JP2005340053A - Sealed storage battery - Google Patents

Sealed storage battery Download PDF

Info

Publication number
JP2005340053A
JP2005340053A JP2004158763A JP2004158763A JP2005340053A JP 2005340053 A JP2005340053 A JP 2005340053A JP 2004158763 A JP2004158763 A JP 2004158763A JP 2004158763 A JP2004158763 A JP 2004158763A JP 2005340053 A JP2005340053 A JP 2005340053A
Authority
JP
Japan
Prior art keywords
sealing plate
storage battery
valve body
plate
external terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158763A
Other languages
Japanese (ja)
Other versions
JP4923389B2 (en
JP2005340053A5 (en
Inventor
Minoru Kurokuzuhara
実 黒葛原
Toshiki Tanaka
俊樹 田中
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004158763A priority Critical patent/JP4923389B2/en
Publication of JP2005340053A publication Critical patent/JP2005340053A/en
Publication of JP2005340053A5 publication Critical patent/JP2005340053A5/ja
Application granted granted Critical
Publication of JP4923389B2 publication Critical patent/JP4923389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed storage battery provided with a low-cost pressure switch function having an inner space for storing an electrode group restrained from becoming small by reducing a volume occupied by a lid body including the pressure switch and simplifying a structure. <P>SOLUTION: A pressure switch mechanism is constructed by a sealing plate 1 made of metal, an electrically insulated valve body 4 arranged on the sealing plate airtightly sealing a through-hole 1A, and a connection member 5. The valve body is capable of slide movement along a wall face of the through-hole, or capable of expansion and contraction. The connection member changes its position according to the slide movement or expansion/contraction of the valve body. When an internal pressure of the storage battery exceeds a prescribed value, an electric contact point of the connection member and the sealing plate is separated from the sealing plate accompanying the slide movement or expansion of the valve body, whereby, the mechanism of breaking a circuit connecting an electrode plate and an external terminal is constructed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、密閉形蓄電池に関するもので、さらに詳しく言えば、30分間以内で急速充電が可能な密閉形蓄電池に関するものである。   The present invention relates to a sealed storage battery, and more particularly to a sealed storage battery capable of rapid charging within 30 minutes.

密閉形蓄電池には、例えば、ニッケル水素蓄電池、ニッケルカドミウム蓄電池等のアルカリ蓄電池がある。該蓄電池は耐過充電特性、耐過放電特性、充放電サイクル特性に優れるところからサイクルユース用として好適であり、携帯電話、小型電動工具および小型パーソナルコンピュータ等の携帯用小型電子機器類の電源として広く利用されている。また、充電を短時間で終了させたいとのユーザーの強い要望により、例えば15〜30分間という短時間で充電を完了させることのできる急速充電が可能なアルカリ蓄電池の開発が望まれている。   Examples of the sealed storage battery include alkaline storage batteries such as a nickel hydride storage battery and a nickel cadmium storage battery. The storage battery is suitable for cycle use because of its excellent overcharge resistance, overdischarge resistance, and charge / discharge cycle characteristics, and as a power source for portable small electronic devices such as mobile phones, small electric tools and small personal computers. Widely used. In addition, due to the strong desire of users to end charging in a short time, development of an alkaline storage battery capable of rapid charging that can be completed in a short time such as 15 to 30 minutes is desired.

例えばニッケル水素蓄電池を急速充電しようとすると、オーム損に起因する発熱、水素吸蔵合金の水素吸蔵反応に起因する発熱、充電末期に正極から発生する酸素を負極で吸収する反応に起因する発熱により、蓄電池の温度が高温になり、蓄電池の構成材料が変質するために特性が劣化する虞がある。また、蓄電池内部でのガス発生量が多くなるため、蓄電池内部の圧力が上昇する結果、排気弁が動作し、漏液したり、ガスや飛沫として電解液が外部に逸散するために蓄電池の内部インピーダンスが増大するなど蓄電池の特性が劣化する虞がある。   For example, when trying to quickly charge a nickel metal hydride storage battery, heat generated due to ohmic loss, heat generated due to the hydrogen storage reaction of the hydrogen storage alloy, heat generated due to the reaction that absorbs oxygen generated from the positive electrode at the end of charging at the negative electrode, Since the temperature of the storage battery becomes high and the constituent materials of the storage battery change in quality, the characteristics may deteriorate. In addition, since the amount of gas generated inside the storage battery increases, the pressure inside the storage battery rises, and as a result, the exhaust valve operates and leaks, or the electrolyte solution dissipates to the outside as gas and droplets. There is a risk that the characteristics of the storage battery will deteriorate, such as an increase in internal impedance.

急速充電を行うに際して生じる前記問題を解決するため、充電中に蓄電池内部の圧力が所定値を超えて上昇したときに充電を停止し、蓄電池内部の圧力が所定値以下に降下したときに充電を再開するように、極板と外部端子のを結ぶ回路に該回路のオン・オフを司るスイッチ機能を持たせた密閉形蓄電池が提案されている。(例えば特許文献1参照)   In order to solve the above-mentioned problems that occur when performing quick charging, charging is stopped when the pressure inside the storage battery rises above a predetermined value during charging, and charging is performed when the pressure inside the storage battery drops below a predetermined value. In order to resume, a sealed storage battery has been proposed in which a circuit connecting an electrode plate and an external terminal is provided with a switch function for controlling on / off of the circuit. (For example, see Patent Document 1)

WO2002/0119364 A1(Fig.2A、Fig.2B) 該特許文献に記載の密閉形蓄電池は、図6に示すような蓋体(ここでは前記圧力スイッチを備え、電槽缶の開放端を気密に封止するための部材を蓋体と呼ぶことにする)を備える。図6において密閉形蓄電池21の電槽缶の開放端は、合成樹脂の成形体からなるグロメット26とその中央部に設けた透孔に嵌着させた接続端子23により気密に封止されている。グロメット26の外側には金属製封口板25が配置され、さらにその外側にキャップ状正極外部端子27が当接している。正極板30と前記接続端子23は正極リード板29を介して接続されている。常時は、接続端子23に接合した金属製リング24が前記封口板当接しており、正極板30正極外部端子(キャップ)27を結ぶ回路がオンの状態にある。充電中に蓄電池内部の圧力が所定の値を超えて上昇するとグロメット26の中央部分が上方に撓み、金属製リング24が上方に移動して金属製リング24の封口板25との接点が封口板25から離れ、回路がオンからオフに切り替わり充電が停止する。充電停止中に蓄電池内部の圧力が降下し、所定値を下回ると、弾性体28の押圧力によって金属製リングが下方に移動し、封口板に当接して回路がオフからオンに切り替わり充電が再開される。WO2002 / 0119364 A1 (FIG. 2A, FIG. 2B) The sealed storage battery described in the patent document has a lid as shown in FIG. A member for sealing is referred to as a lid). In FIG. 6, the open end of the battery case of the sealed storage battery 21 is hermetically sealed by a grommet 26 made of a synthetic resin molded body and a connection terminal 23 fitted in a through hole provided in the central portion thereof. . A metal sealing plate 25 is disposed outside the grommet 26, and a cap-like positive external terminal 27 is in contact with the outside thereof. The positive electrode plate 30 and the connection terminal 23 are connected via a positive electrode lead plate 29. Normally, the metal ring 24 joined to the connection terminal 23 is in contact with the sealing plate, and the circuit connecting the positive electrode plate 30 and the positive electrode external terminal (cap) 27 is on. When the internal pressure of the storage battery rises above a predetermined value during charging, the central portion of the grommet 26 bends upward, the metal ring 24 moves upward, and the contact point between the metal ring 24 and the sealing plate 25 becomes the sealing plate. 25, the circuit is switched from on to off and charging is stopped. When the pressure inside the storage battery drops and drops below a predetermined value while charging is stopped, the metal ring moves downward by the pressing force of the elastic body 28, contacts the sealing plate, the circuit switches from OFF to ON, and charging resumes Is done.

しかしながら、図6に示した従来提案の圧力スイッチ内蔵式密閉形蓄電池は、通常の充放電中の異常な内圧上昇時には、パッキング部材が撓んで正極板と正極外部端子を結ぶ回路が切断されて充電が停止されるため、充電中に蓄電池内部の圧力が所定値を大きく越えることはないが、圧力スイッチ機能の構造が複雑であって、圧力スイッチを備えない蓄電池に比べて蓋体の占有体積が大きく、極板群を収容することのできる内部空間が小さくなるため、電池の容量が低下するという問題があった。さらに、使用部品点数が多く構造も複雑であるため、コストが高く、蓋体を組組み立てるとき生産効率が劣る欠点がある。   However, the sealed battery with a built-in pressure switch shown in FIG. 6 is charged when the abnormal internal pressure rises during normal charging / discharging and the packing member bends and the circuit connecting the positive electrode plate and the positive external terminal is disconnected. Therefore, the pressure inside the storage battery does not greatly exceed the predetermined value during charging, but the structure of the pressure switch function is complicated, and the occupied volume of the lid is larger than that of the storage battery without a pressure switch. There is a problem that the capacity of the battery is reduced because the internal space that can accommodate the electrode plate group is small. Furthermore, since the number of parts used is large and the structure is complicated, the cost is high, and there is a disadvantage that the production efficiency is inferior when the lid is assembled and assembled.

本発明は、前記従来技術の問題点に鑑みなされたものであり、前記圧力スイッチの占有体積を小さくし、かつ構造を簡略化することによって、極板群を収容するための内部空間が小さくなるのを抑制し、且つ、安価な圧力スイッチ機能付き密閉形蓄電池を提供しようとするものである。   The present invention has been made in view of the problems of the prior art, and by reducing the volume occupied by the pressure switch and simplifying the structure, the internal space for accommodating the electrode plate group is reduced. Therefore, it is intended to provide a sealed storage battery with a pressure switch function that is inexpensive.

本発明は、密閉形蓄電池の構成を以下の構成とすることによって前記の目的を達成するものである。
本発明に係る密閉形蓄電池は、正極板と負極板のうち少なくとも一方の極板と外部端子を接続する回路に、蓄電池内部の圧力が所定の値以下のときに前記回路を導通状態とし、該圧力が所定の値を超えているときに前記回路を切断状態とする圧力スイッチ機能を備える密閉形蓄電池において、電槽缶の開放端に金属製の封口板を配置、該封口板の外側に一方の外部端子を配置し、該封口板と前記一方の極板がリード部材を介して電気的に接続されており、該封口板と外部端子の間には電気絶縁層が配置され、常時は、前記外部端子と封口板が金属製のバネと接続部材を介して電気的に接続されており、該封口板に設けた透孔を電気絶縁性の弁体で気密に封止しており、該弁体は前記透孔の壁面に沿って摺動可能であり、前記接続部材は該弁体が摺動することによって位置を変え、蓄電池内部の圧力が所定の値を超えたときに前記弁体が摺動し、該摺動に伴い前記接続部材の封口板との電気的接点が封口板から離れることによって極板と外部端子を接続する回路を切断する機能を備えた密閉形蓄電池である。(請求項1)
This invention achieves the said objective by making the structure of a sealed storage battery into the following structures.
The sealed storage battery according to the present invention is connected to a circuit that connects at least one of the positive electrode plate and the negative electrode plate to an external terminal, and when the internal pressure of the storage battery is equal to or lower than a predetermined value, In a sealed storage battery having a pressure switch function that disconnects the circuit when the pressure exceeds a predetermined value, a metal sealing plate is disposed at the open end of the battery case, and one side is disposed outside the sealing plate. The external plate is disposed, and the sealing plate and the one electrode plate are electrically connected via a lead member, and an electrical insulating layer is disposed between the sealing plate and the external terminal. The external terminal and the sealing plate are electrically connected via a metal spring and a connection member, and the through hole provided in the sealing plate is hermetically sealed with an electrically insulating valve body, The valve body is slidable along the wall surface of the through hole, and the connecting member is the valve body. The position is changed by sliding, and the valve body slides when the pressure inside the storage battery exceeds a predetermined value, and the electrical contact with the sealing plate of the connecting member is caused by the sliding from the sealing plate. It is a sealed storage battery having a function of disconnecting a circuit connecting an electrode plate and an external terminal by being separated. (Claim 1)

本発明に係る密閉形蓄電池は、請求項1において前記弁体が、その周縁部分が封口板に固着された伸縮変形が可能なシートであって、前記接続部材が該弁体の伸縮変形によって位置を変え、常時は、前記外部端子と封口板が金属製のバネと接続部材を介して電気的に接続されており、蓄電池内部の圧力が所定の値を超えたときに前記弁体が伸び、該伸びに伴い前記接続部材の封口板との電気的接点が封口板から離れることによって外部端子と極板を接続する回路を切断する機能を備えた密閉形蓄電池である。(請求項2)   The sealed storage battery according to the present invention is the sealed storage battery according to claim 1, wherein the valve body is a sheet that can be stretched and deformed with a peripheral edge portion fixed to a sealing plate, and the connecting member is positioned by the stretching deformation of the valve body. In general, the external terminal and the sealing plate are electrically connected via a metal spring and a connecting member, and the valve body extends when the pressure inside the storage battery exceeds a predetermined value, A sealed storage battery having a function of cutting a circuit connecting an external terminal and an electrode plate when an electrical contact with the sealing plate of the connecting member is separated from the sealing plate with the elongation. (Claim 2)

本発明の請求項1および請求項2によれば、圧力スイッチ機能を備えない従来形の密閉形蓄電池に比べて有効な内容積を減少させることなく急速充電が可能な密閉形蓄電池を提供することができる。   According to claim 1 and claim 2 of the present invention, there is provided a sealed storage battery capable of rapid charging without reducing an effective internal volume as compared with a conventional sealed storage battery having no pressure switch function. Can do.

以下に、図に基づいて本発明の実施形態を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態を示す密閉形蓄電池の要部断面図である。
図1の(イ)は、蓄電池の内部圧力が所定値以下であって、接続部材5と封口板1が接続部材5の封口板1との接点5Aを介して電気的に接続しており、スイッチがオンの状態を示す。極板群8を構成する正極板の端部に接合した正極集電端子7と封口板1は正極リード板10を介して接続されている。封口板1とキャップ状正極外部端子3(以下キャップという)の間には電気絶縁シート2が配置されている。常時は、図1の(イ)に示すように、接続部材5と封口板1が当接し、封口板1とキャップ3は、接続部材5,金属製バネ6を介して接続しており、前記正極板とキャップ3を結ぶ回路がオンの状態にある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of an essential part of a sealed storage battery showing a first embodiment of the present invention.
In FIG. 1A, the internal pressure of the storage battery is equal to or lower than a predetermined value, and the connecting member 5 and the sealing plate 1 are electrically connected via the contact 5A with the sealing plate 1 of the connecting member 5, Indicates that the switch is on. The positive electrode current collector terminal 7 and the sealing plate 1 joined to the end of the positive electrode plate constituting the electrode plate group 8 are connected via the positive electrode lead plate 10. An electrical insulating sheet 2 is disposed between the sealing plate 1 and the cap-like positive external terminal 3 (hereinafter referred to as a cap). Normally, as shown in FIG. 1A, the connecting member 5 and the sealing plate 1 are in contact with each other, and the sealing plate 1 and the cap 3 are connected via the connecting member 5 and the metal spring 6. The circuit connecting the positive electrode plate and the cap 3 is in an on state.

充電中に蓄電池内部の圧力が所定値を超えて上昇したときには、図1の(ロ)に示す如く弁体4が封口板1に設けた透孔1Aの壁面に沿って図の上向きに摺動し、該弁体4に固着された接続部材5が上方に移動して前記接点5Aが封口板1から離れてスイッチがオンからオフに切り替わって充電が停止される。充電停止中に蓄電池内部の圧力が所定値以下に降下するとバネ6の押圧力によって弁体4が下向きに摺動し、接続部材5が接点5Aを介して封口板1に当接し、スイッチがオフからオンに切り替わって充電が再開される。   When the pressure inside the storage battery rises above a predetermined value during charging, the valve body 4 slides upward along the wall surface of the through hole 1A provided in the sealing plate 1 as shown in FIG. Then, the connecting member 5 fixed to the valve body 4 moves upward, the contact 5A is separated from the sealing plate 1, the switch is switched from on to off, and charging is stopped. When the internal pressure of the storage battery drops below a predetermined value while charging is stopped, the valve body 4 slides downward by the pressing force of the spring 6, the connecting member 5 contacts the sealing plate 1 through the contact 5A, and the switch is turned off. The charging is resumed by switching from to ON.

なお、ここでいう蓄電池内部の圧力の所定値は特に限定されるものではがないが、円筒形のニッケル水素蓄電池やニッケルカドミウム蓄電池においては、1.7〜3.0メガパスカル(MPa)が好ましく、2.0〜2.6MPaがさらに好ましい。該所定値が1.7MPa未満では、充電中に一方の極板と外部端子を結ぶ回路がオフの状態にある時間が長いので急速に且つ短時間に充電しようとすると、充電が十分にできず、充電不足になる虞がある。蓄電池内部の圧力の所定値が3.0MPaを超えると充電中の蓄電池温度が蓄電池の好ましい温度の上限(約60℃)を超え、活物質等の蓄電池構成材料が変質して放電容量が低下する虞がある。また、蓄電池内部の圧力の上昇によって電槽缶と封口板との間のシール(図1のクリンプシール)が破壊する虞があるで好ましくない。該所定値の大きさは、バネ6の圧縮応力(バネの弾性率によって決まる)の大きさ、弁体4の太さ{弁体4の断面積の大きさ(透孔1Aの断面積の大きさに等しい)を選ぶことによって所望の大きさに設定することができる。   In addition, although the predetermined value of the pressure inside a storage battery here is not specifically limited, 1.7-3.0 megapascals (MPa) are preferable in a cylindrical nickel metal hydride storage battery or a nickel cadmium storage battery. 2.0 to 2.6 MPa is more preferable. If the predetermined value is less than 1.7 MPa, it takes a long time for the circuit connecting one electrode plate and the external terminal to be off during charging. There is a risk of insufficient charging. When the predetermined value of the internal pressure of the storage battery exceeds 3.0 MPa, the storage battery temperature during charging exceeds the upper limit (about 60 ° C.) of the preferable temperature of the storage battery, and the storage battery constituent material such as the active material is altered and the discharge capacity decreases. There is a fear. Moreover, there is a possibility that the seal between the battery case can and the sealing plate (crimp seal in FIG. 1) may be broken due to an increase in the pressure inside the storage battery. The size of the predetermined value is the size of the compression stress (determined by the elastic modulus of the spring) of the spring 6, the thickness of the valve body 4 {the size of the cross-sectional area of the valve body 4 (the size of the cross-sectional area of the through hole 1A). Can be set to a desired size.

該実施形態においては接続部材5が弁体4の固着されており、弁体4は、封口板1に設けた透孔1Aに沿って上下に摺動するので、接続部材5は移動に際して絶えず封口板と平行であって封口板に対して斜めになる虞がない。従って、蓄電池内部の圧力が上昇して、接続部材5が上昇するとその封口板との接点5Aが確実に封口板1から離れるので、スイッチがオンからオフに切り変わるときの信頼性が高い。   In this embodiment, the connecting member 5 is fixed to the valve body 4, and the valve body 4 slides up and down along the through-hole 1 </ b> A provided in the sealing plate 1, so that the connecting member 5 is constantly sealed during the movement. There is no possibility of being inclined with respect to the sealing plate parallel to the plate. Therefore, when the pressure inside the storage battery rises and the connecting member 5 rises, the contact point 5A with the sealing plate is surely separated from the sealing plate 1, so that the reliability when the switch is switched from on to off is high.

図1の(ハ)は、図1の(ロ)に比べてさらに蓄電池内部の圧力が上昇したときの状態を示す図であって、図1の(ロ)に比べて弁体4がさらに上方向に移動し、弁体4の側面に設けた切り欠き4Aによって電池内部の空間(図の封口板1の下側の空間)とカップ内空間(封口板1とキャップ3によって仕切られた空間)との間の気密が破れ、蓄電池内部の空間に蓄積されたガスが前記切り欠き4Aを通ってキャップ内空間に移動し、さらに、外部端子3に設けた排気孔3Aを通って外部に放出される。   FIG. 1 (c) is a diagram showing a state when the pressure inside the storage battery is further increased as compared with FIG. 1 (b), and the valve body 4 is further increased compared with FIG. 1 (b). The space inside the battery (the space below the sealing plate 1 in the figure) and the space inside the cup (the space partitioned by the sealing plate 1 and the cap 3) by the cutout 4A provided on the side surface of the valve body 4 The gas accumulated in the storage battery is moved to the space inside the cap through the notch 4A, and further released to the outside through the exhaust hole 3A provided in the external terminal 3. The

該実施形態においては、接続部材5の封口部材1との接点を突起状とせずに、接点5Aを、図2に示すように平面とすることもできる。   In this embodiment, the contact point 5A may be a flat surface as shown in FIG. 2 without forming the contact point of the connection member 5 with the sealing member 1 in a protruding shape.

該第1の実施形態において、弁体4は電気絶縁製であって、耐電解液性に優れた材質であればよく特に限定される物ではないが、安価であるところからポリプロピレンやポリエチレン等のポリオレフィン系の合成樹脂またはポリテトラフロロエチレン等の合成樹脂成形体が好適である。なかでもポリテトラフロロエチレンの成形体は、高温での寸法安定製に優れ、封口板1の透孔1Aとの当接面の気密性、摺動性にも優れるところから特に好ましい材質である。   In the first embodiment, the valve body 4 is made of electrical insulation and is not particularly limited as long as it is a material excellent in resistance to electrolytic solution. However, since it is inexpensive, it is made of polypropylene, polyethylene or the like. A synthetic resin molding such as a polyolefin-based synthetic resin or polytetrafluoroethylene is preferred. Among these, a molded article of polytetrafluoroethylene is a particularly preferable material because it is excellent in dimensional stability at high temperatures and has excellent airtightness and slidability of the contact surface with the through hole 1A of the sealing plate 1.

封口板の材質は特に限定されるものではなく、ニッケル製またはニッケルメッキを施した鋼板製が適用出来る。封口板の厚さは弁体4が斜めにならずに封口板に対して垂直に摺動するように0.4mm以上、さらには0.6mm以上の厚さにすることが好ましい。また、蓋体の厚さをできるだけ小さく抑えるために封口板の厚さを1mm以下にすることが好ましい。また、弁体4と透孔1Aの当接面に高い気密性を持たせ、弁体4をスムースに摺動するように、透孔1Aを凹凸のない滑らかな面にすることが好ましい。封口板1に設ける透孔1Aの直径は蓄電池の大きさに応じて異なり特に限定されるものではないが、例えばAAの場合は、透孔1Aの直径を1〜3mmとすることが好ましい。該直径が1mm未満では蓄電池内部の圧力上昇したときに弁体に係る押圧力が小さく、圧力変化に対する感度が劣る虞がある。該直径が3mmを超えると弁体4にバネ6の押圧力が加わったときに弁体4が斜めになり易い欠点がある。
また、キャップ3と封口板1の間に配置する電気絶縁層は特に限定されるものではなく、合成樹脂の塗膜、またはシートが適用できる。
The material of the sealing plate is not particularly limited, and nickel or nickel-plated steel plate can be applied. The thickness of the sealing plate is preferably 0.4 mm or more, and more preferably 0.6 mm or more so that the valve body 4 slides perpendicularly to the sealing plate without being inclined. In order to keep the thickness of the lid as small as possible, the thickness of the sealing plate is preferably 1 mm or less. In addition, it is preferable that the contact surface between the valve body 4 and the through hole 1A has a high airtightness, and the through hole 1A has a smooth surface without unevenness so that the valve body 4 slides smoothly. The diameter of the through-hole 1A provided in the sealing plate 1 varies depending on the size of the storage battery and is not particularly limited. For example, in the case of AA, the diameter of the through-hole 1A is preferably 1 to 3 mm. If the diameter is less than 1 mm, the pressure applied to the valve body is small when the pressure inside the storage battery rises, and the sensitivity to pressure change may be poor. If the diameter exceeds 3 mm, the valve body 4 tends to be inclined when the pressing force of the spring 6 is applied to the valve body 4.
Moreover, the electrical insulation layer arrange | positioned between the cap 3 and the sealing board 1 is not specifically limited, The coating film or sheet | seat of a synthetic resin is applicable.

(第2の実施形態)
図3は、本発明の第2の実施形態において蓄電池内部の圧力が所定の値を超えて上昇しているときの状態を示す図である。第2の実施形態においては接続部材5の一端が電気絶縁性のヒンジ(蝶番)12を介して封口板1に固定されており、他端に封口板1との接点5Aを有する。充電中に蓄電池内部の圧力が上昇したために弁体が上向きに摺動しているのは前記第1の実施形態と同じであるが、該弁体の摺動によって、接続部材5が上方に平行移動するのではなく、ヒンジ12を支点として開き、接続部材5のヒンジ12と反対側の位置に設けた封口板1との接点5Aが封口板1から離れてスイッチがオンからオフに切り替わる。該実施の形態によれば接続部材の一端が固定されており、接続部材5の全体が移動するのではなく、接点5Aのみが上下に位置を変えるのでスイッチの動作の信頼性が高い利点がある。ヒンジ12の材質は電気絶縁製であればよく、その材質は特に限定されるものではないが、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂等の合成樹脂製が適用出来る。
(Second Embodiment)
FIG. 3 is a diagram showing a state when the pressure inside the storage battery rises above a predetermined value in the second embodiment of the present invention. In the second embodiment, one end of the connecting member 5 is fixed to the sealing plate 1 via an electrically insulating hinge (hinge) 12, and the other end has a contact 5 </ b> A with the sealing plate 1. The valve body slides upward because the pressure inside the storage battery increases during charging, as in the first embodiment. However, the connecting member 5 is paralleled upward by sliding of the valve body. Instead of moving, the hinge 12 is opened as a fulcrum, and the contact 5A with the sealing plate 1 provided at a position opposite to the hinge 12 of the connecting member 5 is separated from the sealing plate 1 and the switch is switched from on to off. According to this embodiment, one end of the connection member is fixed, and the entire connection member 5 does not move, but only the contact 5A changes its position up and down, so there is an advantage that the operation reliability of the switch is high. . The hinge 12 may be made of an electrically insulating material, and the material is not particularly limited, but a synthetic resin such as a polyamide resin, a polyester resin, or a polycarbonate resin can be used.

(第3の実施形態)
図4は、本発明の第3の実施形態において蓄電池内部の圧力が所定の値を超えて上昇しているときの状態を示す図である。本実施形態においては、弁体5が伸縮可能なシートであり、弁体5の周縁部分は封口板1に固着されており、封口板1に設けた透孔1Aを気密に封止している。蓄電池内部の圧力が上昇して所定の値を超えると、弁体5が伸び、図に示すように上向きに撓む。該撓みが生じたことによって接続体が上方向に移動して接続部材5の封口板1との接点5Aが封口板1から離れてスイッチがオンからオフに切り替わる。
(Third embodiment)
FIG. 4 is a diagram illustrating a state when the pressure inside the storage battery rises above a predetermined value in the third embodiment of the present invention. In the present embodiment, the valve body 5 is an expandable / contractable sheet, the peripheral portion of the valve body 5 is fixed to the sealing plate 1, and the through hole 1A provided in the sealing plate 1 is hermetically sealed. . When the pressure inside the storage battery rises and exceeds a predetermined value, the valve body 5 extends and bends upward as shown in the figure. When the bending occurs, the connecting body moves upward, the contact 5A of the connecting member 5 with the sealing plate 1 is separated from the sealing plate 1, and the switch is switched from on to off.

該実施形態においては弁体4を構成する伸縮可能なシートの材質は特に限定されるものではなく、クロロプレンゴムやアクリルゴム等の各種合成ゴムや天然ゴムのシートが適用出来る。また、該シートの厚さは特に限定されるものではないが、0.3〜1.5mmとすることが好ましい。該厚さが0.3mm未満ではシートの機械的強度が不足し、シートが破損して気密性が失われる虞があり、1.5mmを超えるとシートの伸縮性が劣って、スイッチ機能を損ねる虞がある。該実施形態においては透孔1Aの直径は特に限定を受けない。また、弁体4であるシートの大きさ形状は特に限定されるものではないが、弁体4を一様に伸縮変形させるためには円形であることが好ましく、その直径を3mm以上とすることがましい、該直径が3mm未満では弁体4であるシートの伸びが小さく、圧力スイッチが機能しない虞がある。   In the embodiment, the material of the stretchable sheet constituting the valve body 4 is not particularly limited, and various synthetic rubbers such as chloroprene rubber and acrylic rubber, and natural rubber sheets can be applied. The thickness of the sheet is not particularly limited, but is preferably 0.3 to 1.5 mm. If the thickness is less than 0.3 mm, the mechanical strength of the sheet may be insufficient, and the sheet may be damaged, resulting in loss of airtightness. If the thickness exceeds 1.5 mm, the stretchability of the sheet is inferior and the switch function is impaired. There is a fear. In the embodiment, the diameter of the through hole 1A is not particularly limited. In addition, the size and shape of the seat that is the valve body 4 are not particularly limited, but in order to uniformly expand and contract the valve body 4, it is preferably a circular shape, and the diameter thereof is 3 mm or more. If the diameter is less than 3 mm, the extension of the seat, which is the valve body 4, is small, and the pressure switch may not function.

該実施形態においては、接続部材5が上方に移動する際に平行移動することが保証されていないので、圧力スイッチがオンからオフに切り替わる(接続部材が上方に移動する)際に接続部材5が封口板1に対して斜めになり、接点5Aが封口板1から離れない事態がおきる虞がある。該虞を無くすために、接続部材5を平行に移動させるためには、接続部材5の外周端面をフリーとせずに、筒状部材の内面に当接させ、接続部材5を筒状部材の内壁に沿って摺動させるようにするのが有効である。詳細は省くが、図3において、キャップ3の側壁を封口板1に垂直にし、接続部材5の外径をキャップ3の内径に等しくして説族部材5の外周端面をキャップ3の内壁に当接させることによって、接続部材5がキャップん3の内壁に沿って摺動するようにすることもできる。   In this embodiment, since it is not guaranteed that the connecting member 5 moves in parallel when moving upward, the connecting member 5 is turned off when the pressure switch is switched from on to off (the connecting member moves upward). There is a possibility that the contact plate 5A is inclined with respect to the sealing plate 1 and the contact point 5A is not separated from the sealing plate 1. In order to eliminate the fear, in order to move the connecting member 5 in parallel, the outer peripheral end surface of the connecting member 5 is not brought into contact with the inner surface of the cylindrical member, and the connecting member 5 is brought into contact with the inner wall of the cylindrical member. It is effective to make it slide along. Although details are omitted, in FIG. 3, the side wall of the cap 3 is perpendicular to the sealing plate 1, the outer diameter of the connecting member 5 is made equal to the inner diameter of the cap 3, and the outer peripheral end surface of the prescriptive member 5 is brought into contact with the inner wall of the cap 3. By making contact, the connecting member 5 can be slid along the inner wall of the cap 3.

(第4の実施形態)
図5は、本発明の第4の実施形態において蓄電池内部の圧力が所定の値を超えて上昇しているときの状態を示す図である。本実施形態においては、弁体5は、前記第3の実施形態同様伸縮可能なシートであり、弁体5の周縁部分は封口板1に固着されており、封口板1に設けた透孔1Aを気密に封止している。蓄電池内部の圧力が上昇して所定の値を超えると、弁体5が伸び、図に示すように、上向きに撓む。該撓みが生じたことによって接続部材5がその一端に取り付けた電気絶縁性のヒンジ12を支点として開き、他端に設けた封口板との接点が封口板から離れスイッチがオフの状態になる。
(Fourth embodiment)
FIG. 5 is a diagram showing a state when the pressure inside the storage battery rises above a predetermined value in the fourth embodiment of the present invention. In the present embodiment, the valve body 5 is a sheet that can be expanded and contracted as in the third embodiment, and the peripheral portion of the valve body 5 is fixed to the sealing plate 1, and the through hole 1 </ b> A provided in the sealing plate 1. Is hermetically sealed. When the pressure inside the storage battery rises and exceeds a predetermined value, the valve body 5 extends and bends upward as shown in the figure. When the bending occurs, the connection member 5 opens with the electrically insulating hinge 12 attached to one end thereof as a fulcrum, the contact with the sealing plate provided at the other end is released from the sealing plate, and the switch is turned off.

以下1実施例により本発明の詳細を説明するが、本発明は以下に記載の実施例に限定されるものではない。
(実施例1)
硝酸ニッケル94重量部に硝酸コバルト1重量部と硝酸亜鉛5重量部とを加え、これを溶解させた水溶液に硫酸アンモニウムと水酸化ナトリウム水溶液を滴下してpHを11〜12の範囲に保ちながら撹拌し、CoとZnが固溶した水酸化ニッケル粒子を析出させた。これを水洗し、乾燥して水酸化ニッケル粉末とした。次いで、水酸化ニッケル粉末を硫酸アンモニウムと水酸化ナトリウムからなる水溶液中に投入し、これに硫酸コバルトおよび水酸化ナトリウム水溶液を撹拌しながら、且つpH10〜12に制御しながら滴下した。所定のpHにて1時間保持した後、これを水洗し、乾燥して水酸化物コバルトで被覆された水酸化ニッケル粉末を得た。こうして得られた水酸化ニッケル粉末中の水酸化コバルトの含有量は6%であった。さらに、この水酸化ニッケル粉末を14Nに調整した温度50℃のNaOH中に、この水酸化コバルトで被覆された水酸化ニッケル粒子を投入して撹拌した後、水酸化ニッケルの酸化値が2.10となるようにK2S2O8量を変化させて投入した。K2S2O8投入から2時間後、これを水洗し、乾燥して得た粉末98重量部に酸化イッテルビウム2重量部を混合し、さらに増粘剤を溶解した水溶液を加えてペースト状にしたものをニッケル多孔体基板に充填した後、所定の厚さにプレスして正極板とした。
Hereinafter, the present invention will be described in detail with reference to one example, but the present invention is not limited to the example described below.
(Example 1)
To 94 parts by weight of nickel nitrate, 1 part by weight of cobalt nitrate and 5 parts by weight of zinc nitrate are added. Ammonium sulfate and aqueous sodium hydroxide solution are added dropwise to an aqueous solution in which this is dissolved, and the pH is kept in the range of 11-12. Then, nickel hydroxide particles in which Co and Zn were dissolved were precipitated. This was washed with water and dried to obtain nickel hydroxide powder. Next, nickel hydroxide powder was put into an aqueous solution composed of ammonium sulfate and sodium hydroxide, and cobalt sulfate and sodium hydroxide aqueous solution were added dropwise thereto while stirring and controlling to pH 10-12. After maintaining at a predetermined pH for 1 hour, this was washed with water and dried to obtain nickel hydroxide powder coated with cobalt hydroxide. The content of cobalt hydroxide in the nickel hydroxide powder thus obtained was 6%. Further, after the nickel hydroxide particles coated with cobalt hydroxide were put into NaOH having a temperature of 50 ° C. adjusted to 14 N with the nickel hydroxide powder and stirred, the oxidation value of nickel hydroxide was 2.10. The amount of K 2 S 2 O 8 was changed so that Two hours after the addition of K 2 S 2 O 8 , this was washed with water and dried, and then 98 parts by weight of the powder was mixed with 2 parts by weight of ytterbium oxide. Further, an aqueous solution in which a thickener was dissolved was added to form a paste. This was filled into a nickel porous substrate and then pressed to a predetermined thickness to obtain a positive electrode plate.

MmNi3.8Al0.3Co0.7Mn0.2(Mmはミッシュメタルであり、La30%、Ce50%、Pr5%、Nd15%からなる混合物である。)の組成となるように各金属を秤量し、不活性雰囲気下、高周波誘導溶解炉で合金インゴットを作製し、1000℃で熱処理した。これを75μm以下の大きさに粉砕して水素吸蔵合金粉末とした。次いで、この水素吸蔵合金粉末99.5重量部に酸化イッテルビウム0.5重量部を混合し、さらに増粘剤を溶解した水溶液を加え、ポロテトラフルオロエチレンを結着剤としてペースト状にしたものをパンチングメタルの両面に塗布して乾燥した後、所定の厚さにプレスして負極板とした。 MmNi 3.8 Al 0.3 Co 0.7 Mn 0.2 (Mm is misch metal, a mixture of La30%, Ce50%, Pr5%, Nd15%) Weigh each metal so that it has an inert atmosphere. Then, an alloy ingot was prepared in a high frequency induction melting furnace and heat-treated at 1000 ° C. This was pulverized to a size of 75 μm or less to obtain a hydrogen storage alloy powder. Next, 99.5 parts by weight of this hydrogen storage alloy powder was mixed with 0.5 part by weight of ytterbium oxide, an aqueous solution in which a thickener was dissolved was further added, and what was made into a paste using polytetrafluoroethylene as a binder was obtained. After applying to both sides of the punching metal and drying, it was pressed to a predetermined thickness to obtain a negative electrode plate.

ポリプロピレンとエチレン−ビニルアルコール共重合体との重量比が50:50で、それぞれが繊維断面において交互に隣接されるように複合紡糸された繊度3デニールの分割性複合繊維60重量とポリプロピレンを芯成分、ポリエチレンを鞘成分とする繊度2デニールの芯鞘複合繊維40重量部とを用いて目付45g/mになるように湿式抄紙した後、これに高圧水流を噴射して繊維を交絡させると同時に分割性複合繊維を分割し、分割後の繊度が0.2デニールの不織布を得た。これを0.12mmに厚み調整してセパレータとした。 The weight ratio of polypropylene to ethylene-vinyl alcohol copolymer is 50:50, and 60 wt. Of splittable composite fiber having a fineness of 3 deniers and a polypropylene, each of which is alternately adjacent to each other in the fiber cross section, and polypropylene as a core component. And wet papermaking to a weight per unit area of 45 g / m 2 using 40 parts by weight of a core-sheath composite fiber having a denier of 2 denier having polyethylene as a sheath component, and simultaneously entangling the fibers by jetting a high-pressure water flow onto the paper. The splittable conjugate fiber was split to obtain a nonwoven fabric having a fineness of 0.2 denier after splitting. The thickness was adjusted to 0.12 mm to obtain a separator.

正極板と正極容量に対して1.2倍の容量を有する前記負極板とを準備し、この間に前記セパレータを介し、渦巻き状に捲回して捲回式極板群を作製した。なお、極板群の幅を42mmとした。この極板群を、円筒状金属缶に収納し、7NのKOHと1NのLiOHからなる電解液を、正極容量1Ah当たり1.16ml注液した後、前記図1に示した構造を有し、蓄電池内部の圧力が2.4メガパスカル(MPa)を超えて上昇した時に、通電状態を遮断するような蓋体を備えた蓋体で封口してAAサイズの円筒形のニッケル水素蓄電池を作製した。なお、弁体4をポリテトラフロロエチレン製の成形体とし、その直径(封口板1に設けた透孔1Aの直径に同じ)を3mmとした。また、ニッケル製封口板1の厚さを2mmとした。該例を実施例1とする。   A positive electrode plate and the negative electrode plate having a capacity 1.2 times larger than the positive electrode capacity were prepared, and a wound electrode plate group was produced by winding the positive electrode plate in a spiral shape with the separator interposed therebetween. The width of the electrode plate group was 42 mm. This electrode plate group is housed in a cylindrical metal can, and after an electrolyte of 7N KOH and 1N LiOH is injected in an amount of 1.16 ml per positive electrode capacity 1 Ah, it has the structure shown in FIG. When the internal pressure of the storage battery rose above 2.4 megapascals (MPa), an AA-sized cylindrical nickel-metal hydride storage battery was fabricated by sealing with a cover body that shuts off the energized state. . The valve body 4 was a molded body made of polytetrafluoroethylene, and its diameter (same as the diameter of the through hole 1A provided in the sealing plate 1) was 3 mm. The thickness of the nickel sealing plate 1 was 2 mm. This example is referred to as Example 1.

(比較例1)
図6に示した構造を有する従来提案の圧力スイッチ機構を備え、蓄電池内部の圧力が2.4MPaを超えて上昇した時に、通電状態を遮断するような蓋体を備えた蓋体で封口し、極板群の幅を40mmとしたそれ以外は前記実施例1と同一のAAサイズで円筒形のニッケル水素蓄電池を作製した。該例を比較例1とする。
(Comparative Example 1)
The conventional pressure switch mechanism having the structure shown in FIG. 6 is provided, and when the internal pressure of the storage battery rises above 2.4 MPa, it is sealed with a lid body that shuts off the energized state. A cylindrical nickel-metal hydride storage battery having the same AA size as in Example 1 except that the width of the electrode plate group was 40 mm was produced. This example is referred to as Comparative Example 1.

(比較例2)
圧力スイッチを備えず、封口板に設けた透孔をゴム製弁体で封口した排気弁を備える従来形のAAサイズで円筒形のニッケル水素蓄電池を作製した。なお、極板群の幅を42mmとした捲回式極板群を適用した。該例を比較例2とする。
(Comparative Example 2)
A conventional AA size cylindrical nickel-metal hydride storage battery was prepared which was not equipped with a pressure switch and was equipped with an exhaust valve in which a through hole provided in a sealing plate was sealed with a rubber valve. Note that a wound electrode plate group having a width of 42 mm was applied. This example is referred to as Comparative Example 2.

(初期化成)
実施例1、比較例1、比較例2に係る密閉形ニッケル水素蓄電池を、周囲温度20℃
において化成した。初回(1サイクル目)、40mAで50時間充電し、次いで100mAで12時間充電し、1時間放置した後200mAで放電カット電圧を1.0Vとして放電した。2サイクル目〜10サイクル目まで、400mAで6時間充電し、1時間放置後400mAで放電カット電圧を1.0Vとして放電した。
(放電容量評価1)
実施例1、比較例1、比較例2に係る初期化成終了後の電池をそれぞれ10ケづつ用意し、該電池を周囲温度20℃において、400mAで6時間充電し、1時間放置後400mAで放電カット電圧を1.0Vとして放電し、放電容量を求めた。
(放電容量評価2)
実施例1、比較例1、比較例2に係る初期化成終了後の電池をそれぞれ10ケづつ用意し、周囲温度20℃において該電池に1.62Vの定電圧を印加して15分間充電した。1時間放置後2000mAの定電流で、放電カット電圧を0.9Vとして放電し放電容量を求めた。
(充放電サイクル試験の評価)
実施例1、比較例1、比較例2に係る初期化成終了後の電池をそれぞれ10ケづつ用意し、該電池に周囲温度20℃において、1.62Vの定電圧を印加して15分間充電した。1時間放置後2000mAの定電流で、放電カット電圧を0.9Vとして放電した。該充放電を1サイクルとし、充放電を繰り返し実施した。放電容量が、該充放電サイクルにおける1サイクル目の放電容量の80%に低下したサイクル数をもってその電池のサイクル寿命とした。
(Initialization)
The sealed nickel-metal hydride storage battery according to Example 1, Comparative Example 1, and Comparative Example 2 was measured at an ambient temperature of 20 ° C.
Formed in First time (1st cycle), it was charged at 40 mA for 50 hours, then charged at 100 mA for 12 hours, left for 1 hour, and then discharged at 200 mA with a discharge cut voltage of 1.0 V. From the 2nd cycle to the 10th cycle, the battery was charged at 400 mA for 6 hours, allowed to stand for 1 hour, and then discharged at 400 mA at a discharge cut voltage of 1.0 V.
(Discharge capacity evaluation 1)
Ten batteries after completion of the initialization according to Example 1, Comparative Example 1, and Comparative Example 2 were prepared. The batteries were charged at 400 mA for 6 hours at an ambient temperature of 20 ° C., and left at 400 mA after being left for 1 hour. The battery was discharged at a cut voltage of 1.0 V, and the discharge capacity was determined.
(Discharge capacity evaluation 2)
Ten batteries after completion of the initialization according to Example 1, Comparative Example 1, and Comparative Example 2 were prepared, respectively, and a constant voltage of 1.62 V was applied to the batteries at an ambient temperature of 20 ° C. and charged for 15 minutes. After leaving it for 1 hour, it was discharged at a constant current of 2000 mA with a discharge cut voltage of 0.9 V, and the discharge capacity was determined.
(Evaluation of charge / discharge cycle test)
Ten batteries after completion of the initialization according to Example 1, Comparative Example 1, and Comparative Example 2 were prepared, and the battery was charged with a constant voltage of 1.62 V at an ambient temperature of 20 ° C. for 15 minutes. . After standing for 1 hour, the battery was discharged at a constant current of 2000 mA with a discharge cut voltage of 0.9V. This charging / discharging was made into 1 cycle, and charging / discharging was implemented repeatedly. The cycle number of the battery was defined as the cycle number at which the discharge capacity decreased to 80% of the discharge capacity at the first cycle in the charge / discharge cycle.

表1に実施例1、比較例1、比較例2の放電容量評価1、放電容量評価2の結果(10ケの平均値)を示す。

Figure 2005340053
表1に示したように、放電容量評価1によれば本発明に係る実施例1および従来の圧力スイッチを備えない比較例2が2000mAhであったのに対して、比較例が1900mAhと、実施例1、比較例2に比べ放電容量が低かった。比較例1の場合は、実施例1および比較例2に比べて蓋体の厚さが大きく、電槽缶内に収納できる極板群の幅が小さくなったために放電容量が低くなった。
放電容量評価2によれば、実施例1に比べて比較例1および比較例2の放電容量が低い。比較例1は、前記のように極板群の幅が実施例1に比べて放電容量が低くなったものであり、比較例2の場合は、充電中に蓄電池の温度が好ましい温度の上限(60℃)を超えて上昇したために充電効率が低くなったことと、充電中に蓄電池内部の圧力が上昇して排気弁が開いている間に電解液が外部に逸散して蓄電池の内部インピーダンスが上昇したために放電容量が低くなったものである。 Table 1 shows the results of discharge capacity evaluation 1 and discharge capacity evaluation 2 of Example 1, Comparative Example 1 and Comparative Example 2 (average value of 10 samples).
Figure 2005340053
As shown in Table 1, according to discharge capacity evaluation 1, Example 1 according to the present invention and Comparative Example 2 without a conventional pressure switch were 2000 mAh, while Comparative Example was 1900 mAh. The discharge capacity was lower than in Example 1 and Comparative Example 2. In the case of the comparative example 1, the discharge capacity was lowered because the thickness of the lid was larger than that of the first example and the comparative example 2, and the width of the electrode plate group that could be accommodated in the battery case was reduced.
According to the discharge capacity evaluation 2, the discharge capacity of Comparative Example 1 and Comparative Example 2 is lower than that of Example 1. In Comparative Example 1, as described above, the width of the electrode plate group is such that the discharge capacity is lower than that in Example 1. In Comparative Example 2, the temperature of the storage battery during charging is the upper limit of the preferable temperature ( 60 ° C), the charging efficiency was low, and the internal battery impedance was increased while the exhaust valve was open and the electrolyte was dissipated outside while the exhaust valve was open. As a result, the discharge capacity is lowered.

表2に実施例1、比較例1,比較例2の充放電サイクル試験結果(10ケの平均値)を示す。

Figure 2005340053
表2に示すように、実施例1および比較例1は、500サイクル以上のサイクル寿命を有するのに対して、比較例2はサイクル寿命が190サイクルと極端に短い。実施例1および比較例1においては、充電中に圧力スイッチ機能が動作し、蓄電池の温度が好ましい温度の上限(60℃)を超えて上昇することと排気弁が動作するのを抑制することによって、活物質等の構成材料が変質したり、電解液が外部に逸散するのを抑制したのに対して、比較例2においては充電中に蓄電池の温度が好ましい温度の上限(60℃)を超えて上昇したために活物質等の構成材料が変質したり、電解液が外部に逸散したために早期に放電容量が低下したと考えられる。 Table 2 shows the charge / discharge cycle test results (10 average values) of Example 1, Comparative Example 1, and Comparative Example 2.
Figure 2005340053
As shown in Table 2, Example 1 and Comparative Example 1 have a cycle life of 500 cycles or more, while Comparative Example 2 has an extremely short cycle life of 190 cycles. In Example 1 and Comparative Example 1, the pressure switch function operates during charging, by suppressing the temperature of the storage battery from exceeding the upper limit (60 ° C.) of the preferred temperature and operating the exhaust valve. In contrast, in Comparative Example 2, the upper limit (60 ° C.) of the preferable temperature of the storage battery during charging was suppressed while the constituent materials such as the active material were altered and the electrolyte was prevented from escaping to the outside. It is considered that the discharge capacity was reduced early because the constituent material such as the active material was altered due to the increase in excess, or the electrolyte was dissipated outside.

本発明は、蓄電池内部の圧力の大きさに応じて極板と端子を結ぶ回路をオン・オフの切り替えを行う圧力スイッチ機構を内蔵する密閉形蓄電池において、蓋体の占有体積を小さくすることによって高容量を維持し、かつ、安価な密閉形蓄電池を提供するものであって、産業上の利用価値の高いものである。   The present invention relates to a sealed storage battery having a built-in pressure switch mechanism that switches on and off a circuit connecting an electrode plate and a terminal in accordance with the pressure inside the storage battery, by reducing the occupied volume of the lid. The present invention provides an inexpensive sealed storage battery that maintains a high capacity and has high industrial utility value.

本発明の第1の実施形態を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows the 1st Embodiment of this invention. 本発明の第1の実施形態を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows the 4th Embodiment of this invention. 従来提案に係る圧力スイッチ内蔵形の密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery of the pressure switch built-in type which concerns on the former proposal.

符号の説明Explanation of symbols

1 封口板
1A 透孔
2 電気絶縁層
3 キャップ
3A 排気孔
4 弁体
5 接続部材
6 バネ
9 電槽缶


DESCRIPTION OF SYMBOLS 1 Sealing plate 1A Through-hole 2 Electrical insulation layer 3 Cap 3A Exhaust hole 4 Valve body 5 Connection member 6 Spring 9 Battery case can


Claims (2)

正極板と負極板のうち少なくとも一方の極板と外部端子を接続する回路に、蓄電池内部の圧力が所定の値以下のときに前記回路を導通状態とし、該圧力が所定の値を超えているときに前記回路を切断状態とする圧力スイッチ機能を備える密閉形蓄電池において、電槽缶の開放端に金属製の封口板を配置、該封口板の外側に一方の外部端子を配置し、該封口板と前記一方の極板がリード部材を介して電気的に接続されており、該封口板と外部端子の間には電気絶縁層が配置され、常時は、前記外部端子と封口板が金属製のバネと接続部材を介して電気的に接続されており、該封口板に設けた透孔を電気絶縁性の弁体で気密に封止しており、該弁体は前記透孔の壁面に沿って摺動可能であり、前記接続部材は該弁体が摺動することによって位置を変え、蓄電池内部の圧力が所定の値を超えたときに前記弁体が摺動し、該摺動に伴い前記接続部材の封口板との電気的接点が封口板から離れることによって極板と外部端子を接続する回路を切断する機能を備えたことを特徴とする密閉形蓄電池。   The circuit is connected to a circuit connecting at least one of the positive electrode plate and the negative electrode plate and the external terminal when the pressure inside the storage battery is equal to or lower than a predetermined value, and the pressure exceeds a predetermined value. In a sealed storage battery having a pressure switch function that sometimes disconnects the circuit, a metal sealing plate is disposed at the open end of the battery case, and one external terminal is disposed outside the sealing plate, The plate and the one electrode plate are electrically connected via a lead member, and an electrical insulating layer is disposed between the sealing plate and the external terminal. Normally, the external terminal and the sealing plate are made of metal. The through hole provided in the sealing plate is hermetically sealed with an electrically insulating valve body, and the valve body is attached to the wall surface of the through hole. The connecting member is positioned by sliding the valve body. When the internal pressure of the storage battery exceeds a predetermined value, the valve body slides, and the electrical contact with the sealing plate of the connecting member is separated from the sealing plate along with the sliding, so that the electrode plate and the external A sealed storage battery having a function of cutting a circuit connecting terminals. 前記請求項1において前記弁体が、その周縁部分が封口板に固着された伸縮変形が可能なシートであって、前記接続部材が該弁体の伸縮変形によって位置を変え、常時は、前記外部端子と封口板が金属製のバネと接続部材を介して電気的に接続されており、蓄電池内部の圧力が所定の値を超えたときに前記弁体が伸び、該伸びに伴い前記接続部材の封口板との電気的接点が離れることによって外部端子と極板を接続する回路を切断する機能を備えたことを特徴とする密閉形蓄電池。


















The valve body according to claim 1, wherein the valve body is a sheet that can be stretched and deformed with a peripheral edge portion fixed to a sealing plate, and the connection member changes its position by the stretching deformation of the valve body, The terminal and the sealing plate are electrically connected via a metal spring and a connection member, and the valve body extends when the pressure inside the storage battery exceeds a predetermined value. A sealed storage battery comprising a function of cutting a circuit connecting an external terminal and an electrode plate when an electrical contact with a sealing plate is separated.


















JP2004158763A 2004-05-28 2004-05-28 Sealed storage battery Active JP4923389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158763A JP4923389B2 (en) 2004-05-28 2004-05-28 Sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158763A JP4923389B2 (en) 2004-05-28 2004-05-28 Sealed storage battery

Publications (3)

Publication Number Publication Date
JP2005340053A true JP2005340053A (en) 2005-12-08
JP2005340053A5 JP2005340053A5 (en) 2007-07-05
JP4923389B2 JP4923389B2 (en) 2012-04-25

Family

ID=35493367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158763A Active JP4923389B2 (en) 2004-05-28 2004-05-28 Sealed storage battery

Country Status (1)

Country Link
JP (1) JP4923389B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048866A (en) * 2007-08-20 2009-03-05 Gs Yuasa Corporation:Kk Closed storage battery
JP2015536536A (en) * 2012-10-18 2015-12-21 エルジー・ケム・リミテッド Electrode lead and secondary battery including the same
JP2017073211A (en) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 Hermetically sealed type battery
CN107665960A (en) * 2016-07-29 2018-02-06 比亚迪股份有限公司 A kind of cover plate assembly, electrokinetic cell and battery modules
JP2018147647A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 battery
CN111637259A (en) * 2020-07-03 2020-09-08 东莞蒲微防水透气膜材料有限公司 Explosion-proof valve
CN113169398A (en) * 2018-12-28 2021-07-23 三洋电机株式会社 Sealed battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080271A (en) * 1973-11-14 1975-06-30
JPH06290767A (en) * 1993-03-31 1994-10-18 Nippondenso Co Ltd Chemical battery with safety mechanism
JPH08287894A (en) * 1995-04-11 1996-11-01 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH08293294A (en) * 1995-04-20 1996-11-05 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH08339793A (en) * 1995-04-11 1996-12-24 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH10154530A (en) * 1996-11-21 1998-06-09 Ngk Insulators Ltd Lithium secondary battery
JP2002124236A (en) * 2000-10-12 2002-04-26 Toyota Motor Corp Sealed battery
JP2005285404A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Closed mold secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080271A (en) * 1973-11-14 1975-06-30
JPH06290767A (en) * 1993-03-31 1994-10-18 Nippondenso Co Ltd Chemical battery with safety mechanism
JPH08287894A (en) * 1995-04-11 1996-11-01 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH08339793A (en) * 1995-04-11 1996-12-24 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH08293294A (en) * 1995-04-20 1996-11-05 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH10154530A (en) * 1996-11-21 1998-06-09 Ngk Insulators Ltd Lithium secondary battery
JP2002124236A (en) * 2000-10-12 2002-04-26 Toyota Motor Corp Sealed battery
JP2005285404A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Closed mold secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048866A (en) * 2007-08-20 2009-03-05 Gs Yuasa Corporation:Kk Closed storage battery
JP2015536536A (en) * 2012-10-18 2015-12-21 エルジー・ケム・リミテッド Electrode lead and secondary battery including the same
JP2017073211A (en) * 2015-10-05 2017-04-13 トヨタ自動車株式会社 Hermetically sealed type battery
US10128476B2 (en) 2015-10-05 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sealed battery
CN107665960A (en) * 2016-07-29 2018-02-06 比亚迪股份有限公司 A kind of cover plate assembly, electrokinetic cell and battery modules
CN107665960B (en) * 2016-07-29 2020-08-25 比亚迪股份有限公司 Cover plate assembly, power battery and battery module
JP2018147647A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 battery
CN113169398A (en) * 2018-12-28 2021-07-23 三洋电机株式会社 Sealed battery
CN113169398B (en) * 2018-12-28 2023-04-25 三洋电机株式会社 Sealed battery
CN111637259A (en) * 2020-07-03 2020-09-08 东莞蒲微防水透气膜材料有限公司 Explosion-proof valve

Also Published As

Publication number Publication date
JP4923389B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
EP2272124B1 (en) Cylindrical nickel-zinc cell with negative can
EP1032067A3 (en) Nickel-metal hydride secondary battery
CN107615527B (en) Hydrogen storage alloy, negative electrode using the same, and nickel-hydrogen secondary battery using the negative electrode
JP2002164023A (en) Square battery
KR100189808B1 (en) Wound electrode plate
JP4923389B2 (en) Sealed storage battery
JP4701636B2 (en) Sealed storage battery exhaust valve, sealed storage battery using the same, sealed nickel metal hydride storage battery
KR100210502B1 (en) Separator for spiral electrode
JP4967219B2 (en) Sealed storage battery
JP2006066175A (en) Sealed storage battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP4537662B2 (en) Sealed storage battery
JP2017076470A (en) Alkali storage battery and method for manufacturing the same
KR100674524B1 (en) Hydrogen Absorbing Alloy Electrode, Method of Fabricating The Same and Alkaline Storage Battery
JP2002252025A (en) Nickel/hydrogen secondary battery
JP3808420B2 (en) Secondary battery and charger and secondary battery system using them
JP5812421B2 (en) Cylindrical battery, lid structure
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2005158654A (en) Cylinder-shaped alkali storage battery
JP2926288B2 (en) Nickel-cadmium battery
KR100199679B1 (en) Cylindrical battery and manufacturing method of cylindrical alkaline secondary battery
JP2005166324A (en) Sealed storage battery
JP2002280057A (en) Alkaline secondary battery
JP2005056675A (en) Cylindrical alkaline battery
JP2006032253A (en) Sealed storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150