfactory strength cannot be obtained. If added in excess of 0.3% by mass, ingot cracking due to segregation of the P compound tends to occur during casting. Therefore, the composition range of P is specified to be 0.003 to 0.3 mass%.

また、Snは強度とばね性の向上に大きな効果を持つとともに耐熱性を向上させて高温下での耐応力緩和性を改善する働きがある。また、Znは強度とばね性の向上効果を持つとともに耐マイグレーション性を大幅に向上させる働きを持つ。更に、Znは電子部品材料として必要なはんだ濡れ性やSnめっき密着性の改善にも大きな効果がある。また、Mg、Ti、Cr、Zrは強度、ばね性、耐マイグレーション性および耐熱性のそれぞれを更に改善する働きを持ち、かつ導電性に与える悪影響が少ない添加成分として有効である。但し、Sn、ZnおよびMg、Ti、Cr、Zrは、規定範囲より少ない含有量では添加の効果が小さく、規定範囲を超えて含有すると導電率の低下や鋳造性の低下などの悪影響が生じる。
(ステップ2)
Further, Sn has a great effect on improving strength and springiness, and also has a function of improving heat resistance and improving stress relaxation resistance at high temperatures. Further, Zn has an effect of improving strength and springiness and has a function of greatly improving migration resistance. Furthermore, Zn has a great effect in improving the solder wettability and Sn plating adhesion required as an electronic component material. Mg, Ti, Cr, and Zr are effective as additive components that further improve each of strength, springiness, migration resistance, and heat resistance and that have little adverse effect on conductivity. However, Sn, Zn, and Mg, Ti, Cr, and Zr have a small effect of addition if the content is less than the specified range, and if the content exceeds the specified range, adverse effects such as a decrease in conductivity and a decrease in castability occur.
(Step 2)

次に、前記の銅合金素材を加工する工程において、熱処理に先立って先ず目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を行なう。これによって次の第1の熱処理での再結晶を起こしやすくさせるとともに、再結晶後に大きさの揃った結晶粒組織を得ることができる。ここで、圧延後の板厚を最終板厚の1.1〜1.2倍に規定するのは、以降の熱処理後の冷間圧延で適度な量の格子欠陥を導入するためである。規定範囲より板厚が厚い場合は熱処理後の冷間圧延で伸びの低下が大きくなり、良好な曲げ加工性が確保できない。また、規定範囲より板厚が薄い場合は熱処理後の冷間圧延で導入される格子欠陥が少なくなるため、低い耐力しか得られなくなる。
(ステップ3)
Next, in the step of processing the copper alloy material, first cold rolling is first performed to a thickness of 1.1 to 1.2 times the final final plate thickness prior to the heat treatment. This facilitates recrystallization in the next first heat treatment, and a crystal grain structure having a uniform size after recrystallization can be obtained. Here, the plate thickness after rolling is regulated to 1.1 to 1.2 times the final plate thickness in order to introduce an appropriate amount of lattice defects in the cold rolling after the subsequent heat treatment. When the plate thickness is thicker than the specified range, the reduction in elongation becomes large by cold rolling after heat treatment, and good bending workability cannot be ensured. Further, when the plate thickness is thinner than the specified range, lattice defects introduced by cold rolling after heat treatment are reduced, so that only low proof stress can be obtained.
(Step 3)

次に、前記の第1の冷間圧延工程に引き続き700〜850℃に昇温後300℃以下まで25℃/分以上の速度で冷却する第1の熱処理を行なう。この第1の熱処理は、合金成分を均一微細に分散析出させるために不均一な析出物を一旦銅母相中に再固溶することを目的とする。また、強い冷間圧延で歪んだ状態にある結晶組織を再結晶させて異方性の小さい結晶組織に変えるとともに、伸びを向上させることによって良好な曲げ加工性を実現することも重要な目的である。溶体化を目的とした第1の熱処理では、先ず合金元素を銅中に十分固溶させる必要がある。そこで本発明では加熱温度を700℃以上に規定することで十分に固溶を進行させ、冷却速度を25℃/分以上に規定することで冷却中に粗大な析出物が再形成されることを防ぐ。また、第1の熱処理では、再結晶によって結晶組織を異方性の小さい結晶組織に変え、同時に伸びを向上させることで良好な曲げ加工性を確保することも必要である。ここで、加熱温度が850℃を超える場合、結晶粒の粗大化が起こり曲げ加工性が低下する危険があるため、加熱温度の上限を850℃に規定する。
(ステップ4)
Next, following the first cold rolling step, a first heat treatment is performed in which the temperature is raised to 700 to 850 ° C. and then cooled to 300 ° C. or less at a rate of 25 ° C./min or more. This first heat treatment is intended to re-dissolve the non-uniform precipitate once in the copper matrix phase in order to disperse and precipitate the alloy components uniformly and finely. Another important objective is to recrystallize the crystal structure that has been distorted by strong cold rolling into a crystal structure with low anisotropy and to achieve good bending workability by improving elongation. is there. In the first heat treatment for the purpose of solution treatment, it is necessary to first sufficiently dissolve the alloy element in copper. Therefore, in the present invention, by setting the heating temperature to 700 ° C. or higher, solid solution is sufficiently advanced, and by setting the cooling rate to 25 ° C./min or more, coarse precipitates are re-formed during cooling. prevent. In the first heat treatment, it is also necessary to secure good bending workability by changing the crystal structure to a crystal structure with small anisotropy by recrystallization and simultaneously improving the elongation. Here, when the heating temperature exceeds 850 ° C., there is a risk that the crystal grains become coarse and bending workability is lowered, so the upper limit of the heating temperature is defined as 850 ° C.
(Step 4)

次に、前記の第1の熱処理(溶体化処理)工程に引き続き目的とする最終板厚まで第2の冷間圧延を行なう。これによって材料中に格子欠陥が適度に導入され、良好な耐力を確保することができるとともに、次の第2の熱処理での微細析出物の形成を促進する効果も得られる。
(ステップ5)
Next, following the first heat treatment (solution treatment) step, second cold rolling is performed to the final final thickness. As a result, lattice defects are appropriately introduced into the material, and good proof stress can be secured, and the effect of promoting the formation of fine precipitates in the next second heat treatment can be obtained.
(Step 5)

次に、前記の第2の冷間圧延工程に引き続き400〜500℃に加熱して30分〜3時間保持する時効を目的とした第2の熱処理を行なう。これによってNiとSiが化合物をつくり銅中に微細な形状で析出し、高い強度と優れた導電率を両立させることができる。第2の熱処理条件が規定範囲の400〜500℃かつ30分〜3時間より高温で長時間保持された場合、析出物が粗大化して十分な強度が得られなくなり、また、規定範囲より低温で短時間保持された場合、析出が十分に進行せず、導電率、強度とも十分な値が得られない。   Next, following the second cold rolling step, a second heat treatment is performed for the purpose of aging by heating to 400 to 500 ° C. and holding for 30 minutes to 3 hours. As a result, Ni and Si form a compound and precipitate in a fine shape in the copper, so that both high strength and excellent electrical conductivity can be achieved. When the second heat treatment condition is maintained at a temperature higher than the specified range of 400 to 500 ° C. and 30 minutes to 3 hours for a long time, the precipitate becomes coarse and sufficient strength cannot be obtained. When held for a short time, precipitation does not proceed sufficiently, and sufficient values of conductivity and strength cannot be obtained.

なお、図2に示すように、前記の第2の冷間圧延工程と第2の熱処理工程は順序を入れ替えて実施しても良好な特性を得ることができる。即ち、第1の熱処理(ステップ3)の後に続けて第2の熱処理(ステップ4)を行ない、その後、最終板厚までの第2の冷間圧延(ステップ5)を行なう。この場合、冷間圧延は伸びの低下を伴うため、圧延後に伸びを回復させる目的で300〜500℃に加熱する第3の熱処理(ステップ6)を行なう必要がある。ここで、加熱温度が低すぎると伸びは回復せず、高すぎると強度と耐力が低下する。   As shown in FIG. 2, good characteristics can be obtained even if the second cold rolling step and the second heat treatment step are performed in the reverse order. That is, after the first heat treatment (step 3), the second heat treatment (step 4) is performed, and then the second cold rolling (step 5) up to the final plate thickness is performed. In this case, since cold rolling is accompanied by a decrease in elongation, it is necessary to perform a third heat treatment (step 6) for heating to 300 to 500 ° C. for the purpose of recovering the elongation after rolling. Here, if the heating temperature is too low, the elongation is not recovered, and if it is too high, the strength and the yield strength are lowered.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

Ni:2.5wt%、Si:0.5wt%、Zn:1.7wt%、P:0.15wt%、Sn:0.1wt%の組成を持つ銅合金を無酸素銅を母材にして高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。これを850℃に加熱して押出加工し、幅20mm、厚さ8mmの板状にした後、厚さ0.35mmまで冷間圧延した。これを770℃で10分間保持した後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却する第1の熱処理を行なった。冷却した材料を厚さ0.3mmまで冷間圧延した後、450℃で2時間保持する第2の熱処理を行なった。このようにして、材料(A)を製造した。   A copper alloy having a composition of Ni: 2.5 wt%, Si: 0.5 wt%, Zn: 1.7 wt%, P: 0.15 wt%, Sn: 0.1 wt% is used as a base material with oxygen-free high frequency. It was melted in a melting furnace and cast into an ingot having a diameter of 30 mm and a length of 250 mm. This was heated to 850 ° C. and extruded to form a plate having a width of 20 mm and a thickness of 8 mm, and then cold-rolled to a thickness of 0.35 mm. After holding this at 770 ° C. for 10 minutes, a first heat treatment was performed in which it was poured into water and cooled to room temperature (about 20 ° C.) at a rate of about 300 ° C./min. The cooled material was cold-rolled to a thickness of 0.3 mm, and then a second heat treatment was performed at 450 ° C. for 2 hours. In this way, the material (A) was produced.

次に、実施例1と同じ組成の銅合金を実施例1と同様に鋳造、押出加工した後、厚さ0.35mmまで冷間圧延した。これを770℃で10分間保持した後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却する第1の熱処理を行ない、引き続いて450℃で2時間保持する第2の熱処理を行なった。これを厚さ0.3mmまで冷間圧延し、400℃で5分間保持する第3の熱処理を行なった。このようにして、材料(B)を製造した。   Next, a copper alloy having the same composition as in Example 1 was cast and extruded in the same manner as in Example 1, and then cold-rolled to a thickness of 0.35 mm. After this is held at 770 ° C. for 10 minutes, a first heat treatment is performed in which it is poured into water and cooled to room temperature (about 20 ° C.) at a rate of about 300 ° C./min, followed by holding at 450 ° C. for 2 hours. No. 2 heat treatment was performed. This was cold-rolled to a thickness of 0.3 mm and subjected to a third heat treatment that was held at 400 ° C. for 5 minutes. In this way, the material (B) was produced.

実施例1及び実施例2で製造した材料(A)及び材料(B)について引張強さ、0.2%耐力、伸び、導電率の各特性値を測定した。その結果、材料(A)は引張強さ688N/mm、0.2%耐力614N/mm、伸び15%、導電率42%IACS、また、材料(B)は引張強さ684N/mm、0.2%耐力620N/mm、伸び13%、導電率42%IACSという良好な特性を持つ材料が得られた。 With respect to the material (A) and the material (B) produced in Example 1 and Example 2, each characteristic value of tensile strength, 0.2% proof stress, elongation, and conductivity was measured. As a result, the material (A) has a tensile strength of 688 N / mm 2 , a 0.2% yield strength of 614 N / mm 2 , an elongation of 15%, a conductivity of 42% IACS, and the material (B) has a tensile strength of 684 N / mm 2. A material having good characteristics of 0.2% proof stress 620 N / mm 2 , elongation 13%, conductivity 42% IACS was obtained.

Ni:2.5wt%、Si:0.5wt%、Zn:1.7wt%、P:0.15wt%、Sn:0.1wt%、Mg:0.1wt%の組成を持つ銅合金を無酸素銅を母材にして高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。これを850℃に加熱して押出加工し、幅20mm、厚さ8mmの板状にした後、厚さ0.35mmまで冷間圧延した。これを770℃で10分間保持した後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却する第1の熱処理を行なった。冷却した材料を厚さ0.3mmまで冷間圧延した後、450℃で2時間保持する第2の熱処理を行なった。このようにして、材料(C)を製造した。   An oxygen-free copper alloy having a composition of Ni: 2.5 wt%, Si: 0.5 wt%, Zn: 1.7 wt%, P: 0.15 wt%, Sn: 0.1 wt%, Mg: 0.1 wt% Copper was used as a base material and melted in a high-frequency melting furnace, and cast into an ingot having a diameter of 30 mm and a length of 250 mm. This was heated to 850 ° C. and extruded to form a plate having a width of 20 mm and a thickness of 8 mm, and then cold-rolled to a thickness of 0.35 mm. After holding this at 770 ° C. for 10 minutes, a first heat treatment was performed in which it was poured into water and cooled to room temperature (about 20 ° C.) at a rate of about 300 ° C./min. The cooled material was cold-rolled to a thickness of 0.3 mm, and then a second heat treatment was performed at 450 ° C. for 2 hours. In this way, the material (C) was produced.

次に、実施例3と同じ組成の銅合金を実施例3と同様に鋳造、押出加工した後、厚さ0.35mmまで冷間圧延した。これを770℃で10分間保持した後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却する第1の熱処理を行ない、引き続いて450℃で2時間保持する第2の熱処理を行なった。これを厚さ0.3mmまで冷間圧延し、400℃で5分間保持する第3の熱処理を行なった。このようにして、材料(D)を製造した。   Next, a copper alloy having the same composition as in Example 3 was cast and extruded in the same manner as in Example 3, and then cold-rolled to a thickness of 0.35 mm. After this is held at 770 ° C. for 10 minutes, a first heat treatment is performed in which it is poured into water and cooled to room temperature (about 20 ° C.) at a rate of about 300 ° C./min, followed by holding at 450 ° C. for 2 hours. No. 2 heat treatment was performed. This was cold-rolled to a thickness of 0.3 mm and subjected to a third heat treatment that was held at 400 ° C. for 5 minutes. In this way, the material (D) was produced.

実施例3及び実施例4で製造した材料(C)及び材料(D)について引張強さ、0.2%耐力、伸び、導電率の各特性値を測定した。その結果、材料(C)は引張強さ696N/mm、0.2%耐力638N/mm、伸び15%、導電率42%IACS、また、材料(D)は引張強さ690N/mm、0.2%耐力642N/mm、伸び13%、導電率42%IACSという良好な特性を持つ材料が得られた。 The material (C) and the material (D) manufactured in Example 3 and Example 4 were measured for characteristic values of tensile strength, 0.2% proof stress, elongation, and conductivity. As a result, the material (C) has a tensile strength of 696 N / mm 2 , a 0.2% yield strength of 638 N / mm 2 , an elongation of 15%, a conductivity of 42% IACS, and the material (D) has a tensile strength of 690 N / mm 2. A material having good characteristics of 0.2% proof stress 642 N / mm 2 , elongation 13%, conductivity 42% IACS was obtained.

次に、本発明の材料について、その製造条件の限定理由を比較例を挙げて説明する。表1は本発明の実施例1及び実施例2と比較例1〜6の製造条件を示す。   Next, the reasons for limiting the production conditions of the material of the present invention will be described with reference to comparative examples. Table 1 shows the production conditions of Examples 1 and 2 and Comparative Examples 1 to 6 of the present invention.

Figure 2005350696
Figure 2005350696

本発明の実施例1及び実施例2と同じ組成の銅合金について、実施例1の材料(A)と同様の工程で加工する際、その第1の熱処理前の板厚、第1及び第2の熱処理の各加熱条件を表1に示す条件で実施して材料(E)〜(J)を製造した。得られた各材料について引張強さ、0.2%耐力、伸び、導電率の各特性値を測定した。測定した結果を表2に示す。   When a copper alloy having the same composition as Example 1 and Example 2 of the present invention is processed in the same process as the material (A) of Example 1, the plate thickness before the first heat treatment, the first and second The heating conditions of the heat treatment were carried out under the conditions shown in Table 1 to produce materials (E) to (J). Each characteristic value of tensile strength, 0.2% yield strength, elongation, and conductivity was measured for each of the obtained materials. Table 2 shows the measurement results.

Figure 2005350696
Figure 2005350696

表2より、本発明の実施例1及び実施例2による材料(A)及び材料(B)が680N/mmを超える引張強さと600N/mmを超える0.2%耐力と13%以上の良好な伸びを兼備し、尚且つ42%IACSに達する良好な導電率を達成しているのに対して、比較例1〜6の材料(E)〜(J)はいずれも特性が劣っていることが分かる。材料(E)及び材料(F)は第1の熱処理前の板厚が規定範囲から外れた例である。材料(E)のように熱処理前の板厚が薄すぎると特に耐力が低い値にとどまり、引張強さも低くなる。材料(F)のように熱処理前の板厚が厚すぎると熱処理後の冷間圧延で伸びの低下が大きく、曲げ加工性が悪化する。また、材料(G)及び材料(H)は第1の熱処理の加熱温度が規定範囲から外れた例であり、この場合、引張強さや耐力が低くなる。また、材料(I)及び材料(J)は第2の熱処理の加熱温度が規定範囲から外れた例である。材料(I)のように加熱温度が低すぎる場合は導電率が低く、引張強さや耐力も不十分な値になる。材料(J)のように加熱温度が高すぎる場合、導電率は高いが、引張強さや耐力は不十分な値である。 From Table 2, according to Example 1 and Example 2 of the present inventive material (A) and material (B) 0.2% yield strength and 13% or more greater than the tensile strength and 600N / mm 2 greater than 680N / mm 2 The materials (E) to (J) of Comparative Examples 1 to 6 are inferior in properties while having good elongation and also achieving good conductivity reaching 42% IACS. I understand that. The materials (E) and (F) are examples in which the plate thickness before the first heat treatment is out of the specified range. When the plate thickness before heat treatment is too thin like the material (E), the proof stress is particularly low and the tensile strength is also low. If the plate thickness before the heat treatment is too thick as in the material (F), the elongation is greatly reduced by cold rolling after the heat treatment, and the bending workability is deteriorated. Further, the material (G) and the material (H) are examples in which the heating temperature of the first heat treatment is out of the specified range, and in this case, the tensile strength and the proof stress are lowered. In addition, the materials (I) and (J) are examples in which the heating temperature of the second heat treatment is out of the specified range. When the heating temperature is too low as in the material (I), the electrical conductivity is low, and the tensile strength and proof stress are insufficient. When the heating temperature is too high as in the material (J), the electrical conductivity is high, but the tensile strength and proof stress are insufficient values.

次に、表3は本発明の実施例3及び実施例4と比較例7〜12の製造条件を示す。   Next, Table 3 shows manufacturing conditions of Examples 3 and 4 and Comparative Examples 7 to 12 of the present invention.

Figure 2005350696
Figure 2005350696

本発明の実施例3及び実施例4と同じ組成の銅合金について、実施例3の材料(C)と同様の工程で加工する際、その第1の熱処理前の板厚、第1及び第2の熱処理の各加熱条件を表3に示す条件で実施して材料(K)〜(P)を製造した。得られた各材料について引張強さ、0.2%耐力、伸び、導電率の各特性値を測定した。測定した結果を表4に示す。   When a copper alloy having the same composition as Example 3 and Example 4 of the present invention is processed in the same process as the material (C) of Example 3, the plate thickness before the first heat treatment, the first and second The respective heating conditions of the heat treatment were carried out under the conditions shown in Table 3 to produce materials (K) to (P). Each characteristic value of tensile strength, 0.2% proof stress, elongation, and conductivity was measured for each obtained material. Table 4 shows the measurement results.

Figure 2005350696
Figure 2005350696

表4より、本発明の実施例3及び実施例4による材料(C)及び材料(D)が690N/mmを超える引張強さと630N/mmを超える0.2%耐力と13%以上の良好な伸びを兼備し、尚且つ42%IACSに達する良好な導電率を達成しているのに対して、比較例7〜12の材料(K)〜(P)はいずれも特性が劣っていることが分かる。材料(K)及び材料(L)は第1の熱処理前の板厚が規定範囲から外れた例である。材料(K)のように熱処理前の板厚が薄すぎると特に耐力が低い値にとどまり、引張強さも低くなる。材料(L)のように熱処理前の板厚が厚すぎると熱処理後の冷間圧延で伸びの低下が大きく、曲げ加工性が悪化する。また、材料(M)及び材料(N)は第1の熱処理の加熱温度が規定範囲から外れた例であり、この場合、引張強さや耐力が低くなる。また、材料(O)及び材料(P)は第2の熱処理の加熱温度が規定範囲から外れた例である。材料(O)のように加熱温度が低すぎる場合は導電率が低く、引張強さや耐力も不十分な値になる。材料(P)のように加熱温度が高すぎる場合、導電率は高いが、引張強さや耐力は不十分な値である。 From Table 4, according to Example 3 and Example 4 of the present invention the material (C) and the material (D) 0.2% yield strength and 13% or more greater than the tensile strength and 630 N / mm 2 greater than 690n / mm 2 The materials (K) to (P) of Comparative Examples 7 to 12 are inferior in properties while having a good elongation and achieving a good conductivity reaching 42% IACS. I understand that. The materials (K) and (L) are examples in which the plate thickness before the first heat treatment is out of the specified range. When the plate thickness before the heat treatment is too thin like the material (K), the proof stress is particularly low and the tensile strength is also low. If the plate thickness before the heat treatment is too thick as in the material (L), the decrease in elongation is large due to cold rolling after the heat treatment, and the bending workability is deteriorated. Further, the material (M) and the material (N) are examples in which the heating temperature of the first heat treatment is out of the specified range, and in this case, the tensile strength and the proof stress are low. The materials (O) and (P) are examples in which the heating temperature of the second heat treatment is out of the specified range. When the heating temperature is too low like the material (O), the electrical conductivity is low, and the tensile strength and proof stress are also insufficient. When the heating temperature is too high like the material (P), the electrical conductivity is high, but the tensile strength and proof stress are insufficient values.

本発明の製造方法によるCu‐Ni‐Si合金材は、端子・コネクタ用材料として用いられている従来の黄銅や燐青銅に比べて高い導電率を持ち、尚且つ燐青銅並みの高い強度と耐力を持つ。さらに、従来のCu‐Ni‐Si合金材に比べて優れた曲げ加工性を兼備しており、結晶組織の異方性が小さい特徴も有する。こうした特性は、通電量の増加が進む自動車向けの小型コネクタなどに有効に活用できるものであり、コネクタの設計自由度を大幅に広げることができる。また、製造コストの面でも、本発明による銅合金材は、従来材と同等のコストで製造することが可能であり実用上の問題とはならない。   The Cu-Ni-Si alloy material produced by the manufacturing method of the present invention has a higher electrical conductivity than conventional brass and phosphor bronze used as a material for terminals and connectors, and has the same high strength and proof strength as phosphor bronze. have. In addition, it has superior bending workability compared to conventional Cu-Ni-Si alloy materials, and has a feature that the anisotropy of the crystal structure is small. Such characteristics can be effectively used for a small connector for an automobile in which the amount of energization is increasing, and the design flexibility of the connector can be greatly expanded. In terms of manufacturing cost, the copper alloy material according to the present invention can be manufactured at a cost equivalent to that of the conventional material and does not cause a practical problem.

本発明の端子・コネクタ用銅合金の製造プロセスの一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the copper alloy for terminals and connectors of this invention. 本発明の端子・コネクタ用銅合金の製造プロセスの他の例を示すフローチャートである。It is a flowchart which shows the other example of the manufacturing process of the copper alloy for terminals and connectors of this invention.

Claims (5)

1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、及び残部のCuから成り、NiとSiの重量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施す工程、及び
前記第1の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法。
1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% P, 0.0. A step of preparing an alloy material consisting of 05 to 1.0 mass% of Sn and the balance of Cu and having a Ni / Si weight ratio of Ni / Si = 4.5 to 5.5;
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
Performing a first heat treatment for cooling the alloy material after the first cold rolling to 700 to 850 ° C. and then cooling it to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute; Including a step of subjecting the alloy material after the heat treatment to a second cold heat treatment to a final final plate thickness and then performing a second heat treatment of heating to 400 to 500 ° C. and holding for 30 minutes to 3 hours. The manufacturing method of the copper alloy for terminals and connectors characterized by these.
1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施し、更に続けて400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程、及び
前記第2の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、300〜500℃に加熱する第3の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法。
1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% P, 0.0. A step of preparing an alloy material consisting of 05 to 1.0 mass% of Sn and the balance of Cu and having a mass ratio of Ni and Si of Ni / Si = 4.5 to 5.5;
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
The alloy material after the first cold rolling is heated to 700 to 850 ° C., then subjected to a first heat treatment for cooling to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute, and then continuously 400 to 500 A step of performing a second heat treatment that is heated to ℃ and held for 30 minutes to 3 hours, and after subjecting the alloy material after the second heat treatment to a second cold rolling to a desired final thickness, The manufacturing method of the copper alloy for terminals and connectors characterized by including the process of performing the 3rd heat processing heated to 300-500 degreeC.
1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、1種あたり0.01〜1.0質量%で総量が0.01〜4.0質量%に設定されたMg、Ti、Cr、Zrの内から選択された少なくとも1種の添加成分、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施す工程、及び
前記第1の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法。
1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% P, 0.0. It is selected from among Mg, Ti, Cr, and Zr set to 0.01 to 4.0% by mass with 0.01 to 1.0% by mass of Sn of 0.5 to 1.0% by mass per kind. A step of preparing an alloy material consisting of at least one additional component and the balance Cu, and the mass ratio of Ni and Si being Ni / Si = 4.5 to 5.5,
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
Performing a first heat treatment for cooling the alloy material after the first cold rolling to 700 to 850 ° C. and then cooling it to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute; Including a step of subjecting the alloy material after the heat treatment to a second cold heat treatment to a final final plate thickness and then performing a second heat treatment of heating to 400 to 500 ° C. and holding for 30 minutes to 3 hours. The manufacturing method of the copper alloy for terminals and connectors characterized by these.
1.0〜5.0質量%のNi、0.2〜1.0質量%のSi、1.0〜5.0質量%のZn、0.003〜0.3質量%のP、0.05〜1.0質量%のSn、1種あたり0.01〜1.0質量%で総量が0.01〜4.0質量%に設定されたMg、Ti、Cr、Zrの内から選択された少なくとも1種の添加成分、及び残部のCuから成り、NiとSiの質量比がNi/Si=4.5〜5.5である合金素材を準備する工程、
前記合金素材に目的とする最終板厚の1.1〜1.2倍の厚さまで第1の冷間圧延を施す工程、
前記第1の冷間圧延後の前記合金素材を700〜850℃に昇温後、毎分25℃以上の降温速度で300℃以下まで冷却する第1の熱処理を施し、更に続けて400〜500℃に加熱して30分〜3時間保持する第2の熱処理を施す工程、及び
前記第2の熱処理後の前記合金素材に目的とする最終板厚まで第2の冷間圧延を施した後、300〜500℃に加熱する第3の熱処理を施す工程を含むことを特徴とする端子・コネクタ用銅合金の製造方法。
1.0-5.0 mass% Ni, 0.2-1.0 mass% Si, 1.0-5.0 mass% Zn, 0.003-0.3 mass% P, 0.0. It is selected from among Mg, Ti, Cr, and Zr set to 0.01 to 4.0% by mass with 0.01 to 1.0% by mass of Sn of 0.5 to 1.0% by mass per kind. A step of preparing an alloy material consisting of at least one additional component and the balance Cu, and the mass ratio of Ni and Si being Ni / Si = 4.5 to 5.5,
A step of subjecting the alloy material to a first cold rolling to a thickness of 1.1 to 1.2 times the final final plate thickness;
The alloy material after the first cold rolling is heated to 700 to 850 ° C., then subjected to a first heat treatment for cooling to 300 ° C. or less at a temperature lowering rate of 25 ° C. or more per minute, and then continuously 400 to 500 A step of performing a second heat treatment that is heated to ℃ and held for 30 minutes to 3 hours, and after subjecting the alloy material after the second heat treatment to a second cold rolling to a desired final thickness, The manufacturing method of the copper alloy for terminals and connectors characterized by including the process of performing the 3rd heat processing heated to 300-500 degreeC.
前記第1の熱処理は前記合金素材を銅中に十分固溶させ冷却中に粗大な析出物が再形成されることを防ぎ、
前記第2の熱処理はNiとSiの化合物を生成し銅中に微細な形状で析出させることを含むことを特徴とする請求項1〜4のいずれかに記載の端子・コネクタ用銅合金の製造方法。
The first heat treatment sufficiently dissolves the alloy material in copper to prevent coarse precipitates from being re-formed during cooling,
The said 2nd heat processing includes producing | generating the compound of Ni and Si, and precipitating in a fine shape in copper, The manufacture of the copper alloy for terminals and connectors in any one of Claims 1-4 characterized by the above-mentioned. Method.
JP2004170505A 2004-06-08 2004-06-08 Manufacturing method of copper alloy for terminals and connectors Active JP3864965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170505A JP3864965B2 (en) 2004-06-08 2004-06-08 Manufacturing method of copper alloy for terminals and connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170505A JP3864965B2 (en) 2004-06-08 2004-06-08 Manufacturing method of copper alloy for terminals and connectors

Publications (2)

Publication Number Publication Date
JP2005350696A true JP2005350696A (en) 2005-12-22
JP3864965B2 JP3864965B2 (en) 2007-01-10

Family

ID=35585420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170505A Active JP3864965B2 (en) 2004-06-08 2004-06-08 Manufacturing method of copper alloy for terminals and connectors

Country Status (1)

Country Link
JP (1) JP3864965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123433A1 (en) * 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
CN102237205A (en) * 2010-04-27 2011-11-09 上海电科电工材料有限公司 Alloy-copper embedded copying silver material of automobile electric appliance and method for making alloy-copper embedded copying silver material
CN106929780A (en) * 2017-03-14 2017-07-07 四川大学 A kind of high-strength tenacity micro-/ nano laminate metal material and preparation method thereof
CN114507794A (en) * 2022-02-11 2022-05-17 无锡日月合金材料有限公司 Copper-nickel-tin alloy material for high-elasticity element and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123433A1 (en) * 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
EP2154257A1 (en) * 2007-03-30 2010-02-17 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
EP2154257A4 (en) * 2007-03-30 2012-01-11 Jx Nippon Mining & Metals Corp Cu-ni-si-based alloy for electronic material
KR101211984B1 (en) 2007-03-30 2012-12-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si-based alloy for electronic material
CN102237205A (en) * 2010-04-27 2011-11-09 上海电科电工材料有限公司 Alloy-copper embedded copying silver material of automobile electric appliance and method for making alloy-copper embedded copying silver material
CN106929780A (en) * 2017-03-14 2017-07-07 四川大学 A kind of high-strength tenacity micro-/ nano laminate metal material and preparation method thereof
CN114507794A (en) * 2022-02-11 2022-05-17 无锡日月合金材料有限公司 Copper-nickel-tin alloy material for high-elasticity element and preparation method thereof

Also Published As

Publication number Publication date
JP3864965B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
JP4494258B2 (en) Copper alloy and manufacturing method thereof
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
EP2270242B1 (en) Copper alloy material for electric or electronic apparatuses, method for producing it and component
JP2006009137A (en) Copper alloy
JP2005060773A (en) Special brass and method for increasing strength of the special brass
KR20150126064A (en) Copper-cobalt-silicon alloy for electrode material
JP4556841B2 (en) High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP3864965B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP4254815B2 (en) Copper alloy material for terminals and connectors
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP3856018B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP2011190469A (en) Copper alloy material, and method for producing the same
JP3888366B2 (en) Method for producing copper alloy
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP3864967B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP2006037216A (en) Copper alloy for terminal/connector
JP2010255042A (en) Copper alloy and method for producing copper alloy
JP2020143377A (en) Copper alloy sheet excellent in strength and conductivity
JP2012224922A (en) Copper alloy, and method of manufacturing the same
JP2011012302A (en) Copper alloy material for terminal/connector and method for producing the same
JP2012012630A (en) Method of manufacturing copper alloy for electronic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3864965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350