JP2005346969A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2005346969A
JP2005346969A JP2004162252A JP2004162252A JP2005346969A JP 2005346969 A JP2005346969 A JP 2005346969A JP 2004162252 A JP2004162252 A JP 2004162252A JP 2004162252 A JP2004162252 A JP 2004162252A JP 2005346969 A JP2005346969 A JP 2005346969A
Authority
JP
Japan
Prior art keywords
dye
gap
solar cell
sensitized solar
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004162252A
Other languages
Japanese (ja)
Other versions
JP4496013B2 (en
Inventor
Hideo Abe
日出夫 安部
Ariyoshi Ogasawara
有美 小笠原
Akihiro Kondo
明弘 近藤
Yasuhito Tanaka
康仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SFC KK
Original Assignee
SFC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SFC KK filed Critical SFC KK
Priority to JP2004162252A priority Critical patent/JP4496013B2/en
Publication of JP2005346969A publication Critical patent/JP2005346969A/en
Application granted granted Critical
Publication of JP4496013B2 publication Critical patent/JP4496013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having high reproducibility and stable performance. <P>SOLUTION: The dye-sensitized solar cell 1 has a dye-sensitized semiconductor electrode 5 installed on a first conductive substrate 2 formed by installing a transparent conductive film on a transparent substrate 3 facing with a second conductive substrate 6, and an electrolyte 11 is sealed in a gap 10 formed between the facing surfaces, or a gap keeping material 12 is installed between the facing surfaces. The gap keeping material 12 is almost in a plate shape having honeycomb structure and interposed between the facing surfaces. The gap keeping material 12 does not repel the electrolyte 11 and is formed of an insulating material having conductivity or a conductive film formed on one surface. The size in the height direction of the gap keeping material 12 is made larger than that in height directions of recessed and projecting parts on the facing surfaces. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光エネルギーを電気エネルギーに直接変換する色素増感型太陽電池の構造に関する。   The present invention relates to a structure of a dye-sensitized solar cell that directly converts light energy into electric energy.

1991年にグレッツェルらが発表した色素増感太陽電池は、シリコン半導体のp-n接合による太陽電池とは異なるメカニズムによって作動し、変換効率が高くしかも製造コストが安いという利点があり、この太陽電池は、内部に電解液を封入してあることから、色素増感型太陽電池とも呼ばれる。   The dye-sensitized solar cell announced by Gretzell et al. In 1991 operates by a mechanism different from that of a silicon semiconductor pn junction, has the advantage of high conversion efficiency and low manufacturing cost. Since the electrolytic solution is sealed inside, it is also called a dye-sensitized solar cell.

図4に、従来の色素増感型太陽電池の例を示す。この色素増感型太陽電池21は、透明基板22の上面部に透明導電性膜23を積層した第1導電性基板部24を備え、この第1導電性基板部24の上面部に半導体に増感色素を担持させて形成した色素増感半導体電極25を形成し、この色素増感半導体電極25の上方には、基板26の下面部に導電性膜27を積層した第2導電性基板部28を対向して備え、前記色素増感半導体電極25と前記導電性膜27の対向面の間に形成された間隙部30に電解液31を含ませるとともに、前記間隙部30の周縁部に樹脂性のシール材32を塗って封止して形成されている(たとえば、非特許文献1参照)。この色素増感型太陽電池21において、前記色素増感半導体電極25は、多孔質な酸化チタン皮膜にルテニウム錯体など太陽光を効率的に吸収することのできる増感色素がコーティングされたものを用い、前記色素増感半導体電極25に光を当てると、光によって励起された電子が酸化チタンに注入されて電気を流すことができる。そして、このタイプの色素増感型太陽電池は、電子の授受のために電解液が必要であり、一般的にはヨウ素電解液が用いられている。   FIG. 4 shows an example of a conventional dye-sensitized solar cell. The dye-sensitized solar cell 21 includes a first conductive substrate portion 24 in which a transparent conductive film 23 is laminated on an upper surface portion of a transparent substrate 22. A dye-sensitized semiconductor electrode 25 formed by supporting a dye-sensitized dye is formed, and a second conductive substrate portion 28 in which a conductive film 27 is laminated on the lower surface portion of the substrate 26 is formed above the dye-sensitized semiconductor electrode 25. The electrolytic solution 31 is contained in the gap 30 formed between the opposed surfaces of the dye-sensitized semiconductor electrode 25 and the conductive film 27, and the peripheral portion of the gap 30 is resinous. The sealing material 32 is applied and sealed (for example, see Non-Patent Document 1). In the dye-sensitized solar cell 21, the dye-sensitized semiconductor electrode 25 is formed by coating a porous titanium oxide film with a sensitizing dye capable of efficiently absorbing sunlight such as a ruthenium complex. When light is applied to the dye-sensitized semiconductor electrode 25, electrons excited by the light are injected into the titanium oxide and electricity can flow. In addition, this type of dye-sensitized solar cell requires an electrolyte for transferring electrons, and generally an iodine electrolyte is used.

吉田司、他 2002年12月5日「“レインボーセル”って何?」、[online]、岐阜大学 フィルム型色素太陽電池”レインボーセル”プロジェクト、[平成16年5月25日検索]、インターネット、<URL:http://apchem.gifu-u.ac.jp/~pcl/special/frame1.htm>Tsuyoshi Yoshida, et al. December 5, 2002 "What is" Rainbow Cell "?" [Online], Gifu University Film Type Dye Solar Cell "Rainbow Cell" Project, [Search May 25, 2004], Internet <URL: http: //apchem.gifu-u.ac.jp/~pcl/special/frame1.htm>

しかしながら、上述の従来の色素増感型太陽電池21は、電解液31を封止するために間隙部30の周縁部にシール材32として厚い樹脂を塗布して硬化させ、土手を形成しているのみである。そのため、間隙部30の高さ方向大きさを均一に製造することは難しく、間隙部30の高さ方向大きさが個々の色素増感型太陽電池21毎に違ったり、また、1つの色素増感型太陽電池21においても場所によって間隙部30の高さ方向大きさが異なることが多い。そのため、個々の色素増感型太陽電池21ごとに電解液31の量が異なって性能の再現性が不十分となったり、また、電解液31を十分に封止できず、色素増感型太陽電池21を傾けると電解液31が外部に流動するような事態が生じ易く、安定性が不十分になるという問題がある。   However, in the conventional dye-sensitized solar cell 21 described above, in order to seal the electrolytic solution 31, a thick resin is applied to the peripheral portion of the gap 30 as a sealing material 32 and cured to form a bank. Only. Therefore, it is difficult to manufacture the gap portion 30 in the height direction uniformly, and the gap portion 30 has a different height direction size for each dye-sensitized solar cell 21, or one dye sensitization. In the sensitive solar cell 21 as well, the size in the height direction of the gap 30 is often different depending on the location. For this reason, the amount of the electrolytic solution 31 differs for each individual dye-sensitized solar cell 21 and performance reproducibility becomes insufficient, or the electrolytic solution 31 cannot be sufficiently sealed, and the dye-sensitized solar cell When the battery 21 is tilted, there is a problem that the electrolyte solution 31 tends to flow to the outside, and the stability becomes insufficient.

また、色素増感半導体電極25を形成する多孔質な酸化チタン皮膜は塗布方法や粒径や厚さによって表面に形成される凹凸の形状や大きさが異なり、この色素増感半導体電極25の凸部が対向面側の導電性基板部24(または28)や他方の色素増感半導体電極25と接触すると、電解液31を介さないことになり、電子の授受ができなくなったり、発電効率が落ちたり、性能が安定しなくなるという問題がある。   Further, the porous titanium oxide film forming the dye-sensitized semiconductor electrode 25 differs in the shape and size of the unevenness formed on the surface depending on the coating method, the particle size and the thickness. If the portion contacts the conductive substrate 24 (or 28) on the opposite surface side or the other dye-sensitized semiconductor electrode 25, the electrolyte solution 31 is not passed, and electrons cannot be exchanged or the power generation efficiency decreases. Or the performance becomes unstable.

本発明はこのような問題に鑑みてなされたものであり、2枚の基板部などの対抗面に形成される間隙部の形状、容積や電解液の量を制御でき、また、太陽電池内の電解液の流動を防止または抑制することによって、再現性に優れ、安定した性能を持つ色素増感型太陽電池を提供することを目的とする。   The present invention has been made in view of such a problem, and can control the shape, volume, and amount of an electrolytic solution of a gap formed on opposing surfaces such as two substrate portions. An object of the present invention is to provide a dye-sensitized solar cell having excellent reproducibility and stable performance by preventing or suppressing the flow of the electrolytic solution.

本発明は光エネルギーを電気エネルギーに直接変換する色素増感型太陽電池の構造に関するものであり、具体的には、本発明の上記目的は、透明基板の上面部に透明導電性膜を設けた第1導電性基板部と、この第1導電性基板部の上方に配設する、基板の下面部に導電膜を設けた第2導電性基板部と、前記第1導電性基板部の上面部または前記第2導電性基板部の下面部に設けた色素増感半導体電極と、前記色素増感半導体電極とこの色素増感半導体電極に対向する基板部との対向面間に形成された間隙部に封入した電解液とを備えた色素増感型太陽電池において、前記間隙部に前記各対向面において挟持されるギャップ保持材を設けた色素増感型太陽電池によって達成される。   The present invention relates to a structure of a dye-sensitized solar cell that directly converts light energy into electric energy. Specifically, the object of the present invention is to provide a transparent conductive film on the upper surface of a transparent substrate. A first conductive substrate portion; a second conductive substrate portion provided above the first conductive substrate portion with a conductive film provided on a lower surface portion of the substrate; and an upper surface portion of the first conductive substrate portion. Alternatively, a gap formed between the dye-sensitized semiconductor electrode provided on the lower surface portion of the second conductive substrate portion and the opposing surface of the dye-sensitized semiconductor electrode and the substrate portion facing the dye-sensitized semiconductor electrode. This is achieved by a dye-sensitized solar cell provided with a gap holding material sandwiched between the opposing surfaces in the gap portion.

そして、第1導電性基板部側と第2導電性基板部側の対向面間に形成される間隙部にギャップ保持材を設け、このギャップ保持材が間隙部を挟持することにより、間隙部の高さ方向大きさや、間隙部の容積が安定化かつ均一化し、色素増感型太陽電池の起電力や発電効率を高い品質で安定化させて量産することができる。   A gap holding material is provided in a gap formed between the opposing surfaces of the first conductive substrate portion side and the second conductive substrate portion side, and the gap holding material sandwiches the gap portion, thereby The size in the height direction and the volume of the gap can be stabilized and uniform, and the electromotive force and power generation efficiency of the dye-sensitized solar cell can be stabilized with high quality for mass production.

また、本発明の上記目的は、前記ギャップ保持材の形状は略球状、略円柱状、略角柱状、略角錐状のいずれかである色素増感型太陽電池や、前記ギャップ保持材は前記電解液の流動を防止または抑制する形状である色素増感型太陽電池や、前記ギャップ保持材の形状はハニカム構造または網目状の略板状である色素増感型太陽電池や、前記ギャップ保持材が導電性である色素増感型太陽電池や、前記ギャップ保持材は絶縁性である色素増感型太陽電池や、前記ギャップ保持材は前記第1導電性基板部側および前記第2導電性基板部側の少なくとも一方の表面に導電性被膜を設けた色素増感型太陽電池や、前記ギャップ保持材が前記電解液に対しぬれ性を有する色素増感型太陽電池や、前記ギャップ保持材の高さ方向大きさが、前記間隙部における前記第1導電性基板部側および前記第2導電性基板部側の前記対向面にそれぞれ形成された凹凸の高さ方向大きさよりも大きい色素増感型太陽電池によって一層効果的に達成される。   Further, the object of the present invention is to provide a dye-sensitized solar cell in which the shape of the gap retaining material is approximately spherical, approximately cylindrical, approximately prismatic, or substantially pyramidal, A dye-sensitized solar cell having a shape that prevents or suppresses liquid flow, a dye-sensitized solar cell having a honeycomb structure or a net-like substantially plate shape, and the gap-holding material. A conductive dye-sensitized solar cell, a dye-sensitized solar cell in which the gap retaining material is insulating, and the gap retaining material are the first conductive substrate portion side and the second conductive substrate portion. A dye-sensitized solar cell provided with a conductive coating on at least one surface thereof; a dye-sensitized solar cell in which the gap retaining material has wettability to the electrolyte; and the height of the gap retaining material The direction size is in the gap. More effectively achieved by the dye-sensitized solar cell that is larger than the height direction size of the irregularities formed on the opposing surfaces on the first conductive substrate portion side and the second conductive substrate portion side. .

そして、ギャップ保持材の形状を簡単な形状とすることにより、同一のギャップ保持材を容易に量産でき、また、ギャップ保持材の形状を電解液の流動を防止または抑制する形状とすることにより起電力や発電効率が安定化し、さらに、そのようなギャップ保持材の形状をハニカム構造または網目状の略板状とすることにより同一形状のギャップ保持材を容易に製造することが可能となり、かつギャップ保持材の対向面との接触面積を増大させることができる。また、ギャップ保持材は導電性、非導電性いずれの材質によっても形成できることにより、ギャップ保持材のバリエーションが豊富になり、用途や機能に応じてさまざまなギャップ保持材を用いることが可能となり、さらに、ギャップ保持材の少なくとも一方の表面に導電性皮膜を設けることにより、非導電性の材質でギャップ保持材を形成しても導電性の材料で形成した場合と同様の高い性能を持たせることが可能となり、また、ギャップ保持材が電解液に対しぬれ性を有する性質とすることにより、電解液とギャップ保持材との間に気泡が生じることがなくなって起電力や発電効率の低下を防止でき、また、ギャップ保持材の高さ方向大きさが対向面の凹凸の高さ方向大きさよりも大きいので、対向面同士が接触し電解液を介さないで電子の授受をする事態が生ずることがない。   By making the shape of the gap retaining material simple, the same gap retaining material can be easily mass-produced, and the shape of the gap retaining material can be increased by preventing or suppressing the flow of the electrolyte. The power and power generation efficiency is stabilized, and furthermore, it becomes possible to easily manufacture a gap retaining material having the same shape by making the shape of such a gap retaining material into a honeycomb structure or a net-like substantially plate shape. The contact area with the opposing surface of the holding material can be increased. In addition, since the gap retaining material can be formed of either conductive or non-conductive material, a wide variety of gap retaining materials can be used, and various gap retaining materials can be used depending on applications and functions. By providing a conductive film on at least one surface of the gap retaining material, even if the gap retaining material is formed of a non-conductive material, it can have the same high performance as when formed of a conductive material. In addition, by making the gap retaining material wettable with respect to the electrolytic solution, bubbles are not generated between the electrolytic solution and the gap retaining material, and a reduction in electromotive force and power generation efficiency can be prevented. In addition, since the height direction size of the gap retaining material is larger than the height direction size of the concavities and convexities on the opposing surface, the opposing surfaces come into contact with each other without using an electrolyte solution. There is no possible situation in which the transfer occurs.

本発明にかかる色素増感型太陽電池は、ギャップ保持材により電解液の量が安定し、かつ電解液を介さずに電子の授受をする事態が生ずることがないので、発電効率が向上し、個々の色素増感型太陽電池間での個体差が生じにくくなって性能の再現性が良好になる。また、ギャップ保持材をハニカム構造や網目構造にして電解液の流動を防止または抑制することにより、個々の色素増感型太陽電池同士の個体差が一層生じにくくなり、性能の再現性が一層良好になる。   In the dye-sensitized solar cell according to the present invention, the amount of the electrolytic solution is stabilized by the gap retaining material, and there is no situation where electrons are exchanged without using the electrolytic solution. Individual differences among individual dye-sensitized solar cells are less likely to occur, and the reproducibility of performance is improved. In addition, by making the gap retention material a honeycomb structure or a network structure to prevent or suppress the flow of the electrolyte, individual differences between individual dye-sensitized solar cells are less likely to occur, and performance reproducibility is even better. become.

以下、本発明にかかる色素増感型太陽電池を実施するための一の形態を図面を用いて説明する。   Hereinafter, an embodiment for carrying out a dye-sensitized solar cell according to the present invention will be described with reference to the drawings.

図1に示すのは、本発明にかかる色素増感型太陽電池の概略断面図である。この色素増感型太陽電池1において、第1導電性基板部2を形成する透明基板3は透明体によって板状に形成されており、太陽光などの光を透過する。ここで、前記透明基板3を形成する透明体としてはたとえば透明ガラスが考えられるが、これに限定されるものではなく、透明プラスチックのような樹脂などでもよい。   FIG. 1 is a schematic cross-sectional view of a dye-sensitized solar cell according to the present invention. In this dye-sensitized solar cell 1, the transparent substrate 3 forming the first conductive substrate portion 2 is formed in a plate shape by a transparent body, and transmits light such as sunlight. Here, the transparent body forming the transparent substrate 3 is, for example, transparent glass, but is not limited thereto, and may be a resin such as transparent plastic.

そして、前記透明基板3の上面部には透明導電性膜4が設けられ、前記透明基板3の上面部を覆っている。この透明導電性膜4は、ITO(錫含有酸化インジュウム)、酸化錫、酸化亜鉛などの材質によって薄膜状に形成されるが、これらの材質に限定されるものではなく、透過率を低下させない程度の膜厚の白金やメタル、又は炭素膜などの材質により形成することもできる。   A transparent conductive film 4 is provided on the upper surface portion of the transparent substrate 3 to cover the upper surface portion of the transparent substrate 3. The transparent conductive film 4 is formed in a thin film shape using a material such as ITO (tin-containing indium oxide), tin oxide, or zinc oxide. However, the transparent conductive film 4 is not limited to these materials and does not reduce the transmittance. It can also be formed of a material such as platinum, metal, or carbon film having a thickness of.

また、前記透明導電性膜4の上面部には、色素増感半導体電極5が設けられている。この色素増感半導体電極5は、酸化チタン、酸化タンタル、酸化ニオブ、酸化ジルコニウム等などの材質により形成されるが、これらに限定されるものではなく、他のさまざまな半導体によっても形成することができる。   A dye-sensitized semiconductor electrode 5 is provided on the upper surface of the transparent conductive film 4. The dye-sensitized semiconductor electrode 5 is formed of a material such as titanium oxide, tantalum oxide, niobium oxide, zirconium oxide or the like, but is not limited thereto, and may be formed of other various semiconductors. it can.

一方、前記色素増感型太陽電池1において、第2導電性基板部6を形成する基板7は、各種の材料により板状に形成されている。そして、前記基板7は通常は不透明な材質によって形成するが、前記透明基板3と同様に透明で光を透過する材質によって形成してもよい。   On the other hand, in the dye-sensitized solar cell 1, the substrate 7 forming the second conductive substrate portion 6 is formed in a plate shape from various materials. The substrate 7 is usually formed of an opaque material, but may be formed of a transparent material that transmits light, similar to the transparent substrate 3.

また、前記基板7の下面部には導電性膜8が設けられ、前記基板7の下面部を覆っている。この導電性膜8は、チタン、タンタル、ニオブまたはジルコニウムなど各種の導電性材料によって薄膜状に形成されるが、これらに限定されるものではなく、たとえば白金やメタル、又は炭素膜などの材質により形成してもよく、さらに、前記透明導電性膜4と同様にITO(錫含有酸化インジュウム)、酸化錫、酸化亜鉛などの透明な材質によって形成してもよい。   A conductive film 8 is provided on the lower surface portion of the substrate 7 and covers the lower surface portion of the substrate 7. The conductive film 8 is formed in a thin film shape from various conductive materials such as titanium, tantalum, niobium, or zirconium, but is not limited thereto, and is made of, for example, a material such as platinum, metal, or carbon film. Further, like the transparent conductive film 4, it may be formed of a transparent material such as ITO (tin-containing indium oxide), tin oxide, or zinc oxide.

そして、前記色素増感半導体電極5の上面部の大半部分と前記導電性膜8の下面部の大半部分とは対向して対向面をそれぞれ形成し、これらの各対向面の間には間隙部10が形成される。なお、この対向面はいずれか一方または双方を前記色素増感半導体電極5の上面部や前記導電性膜8の下面部の全面にわたって形成してもよい。   The most part of the upper surface part of the dye-sensitized semiconductor electrode 5 and the most part of the lower surface part of the conductive film 8 are opposed to each other to form opposed surfaces, and a gap portion is formed between these opposed surfaces. 10 is formed. One or both of the opposing surfaces may be formed over the entire upper surface portion of the dye-sensitized semiconductor electrode 5 and the lower surface portion of the conductive film 8.

また、前記間隙部10には電解液11が充填されている。前記電解液11は、従来の色素増感型太陽電池21においても電解液31として一般に用いられているヨウ素溶液を用いるが、これに限定されず、電解液としての機能を果たし、間隙部10において充填できるものであれば、いかなる液体を用いてもよい。また、前記間隙部10よりも外部にも電解液11の充填部を設けてもよい。ただしこの場合、前記電解液11の充填部分は前記電解液11が流動しない材料および形状にて形成することが望ましい。   The gap portion 10 is filled with an electrolytic solution 11. The electrolytic solution 11 uses an iodine solution generally used as the electrolytic solution 31 in the conventional dye-sensitized solar cell 21, but is not limited thereto, and functions as an electrolytic solution. Any liquid may be used as long as it can be filled. Further, a filling portion of the electrolytic solution 11 may be provided outside the gap portion 10. However, in this case, it is desirable that the filling portion of the electrolytic solution 11 is formed of a material and shape that does not flow the electrolytic solution 11.

そして、前記間隙部10の周縁部はシール材(図示せず)によって囲繞され前記電解液11が前記間隙部10に封入された状態となっている。このシール材(図示せず)は、前記電解液11を前記間隙部10に封止でき容易に加熱融解する材料を前記間隙部10の周縁部に塗布して形成するが、これに限定されず、前記電解液11を前記間隙部10に封止できる材料や部材であればいかなるものでもよい。   The peripheral portion of the gap 10 is surrounded by a sealing material (not shown), and the electrolytic solution 11 is sealed in the gap 10. The sealing material (not shown) is formed by applying a material that can seal the electrolyte solution 11 in the gap portion 10 and can be easily heated and melted to the peripheral edge portion of the gap portion 10, but is not limited thereto. Any material or member that can seal the electrolyte solution 11 in the gap 10 may be used.

さらに、前記間隙部10においては、ギャップ保持材12が前記色素増感半導体電極5の上面部と前記導電性膜8の下面部との間に挟持されて設けられている。前記ギャップ保持材12を形成する材質は、たとえばステンレスやアルミニウムやニッケル等の金属性の導電性材料のものが挙げられ、あるいは、たとえばガラス、アルミナ等のセラミックス、ナイロンやポリイミド等の高分子からなる絶縁材料の片側の表面に白金やカーボンやアルミニウムやニッケル等の金属を蒸着やメッキ法で被覆して導電性皮膜を形成したものも挙げられる。さらに、前記ギャップ保持材12は、使用する電解液に対し、溶解せず、また、ぬれ性を有する材質であればよい。   Further, in the gap portion 10, a gap holding material 12 is provided between the upper surface portion of the dye-sensitized semiconductor electrode 5 and the lower surface portion of the conductive film 8. Examples of the material for forming the gap retaining member 12 include metallic conductive materials such as stainless steel, aluminum and nickel, or ceramics such as glass and alumina, and polymers such as nylon and polyimide. There may be mentioned one in which a conductive film is formed by coating a surface of one side of an insulating material with a metal such as platinum, carbon, aluminum or nickel by vapor deposition or plating. Furthermore, the gap retaining material 12 may be any material that does not dissolve in the electrolyte solution used and has wettability.

このようにギャップ保持材12は導電性、非導電性いずれの材質によっても形成できることにより、ギャップ保持材12のバリエーションが豊富になり、用途や機能に応じてさまざまなギャップ保持材12を用いることが可能となる。ただし、前記色素増感型太陽電池1の起電力や発電効率など性能面においては、導電性の材料により前記ギャップ保持材12を形成した方が良好なものとなる。さらに、ギャップ保持材12が電解液11に対しぬれ性を有するので、電解液11とギャップ保持材12との間に気泡が生じることがなくなって色素増感型太陽電池1の起電力や発電効率が低下する事態を防止できる。   As described above, since the gap retaining material 12 can be formed of either conductive or non-conductive material, the gap retaining material 12 has a wide variety, and various gap retaining materials 12 can be used depending on applications and functions. It becomes possible. However, in terms of performance such as electromotive force and power generation efficiency of the dye-sensitized solar cell 1, it is better to form the gap retaining material 12 with a conductive material. Furthermore, since the gap retaining material 12 has wettability with respect to the electrolytic solution 11, bubbles are not generated between the electrolytic solution 11 and the gap retaining material 12, and the electromotive force and power generation efficiency of the dye-sensitized solar cell 1 are eliminated. Can be prevented from falling.

そして、前記ギャップ保持材12の形状は、たとえば図3(a)に示すような略球状や、 図3(b)に示すような略角柱状や、または略円柱状(図示せず)や略角錐状(図示せず)など、製造が容易で、複数個を前記間隙部10に配設して前記間隙部10の高さ方向大きさを一定に維持できる形状に形成する。この場合、それぞれの前記ギャップ保持材12の材質は、導電性の材料であるならばアルミニウムなど、また、非導電性の材料ならばガラスや樹脂など、同一形状を複数作製しやすいものを用いる。具体的には、たとえば非導電性の材料によって図3(b)に示すような角柱状の前記ギャップ保持材12を作製する場合には、通常市販されている板ガラス(たとえば日本電気硝子社製の板厚0.7mmのOA10等の無アルカリガラスや、青板など)をガラス切で適当な大きさに切断して作製したり、また、非導電性の材料によって円柱状のギャップ保持材(図示せず)を作製する場合には、同様に通常市販されているガラスファイバーを高さ方向大きさが0.7mm程度の適当な大きさに切断して作製することが考えられる。そして、前記ギャップ保持材12は、前記間隙部10の高さ方向大きさを一定に維持するのに十分な間隔を置いて前記間隙部10に配設する。具体的には、図3(a)(b)に示すように、前記ギャップ保持材12同士の間隔をそれぞれのギャップ保持材12の直径や一辺の長さに略等しく均等な間隔(たとえば図3(a)に示すギャップ保持材12の直径が0.7mmであれば0.7程度の間隔、また、図3(b)に示すギャップ保持材12の一辺の長さが0.7mmであれば0.7程度の間隔)とすることが望ましいが、前記間隙部10の高さ方向大きさを一定に維持できる間隔であるならばこれよりも広くても狭くてもよいし、不均等な配列であってもよい。また、前記ギャップ保持材12が図3(b)に示すような略角柱状や略円柱状(図示せず)である場合には、端面が前記対向面の方向を向いた形状で揃っていることが望ましいが、前記間隙部10の高さ方向大きさを一定に維持できるならば前記ギャップ保持材12のうち一部または全部は前記端面が前記対向面の方向を向いていなくてもよい。   The shape of the gap retaining member 12 is, for example, a substantially spherical shape as shown in FIG. 3A, a substantially prismatic shape as shown in FIG. 3B, a substantially cylindrical shape (not shown), or a substantially It is easy to manufacture, such as a pyramid shape (not shown), and a plurality of them are formed in the gap portion 10 so that the size in the height direction of the gap portion 10 can be maintained constant. In this case, as the material of each of the gap retaining members 12, a material that can easily produce a plurality of the same shape, such as aluminum if it is a conductive material, or glass or resin if it is a non-conductive material, is used. Specifically, for example, when the gap-holding material 12 having a prismatic shape as shown in FIG. 3B is made of a nonconductive material, for example, a commercially available plate glass (for example, manufactured by Nippon Electric Glass Co., Ltd.). A non-alkaline glass such as OA10 with a thickness of 0.7mm, or a blue plate) is cut into an appropriate size by cutting glass, or a cylindrical gap retaining material (Figure) In the same manner, it is conceivable to cut a glass fiber that is usually commercially available by cutting it into an appropriate size having a height direction size of about 0.7 mm. The gap holding member 12 is disposed in the gap 10 with a sufficient interval to keep the gap 10 in the height direction constant. Specifically, as shown in FIGS. 3 (a) and 3 (b), the gap holding members 12 are spaced equally between the gap holding members 12 in diameter and one side (for example, FIG. 3). If the diameter of the gap retaining material 12 shown in (a) is 0.7 mm, an interval of about 0.7, and if the length of one side of the gap retaining material 12 shown in FIG. It is desirable that the distance is about 0.7), but the gap 10 may be wider or narrower as long as the height of the gap 10 can be kept constant. It may be. When the gap retaining member 12 has a substantially prismatic shape or a substantially cylindrical shape (not shown) as shown in FIG. 3B, the end faces are aligned in a shape facing the direction of the facing surface. However, as long as the size of the gap portion 10 in the height direction can be maintained constant, part or all of the gap retaining member 12 may not have the end face directed toward the facing surface.

また、それぞれの前記ギャップ保持材12の形状は前述の形状のうち一のものに統一されていてもよいし、複数の形状が混合していてもよく、さらに、複数個を配設して前記間隙部10の高さ方向大きさを一定に維持できる形状であるならば前述の形状以外の形状であってもよい。   In addition, the shape of each of the gap retaining members 12 may be unified with one of the aforementioned shapes, or a plurality of shapes may be mixed, and a plurality of the shapes may be disposed to Any shape other than those described above may be used as long as the size of the gap 10 in the height direction can be maintained constant.

そして、このようにギャップ保持材12の形状を簡単な形状とすることにより、同一のギャップ保持材12を容易に量産することが可能になる。   Then, by making the shape of the gap retaining material 12 simple as described above, the same gap retaining material 12 can be easily mass-produced.

また、前記ギャップ保持材12の形状は、図3(c)に示すように、略板状であってハニカム構造や網目状など多数の孔部を有する形状であってもよい。そして、前記ギャップ保持材12をハニカム構造や網目状の略板状とすることによって、前記間隙部10の高さ方向大きさを一定に維持しつつ前記間隙部10に封止した前記電解液11の流動を防止または抑制することができる。この場合も、前記ギャップ保持材12の材質は導電性であっても非導電性であってもよく、導電性の材料であるならばアルミニウムなど、また、非導電性の材料ならばナイロンなどを用いる。具体的には、たとえば導電性の材料においては市販のステンレスメッシュの400番とか200番などを用い、非導電性の材料においてはナイロン生地を用いることが考えられる。そして、後者の非導電性材料によって作製したギャップ保持材12は、一方の表面に導電性材料を蒸着するなどの方法によって導電性被膜を設けることも考えられる。さらに、前記ギャップ保持材12は、前記間隙部10の高さ方向大きさを一定に維持しつつ前記電解液11の流動を防止または抑制できる形状であれば、ハニカム構造や網目状以外の、多数の孔部を有する略板状であってもよい。   Further, the shape of the gap retaining member 12 may be a substantially plate shape having a large number of holes such as a honeycomb structure or a mesh shape as shown in FIG. Then, by making the gap retaining material 12 into a honeycomb structure or a net-like substantially plate shape, the electrolytic solution 11 sealed in the gap portion 10 while maintaining the height direction size of the gap portion 10 constant. Can be prevented or suppressed. Also in this case, the material of the gap retaining member 12 may be conductive or non-conductive. If the material is a conductive material, aluminum or the like is used. If the material is non-conductive, nylon or the like is used. Use. Specifically, for example, it is conceivable to use commercially available stainless mesh No. 400 or No. 200 for the conductive material, and nylon cloth for the non-conductive material. The gap retaining member 12 made of the latter non-conductive material may be provided with a conductive film by a method such as vapor deposition of a conductive material on one surface. Further, the gap retaining member 12 has a number other than a honeycomb structure or a mesh shape as long as it can prevent or suppress the flow of the electrolyte solution 11 while maintaining the height direction size of the gap portion 10 constant. It may be a substantially plate shape having a plurality of holes.

そして、ギャップ保持材12の形状をハニカム構造または網目状の略板状とすることにより、同一形状のギャップ保持材12を容易に製造することが可能となり、かつギャップ保持材12の対向面との接触面積を増大させることができる。また、このようなギャップ保持材12の形状は電解液11の流動を防止または抑制する形状であり、これにより色素増感型太陽電池1の起電力や発電効率が安定化する。   Then, by making the shape of the gap retaining material 12 into a honeycomb structure or a net-like substantially plate shape, the gap retaining material 12 having the same shape can be easily manufactured, and the gap retaining material 12 is opposed to the facing surface of the gap retaining material 12. The contact area can be increased. Moreover, the shape of such a gap holding material 12 is a shape which prevents or suppresses the flow of the electrolyte solution 11, thereby stabilizing the electromotive force and power generation efficiency of the dye-sensitized solar cell 1.

また、前記ギャップ保持材12の高さ方向大きさは、前記間隙部10において前記対向面を形成する色素増感半導体電極5の上面部および前記導電性膜8の下面部にそれぞれ形成された凹凸の高さ方向大きさよりも大きければよく、一般的には数μmから1mm程度に形成し、また、より好ましくは数十μmから数百μm程度に形成する。   Further, the height of the gap retaining material 12 is asperities formed on the upper surface portion of the dye-sensitized semiconductor electrode 5 and the lower surface portion of the conductive film 8 which form the facing surface in the gap portion 10. It is only necessary to be larger than the size in the height direction, and it is generally formed from several μm to 1 mm, and more preferably from several tens μm to several hundred μm.

このように、ギャップ保持材12の高さ方向大きさが対向面の凹凸の高さ方向大きさよりも大きくすることにより、対向面同士が接触して電解液11を介さないで電子の授受をする事態が生ずることがなくなる。   In this way, by making the height of the gap retaining material 12 larger than the height of the concavities and convexities on the opposing surface, the opposing surfaces come into contact with each other and exchange electrons without passing through the electrolyte solution 11. Things will never happen.

そして、色素増感半導体電極5と導電性膜8の各対向面の間に形成される間隙部10にギャップ保持材12を設け、このギャップ保持材12が間隙部10に挟持されることにより、間隙部10の高さ方向大きさや、間隙部10の容積が安定化かつ均一化し、色素増感型太陽電池1の起電力や発電効率を高い品質で安定化させ量産することが可能となる。   Then, a gap holding material 12 is provided in the gap 10 formed between the opposing surfaces of the dye-sensitized semiconductor electrode 5 and the conductive film 8, and the gap holding material 12 is sandwiched by the gap 10, The size of the gap 10 in the height direction and the volume of the gap 10 are stabilized and uniformed, and the electromotive force and power generation efficiency of the dye-sensitized solar cell 1 can be stabilized with high quality for mass production.

次に、本発明の実施形態の色素増感型太陽電池の製造方法を図2を用いて説明する。   Next, the manufacturing method of the dye-sensitized solar cell of embodiment of this invention is demonstrated using FIG.

まず、基板7として、板状のチタン、タンタル、ニオブまたはジルコニウム、カーボン等を用意する。もしくは、ガラス基板またはプラスチック基板あるいはセラミックス基板を基板7としてもよい。そして、この基板7の表面部にITO,SnO2,Pt,カーボン等の導電性膜8を真空蒸着法により薄膜状に形成して第2導電性基板部6を設ける(工程1)。   First, plate-like titanium, tantalum, niobium or zirconium, carbon, or the like is prepared as the substrate 7. Alternatively, a glass substrate, a plastic substrate, or a ceramic substrate may be used as the substrate 7. Then, a conductive film 8 made of ITO, SnO2, Pt, carbon or the like is formed on the surface of the substrate 7 in a thin film by a vacuum deposition method to provide a second conductive substrate 6 (step 1).

次に、透明基板3として透明なガラス基板又はプラスチック基板を用意し、この透明基板3の表面部にITO(錫含有酸化インジュウム)、酸化錫、酸化亜鉛等を付着させ、もしくは光の透過率を低下させない程度の膜厚の白金等のメタル又は炭素膜等を付着させて透明導電性膜4を形成し、第1導電性基板部2を設ける(工程2)。なお、このときの前記透明導電性膜4の表面部に形成された凹凸を、αステップ等によって測定する(工程3)。   Next, a transparent glass substrate or plastic substrate is prepared as the transparent substrate 3, and ITO (tin-containing indium oxide), tin oxide, zinc oxide, or the like is attached to the surface portion of the transparent substrate 3, or the light transmittance is increased. A transparent conductive film 4 is formed by depositing a metal such as platinum or a carbon film having a thickness that does not decrease, and the first conductive substrate portion 2 is provided (step 2). In addition, the unevenness | corrugation formed in the surface part of the said transparent conductive film 4 at this time is measured by (alpha) step etc. (process 3).

次に、前記第1導電性基板部2の透明導電性膜4および前記第2導電性基板部6の導電性膜8のうち少なくとも一方の表面部(本形態においては第1導電性基板部2において)に酸化チタン、酸化タンタル、酸化ニオブ、酸化ジルコニウム等の金属酸化物微粒子と少量の有機高分子を含有するコロイド溶液を印刷法等で塗布し、自然乾燥させ(工程4)、その後、500℃の高温化で加熱処理して有機高分子を揮発させて表面に微細な細孔を形成し、多孔質の金属酸化膜を設ける(工程5)。なお、ここで前記金属酸化膜の表面の凹凸を工程3と同様に測定する(工程6)。そして、このように形成した前記金属酸化膜を増感色素の溶液に浸漬して表面に増感色素を吸着させ、色素増感半導体電極5を形成する(工程7)。   Next, at least one surface portion of the transparent conductive film 4 of the first conductive substrate portion 2 and the conductive film 8 of the second conductive substrate portion 6 (in this embodiment, the first conductive substrate portion 2). )) Is coated with a colloidal solution containing metal oxide fine particles such as titanium oxide, tantalum oxide, niobium oxide, zirconium oxide and a small amount of an organic polymer by a printing method or the like, dried naturally (step 4), and then 500 The organic polymer is volatilized by heat treatment at a high temperature of 0 ° C. to form fine pores on the surface, and a porous metal oxide film is provided (step 5). In addition, the unevenness | corrugation of the surface of the said metal oxide film is measured similarly to the process 3 here (process 6). The metal oxide film thus formed is immersed in a sensitizing dye solution to adsorb the sensitizing dye on the surface, thereby forming the dye-sensitized semiconductor electrode 5 (step 7).

次に、前記色素増感半導体電極5の表面部、または他方の基板部(本形態においては第2導電性基板部6)の表面に設けられた導電性膜(本形態においては導電性膜8)の表面部のいずれか一方の上部に、ステンレス製の網目状あるいはハニカム構造のギャップ保持材12を設ける(工程8)。なお、本形態においては前記色素増感半導体電極5の表面部に設けるものとする。前記ギャップ保持材12は、前記工程3および前記工程6において測定した凹凸の総和よりも高さ方向大きさの大きい(本形態においては厚い)ものを用いる。   Next, a conductive film (conductive film 8 in this embodiment) provided on the surface of the dye-sensitized semiconductor electrode 5 or the surface of the other substrate (second conductive substrate 6 in this embodiment). A gap retainer 12 having a mesh or honeycomb structure made of stainless steel is provided on either one of the upper surface portions of () (step 8). In this embodiment, it is provided on the surface portion of the dye-sensitized semiconductor electrode 5. As the gap retaining material 12, a material having a larger size in the height direction (thick in the present embodiment) than the sum of the unevenness measured in the step 3 and the step 6 is used.

次に、前記ギャップ保持材12を設けた前記色素増感半導体電極5の表面部には電解液11を滴下させ(工程9)、前記色素増感半導体電極5の表面部と前記第2導電性基板部6の前記導電性膜8の表面部とを対向させて重ね合わせる(工程10)。この状態で、前記色素増感半導体電極5と前記導電性膜8とは前記ギャップ保持材12を挟持して対向し、各対向面の間には間隙部10が形成される。   Next, an electrolytic solution 11 is dropped on the surface portion of the dye-sensitized semiconductor electrode 5 provided with the gap retaining material 12 (step 9), and the surface portion of the dye-sensitized semiconductor electrode 5 and the second conductivity are added. The surface portion of the conductive film 8 of the substrate portion 6 is opposed and overlapped (step 10). In this state, the dye-sensitized semiconductor electrode 5 and the conductive film 8 are opposed to each other with the gap holding material 12 interposed therebetween, and a gap 10 is formed between the opposing surfaces.

次に、前記間隙部10の周縁部にはシールディスペンサーなどのシール材(図示せず)を加熱融解して塗布し、前記間隙部10に電解液11を封止する(工程11)。以上の工程によって、色素増感型太陽電池1が完成する。   Next, a sealing material (not shown) such as a seal dispenser is heated and melted and applied to the peripheral edge of the gap 10 to seal the electrolyte 11 in the gap 10 (step 11). The dye-sensitized solar cell 1 is completed through the above steps.

[実施例1]
本発明にかかる色素増感型太陽電池の第1実施例として、色素増感型太陽電池1を以下の様な手順で作製した。まず、大きさが2×3cm、厚さ2.8mmのガラス基板を2枚用意し、一方のガラス基板を基板7としこの基板7の表面部にカーボン膜をイオンビームアシスト蒸着法で100nmを形成して導電性膜8を設けた第2導電性基板部6を形成し、他方のガラス基板を透明基板3としこの透明基板3の表面部にITO膜をスパッタ法で200nm形成して透明導電性膜4を設けた第1導電性基板部2を形成した。前記導電性膜8および前記透明導電性膜4の表面部には凹凸はほとんどなく、高さ方向大きさは1μm以下であった。
次に、第1導電性基板部2における透明導電性膜4の表面部にテープ等でマスキングし塗布した後、粒径約20nmの光触媒用酸化チタンを水とポリエチレングリコール、硝酸を加えよく混ぜペースト状にし、印刷した。
[Example 1]
As a first example of the dye-sensitized solar cell according to the present invention, a dye-sensitized solar cell 1 was produced by the following procedure. First, two glass substrates having a size of 2 × 3 cm and a thickness of 2.8 mm are prepared. One glass substrate is used as a substrate 7 and a carbon film is formed on the surface of the substrate 7 by ion beam assisted deposition. Then, the second conductive substrate portion 6 provided with the conductive film 8 is formed, and the other glass substrate is used as the transparent substrate 3, and an ITO film is formed on the surface portion of the transparent substrate 3 by a sputtering method to a thickness of 200 nm. A first conductive substrate portion 2 provided with a film 4 was formed. The surface portions of the conductive film 8 and the transparent conductive film 4 had almost no unevenness, and the height direction size was 1 μm or less.
Next, the surface of the transparent conductive film 4 in the first conductive substrate portion 2 is masked and coated with a tape or the like, and then titanium oxide for photocatalyst having a particle size of about 20 nm is mixed with water, polyethylene glycol and nitric acid and mixed well. And printed.

次に、大気中500℃で30分間加熱処理し、冷却し、金属酸化膜としてのチタニア膜を形成した平均厚さのチタニア膜とした。   Next, it was heat-treated in the atmosphere at 500 ° C. for 30 minutes, cooled, and a titania film having an average thickness in which a titania film as a metal oxide film was formed.

このチタニア膜は、高さ方向大きさ(厚さ)の平均は10μm程度であるが、場所によってはこの高さ方向の凹凸の大きさが30μm程度のところもあった。これにより、ギャップ保持材12は30μm以上の高さ方向大きさ(厚さ)を有するものを選択した。   This titania film has an average size (thickness) in the height direction of about 10 μm, but in some places, the size of the unevenness in the height direction is about 30 μm. Thereby, the gap maintaining material 12 having a height direction size (thickness) of 30 μm or more was selected.

さらに、前記金属酸化膜をルテニウム錯体のエタノール溶液に浸漬した。その結果、前記金属参加膜の皮膜を構成する酸化チタン微粒子上に、増感色素であるルテニウム錯体を吸着しかつコ−ティングした色素増感半導体電極5を形成した。   Further, the metal oxide film was immersed in an ethanol solution of ruthenium complex. As a result, the dye-sensitized semiconductor electrode 5 was formed by adsorbing and coating the ruthenium complex, which is a sensitizing dye, on the titanium oxide fine particles constituting the film of the metal participation film.

次に、前記第2導電性基板部6において、前記導電性膜8の表面部に、ギャップ保持材12として、図3(a)に示すΦ50μmの球状のステンレス製スペーサを洗浄し水分を過熱除去した後に設置し、さらに前記導電性膜8の表面部に電解液11としてのヨウ素電解液を滴下した。   Next, in the second conductive substrate portion 6, a spherical stainless steel spacer having a diameter of 50 μm shown in FIG. 3A is washed as a gap retaining material 12 on the surface portion of the conductive film 8 to remove moisture by heating. Then, an iodine electrolyte solution as an electrolyte solution 11 was dropped on the surface portion of the conductive film 8.

さらに、前記色素増感半導体電極5の表面部にも前記電解液11としてのヨウ素電解液をしみ込ませた。このヨウ素電解液としては、テトラプロピルアンモニウムヨージドとヨウ素を炭酸エチレンとアセトニトリルの混合溶液に溶解したものを用いた。   Further, an iodine electrolyte solution as the electrolyte solution 11 was also impregnated into the surface portion of the dye-sensitized semiconductor electrode 5. As the iodine electrolyte, a solution obtained by dissolving tetrapropylammonium iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile was used.

次に、前記導電性膜8の表面部に球状のスペーサを設置し、前記第2導電性基板部6の前記導電性膜8の表面部と、前記第1導電性基板部2の前記色素増感半導体電極5の表面部とを、前記ギャップ保持材12を挟持して対向させ、各対向面の間に間隙部10を形成して重ね合わせた。   Next, a spherical spacer is installed on the surface portion of the conductive film 8 so that the surface area of the conductive film 8 of the second conductive substrate portion 6 and the dye increase of the first conductive substrate portion 2 are increased. The surface portion of the sensitive semiconductor electrode 5 was opposed to the gap holding material 12 in between, and a gap portion 10 was formed between the opposing surfaces.

さらに、前記間隙部10の周縁部にシール材(図示せず)をシールディスペンサーにて塗布し前記電解液11を前記間隙部10に封止し、色素増感型太陽電池1を1セル作製した。   Further, a sealing material (not shown) was applied to the peripheral portion of the gap portion 10 with a seal dispenser, and the electrolyte solution 11 was sealed in the gap portion 10 to produce one cell of the dye-sensitized solar cell 1. .

この色素増感型太陽電池1のセルに500Wのキセノンランプを照射して起電力を測定したところ、1cm2あたりの短絡電流は約6mA、開放電圧は0.57Vであった。 When the electromotive force was measured by irradiating the cell of this dye-sensitized solar cell 1 with a 500 W xenon lamp, the short-circuit current per 1 cm 2 was about 6 mA and the open-circuit voltage was 0.57V.

[実施例2]
本発明にかかる色素増感型太陽電池の第2実施例として、前記ギャップ保持材12として図3(c)に示すようなステンレス製の400メッシュの網目状の厚さ60μm程度のものを用いて電解液11の流動を防止または抑制した。そして、それ以外は実施例1と同様にして色素増感型太陽電池1を1セル作製した。
[Example 2]
As a second embodiment of the dye-sensitized solar cell according to the present invention, a 400 mesh stainless steel mesh having a thickness of about 60 μm as shown in FIG. The flow of the electrolyte solution 11 was prevented or suppressed. Other than that, one cell of dye-sensitized solar cell 1 was produced in the same manner as in Example 1.

この色素増感型太陽電池1のセルに500Wのキセノンランプを照射して起電力を測定したところ、1cm2あたりの短絡電流は約8mA、開放電圧は0.59Vであった。 When the electromotive force was measured by irradiating the cell of this dye-sensitized solar cell 1 with a 500 W xenon lamp, the short-circuit current per 1 cm 2 was about 8 mA and the open-circuit voltage was 0.59V.

[実施例3]
本発明にかかる色素増感型太陽電池の第3実施例として、前記ギャップ保持材12として図3(c)に示すような厚さ100μmのステンレス製の100μmピッチのハニカム構造のものを用いた。そして、それ以外は実施例1と同様にして色素増感型太陽電池1を1セル作製した。
[Example 3]
In the third embodiment of the dye-sensitized solar cell according to the present invention, a 100 μm thick honeycomb structure having a 100 μm pitch made of stainless steel as shown in FIG. Other than that, one cell of dye-sensitized solar cell 1 was produced in the same manner as in Example 1.

この色素増感型太陽電池1のセルに500Wのキセノンランプを照射して起電力を測定したところ、1cm2あたりの短絡電流は約8mA、開放電圧は0.59Vであった。 When the electromotive force was measured by irradiating the cell of this dye-sensitized solar cell 1 with a 500 W xenon lamp, the short-circuit current per 1 cm 2 was about 8 mA and the open-circuit voltage was 0.59V.

[実施例4]
本発明にかかる色素増感型太陽電池の第4実施例として、前記ギャップ保持材12として厚さ100μm程度のナイロン製の繊維からなるメッシュを用いたものを用いた。そして、それ以外は実施例1と同様にして色素増感型太陽電池1を1セル作製した。
[Example 4]
As a fourth embodiment of the dye-sensitized solar cell according to the present invention, a material using a mesh made of nylon fibers having a thickness of about 100 μm was used as the gap retaining material 12. Other than that, one cell of dye-sensitized solar cell 1 was produced in the same manner as in Example 1.

この色素増感型太陽電池1のセルに500Wのキセノンランプを照射して起電力を測定したところ、1cm2あたりの短絡電流は約6〜7mA、開放電圧は0.58〜0.59Vであった。 When the electromotive force was measured by irradiating the cell of this dye-sensitized solar cell 1 with a 500 W xenon lamp, the short circuit current per 1 cm 2 was about 6 to 7 mA, and the open circuit voltage was 0.58 to 0.59 V. It was.

[実施例5]
本発明にかかる色素増感型太陽電池の第5実施例として、前記ギャップ保持材12として、実施例4と同じく厚さ100μm程度のナイロン製の繊維からなるメッシュの片側に、イオンビームアシスト蒸着法によって10nm程度のPtを被膜したものを用いた。そして、それ以外は実施例4と同様にして色素増感型太陽電池1を10セル作製した。
[Example 5]
As a fifth embodiment of the dye-sensitized solar cell according to the present invention, an ion beam assisted vapor deposition method is used as the gap retaining material 12 on one side of a mesh made of nylon fibers having a thickness of about 100 μm as in the fourth embodiment. The one coated with about 10 nm of Pt was used. Other than that, 10 cells of dye-sensitized solar cell 1 were produced in the same manner as in Example 4.

これらの色素増感型太陽電池1のセルに500Wのキセノンランプを照射してそれぞれの起電力を測定したところ、10セルとも1cm2あたりの短絡電流は約8mA、開放電圧は0.59Vであった。 The cells of these dye-sensitized solar cells 1 were irradiated with a 500 W xenon lamp and their electromotive forces were measured. As a result, the short-circuit current per cm 2 was about 8 mA and the open-circuit voltage was 0.59 V for all 10 cells. It was.

[比較例1]
比較例として、前記ギャップ保持材12を用いない以外は実施例1と同様にして色素増感型太陽電池を作製した。なお本比較例にかかる色素増感型太陽電池も10セル作製した。
[Comparative Example 1]
As a comparative example, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the gap retaining material 12 was not used. In addition, 10 cells of the dye-sensitized solar cell according to this comparative example were produced.

そして、この比較例1にて作製した色素増感型太陽電池に500Wのキセノンランプを照射してそれぞれの起電力を測定したところ、それぞれのセルの1cm2あたりの短絡電流は約4〜7mA、開放電圧は0.57〜0.59Vであった。 Then, when the electromotive force was measured by irradiating the dye-sensitized solar cell produced in Comparative Example 1 with a 500 W xenon lamp, the short-circuit current per 1 cm 2 of each cell was about 4 to 7 mA, The open circuit voltage was 0.57 to 0.59V.

以上により、本発明にかかる色素増感型太陽電池1は性能に優れ、かつ、個体差が生じにくくなって良好な性能の再現性が得られることが確認できた。また、実施例1ないし実施例5の結果より、ギャップ保持材12を導電性材料および非導電性材料のいずれにより作製しても、色素増感型太陽電池1は電池の機能を奏することが確認できた。さらに、実施例4および実施例5の結果より、ギャップ保持材12を非導電性の材料にて作製した場合、少なくとも一方の表面に導電性皮膜を設けると、設けない場合に比べ、色素増感型太陽電池1はより高い機能を奏することが確認できた。   From the above, it was confirmed that the dye-sensitized solar cell 1 according to the present invention was excellent in performance, and it was difficult for individual differences to occur and good performance reproducibility was obtained. In addition, from the results of Examples 1 to 5, it is confirmed that the dye-sensitized solar cell 1 has the function of the battery regardless of whether the gap retaining material 12 is made of a conductive material or a non-conductive material. did it. Furthermore, from the results of Example 4 and Example 5, when the gap retaining material 12 is made of a non-conductive material, when a conductive film is provided on at least one surface, compared to a case where no conductive film is provided, dye sensitization is achieved. It was confirmed that the solar cell 1 has a higher function.

本発明の色素増感型太陽電池の一の最良の形態を示す概略断面図である。It is a schematic sectional drawing which shows the best form of the dye-sensitized solar cell of this invention. 同上色素増感型太陽電池の一の最良の形態を示すプロセスフロー図である。It is a process flow figure showing one best form of a dye sensitizing type solar cell same as the above. 同上色素増感型太陽電池に用いるギャップ保持材の一の最良の形態を示す概略構造図である。It is a schematic structure figure which shows the best form of the gap holding material used for a dye-sensitized solar cell same as the above. 色素増感型太陽電池の従来例を示す概略断面図である。It is a schematic sectional drawing which shows the prior art example of a dye-sensitized solar cell.

符号の説明Explanation of symbols

1 色素増感型太陽電池
2 第1導電性基板部
3 透明基板
4 透明導電性膜
5 色素増感半導体電極
6 第2導電性基板部
7 基板
8 導電性膜
10 間隙部
11 電解液
12 ギャップ保持材
21 色素増感型太陽電池
22 透明基板
23 透明導電性膜
24 第1導電性基板部
25 色素増感半導体電極
26 基板
27 導電性膜
28 第2導電性基板部
30 間隙部
31 電解液
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2 1st electroconductive board | substrate part 3 Transparent substrate 4 Transparent electroconductive film 5 Dye-sensitized semiconductor electrode 6 2nd electroconductive board | substrate part 7 Substrate 8 Conductive film 10 Gap part 11 Electrolytic solution 12 Gap maintenance Material 21 Dye-sensitized solar cell 22 Transparent substrate 23 Transparent conductive film 24 First conductive substrate portion 25 Dye-sensitized semiconductor electrode 26 Substrate 27 Conductive film 28 Second conductive substrate portion 30 Gap portion 31 Electrolytic solution

Claims (9)

透明基板の上面部に透明導電性膜を設けた第1導電性基板部と、
この第1導電性基板部の上方に配設する、基板の下面部に導電膜を設けた第2導電性基板部と、
前記第1導電性基板部の上面部または前記第2導電性基板部の下面部に設けた色素増感半導体電極と、
前記色素増感半導体電極とこの色素増感半導体電極に対向する基板部との対向面間に形成された間隙部に封入した電解液と
を備えた色素増感型太陽電池において、
前記間隙部に前記各対向面において挟持されるギャップ保持材を設けた
ことを特徴とする色素増感型太陽電池。
A first conductive substrate portion provided with a transparent conductive film on an upper surface portion of the transparent substrate;
A second conductive substrate portion disposed above the first conductive substrate portion and provided with a conductive film on a lower surface portion of the substrate;
A dye-sensitized semiconductor electrode provided on an upper surface portion of the first conductive substrate portion or a lower surface portion of the second conductive substrate portion;
In a dye-sensitized solar cell comprising: the dye-sensitized semiconductor electrode; and an electrolyte solution enclosed in a gap formed between opposing surfaces of the substrate portion facing the dye-sensitized semiconductor electrode.
A dye-sensitized solar cell, characterized in that a gap holding material sandwiched between the opposing surfaces is provided in the gap.
前記ギャップ保持材の形状は略球状、略円柱状、略角柱状、略角錐状のいずれかであることを特徴とする請求項1に記載の色素増感型太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein a shape of the gap retaining material is substantially spherical, substantially cylindrical, substantially prismatic, or substantially pyramidal. 前記ギャップ保持材は前記電解液の流動を防止または抑制する形状であることを特徴とする請求項1に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the gap retaining material has a shape that prevents or suppresses the flow of the electrolytic solution. 前記ギャップ保持材の形状はハニカム構造または網目状の略板状であることを特徴とする請求項3に記載の色素増感型太陽電池。   4. The dye-sensitized solar cell according to claim 3, wherein the gap retaining material has a honeycomb structure or a net-like substantially plate shape. 前記ギャップ保持材が導電性であることを特徴とする請求項1ないし4のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the gap retaining material is conductive. 前記ギャップ保持材は絶縁性であることを特徴とする請求項1ないし4のいずれかに記載の色素増感型太陽電池。   5. The dye-sensitized solar cell according to claim 1, wherein the gap retaining material is insulative. 前記ギャップ保持材は前記第1導電性基板部側および前記第2導電性基板部側の少なくとも一方の表面に導電性被膜を設けたことを特徴とする請求項6に記載の色素増感型太陽電池。   The dye-sensitized solar according to claim 6, wherein the gap retaining material is provided with a conductive coating on at least one surface of the first conductive substrate portion side and the second conductive substrate portion side. battery. 前記ギャップ保持材が前記電解液に対しぬれ性を有することを特徴とする請求項1ないし7のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 7, wherein the gap retaining material has wettability to the electrolytic solution. 前記ギャップ保持材の高さ方向大きさが、前記間隙部における前記第1導電性基板部側および前記第2導電性基板部側の前記対向面にそれぞれ形成された凹凸の高さ方向大きさよりも大きいことを特徴とする請求項1ないし8のいずれかに記載の色素増感型太陽電池。   The height-direction size of the gap retaining material is larger than the height-direction sizes of the irregularities formed on the opposing surfaces of the gap portion on the first conductive substrate portion side and the second conductive substrate portion side, respectively. The dye-sensitized solar cell according to any one of claims 1 to 8, which is large.
JP2004162252A 2004-05-31 2004-05-31 Dye-sensitized solar cell Expired - Lifetime JP4496013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004162252A JP4496013B2 (en) 2004-05-31 2004-05-31 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162252A JP4496013B2 (en) 2004-05-31 2004-05-31 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2005346969A true JP2005346969A (en) 2005-12-15
JP4496013B2 JP4496013B2 (en) 2010-07-07

Family

ID=35499160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004162252A Expired - Lifetime JP4496013B2 (en) 2004-05-31 2004-05-31 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4496013B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299138A (en) * 1999-04-13 2000-10-24 Idemitsu Kosan Co Ltd Pigment sensitized solar battery
JP2001102101A (en) * 1999-09-29 2001-04-13 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2002237335A (en) * 2001-02-08 2002-08-23 Hitachi Maxell Ltd Photoelectric conversion element
JP2004296203A (en) * 2003-03-26 2004-10-21 Bridgestone Corp Counter electrode for dye sensitized solar cell, and dye sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299138A (en) * 1999-04-13 2000-10-24 Idemitsu Kosan Co Ltd Pigment sensitized solar battery
JP2001102101A (en) * 1999-09-29 2001-04-13 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2002237335A (en) * 2001-02-08 2002-08-23 Hitachi Maxell Ltd Photoelectric conversion element
JP2004296203A (en) * 2003-03-26 2004-10-21 Bridgestone Corp Counter electrode for dye sensitized solar cell, and dye sensitized solar cell

Also Published As

Publication number Publication date
JP4496013B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
US8809104B2 (en) Dye-sensitized solar cell and method of fabricating the same
US20070095390A1 (en) Solar cell and manufacturing method thereof
JPH11514787A (en) Photovoltaic cell battery and method of manufacturing the same
JP4698028B2 (en) Method for providing a conduction path in a multi-cell regenerative photovoltaic photovoltaic device
US20040115858A1 (en) Dye sensitized solar cells having foil electrodes
JP2004146425A (en) Electrode substrate, photoelectric converter, and dye-sensitized solar cell
JPWO2010103759A1 (en) Dye-sensitized solar cell
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
US20110220192A1 (en) Single-sided dye-sensitized solar cells having a vertical patterned structure
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP2012074345A (en) Dye-sensitized solar cell
JP2005285472A (en) Photoelectric conversion device
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
US20070204906A1 (en) Dye Sensitization Solar Cell and Manufacturing Method Thereof
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JPWO2005122322A1 (en) Dye-sensitized solar cell and method for producing the same
WO2007138348A2 (en) Photovoltaic cell with mesh electrode
JP2008176948A (en) Dye-sensitized solar cell and its manufacturing method
JP2009193854A (en) Dye-sensitized solar cell
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
JP2007227260A (en) Photoelectric converter and photovoltaic generator
US20100300523A1 (en) Dye-sensitized solar cell and method of fabricating the same
JP4496013B2 (en) Dye-sensitized solar cell
JP2007123088A (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250