JP3706166B2 - Manufacturing method of nickel metal hydride secondary battery - Google Patents

Manufacturing method of nickel metal hydride secondary battery Download PDF

Info

Publication number
JP3706166B2
JP3706166B2 JP02689695A JP2689695A JP3706166B2 JP 3706166 B2 JP3706166 B2 JP 3706166B2 JP 02689695 A JP02689695 A JP 02689695A JP 2689695 A JP2689695 A JP 2689695A JP 3706166 B2 JP3706166 B2 JP 3706166B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
separator
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02689695A
Other languages
Japanese (ja)
Other versions
JPH08222265A (en
Inventor
秀仁 松尾
勝幸 秦
浩之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP02689695A priority Critical patent/JP3706166B2/en
Publication of JPH08222265A publication Critical patent/JPH08222265A/en
Application granted granted Critical
Publication of JP3706166B2 publication Critical patent/JP3706166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【産業上の利用分野】
本発明は渦巻形電極群を備えたアルカリ二次電池の製造方法に関し、特に電極群作製工程を改良したアルカリ二次電池の製造方法に係るものである。
【0002】
【従来の技術】
アルカリ二次電池の一例であるニッケル水素二次電池は、水酸化ニッケルを含むペーストを集電体に充填した構造を有する正極と、水素吸蔵合金を含むペーストを集電体に充填した構造を有する負極と、合成樹脂繊維製不織布からなるセパレータと、アルカリ電解液とを備える。前記ニッケル水素二次電池は、前記正極と前記負極との間に前記セパレータを介装して渦巻状に捲回した電極群と、前記電解液とを容器内に収納した構造を有する。前記容器は、一般的なアルカリ二次電池と同様に負極の端子を兼ねている。
【0003】
前記ニッケル水素二次電池は、特開昭60−100382号、特開昭60−130053号、特開昭61−99278号に開示されているように、最外周端が前記負極の端部となるように作製された渦巻形電極群を前記容器内に収納し、前記容器の内面と前記最外周に位置する負極とを接触させることにより集電をとる構造を有するものが知られている。このように電極群の最外周端が負極の端部となるような構造にすることによって、二次電池の製造工程が簡単になり、集電が確実になる。また、前記二次電池が過充電された際に前記正極から発生する酸素ガスを前記負極で水に還元する反応が効率良く行われるため、前記二次電池の内圧が上昇するのが抑制され、電池特性が向上する。
【0004】
ところで、前述した水酸化ニッケルを含むペーストを集電体に充填した構造を有する正極を備えたアルカリ二次電池は充放電サイクルの進行に伴って前記正極が膨潤する。前記正極の膨潤は、電解液の移動と、電解液の移動が関係しない事柄との2つが原因となって生じる。前記二次電池のセパレータ中の電解液は充放電サイクルの進行に伴って前記正極及び前記負極に移動するため、前記正極及び前記負極が前記電解液を吸収することにより膨潤する。また、前記正極は、前記二次電池の充放電によっても膨潤する。この後、放電されると前記正極は元の体積に戻る。しかしながら、充放電サイクルの進行に伴って、放電時に減少する体積が低減するため、結果として前記正極は膨潤する。この正極を備え、かつ前述した電極群の最外周端が負極の端部となるような構造を有する二次電池に充放電サイクルを施すと、電極群の中心から離れた箇所に位置する正極、つまり両側面がセパレータを挟んで負極と対向している正極は、前記負極により位置が規制されているため、膨潤度合いが小さい。しかしながら、前記正極の巻き始め端部は、その位置が前記負極によって規制されていないため、膨潤度合いが大きくなるという問題点があった。前記正極の巻き始め端部が膨潤すると、巻き始め端部近傍の正極の厚さが電極群の中心に向けて厚くなったり、前記正極の巻き始め端部が電極群の中心方向へ曲り込んだりする。その結果、前記正極の巻き始め端部近傍とこれと対向する負極との距離が変動するため、前記正極において前記負極と反応する箇所が局所的になり、前記二次電池の容量が低下して充放電サイクル寿命が短くなるという問題点があった。
【0005】
このようなことから、特開平3−133066号の公報には、最内周端及び最外周端に水素吸蔵合金電極の端部がそれぞれ位置する構造を有する電極群を備えることによって、ニッケル酸化物電極の全面に水素吸蔵合金電極を対向させて前記ニッケル酸化物電極の膨潤を抑制することが開示されている。前記電極群は、図10に示す方法により作製される。図10(a)に示すように、中央部分に溝21が形成された巻芯22を用い、帯状セパレータ23の中央部分を前記巻芯22の前記21溝に挟み、前記巻芯22を例えば半時計回りに1/2周回転させることにより前記セパレータ23でS字状の袋を形成する。図10(b)に示すように、水素吸蔵合金電極24の端部25を前記S字状の袋内に配置した後、前記巻芯22を1/2周回転させる。図10(c)に示すように、前記電極24の両側に位置するセパレータ23のうち外側に位置するセパレータ23にニッケル酸化物電極26をその端部27が前記電極24の前記端部25と対向するように配置する。次いで、これらを捲回することにより図11に示す渦巻形電極群28を作製する。
【0006】
しかしながら、近年の高容量で、かつ高エネルギー密度を有する電池の需要に応えるために、前述した構造を有する二次電池において前記ニッケル酸化物電極26の容量を高めたところ、それに比例して前記電極26の膨潤度合いが大きくなった。その結果、前記電極26の巻き始め端部27近傍が充放電サイクルの進行に伴って膨潤するのをこの部分と対向している前記水素吸蔵合金電極24によって抑制することが困難になった。このため、前記ニッケル酸化物電極26において前記水素吸蔵合金電極24と反応する箇所が局所的になり、前記二次電池の容量が低下した。また、前記セパレータ23中の電解液が前記正極26へ移動するため、前記セパレータ23中の電解液が著しく減少し、前記二次電池の内部抵抗が上昇した。その結果、前記二次電池は充放電サイクル寿命が著しく低下するという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、充放電サイクルの進行に伴って正極の巻き始め端部が膨潤するのが抑制されたニッケル水素二次電池の製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係るニッケル水素二次電池の製造方法は、水酸化ニッケル及び水を含むペーストを集電体に充填した構造を有する正極と、水素吸蔵合金及び水を含むペーストを集電体に充填した構造を有する負極と、帯状のセパレータと、アルカリ電解液とを備えたニッケル水素二次電池の製造方法において、中心を横切る溝を有する巻芯を用い、前記帯状セパレータの一部を前記巻芯の前記溝で挟んだ後、前記巻芯を回転させることにより前記セパレータでS字状の袋を形成する工程と、前記S字状の袋内に前記負極の先端部を配置した後、所望の周角度をもって捲回する工程と、前記負極の外側に位置するセパレータに前記正極をその先端部が前記負極の前記先端部から前記捲回方向と反対方向に60°〜120°ずれるようにして配置し、更に捲回することにより渦巻形電極群を作製する工程とを具備したことを特徴とするものである。
【0009】
前記S字状の袋を形成する工程において、前記セパレータの一部を前記巻芯の前記溝で挟んだ後、前記巻芯を1/3周〜2/3周回転させることにより前記セパレータでS字状の袋を形成することが好ましい。前記巻芯の回転周を限定したのは次のような理由によるものである。前記回転周を1/3周未満にすると、前記セパレータのうち前記正極と前記負極との間に介装されていない部分が少なくなって前記電極群中の予備の電解液の量が減少する恐れがある。一方、前記回転周が2/3周を越えると、前記電極群の中心付近に存在するセパレータの容積が多くなり過ぎて前記正極及び前記負極の容積が少なくなる恐れがある。
【0010】
前記負極の前記先端部と前記正極の前記先端部との位置ずれ分に相当する周角度を60°〜120°にすることが好ましい。これは次のような理由によるものである。前記周角度を60°未満にすると、このような電極群は、正極を挟まずに負極同士が重なった部分が低減するため、前記先端部が膨潤するのを抑制することが困難になる恐れがある。また、前記負極の先端部付近とこれと対向する正極との密着性が低下する恐れがあるため、正極と負極との反応性が低下する恐れがある。一方、前記周角度が120°を越えると、電池反応に関与しない部分の電極全体に占める割合が増える恐れがあり、電池設計上不都合が生じる恐れがある。
【0011】
前記正極の先端部付近を二つ折りにした別のセパレータで被覆することが好ましい。特に、前記二つ折りのセパレータで被覆される正極の長さは、正極全体の長さの10%〜50%にすることが好ましい。これは次のような理由によるものである。前記セパレータで被覆される正極の長さを正極全体の長さの10%未満にすると、充放電サイクルの進行に伴って前記正極の前記先端部が膨潤するのを抑制する効果がみうけられない恐れがある。一方、前記二つ折りのセパレータで被覆される正極の長さが正極全体の長さの50%を越えると、前記電極群中のセパレータの占める容積が多くなり過ぎて電池内絶対空隙が減少する恐れがあり、結果として前記正極及び前記負極の容積が低減する恐れがある。より好ましい前記別のセパレータで被覆される正極の長さは、正極全体の長さの20%〜40%である。
【0012】
以下、本発明に係る方法で製造されるアルカリ二次電池を図1を参照して説明する。
前述した方法により作製された渦巻形電極群1は、有底円筒状の容器2内に収納されている。負極3は前記電極群1の最外周に配置されて前記容器2と電気的に接触している。正極4は帯状のセパレータ5を挟んで前記負極3と対向している。アルカリ電解液は、前記容器2内に収容されている。中央に穴6aを有する円形の封口板6は、前記容器2の上部開口部に配置されている。リング状の絶縁性ガスケット7は、前記封口板6の周縁と前記容器2の上部開口部内面の間に圧縮状態で配置されている。前記封口板6は、前記絶縁ガスケット7の圧縮下において前記容器2の上部開口部に気密に固定されている。正極リード8は、一端が前記正極4に接続、他端が前記封口板6の下面に接続されている。帽子形状をなす正極端子9は、前記封口板6上に前記穴6aを覆うように取り付けられている。ゴム製の安全弁10は、前記封口板6と前記正極端子9で囲まれた空間内に前記穴6aを塞ぐように配置されている。
【0013】
前記正極4は、水酸化ニッケル粉末と、導電剤と、結着剤と、水とを含むペーストを調製し、前記ペーストを集電体に充填し、これを乾燥、加圧成形した後、所望のサイズに切断することにより製造される。
【0014】
前記導電剤としては、例えば一酸化コバルト、三酸化二コバルト、水酸化コバルト等のコバルト化合物を挙げることができる。
前記結着剤としては、例えばポリテトラフルオロエチレン、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸ナトリウム、ポリビニルアルコールを挙げることができる。
【0015】
前記集電体としては、例えばニッケル、ステンレス等の耐アルカリ性金属や、耐アルカリ性のニッケルメッキが施された樹脂などからなるスポンジ状、繊維状、フェルト状の多孔質構造を有するものを挙げることができる。
【0016】
前記負極3は、負極活物質に導電材を添加し、結着剤及び水と共に混練してペーストを調製し、前記ペーストを集電体に充填し、乾燥した後、成形することにより製造される。
【0017】
前記負極活物質としては、例えば金属カドミウム、水酸化カドミウムなどのカドミウム化合物、水素吸蔵合金を挙げることができる。中でも、前記水素吸蔵合金は、前記カドミウム化合物を用いた場合よりも二次電池の容量を向上できるため、好ましい。前記水素吸蔵合金としては、格別制限されるものではなく、電解液中で電気化学的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出できるものであればよい。例えばLaNi5 、MmNi5 (Mmとは、La,Ce,Pr,Nd,Smなどのランタン系元素の混合物であるミッシュメタルを意味する)、LnNi5 (Ln;ランタン富化したミッシュメタル)、及びこれらのNiの一部をAl、Mn、Co、Ti、Cu、Zn、Zr、Cr、Bのような元素で置換した多元素系のものを挙げることができる。
【0018】
前記導電材としては、例えばカーボンブラック等を挙げることができる。
前記結着剤としては、前記正極4と同様なものを挙げることができる。
前記集電体としては、例えばパンチドメタル、エキスパンデッドメタル、穿孔剛板、ニッケルネットなどの二次元基板や、フェルト状金属多孔体や、スポンジ状金属多孔体などの三次元基板を挙げることができる。
【0019】
前記セパレータ5としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを挙げることができる。なお、前記正極4の先端部付近を二つ折りにした別のセパレータで被覆する場合、この二つ折りのセパレータの材質としては前記セパレータ5と同様なものを挙げることができる。
【0020】
前記アルカリ電解液としては、例えば水酸化カリウム溶液、水酸化カリウムに水酸化ナトリウム及び水酸化リチウムのいずれか一方または両者が添加された混合液を用いることができる。
【0021】
【作用】
本発明のアルカリ二次電池の製造方法によれば、巻芯によって帯状のセパレータでS字状の袋を形成し、前記S字状の袋内に負極の先端部を配置した後、前記巻芯を所望の角度回転させる。前記負極の両側面に配置されたセパレータのうち外側に位置するセパレータに正極をその先端部が前記負極の前記先端部から所望の周角度分遅れるように配置し、これらを捲回して渦巻形電極群を作製することによって、前記正極の先端部、つまり巻き始め端部よりも先に負極の巻き始め端部(先端部)を配置することができる。従って、前記正極の巻き始め端部より先に位置する最内周の負極と、2周目の負極との間には前記正極が配置されていないため、前記最内周の負極と前記2周目の負極とを前記セパレータを挟んで重ねることができる。言い換えれば、前記負極の前記巻き始め端部と前記正極の巻き始め端部との位置ずれ分に相当する前記周角度内において、最内周の負極と2周目の負極とをその間に正極を挟まずに重ねることができる。その結果、この正極を挟まずに負極同士が重なった部分を支点にして最内周の負極と2周目の負極とで前記正極の巻き始め端部の近傍を挟むことができる。すなわち、最内周の負極と2周目の負極とでクリップを作ることができ、そのクリップによって前記正極の巻き始め端部の近傍を挟むことができる。前述した図11に示すように従来の方法によると、負極の巻き始め端部と正極の巻き始め端部とが巻芯の中心から見て同位置に配置されるため、前記正極の巻き始め端部よりも先の部分に前述した負極同士が重なった部分を形成することができない。従って、前記正極の巻き始め端部の近傍は、最内周の負極と2周目の負極とで支えられているだけであるため、前記正極の巻き始め端部の近傍が膨潤するのを押え込む力が弱く、前記正極の巻き始め端部は充放電サイクルの進行に伴って膨潤する。本発明に係る方法によると、前記正極の巻き始め端部の近傍は、その両側面が最内周に位置する負極と2周目の負極とで押されているため、前記正極の厚さが充放電サイクルの進行に伴って厚くなる、すなわち前記正極が厚さ方向に膨潤するのを抑制することができる。また、前記正極の巻き始め端部の前方には前述した負極同士が重なった部分が配置されているため、この部分がストッパになり、前記正極の巻き始め端部が充放電サイクルの進行に伴って電極群中央方向へ曲り込むのを抑制することができる。その結果、正極と負極との間の距離が変動するのを抑制することができるため、前記二次電池の容量を向上することができる。また、前記セパレータ中の電解液が前記正極へ移動するのを抑制することができるため、前記二次電池の内部抵抗が上昇するのを抑えることができる。従って、前記二次電池の充放電サイクル寿命を向上することができる。
【0022】
また、前記正極の前記巻き始め端部と前記負極の前記巻き始め端部との位置ずれ分に相当する周角度を60°〜120°にすることによって、前述した負極同士が重なった部分を十分に確保することができる。従って、前記正極の巻き始め端部の両側面に加わる押圧力を向上することができ、かつ前記負極の重なり部の強度を向上することができるため、前記正極の巻き始め端部の充放電サイクルの進行に伴う膨潤を更に抑えることができる。また、前記周角度を前記範囲内にすることによって、前記正極の先端部分と、前記負極の先端部分と、その間に介装されたセパレータとの密着性を向上することができると共に負極全体を電池反応に関与させることができる。その結果、前記周角度を60°〜120°にすることによって、前記二次電池の充放電サイクル寿命をより一層向上することができる。
【0023】
更に、前記正極の巻き始め端部付近を二つ折りにした別のセパレータで被覆することによって、前記正極の巻き始め端部付近は前記二つ折りのセパレータで挟まれ、更に前述した最内周の負極と2周目の負極とで形成されたクリップによって挟まれる。このため、巻き始め端部付近の正極両側面に加わる押圧力を向上することができる。また、前記二つ折りのセパレータは、その正極両側面と対向する部分がそれぞれ前記正極と前記最内周の負極との間、前記正極と前記2周目の負極との間に固定されている。その結果、前記二つ折りセパレータの巻き始め端部と対向する部分がこの両側面と対向する部分により巻芯の捲回方向に引っ張られるため、前記二つ折りのセパレータによって前記正極の巻き始め端部に押圧力を加えることができる。従って、巻き始め端部近傍の正極両側面に加わる押圧力を向上することができ、かつ前記正極の巻き始め端部に押圧力を加えることができるため、前記正極の巻き始め端部が充放電サイクルの進行に伴って膨潤するのを防止することができる。従って、正極と負極との間の距離を一定に維持することができ、かつ前記セパレータ中の電解液が前記正極へ移動するのを防止することができる。また、このように正極の端部付近を二つ折りにしたセパレータで被覆することによって、セパレータの量を増やすことができるため、前記電極群中に蓄えられる電解液の量を多くすることができる。セパレータの量を増やさないで電解液量のみを増加させると、充放電初期に電極群は前記電解液全てを吸収することができず、余分な電解液がこの電極群の上部等にたまる。この二次電池において例えば過充電等に起因して電池内にガスが発生し、防爆機能が作動すると、ガスと共に電極群の上部にたまった電解液が放出される恐れがある。従って、前記二つ折りにしたセパレータは、前記正極の巻き始め端部の膨潤を防止することができ、かつ電解液のリザーバとして機能するため、安全性を損なうことなく充放電サイクル寿命等の電池性能を著しく向上することができる。
【0024】
また、前記正極の巻き始め端部付近を前記二つ折りにしたセパレータで被覆することによって、正極及び負極に発生したクラックによって内部短絡が生じるのを低減することができる。正極及び負極は柔軟性が乏しく、特に正極は巻き始めの捲回半径が小さい時にクラックを生じる場合がある。その結果、このクラックの部分が前記正極と前記負極の間に介装されているセパレータを突き破って内部短絡を生じる場合がある。前記正極の巻き始め端部付近に配置されるセパレータを二重にすることによって、前記正極や前記負極の巻き始め端部付近に生じたクラックが前記正極と前記負極の間に介装されているセパレータを突き破るのを抑制することができるため、内部短絡を低減することができる。このため、歩留まりを向上することができる。
【0025】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。
実施例1
まず、水酸化ニッケル粉末100重量部及び一酸化コバルト11重量部からなる混合物に、カルボキシメチルセルロース0.2重量%と、ポリテトラフルオロエチレン5重量%を添加し、これらに水30重量%を添加して混練してペーストを調製した。前記各ペーストを集電体としてのニッケルメッキ繊維基板に充填し、乾燥した後、ローラプレスして圧延成形することにより正極を作製した。
【0026】
LaNi4.0 Co0.4 Mn0.3 Al0.3 の組成からなる水素吸蔵合金粉末100重量部にポリテトラフルオロエチレン粉末0.5重量部と、カーボン粉末1重量部と、結着剤としてカルボキシメチルセルロースを0.2重量部添加し、水55重量部と共に混合することによって、ペーストを調製した。前記ペーストをパンチドメタルに塗布、乾燥した後、加圧成形することによって負極を作製した。また、親水性官能基が付与されたポリプロピレン繊維製不織布からなるセパレータを用意した。
【0027】
次いで、図2(a)に示すように、中心を横切る溝11を有する巻芯12を用い、前記帯状セパレータ5の中央部分を前記巻芯12の前記溝に挟んだ。
前記巻芯12を半時計回りに1/2周回転させることにより図2(b)に示すように前記セパレータ5でS字状の袋を形成した。前記負極3の端部3aを前記S字状の袋内に配置した後、前記巻芯12を3/4周回転させた。
【0028】
図2(c)に示すように、前記負極3の両側面に配置されたセパレータ5のうち外側に位置するセパレータ5に前記正極4を配置した。前記正極4の端部4aは、前記負極3の端部3aから巻芯の捲回方向と逆の方向に所望の周角度(θ)ずれるように配置された。前記周角度θ、つまり前記負極3の端部3aと前記巻芯12の中心とを結ぶ線と、前記正極4の端部4aと前記巻芯12の中心とを結ぶ線とのなす角は90°である。その後、これらを捲回することにより図3に示す渦巻形電極群1を作製した。
【0029】
作製された電極群から前記巻芯を取り除いた後、前記電極群を有底円筒形容器内に収納した。8.0mol/lの水酸化カリウム水溶液からなるアルカリ電解液を収容し、封口することにより前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
実施例2
実施例1と同様な材質のセパレータ5から実施例1と同様な方法によってS字状の袋を形成した。実施例1と同様な構成の負極3の端部3aを前記S字状の袋内に配置した後、前記巻芯12を2/3周回転させた。前記負極3の外側に位置するセパレータ5に実施例1と同様な構成の正極4をその端部4aが前記負極3の端部3aから巻芯の捲回方向と逆の方向に60°ずれるようにして配置した。その後、これらを捲回することにより図4に示す渦巻形電極群1を作製した。
【0030】
作製された電極群1と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
実施例3
実施例1と同様な材質のセパレータから実施例1と同様な方法によってS字状の袋を形成した。実施例1と同様な構成の負極の端部を前記S字状の袋内に配置した後、前記巻芯を5/6周回転させた。前記負極の外側に位置するセパレータに実施例1と同様な構成の正極をその端部が前記負極の端部から巻芯の捲回方向と逆の方向に120°ずれるようにして配置した。その後、これらを捲回することにより渦巻形電極群を作製した。
【0031】
作製された電極群と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
実施例4
実施例1と同様な材質のセパレータから実施例1と同様な方法によってS字状の袋を形成した。実施例1と同様な構成の負極の端部を前記S字状の袋内に配置した後、前記巻芯を1/12周回転させた。前記負極の外側に位置するセパレータに実施例1と同様な構成の正極をその端部が前記負極の端部から巻芯の捲回方向と逆の方向に30°ずれるようにして配置した。その後、これらを捲回することにより渦巻形電極群を作製した。
【0032】
作製された電極群と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
実施例5
実施例1と同様な材質のセパレータから実施例1と同様な方法によってS字状の袋を形成した。実施例1と同様な構成の負極の端部を前記S字状の袋内に配置した後、前記巻芯を1周回転させた。前記負極の外側に位置するセパレータに実施例1と同様な構成の正極をその端部が前記負極の端部から巻芯の捲回方向と逆の方向に180°ずれるようにして配置した。その後、これらを捲回することにより渦巻形電極群を作製した。
【0033】
作製された電極群と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
【0034】
このような方法により電極群を作製することによって、前述した図3及び図4に示すように、前記負極3の端部3aを前記正極4の端部4aよりも捲回方向に前記周角度θ分先行させることができるため、周角度θ内の領域に位置する最内周の負極3と2周目の負極3とを正極4を挟まずに重ねることができる。その結果、この重なった部分を支点にして最内周に位置する負極3と2周目の負極3とにより前記正極4の端部4a近傍を挟むことができるため、前記端部4a近傍の正極両側面に押圧力を加えることができる。従って、前記正極4の端部4a近傍が充放電サイクルの進行に伴ってその厚さ方向に膨潤するのを抑制することができる。また、前記端部4aの直前に前記負極同士が重なった部分が配置されているため、前記端部4aの位置をこの重なった部分により規制することができる。このため、前記正極4の端部4a近傍が充放電サイクルの進行に伴ってその長さ方向に膨潤するのを抑制することができる。
【0035】
以下に示す実験により本発明に係る方法により製造された二次電池の優れた特性が確認された。
比較例
実施例1と同様な構成の正極、負極、セパレータを用い、前述した図10に示す正極24の端部25と負極26の端部27とが巻芯22の中心から見て同位置に配置される方法によって前述した図11に示す渦巻形電極群28を作製した。
【0036】
作製された電極群28と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
【0037】
得られた実施例1〜5及び比較例の二次電池について、電流値1.0Cの−ΔV充電制御で充電した後、0.2Cの電流で電池電圧が1.0Vになるまで放電する充放電サイクルを1000回繰り返した。この際の放電容量を測定し、これらの値から放電容量比を求め(公称容量を基準にする)、その結果を図5に示す。
【0038】
図5から明らかなように、正極の先端部が負極の先端部から捲回方向と逆の方向に所望の周角度分ずれるように配置された実施例1〜5の二次電池は、長期間に亘って放電容量が高いことがわかる。また、前記周角度が60°〜120°である実施例1〜3の二次電池は、前記周角度が30°である実施例4及び前記周角度が180°である実施例5よりも長い期間、放電容量が高いことがわかる。これに対し、正極の先端部と負極の先端部とが巻芯の中心から見て同位置に配置された比較例の二次電池は、実施例1〜5の二次電池に比べて放電容量が低下するのが早いことがわかる。
【0039】
また、実施例1〜5及び比較例の二次電池について、電流値1.0Cの−ΔV充電制御で充電した後、0.2Cの電流で電池電圧が1.0Vになるまで放電する充放電サイクルを1000回繰り返した。この際の内部抵抗を測定し、これらの値から内部抵抗比を求め(1サイクル目の内部抵抗を基準にする)を測定し、その結果を図6に示す。
【0040】
図6から明らかなように、実施例1〜5の二次電池は、長期間に亘って内部抵抗が低いことがわかる。また、前記周角度が60°〜120°である実施例1〜3の二次電池は、前記周角度が30°である実施例4及び前記周角度が180°である実施例5よりも長い期間、内部抵抗が低いことがわかる。これに対し、比較例の二次電池は、実施例1〜5の二次電池に比べて内部抵抗が上昇するのが早いことがわかる。
実施例6
実施例1と同様な方法によりセパレータ5でS字状の袋を形成した後、実施例1と同様な負極3の端部3aを前記S字状の袋内に配置した。ひきつづき、実施例1と同様な回転周で巻芯12を回転させた。また、図7に示すように、実施例1と同様な構成の正極4の端部4aを実施例1と同様な材質からなる二つ折りの別のセパレータ13で被覆した。前記セパレータ13で被覆された正極の長さは、正極全体の長さの20%に相当する。
【0041】
前記負極3の両側面に配置されたセパレータ5のうち外側に位置するセパレータ5に前記正極4を配置した。前記正極4の外側端部14は、前記負極3の端部3aから巻芯の捲回方向と逆の方向に所望の周角度(θ)ずれるように配置された。前記周角度θは実施例1と同様に90°である。その後、これらを捲回することにより渦巻形電極群1を作製した。
【0042】
作製された電極群1と、実施例1と同様な電解液とを用いて実施例1と同様な方法により前述した図1に示す構造を有し、公称容量が1100mAhのAAサイズのニッケル水素二次電池を製造した。
【0043】
このような方法により電極群を作製することによって、前述した図7に示すように、前記正極4の端部4a付近を前記別のセパレータ13で挟むことができ、更にこれを最内周の負極3と2周目の負極3とで形成されたクリップによって挟むことができる。すなわち、前記正極4の端部4a近傍は前記セパレータ13と前記負極3とで二重に挟まれるため、前記端部4a近傍の正極両側面に加わる押圧力を向上することができる。このため、前記正極4の端部4a近傍が充放電サイクルの進行に伴ってその厚さ方向に膨潤するのを防止することができる。また、前記セパレータ13の正極両側面と対向する部分は、前記セパレータ5と前記正極4との間に介装されて固定されている。その結果、前記セパレータ13の端部4aと対向する部分はこの正極両側面と対向する部分により巻芯12の捲回方向に引っ張られるため、前記正極4の端部4aに押圧力を加えることができる。従って、前記正極4の端部4aは、その位置が前記負極同士が重なった部分により規制され、かつ前記セパレータ13によって押圧されるため、充放電サイクルの進行に伴ってその長さ方向に膨潤するのが防止される。
【0044】
以下に示す実験により実施例6の二次電池の優れた特性が確認された。
得られた実施例6の二次電池について、前述したサイクル試験を行い、得られた放電容量比を図8に示す。また、図8に比較例のデータを併記する。
【0045】
図8から明らかなように、正極の先端部が負極の先端部から捲回方向と逆の方向に所望の周角度分ずれるように配置され、かつ前記正極の先端部付近が二つ折りの別のセパレータで被覆されている実施例6の二次電池は、1000サイクルと著しく長い期間に亘って放電容量が高いことがわかる。これに対し、正極の先端部と負極の先端部とが巻芯の中心から見て同位置に配置された比較例の二次電池は、実施例6の二次電池に比べて放電容量が低下するのが早いことがわかる。
【0046】
また、実施例6の二次電池について、前述したサイクル試験を行い、得られた内部抵抗比を図9に示す。また、図9に比較例のデータを併記する。
図9から明らかなように、実施例6の二次電池は、1000サイクルと著しく長い期間に亘って内部抵抗が低いことがわかる。これに対し、比較例の二次電池は、実施例6の二次電池に比べて内部抵抗が上昇するのが早いことがわかる。
【0047】
なお、前記実施例では、ニッケル水素二次電池に適用した例を説明したが、ニッケルカドミウム二次電池、ニッケル亜鉛二次電池にも同様に適用することができる。
【0048】
【発明の効果】
以上詳述したように本発明のニッケル水素二次電池の製造方法によれば、正極の先端部が充放電サイクルの進行に伴って膨潤するのを抑制することができ、正極と負極との間の距離が変動するのを抑制することができ、セパレータ中のアルカリ電解液が前記正極へ移動するのを抑えることができ、充放電サイクル寿命を向上することができる等の顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明に係わる方法により製造されるアルカリ二次電池を示す斜視図。
【図2】本発明に係わる製造工程を示す断面図。
【図3】実施例1において作製された渦巻形電極群を示す断面図。
【図4】実施例2において作製された渦巻形電極群を示す断面図。
【図5】実施例1〜5における充放電サイクルを1000回繰り返した際の放電容量の変化を示す特性図。
【図6】実施例1〜5における充放電サイクルを1000回繰り返した際の内部抵抗の変化を示す特性図。
【図7】実施例6において作製された渦巻形電極群の要部断面図。
【図8】実施例6における充放電サイクルを1000回繰り返した際の放電容量の変化を示す特性図。
【図9】実施例6における充放電サイクルを1000回繰り返した際の内部抵抗の変化を示す特性図。
【図10】従来の製造工程を示す断面図。
【図11】従来の方法により作製された渦巻形電極群を示す断面図。
【符号の説明】
3…負極、3a…先端部、4…正極、4a…先端部、5…セパレータ、11…溝、12…巻芯。
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing an alkaline secondary battery including a spiral electrode group, and particularly relates to a method for manufacturing an alkaline secondary battery in which an electrode group manufacturing process is improved.
[0002]
[Prior art]
A nickel metal hydride secondary battery, which is an example of an alkaline secondary battery, has a structure in which a current collector is filled with a paste containing nickel hydroxide, and a current collector is filled with a paste containing a hydrogen storage alloy. A negative electrode, a separator made of a synthetic resin fiber nonwoven fabric, and an alkaline electrolyte are provided. The nickel-metal hydride secondary battery has a structure in which an electrode group wound in a spiral shape with the separator interposed between the positive electrode and the negative electrode, and the electrolyte are housed in a container. The container also serves as a negative electrode terminal in the same manner as a general alkaline secondary battery.
[0003]
As described in JP-A-60-100302, JP-A-60-130053, and JP-A-61-99278, the outer peripheral end of the nickel-hydrogen secondary battery is the end of the negative electrode. A spiral electrode group manufactured in this manner is housed in the container, and one having a structure for collecting current by bringing the inner surface of the container into contact with the negative electrode located on the outermost periphery is known. By adopting such a structure in which the outermost peripheral end of the electrode group is the end of the negative electrode, the manufacturing process of the secondary battery is simplified and current collection is ensured. Further, since the reaction of reducing oxygen gas generated from the positive electrode to water at the negative electrode when the secondary battery is overcharged is efficiently performed, an increase in the internal pressure of the secondary battery is suppressed, Battery characteristics are improved.
[0004]
By the way, in the alkaline secondary battery provided with the positive electrode having a structure in which the above-described paste containing nickel hydroxide is filled in the current collector, the positive electrode swells as the charge / discharge cycle progresses. The swelling of the positive electrode is caused by two reasons: movement of the electrolytic solution and matters that are not related to the movement of the electrolytic solution. Since the electrolytic solution in the separator of the secondary battery moves to the positive electrode and the negative electrode as the charging / discharging cycle proceeds, the positive electrode and the negative electrode swell by absorbing the electrolytic solution. The positive electrode also swells due to charge / discharge of the secondary battery. Thereafter, when discharged, the positive electrode returns to its original volume. However, as the charge / discharge cycle progresses, the volume that decreases during discharge decreases, and as a result, the positive electrode swells. When a charge / discharge cycle is performed on a secondary battery that includes this positive electrode and has a structure in which the outermost peripheral end of the electrode group described above is the end of the negative electrode, a positive electrode located at a location away from the center of the electrode group, That is, the degree of swelling of the positive electrode whose both side surfaces are opposed to the negative electrode with the separator interposed therebetween is small because the position is regulated by the negative electrode. However, since the position of the winding start end of the positive electrode is not regulated by the negative electrode, there is a problem that the degree of swelling becomes large. When the winding start end of the positive electrode swells, the thickness of the positive electrode in the vicinity of the winding start end increases toward the center of the electrode group, or the winding start end of the positive electrode bends toward the center of the electrode group. To do. As a result, the distance between the vicinity of the winding start end of the positive electrode and the negative electrode facing it fluctuates, and the location of the positive electrode that reacts with the negative electrode becomes local, reducing the capacity of the secondary battery. There was a problem that the charge / discharge cycle life was shortened.
[0005]
In view of the above, Japanese Patent Application Laid-Open No. 3-133066 discloses a nickel oxide by providing an electrode group having a structure in which the end portions of the hydrogen storage alloy electrodes are respectively located at the innermost peripheral end and the outermost peripheral end. It is disclosed that a hydrogen storage alloy electrode is opposed to the entire surface of the electrode to suppress swelling of the nickel oxide electrode. The electrode group is manufactured by the method shown in FIG. As shown in FIG. 10A, a winding core 22 having a groove 21 formed in the central portion is used, the central portion of the strip separator 23 is sandwiched between the 21 grooves of the winding core 22, and the winding core 22 is, for example, half An S-shaped bag is formed by the separator 23 by rotating it half a clockwise direction. As shown in FIG. 10B, after the end portion 25 of the hydrogen storage alloy electrode 24 is disposed in the S-shaped bag, the winding core 22 is rotated by 1/2 turn. As shown in FIG. 10C, the nickel oxide electrode 26 is placed on the separator 23 located on the outer side of the separators 23 located on both sides of the electrode 24, and the end 27 thereof faces the end 25 of the electrode 24. Arrange to do. Subsequently, the spiral electrode group 28 shown in FIG. 11 is produced by winding them.
[0006]
However, in order to meet the demand for batteries having high capacity and high energy density in recent years, the capacity of the nickel oxide electrode 26 in the secondary battery having the above-described structure is increased. The degree of swelling of 26 increased. As a result, it has become difficult to suppress the vicinity of the winding start end 27 of the electrode 26 from swelling with the progress of the charge / discharge cycle by the hydrogen storage alloy electrode 24 facing this portion. For this reason, in the said nickel oxide electrode 26, the location which reacts with the said hydrogen storage alloy electrode 24 became local, and the capacity | capacitance of the said secondary battery fell. Further, since the electrolyte solution in the separator 23 moves to the positive electrode 26, the electrolyte solution in the separator 23 is remarkably reduced, and the internal resistance of the secondary battery is increased. As a result, the secondary battery has a problem that the charge / discharge cycle life is significantly reduced.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to suppress swelling of the winding start end of the positive electrode as the charge / discharge cycle progresses. Nickel metal hydride An object of the present invention is to provide a method for manufacturing a secondary battery.
[0008]
[Means for Solving the Problems]
The present invention Of nickel metal hydride secondary batteries The method is nickel hydroxide And water A positive electrode having a structure in which a current collector is filled with a paste containing It has a structure in which a paste containing hydrogen storage alloy and water is filled in a current collector A negative electrode, Banded With separator and alkaline electrolyte Nickel metal hydride Manufacturing method of secondary battery In Using a core having a groove across the center, Strip A step of forming an S-shaped bag with the separator by rotating the core after sandwiching a part of the separator between the grooves of the core, and a tip of the negative electrode in the S-shaped bag; And winding the positive electrode on the separator located outside the negative electrode, the tip of the negative electrode from the tip of the negative electrode in the direction opposite to the winding direction. 60 ° ~ 120 ° And a step of producing a spiral electrode group by further winding and winding.
[0009]
In the step of forming the S-shaped bag, after a part of the separator is sandwiched between the grooves of the winding core, the winding core is rotated by 1/3 to 2/3 rotations, so that the S It is preferable to form a letter-shaped bag. The reason why the rotation circumference of the winding core is limited is as follows. If the rotational circumference is less than 1/3, the portion of the separator that is not interposed between the positive electrode and the negative electrode is reduced, and the amount of spare electrolyte in the electrode group may be reduced. There is. On the other hand, if the rotational circumference exceeds 2/3, the volume of the separator existing in the vicinity of the center of the electrode group becomes too large, and the volumes of the positive electrode and the negative electrode may be reduced.
[0010]
It is preferable that a circumferential angle corresponding to a positional deviation between the tip portion of the negative electrode and the tip portion of the positive electrode is 60 ° to 120 °. This is due to the following reason. If the circumferential angle is less than 60 °, such an electrode group may be difficult to suppress swelling of the tip because the portion where the negative electrodes overlap with each other without sandwiching the positive electrode is reduced. is there. Moreover, since there exists a possibility that the adhesiveness of the front-end | tip part vicinity of the said negative electrode and the positive electrode facing this may fall, there exists a possibility that the reactivity of a positive electrode and a negative electrode may fall. On the other hand, if the peripheral angle exceeds 120 °, the ratio of the portion not involved in the battery reaction to the entire electrode may increase, which may cause inconvenience in battery design.
[0011]
It is preferable to cover the vicinity of the tip of the positive electrode with another separator that is folded in half. In particular, the length of the positive electrode covered with the bi-fold separator is preferably 10% to 50% of the total length of the positive electrode. This is due to the following reason. If the length of the positive electrode covered with the separator is less than 10% of the total length of the positive electrode, the effect of suppressing the swelling of the tip of the positive electrode with the progress of the charge / discharge cycle may not be seen. There is. On the other hand, if the length of the positive electrode covered with the bi-fold separator exceeds 50% of the total length of the positive electrode, the volume occupied by the separator in the electrode group becomes too large and the absolute gap in the battery may decrease. As a result, the volumes of the positive electrode and the negative electrode may be reduced. More preferably, the length of the positive electrode covered with the other separator is 20% to 40% of the total length of the positive electrode.
[0012]
Hereinafter, an alkaline secondary battery manufactured by the method according to the present invention will be described with reference to FIG.
The spiral electrode group 1 produced by the method described above is housed in a bottomed cylindrical container 2. The negative electrode 3 is disposed on the outermost periphery of the electrode group 1 and is in electrical contact with the container 2. The positive electrode 4 faces the negative electrode 3 with a strip-shaped separator 5 interposed therebetween. The alkaline electrolyte is accommodated in the container 2. A circular sealing plate 6 having a hole 6 a in the center is disposed in the upper opening of the container 2. The ring-shaped insulating gasket 7 is disposed in a compressed state between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 2. The sealing plate 6 is airtightly fixed to the upper opening of the container 2 under compression of the insulating gasket 7. The positive electrode lead 8 has one end connected to the positive electrode 4 and the other end connected to the lower surface of the sealing plate 6. A positive electrode terminal 9 having a hat shape is attached on the sealing plate 6 so as to cover the hole 6a. The rubber safety valve 10 is disposed so as to close the hole 6 a in a space surrounded by the sealing plate 6 and the positive electrode terminal 9.
[0013]
The positive electrode 4 is prepared by preparing a paste containing nickel hydroxide powder, a conductive agent, a binder, and water, filling the paste into a current collector, drying and press-molding the paste, and then desired. It is manufactured by cutting to the size.
[0014]
Examples of the conductive agent include cobalt compounds such as cobalt monoxide, dicobalt trioxide, and cobalt hydroxide.
Examples of the binder include polytetrafluoroethylene, carboxymethylcellulose, methylcellulose, sodium polyacrylate, and polyvinyl alcohol.
[0015]
Examples of the current collector include those having a sponge-like, fibrous, or felt-like porous structure made of an alkali-resistant metal such as nickel or stainless steel or a resin plated with alkali-resistant nickel. it can.
[0016]
The negative electrode 3 is manufactured by adding a conductive material to a negative electrode active material, kneading with a binder and water to prepare a paste, filling the paste into a current collector, drying, and then molding. .
[0017]
Examples of the negative electrode active material include cadmium compounds such as metal cadmium and cadmium hydroxide, and hydrogen storage alloys. Especially, since the said hydrogen storage alloy can improve the capacity | capacitance of a secondary battery rather than the case where the said cadmium compound is used, it is preferable. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen generated electrochemically in the electrolyte and can easily release the stored hydrogen during discharge. For example, LaNi Five , MmNi Five (Mm means Misch metal which is a mixture of lanthanum elements such as La, Ce, Pr, Nd, Sm), LnNi Five (Ln: lanthanum-rich misch metal), and multi-elements in which a part of these Nis is substituted with elements such as Al, Mn, Co, Ti, Cu, Zn, Zr, Cr, B be able to.
[0018]
Examples of the conductive material include carbon black.
Examples of the binder include those similar to the positive electrode 4.
Examples of the current collector include two-dimensional substrates such as punched metal, expanded metal, perforated rigid plate, nickel net, and three-dimensional substrates such as felt-like metal porous bodies and sponge-like metal porous bodies. Can do.
[0019]
Examples of the separator 5 include polyamide fiber nonwoven fabrics and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene provided with a hydrophilic functional group. When the vicinity of the tip of the positive electrode 4 is covered with another separator that is folded in half, the same material as that of the separator 5 can be used as the material of the half-folded separator.
[0020]
As the alkaline electrolyte, for example, a potassium hydroxide solution, or a mixed solution obtained by adding one or both of sodium hydroxide and lithium hydroxide to potassium hydroxide can be used.
[0021]
[Action]
According to the method for producing an alkaline secondary battery of the present invention, an S-shaped bag is formed with a strip-shaped separator by a winding core, and the tip of the negative electrode is disposed in the S-shaped bag, and then the winding core is formed. Is rotated the desired angle. A positive electrode is arranged on the separator located on the outer side among the separators arranged on both side surfaces of the negative electrode so that the tip part thereof is delayed from the tip part of the negative electrode by a desired circumferential angle, and these are wound to form a spiral electrode By producing the group, the leading end portion of the positive electrode, that is, the winding start end portion (tip portion) of the negative electrode can be arranged before the winding start end portion. Therefore, since the positive electrode is not disposed between the innermost negative electrode located before the winding start end of the positive electrode and the second negative electrode, the innermost negative electrode and the second The negative electrode of the eye can be stacked with the separator interposed therebetween. In other words, within the circumferential angle corresponding to the misalignment between the winding start end of the negative electrode and the winding start end of the positive electrode, the innermost negative electrode and the second negative electrode are placed between them. Can be stacked without pinching. As a result, the vicinity of the winding start end portion of the positive electrode can be sandwiched between the innermost negative electrode and the second negative electrode with the portion where the negative electrodes overlap each other as a fulcrum without sandwiching the positive electrode. That is, a clip can be made with the innermost negative electrode and the second negative electrode, and the vicinity of the winding start end of the positive electrode can be sandwiched by the clip. As shown in FIG. 11 described above, according to the conventional method, the winding start end of the negative electrode and the winding start end of the positive electrode are disposed at the same position as viewed from the center of the winding core. A portion where the above-described negative electrodes overlap with a portion ahead of the portion cannot be formed. Accordingly, the vicinity of the winding start end of the positive electrode is only supported by the innermost negative electrode and the second negative electrode, so that the vicinity of the positive winding start end is prevented from swelling. The force to insert is weak and the winding start end of the positive electrode swells as the charge / discharge cycle progresses. According to the method of the present invention, the vicinity of the winding start end of the positive electrode is pressed by the negative electrode located on the innermost periphery and the negative electrode of the second periphery on both sides, so the thickness of the positive electrode is It can be suppressed that the positive electrode becomes thick as the charge / discharge cycle progresses, that is, the positive electrode swells in the thickness direction. In addition, since the portion where the negative electrodes overlap with each other is arranged in front of the winding start end portion of the positive electrode, this portion serves as a stopper, and the winding start end portion of the positive electrode is accompanied with the progress of the charge / discharge cycle. Therefore, it is possible to suppress bending toward the center of the electrode group. As a result, fluctuations in the distance between the positive electrode and the negative electrode can be suppressed, so that the capacity of the secondary battery can be improved. Moreover, since it can suppress that the electrolyte solution in the said separator moves to the said positive electrode, it can suppress that the internal resistance of the said secondary battery rises. Therefore, the charge / discharge cycle life of the secondary battery can be improved.
[0022]
In addition, by setting a circumferential angle corresponding to a positional deviation between the winding start end of the positive electrode and the winding start end of the negative electrode to 60 ° to 120 °, the portion where the negative electrodes overlap each other is sufficiently obtained. Can be secured. Therefore, since the pressing force applied to both side surfaces of the winding start end portion of the positive electrode can be improved and the strength of the overlapping portion of the negative electrode can be improved, the charge / discharge cycle of the winding start end portion of the positive electrode can be improved. It is possible to further suppress the swelling associated with the progress of. In addition, by setting the peripheral angle within the above range, it is possible to improve the adhesion between the tip portion of the positive electrode, the tip portion of the negative electrode, and the separator interposed therebetween, and the entire negative electrode is a battery. It can be involved in the reaction. As a result, the charge / discharge cycle life of the secondary battery can be further improved by setting the circumferential angle to 60 ° to 120 °.
[0023]
Further, by covering the vicinity of the winding start end of the positive electrode with another separator folded in half, the vicinity of the winding start end of the positive electrode is sandwiched between the two folded separators, and the innermost negative electrode described above And a clip formed by the negative electrode of the second round. For this reason, the pressing force applied to both sides of the positive electrode near the winding start end can be improved. In addition, the bi-fold separator is fixed between the positive electrode and the innermost negative electrode, and between the positive electrode and the second negative electrode, the portions facing the both sides of the positive electrode. As a result, the portion facing the winding start end of the bi-fold separator is pulled in the winding direction of the core by the portion facing both side surfaces, so that the bi-fold separator causes the winding start end of the positive electrode to A pressing force can be applied. Accordingly, the pressing force applied to both sides of the positive electrode near the winding start end can be improved, and the pressing force can be applied to the winding starting end of the positive electrode, so that the winding start end of the positive electrode is charged / discharged. Swelling with the progress of the cycle can be prevented. Therefore, the distance between the positive electrode and the negative electrode can be kept constant, and the electrolyte in the separator can be prevented from moving to the positive electrode. In addition, since the amount of the separator can be increased by covering the vicinity of the end portion of the positive electrode with the separator folded in this way, the amount of the electrolyte stored in the electrode group can be increased. If only the amount of the electrolytic solution is increased without increasing the amount of the separator, the electrode group cannot absorb all of the electrolytic solution at the beginning of charging / discharging, and excess electrolytic solution accumulates on the upper part of the electrode group. In this secondary battery, for example, when gas is generated in the battery due to overcharge or the like and the explosion-proof function is activated, there is a possibility that the electrolyte that has accumulated on the upper part of the electrode group is released together with the gas. Therefore, the bi-folded separator can prevent swelling of the winding start end of the positive electrode and functions as a reservoir for the electrolyte solution, so that battery performance such as charge / discharge cycle life without sacrificing safety is achieved. Can be remarkably improved.
[0024]
Further, by covering the vicinity of the winding start end portion of the positive electrode with the half-folded separator, it is possible to reduce the occurrence of an internal short circuit due to a crack generated in the positive electrode and the negative electrode. The positive electrode and the negative electrode are poor in flexibility. In particular, the positive electrode may crack when the winding radius at the beginning of winding is small. As a result, the crack portion may break through the separator interposed between the positive electrode and the negative electrode, thereby causing an internal short circuit. By double the separator disposed near the winding start end of the positive electrode, a crack generated near the winding start end of the positive electrode or the negative electrode is interposed between the positive electrode and the negative electrode. Since the breakage of the separator can be suppressed, an internal short circuit can be reduced. For this reason, a yield can be improved.
[0025]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Example 1
First, 0.2% by weight of carboxymethyl cellulose and 5% by weight of polytetrafluoroethylene are added to a mixture of 100 parts by weight of nickel hydroxide powder and 11 parts by weight of cobalt monoxide, and 30% by weight of water is added thereto. And kneaded to prepare a paste. Each paste was filled in a nickel-plated fiber substrate as a current collector, dried, and then roller pressed to form a positive electrode.
[0026]
LaNi 4.0 Co 0.4 Mn 0.3 Al 0.3 100 parts by weight of a hydrogen storage alloy powder having the following composition: 0.5 part by weight of polytetrafluoroethylene powder, 1 part by weight of carbon powder, 0.2 part by weight of carboxymethyl cellulose as a binder, and 55 parts by weight of water A paste was prepared by mixing with. The paste was applied to a punched metal, dried, and then subjected to pressure molding to produce a negative electrode. Moreover, the separator which consists of a nonwoven fabric made from a polypropylene fiber provided with the hydrophilic functional group was prepared.
[0027]
Next, as shown in FIG. 2A, a core 12 having a groove 11 across the center was used, and the central portion of the strip separator 5 was sandwiched between the grooves of the core 12.
As shown in FIG. 2 (b), an S-shaped bag was formed by the separator 5 by rotating the winding core 12 ½ times counterclockwise. After the end 3a of the negative electrode 3 was placed in the S-shaped bag, the core 12 was rotated 3/4 turn.
[0028]
As shown in FIG. 2 (c), the positive electrode 4 was arranged on the separator 5 located outside of the separators 5 arranged on both side surfaces of the negative electrode 3. The end 4a of the positive electrode 4 is disposed so as to be shifted from the end 3a of the negative electrode 3 in a direction opposite to the winding direction of the core in a desired circumferential angle (θ). The angle between the circumferential angle θ, that is, the line connecting the end 3a of the negative electrode 3 and the center of the core 12 and the line connecting the end 4a of the positive electrode 4 and the center of the core 12 is 90. °. Then, the spiral electrode group 1 shown in FIG. 3 was produced by winding them.
[0029]
After removing the core from the produced electrode group, the electrode group was stored in a bottomed cylindrical container. AA-size nickel-hydrogen secondary battery having the structure shown in FIG. 1 and having a nominal capacity of 1100 mAh was manufactured by containing and sealing an alkaline electrolyte composed of an aqueous 8.0 mol / l potassium hydroxide solution. .
Example 2
An S-shaped bag was formed from the separator 5 made of the same material as in Example 1 by the same method as in Example 1. After the end 3a of the negative electrode 3 having the same configuration as that of Example 1 was disposed in the S-shaped bag, the core 12 was rotated 2/3 round. The positive electrode 4 having the same configuration as that of Example 1 is placed on the separator 5 located outside the negative electrode 3 so that the end 4a thereof is shifted from the end 3a of the negative electrode 3 by 60 ° in the direction opposite to the winding direction of the winding core. Arranged. Then, the spiral electrode group 1 shown in FIG. 4 was produced by winding these.
[0030]
Using the produced electrode group 1 and the same electrolytic solution as in Example 1, the structure shown in FIG. 1 described above by the same method as in Example 1 and having a nominal capacity of 1100 mAh and an AA size nickel metal hydride A secondary battery was manufactured.
Example 3
An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After the end of the negative electrode having the same configuration as in Example 1 was placed in the S-shaped bag, the core was rotated 5/6 rounds. A positive electrode having the same configuration as that of Example 1 was placed on the separator located outside the negative electrode so that the end thereof was shifted from the end of the negative electrode by 120 ° in the direction opposite to the winding direction of the core. Then, the spiral electrode group was produced by winding these.
[0031]
AA size nickel hydride secondary having the structure shown in FIG. 1 described above by the same method as in Example 1 using the produced electrode group and the same electrolyte as in Example 1, and having a nominal capacity of 1100 mAh. A battery was manufactured.
Example 4
An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After the end of the negative electrode having the same configuration as that of Example 1 was placed in the S-shaped bag, the core was rotated by 1/12 turn. A positive electrode having the same configuration as that of Example 1 was disposed on the separator located outside the negative electrode so that the end thereof was shifted by 30 ° from the end of the negative electrode in the direction opposite to the winding direction of the core. Then, the spiral electrode group was produced by winding these.
[0032]
AA size nickel hydride secondary having the structure shown in FIG. 1 described above by the same method as in Example 1 using the produced electrode group and the same electrolyte as in Example 1, and having a nominal capacity of 1100 mAh. A battery was manufactured.
Example 5
An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After the end of the negative electrode having the same configuration as in Example 1 was placed in the S-shaped bag, the core was rotated once. A positive electrode having the same configuration as that of Example 1 was placed on the separator located outside the negative electrode so that the end thereof was shifted from the end of the negative electrode by 180 ° in the direction opposite to the winding direction of the core. Then, the spiral electrode group was produced by winding these.
[0033]
AA size nickel hydride secondary having the structure shown in FIG. 1 described above by the same method as in Example 1 using the produced electrode group and the same electrolyte as in Example 1, and having a nominal capacity of 1100 mAh. A battery was manufactured.
[0034]
By producing an electrode group by such a method, as shown in FIGS. 3 and 4, the end angle 3a of the negative electrode 3 is set in the winding direction more than the end portion 4a of the positive electrode 4. Therefore, the innermost negative electrode 3 located in the region within the circumferential angle θ and the second negative electrode 3 can be stacked without sandwiching the positive electrode 4 therebetween. As a result, the vicinity of the end 4a of the positive electrode 4 can be sandwiched between the negative electrode 3 located on the innermost circumference and the negative electrode 3 on the innermost circumference with this overlapping portion as a fulcrum, so that the positive electrode in the vicinity of the end 4a A pressing force can be applied to both sides. Therefore, it can suppress that the edge part 4a vicinity of the said positive electrode 4 swells in the thickness direction with progress of a charging / discharging cycle. In addition, since the portion where the negative electrodes overlap is disposed immediately before the end portion 4a, the position of the end portion 4a can be regulated by the overlapped portion. For this reason, it can suppress that the edge part 4a vicinity of the said positive electrode 4 swells in the length direction with progress of a charging / discharging cycle.
[0035]
The excellent characteristics of the secondary battery manufactured by the method according to the present invention were confirmed by the following experiment.
Comparative example
Using the positive electrode, the negative electrode, and the separator having the same configuration as in Example 1, the end portion 25 of the positive electrode 24 and the end portion 27 of the negative electrode 26 shown in FIG. 10 are arranged at the same position as viewed from the center of the core 22. The above-described spiral electrode group 28 shown in FIG.
[0036]
Using the produced electrode group 28 and the same electrolytic solution as in Example 1 and having the structure shown in FIG. 1 by the same method as in Example 1, the nominal capacity is 1100 mAh and an AA size nickel-hydrogen secondary battery. A secondary battery was manufactured.
[0037]
About the obtained secondary batteries of Examples 1 to 5 and the comparative example, after charging with a -ΔV charge control with a current value of 1.0 C, charging is performed until the battery voltage reaches 1.0 V with a current of 0.2 C. The discharge cycle was repeated 1000 times. The discharge capacity at this time was measured, the discharge capacity ratio was obtained from these values (based on the nominal capacity), and the result is shown in FIG.
[0038]
As is clear from FIG. 5, the secondary batteries of Examples 1 to 5 arranged so that the tip of the positive electrode is shifted from the tip of the negative electrode by a desired circumferential angle in the direction opposite to the winding direction are long-term. It can be seen that the discharge capacity is high. Moreover, the secondary batteries of Examples 1 to 3 in which the circumferential angle is 60 ° to 120 ° are longer than those in Example 4 in which the circumferential angle is 30 ° and Example 5 in which the circumferential angle is 180 °. It can be seen that the discharge capacity is high during the period. On the other hand, the secondary battery of the comparative example in which the tip portion of the positive electrode and the tip portion of the negative electrode are disposed at the same position when viewed from the center of the winding core has a discharge capacity as compared with the secondary batteries of Examples 1 to 5. It can be seen that it is quick to decrease.
[0039]
Moreover, about the secondary battery of Examples 1-5 and a comparative example, after charging by-(DELTA) V charge control of 1.0 C of electric current values, it discharges and discharges until the battery voltage becomes 1.0 V with the electric current of 0.2 C. The cycle was repeated 1000 times. The internal resistance at this time was measured, the internal resistance ratio was obtained from these values (based on the internal resistance at the first cycle), and the result is shown in FIG.
[0040]
As can be seen from FIG. 6, the secondary batteries of Examples 1 to 5 have low internal resistance over a long period of time. Moreover, the secondary batteries of Examples 1 to 3 in which the circumferential angle is 60 ° to 120 ° are longer than those in Example 4 in which the circumferential angle is 30 ° and Example 5 in which the circumferential angle is 180 °. It can be seen that the internal resistance is low during the period. On the other hand, it can be seen that the internal resistance of the secondary battery of the comparative example increases faster than the secondary batteries of Examples 1 to 5.
Example 6
After forming an S-shaped bag with the separator 5 by the same method as in Example 1, the end 3a of the negative electrode 3 similar to that in Example 1 was placed in the S-shaped bag. Subsequently, the core 12 was rotated at the same rotation circumference as in Example 1. Further, as shown in FIG. 7, the end 4 a of the positive electrode 4 having the same configuration as that of Example 1 was covered with another bifold separator 13 made of the same material as that of Example 1. The length of the positive electrode covered with the separator 13 corresponds to 20% of the total length of the positive electrode.
[0041]
The positive electrode 4 was disposed on the separator 5 located outside of the separators 5 disposed on both side surfaces of the negative electrode 3. The outer end portion 14 of the positive electrode 4 was disposed so as to be shifted from the end portion 3a of the negative electrode 3 in a direction opposite to the winding direction of the core in a desired circumferential angle (θ). The circumferential angle θ is 90 ° as in the first embodiment. Then, the spiral electrode group 1 was produced by winding these.
[0042]
Using the produced electrode group 1 and the same electrolytic solution as in Example 1, the structure shown in FIG. 1 described above by the same method as in Example 1 and having a nominal capacity of 1100 mAh and an AA size nickel metal hydride A secondary battery was manufactured.
[0043]
By producing the electrode group by such a method, as shown in FIG. 7 described above, the vicinity of the end 4a of the positive electrode 4 can be sandwiched between the other separators 13, and this is further connected to the innermost negative electrode. 3 and the negative electrode 3 formed in the second round. That is, since the vicinity of the end portion 4a of the positive electrode 4 is doubly sandwiched between the separator 13 and the negative electrode 3, the pressing force applied to both side surfaces of the positive electrode in the vicinity of the end portion 4a can be improved. For this reason, it can prevent that the edge part 4a vicinity of the said positive electrode 4 swells in the thickness direction with progress of a charging / discharging cycle. Further, the portions of the separator 13 facing both sides of the positive electrode are interposed and fixed between the separator 5 and the positive electrode 4. As a result, the portion facing the end 4a of the separator 13 is pulled in the winding direction of the winding core 12 by the portion facing both sides of the positive electrode, so that a pressing force can be applied to the end 4a of the positive electrode 4. it can. Therefore, the end portion 4a of the positive electrode 4 is restricted by the portion where the negative electrodes overlap each other and is pressed by the separator 13, so that the end portion 4a swells in the length direction as the charge / discharge cycle progresses. Is prevented.
[0044]
The excellent characteristics of the secondary battery of Example 6 were confirmed by the experiment shown below.
With respect to the obtained secondary battery of Example 6, the above-described cycle test was performed, and the obtained discharge capacity ratio is shown in FIG. FIG. 8 also shows the data of the comparative example.
[0045]
As is clear from FIG. 8, the tip of the positive electrode is arranged so as to be shifted from the tip of the negative electrode by a desired circumferential angle in the direction opposite to the winding direction, and the vicinity of the tip of the positive electrode is folded in another half. It can be seen that the secondary battery of Example 6 coated with the separator has a high discharge capacity over a remarkably long period of 1000 cycles. On the other hand, the secondary battery of the comparative example in which the tip portion of the positive electrode and the tip portion of the negative electrode are arranged at the same position when viewed from the center of the core has a lower discharge capacity than the secondary battery of Example 6. You can see that it is fast.
[0046]
Moreover, the cycle test mentioned above was done about the secondary battery of Example 6, and the obtained internal resistance ratio is shown in FIG. FIG. 9 also shows the data of the comparative example.
As is clear from FIG. 9, it can be seen that the secondary battery of Example 6 has a low internal resistance over a remarkably long period of 1000 cycles. On the other hand, it can be seen that the internal resistance of the secondary battery of the comparative example increases faster than that of the secondary battery of Example 6.
[0047]
In addition, although the example applied to the nickel metal hydride secondary battery was described in the said Example, it can apply similarly to a nickel cadmium secondary battery and a nickel zinc secondary battery.
[0048]
【The invention's effect】
As detailed above, the present invention Nickel metal hydride According to the method for manufacturing a secondary battery, the tip of the positive electrode can be prevented from swelling as the charge / discharge cycle progresses, and the distance between the positive electrode and the negative electrode can be prevented from fluctuating. It is possible to suppress the movement of the alkaline electrolyte in the separator to the positive electrode, and there are remarkable effects such as improvement of the charge / discharge cycle life.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an alkaline secondary battery manufactured by a method according to the present invention.
FIG. 2 is a sectional view showing a manufacturing process according to the present invention.
3 is a cross-sectional view showing a spiral electrode group manufactured in Example 1. FIG.
4 is a cross-sectional view showing a spiral electrode group produced in Example 2. FIG.
FIG. 5 is a characteristic diagram showing a change in discharge capacity when the charge / discharge cycles in Examples 1 to 5 are repeated 1000 times.
FIG. 6 is a characteristic diagram showing a change in internal resistance when the charge / discharge cycle in Examples 1 to 5 is repeated 1000 times.
7 is a cross-sectional view of main parts of a spiral electrode group manufactured in Example 6. FIG.
FIG. 8 is a characteristic diagram showing a change in discharge capacity when the charge / discharge cycle in Example 6 is repeated 1000 times.
FIG. 9 is a characteristic diagram showing a change in internal resistance when the charge / discharge cycle in Example 6 is repeated 1000 times.
FIG. 10 is a cross-sectional view showing a conventional manufacturing process.
FIG. 11 is a cross-sectional view showing a spiral electrode group manufactured by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Negative electrode, 3a ... Tip part, 4 ... Positive electrode, 4a ... Tip part, 5 ... Separator, 11 ... Groove, 12 ... Core.

Claims (3)

水酸化ニッケル及び水を含むペーストを集電体に充填した構造を有する正極と、水素吸蔵合金及び水を含むペーストを集電体に充填した構造を有する負極と、帯状のセパレータと、アルカリ電解液とを備えたニッケル水素二次電池の製造方法において、
中心を横切る溝を有する巻芯を用い、前記帯状セパレータの一部を前記巻芯の前記溝で挟んだ後、前記巻芯を回転させることにより前記セパレータでS字状の袋を形成する工程と、
前記S字状の袋内に前記負極の先端部を配置した後、所望の周角度をもって捲回する工程と、
前記負極の外側に位置するセパレータに前記正極をその先端部が前記負極の前記先端部から前記捲回方向と反対方向に60°〜120°ずれるようにして配置し、更に捲回することにより渦巻形電極群を作製する工程とを具備したことを特徴とするニッケル水素二次電池の製造方法。
A positive electrode having a structure in which a current collector is filled with a paste containing nickel hydroxide and water , a negative electrode having a structure in which a current collector is filled with a paste containing a hydrogen storage alloy and water , a strip separator, and an alkaline electrolyte In the manufacturing method of the nickel metal hydride secondary battery comprising:
Forming a S-shaped bag with the separator by rotating the winding core after a part of the strip separator is sandwiched between the grooves of the winding core using a winding core having a groove crossing the center; ,
After disposing the tip of the negative electrode in the S-shaped bag, winding with a desired circumferential angle;
The positive electrode is disposed on the separator located outside the negative electrode so that the tip of the positive electrode is offset from the tip of the negative electrode by 60 ° to 120 ° in the direction opposite to the winding direction, and is further wound to form a spiral. The manufacturing method of the nickel hydride secondary battery characterized by comprising the process of producing a shape electrode group.
前記セパレータでS字状の袋を形成する際の前記巻芯の回転数は1/3〜2/3周であることを特徴とする請求項1記載のニッケル水素二次電池の製造方法。 2. The method of manufacturing a nickel-metal hydride secondary battery according to claim 1 , wherein the number of rotations of the core when forming the S-shaped bag with the separator is 1/3 to 2/3 . 前記正極の前記先端部付近が二つ折りにした別のセパレータで被覆されていることを特徴とする請求項1または2記載のニッケル水素二次電池の製造方法。 3. The method of manufacturing a nickel hydride secondary battery according to claim 1, wherein the vicinity of the tip of the positive electrode is covered with another separator folded in half.
JP02689695A 1995-02-15 1995-02-15 Manufacturing method of nickel metal hydride secondary battery Expired - Fee Related JP3706166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02689695A JP3706166B2 (en) 1995-02-15 1995-02-15 Manufacturing method of nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02689695A JP3706166B2 (en) 1995-02-15 1995-02-15 Manufacturing method of nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JPH08222265A JPH08222265A (en) 1996-08-30
JP3706166B2 true JP3706166B2 (en) 2005-10-12

Family

ID=12206016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02689695A Expired - Fee Related JP3706166B2 (en) 1995-02-15 1995-02-15 Manufacturing method of nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP3706166B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868809B2 (en) * 2005-09-27 2012-02-01 三洋電機株式会社 Cylindrical alkaline storage battery
JP2014170664A (en) * 2013-03-04 2014-09-18 Sanyo Electric Co Ltd Battery

Also Published As

Publication number Publication date
JPH08222265A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
US20050019657A1 (en) Nickel-hydrogen cell
JP2002298906A (en) Nickel-hydrogen secondary battery
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2002025604A (en) Alkaline secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP2000251871A (en) Alkaline secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2002252025A (en) Nickel/hydrogen secondary battery
JP3352338B2 (en) Manufacturing method of alkaline storage battery
JP4413294B2 (en) Alkaline secondary battery
JPH10247514A (en) Nickel-hydrogen secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2001006724A (en) Cylindrical alkaline secondary battery
JP3973115B2 (en) Battery having an electrode body with a wound structure
JPH11149938A (en) Nickel hydrogen secondary battery
JP2001176540A (en) Nickel hydrogen secondary battery
JP2002008710A (en) Cylindrical nickel-hydrogen secondary battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JP2000113902A (en) Alkaline secondary battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2000268800A (en) Alkaline secondary battery
JPH10233229A (en) Manufacture of alkaline storage battery
JP2004063325A (en) Cylindrical storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees