JPH10154530A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10154530A
JPH10154530A JP8310821A JP31082196A JPH10154530A JP H10154530 A JPH10154530 A JP H10154530A JP 8310821 A JP8310821 A JP 8310821A JP 31082196 A JP31082196 A JP 31082196A JP H10154530 A JPH10154530 A JP H10154530A
Authority
JP
Japan
Prior art keywords
shape memory
secondary battery
battery
lithium secondary
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8310821A
Other languages
Japanese (ja)
Inventor
Teruhisa Kurokawa
輝久 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8310821A priority Critical patent/JPH10154530A/en
Publication of JPH10154530A publication Critical patent/JPH10154530A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/01Details
    • H01H61/0107Details making use of shape memory materials
    • H01H2061/0115Shape memory alloy [SMA] actuator formed by coil spring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low resistance element which is more inexpensive and can cope even with a large battery by providing a safety mechanism where a member composed of shape memory allay is installed as an element for an electric current breaking mechanism in an Li secondary battery where a composite metallic oxide mainly composed of Li and Co is formed as a positive electrode active material and a carbonaceous material is formed as a negative electrode active material. SOLUTION: An internal terminal 4 is electrically connected by a contact point B to a pressure switch plate 7 having a bursting groove 9, and the pressure switch plate 7 is also electrically continued by a contact point A with an electric current breaking element 30 through a current carrying plate 8 having a pressure releasing hole 5. When the electric current breaking element 30 becomes equal to or higher than a shape memory temperature of a shape memory allay coil 11, the shape memory alloy coil 11 instantly contracts, and the contact point A separates, and an electric current is broken. Therefore, since an electric current is completely and instantly broken differently from a conventional PTC element, a user can quickly cope with an abnormal situation, so that reliability and safety can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、安価で、安定した
放電特性が得られ、過放電や過充電による電池の温度上
昇等の異常時に瞬時に電流を遮断する安全機構を備えた
リチウム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which is inexpensive, has stable discharge characteristics, and has a safety mechanism for instantaneously interrupting current when an abnormality such as a battery temperature rise due to overdischarge or overcharge occurs. It relates to batteries.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ、ビデオ
カメラのポータブル化や携帯電話等の小型通信機が普及
するにつれて、これらの機器の電源となる電池に対して
高性能化と信頼性の向上が求められるようになってきて
いる。このような機器電源用の電池としては充放電が可
能な二次電池である、従来から知られるNi−Cd電池
やNi−水素電池に加え、近年では、よりエネルギー密
度の大きなリチウム二次電池が主流となりつつある。
2. Description of the Related Art In recent years, as personal computers and video cameras have become portable and small-sized communication devices such as portable telephones have become widespread, batteries that serve as power sources for these devices are required to have higher performance and higher reliability. It is becoming. In recent years, in addition to conventionally known Ni-Cd batteries and Ni-hydrogen batteries, which are chargeable / dischargeable secondary batteries, lithium secondary batteries having a higher energy density have been used as such power source batteries. It is becoming mainstream.

【0003】現在、リチウム二次電池には取り扱い者の
不注意による外部端子の短絡による過放電による発火事
故、或いは充電時の充電装置の故障や急速充電が正しく
行われなかったとによって、電池に過大電圧、過大充電
電流、逆接続電圧がかかり、電池内部の温度が上昇して
電池が破裂するといった事故を防止するために、電池温
度の上昇に対してはPTC素子により電流を制限する安
全機構が組込まれている。また、該PTC素子の作動に
もかかわらず、電解液等の分解により電池内圧が上昇し
た場合には、電池内の金属板に設けられた破裂溝が割れ
て内圧を大気圧に開放することで、電池の破裂や発火の
防止を図っている。
[0003] At present, lithium secondary batteries are overcharged due to fire accidents due to overdischarge due to short-circuiting of external terminals due to carelessness of the operator, failure of the charging device during charging or improper rapid charging. To prevent accidents such as voltage, excessive charging current, and reverse connection voltage, the battery internal temperature rises and the battery ruptures, a safety mechanism that limits the current with a PTC element against a rise in battery temperature is used. It is built in. Also, in spite of the operation of the PTC element, if the internal pressure of the battery increases due to decomposition of the electrolytic solution or the like, the rupture groove provided in the metal plate in the battery is broken to release the internal pressure to atmospheric pressure. , To prevent battery explosion and fire.

【0004】図10は、リチウム二次電池の安全機構部
の基本構造を示している。ここで、リード線3は放圧孔
5を有する内部端子4と接続されており、該リード線3
の他端は発電部に接続される。該内部端子4は破裂溝9
を有する圧力スイッチ板7と接点Bにより電気的に接続
され、更に、該圧力スイッチ板7はPTC素子21を介
して、外部端子15に接続されている。また、該内部端
子4と該圧力スイッチ板7とは、電池の内圧上昇によっ
て接点Bが剥離した場合には導通がなくなるように、絶
縁体6によって隔離される構造となっており、これら全
てが電池ケース1に収納されている。
FIG. 10 shows a basic structure of a safety mechanism of a lithium secondary battery. Here, the lead wire 3 is connected to the internal terminal 4 having the pressure release hole 5,
Is connected to the power generation unit. The internal terminal 4 has a rupture groove 9
The pressure switch plate 7 is electrically connected to the external terminal 15 via the PTC element 21. Further, the internal terminal 4 and the pressure switch plate 7 are separated from each other by an insulator 6 so that conduction is lost when the contact B is peeled off due to an increase in the internal pressure of the battery. It is stored in the battery case 1.

【0005】前述したように、破裂溝9はPTC素子2
1が作動して電流が微小に制限されたにもかかわらず、
電解液の分解が起こって電池内圧が上昇した場合に、接
点Bが剥離して電流路が遮断され、引き続いて電池内圧
が更に上昇した場合に、破裂溝9が割れて内圧を大気圧
に開放することにより、電池の破裂を防ぐ安全機構であ
る。従って、破裂溝9が作動した場合には、電池は使用
不可能となるため、破裂溝9が作動する前に電池に起こ
った異常を解消できる安全機構が非常に重要となる。
As described above, the rupture groove 9 is provided in the PTC element 2.
Despite the fact that 1 was activated and the current was slightly limited,
When the internal pressure of the battery rises due to decomposition of the electrolytic solution, the contact B is peeled off and the current path is cut off. When the internal pressure of the battery subsequently rises, the rupture groove 9 is broken and the internal pressure is released to the atmospheric pressure. By doing so, it is a safety mechanism that prevents the battery from bursting. Therefore, when the rupture groove 9 is activated, the battery cannot be used. Therefore, a safety mechanism that can eliminate an abnormality occurring in the battery before the rupture groove 9 is activated is very important.

【0006】その安全機構の一つとしてのPTC素子2
1は、ある温度で急激に抵抗値が増大して電流を抑制す
る抵抗体素子であり、図10において、内部端子4から
外部端子15への導通路に配置される。リチウム二次電
池用のPTC素子としては、例えば、(株)レイケムの
Polyswitch(登録商標)ポリスイッチ等の導
電性ポリマーを用いた加熱保護素子が、室温抵抗率が1
Ω・cm、抵抗転移温度が100℃、抵抗変化率が10
000倍という特性を有し、過大電圧や過大充電電流、
逆接続電圧による電池内部の異常温度上昇時には抵抗値
が大きくなって電流を制限し、温度異常が取り除かれた
後は通常の抵抗値に復帰して電池を再使用できることか
ら、広く用いられるようになっている。
[0006] PTC element 2 as one of the safety mechanisms
Reference numeral 1 denotes a resistor element whose resistance value sharply increases at a certain temperature and suppresses current, and is disposed in a conduction path from the internal terminal 4 to the external terminal 15 in FIG. As a PTC element for a lithium secondary battery, for example, a heating protection element using a conductive polymer such as Polyswitch (registered trademark) polyswitch of Raychem Corporation has a room temperature resistivity of 1%.
Ω · cm, resistance transition temperature 100 ° C, resistance change rate 10
It has the characteristic of 000 times, excessive voltage and excessive charging current,
When the abnormal temperature inside the battery rises due to the reverse connection voltage, the resistance value increases and the current is limited, and after the temperature abnormality is removed, it returns to the normal resistance value and the battery can be reused, so it is widely used. Has become.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ポリス
イッチPTC素子の室温での抵抗率は約1Ω・cmある
ことから、電池の内部抵抗が大きくなって出力損失を生
じ、放電特性を低下させて電池寿命を短くする原因とな
りかねず、特に大型電池に該PTC素子を装着しようと
した場合には、素子の大面積化により素子内部での電流
集中が起こり易く、これにより発熱が生ずることから、
大型電池への装着が困難となっている。また、ポリスイ
ッチは一般的に高価であり、大型のものが製造されてい
ないことから、より安価で大型電池にも対応可能な低抵
抗な電流制御素子が切望されている。
However, since the resistivity of the polyswitched PTC element at room temperature is about 1 Ω · cm, the internal resistance of the battery increases, causing an output loss and deteriorating the discharge characteristics. This may cause the life of the device to be shortened. Particularly, when the PTC device is mounted on a large battery, current concentration tends to occur inside the device due to an increase in the area of the device, thereby generating heat.
It is difficult to attach to large batteries. In addition, since polyswitches are generally expensive and large-sized ones are not manufactured, there is a strong demand for a low-cost, low-resistance current control element that is compatible with large batteries.

【0008】[0008]

【課題を解決するための手段】本発明はこのような従来
技術の問題点に鑑みてなされたものであり、本発明によ
れば、リチウム(Li)、コバルト(Co)を主成分と
する複合金属酸化物を正極活物質とし、炭素質材料を負
極活物質とするリチウム二次電池において、任意に設定
されたある温度において伸縮する形状記憶合金からなる
部材を電流遮断機構用素子として装着した安全機構を備
えたことを特徴とするリチウム二次電池、が提供され
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art. According to the present invention, there is provided a composite comprising lithium (Li) and cobalt (Co) as main components. In a lithium secondary battery using a metal oxide as a positive electrode active material and a carbonaceous material as a negative electrode active material, a member made of a shape memory alloy that expands and contracts at an arbitrarily set temperature is mounted as an element for a current interruption mechanism. A lithium secondary battery comprising a mechanism is provided.

【0009】また、本発明のリチウム二次電池において
は、該安全機構として、リチウム二次電池の発電部に接
続する内部端子と、電気を外部に取り出す外部端子とを
有するとともに、該内部端子と該外部端子との間に形状
記憶合金からなる部材を嵌挿させ、該リチウム二次電池
の通常作動時においては両端子間を電気的に接続させ、
該リチウム二次電池の異常昇温時においては、該形状記
憶合金部材を変形させて両端子間の電気的接続を解除さ
せる、例えば、外部端子と内部端子を接続する部品とし
て棒状、コイル状、或いは板バネ状等の形状記憶合金部
材を用いることが好ましい。このような構造を採用する
ことで、形状記憶合金部材は形状記憶作用によって伸縮
することにより、電池が異常昇温によってある形状記憶
設定温度以上になった場合に、外部端子と内部端子との
導通を瞬時に遮断し、異常が解除された場合には、再び
外部端子と内部端子を短絡するために、電池の再使用が
可能となるという顕著な効果を奏するものである。
Further, in the lithium secondary battery of the present invention, the safety mechanism has an internal terminal connected to a power generation unit of the lithium secondary battery and an external terminal for extracting electricity to the outside. A member made of a shape memory alloy is fitted between the external terminals, and during normal operation of the lithium secondary battery, both terminals are electrically connected,
At the time of abnormal temperature rise of the lithium secondary battery, the shape memory alloy member is deformed to release the electrical connection between the two terminals, for example, as a part connecting the external terminal and the internal terminal, a rod shape, a coil shape, Alternatively, it is preferable to use a shape memory alloy member such as a leaf spring. By adopting such a structure, the shape memory alloy member expands and contracts due to the shape memory effect, so that when the battery temperature exceeds a certain shape memory set temperature due to abnormal temperature rise, conduction between the external terminal and the internal terminal is performed. Is instantaneously cut off, and when the abnormality is cleared, the external terminal and the internal terminal are short-circuited again, so that there is a remarkable effect that the battery can be reused.

【0010】[0010]

【発明の実施の形態】上述のように、本発明のリチウム
二次電池の安全機構においては、形状記憶合金部材自体
が金属であるために、抵抗率が小さく、且つ、特に大型
電池の場合にも、電流集中が起こり難いために、安定し
た電池特性が得られる。また、素子の作動が瞬時に行わ
れるので、内部端子と素子との接点部において、放電
(スパーク)が生じることがなく、スパークによる接点
部の接触抵抗の増加や電解液の分解を防止できる。以
下、本発明の実施の形態を図面を参照しながら説明する
が、本発明はこれらの実施形態に限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the safety mechanism for a lithium secondary battery of the present invention, since the shape memory alloy member itself is a metal, the resistivity is small, and particularly in the case of a large battery. However, since current concentration hardly occurs, stable battery characteristics can be obtained. Further, since the operation of the element is performed instantaneously, discharge (spark) does not occur at the contact portion between the internal terminal and the element, and it is possible to prevent an increase in contact resistance of the contact portion due to the spark and decomposition of the electrolytic solution. Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

【0011】図1は、本発明の一実施形態を示す断面図
であり、電池が正常に作動している状態を示している。
発電部2はリード線3によって放圧孔5を有する内部端
子4と接続されており、該内部端子4は破裂溝9を有す
る圧力スイッチ板7と接点Bにより電気的に接続され、
更に、該圧力スイッチ板7は放圧孔5を有する通電板8
を介して、外部端子15に接続された電流遮断素子30
と接点Aにおいて導通している。該電流遮断素子30
は、支持棒14を中心軸として通電板10と外部端子固
定板16との間に形状記憶合金コイル11が機械的に接
合(かしめ、ねじ止め等)され、更に電池の内部抵抗を
極力小さくする工夫として、通電板10と外部端子固定
板16との間に銅線13が溶接された構造を有してお
り、外部端子固定板16が外部端子15の内面中央部に
溶接されている。但し、この銅線13は、支持棒14に
金属部材を使用することにより省くことも可能である。
また、内部端子4と圧力スイッチ板7の間及び通電板8
と外部端子15の間は、それぞれ接点B及び接点Aが剥
離した場合に絶縁するように、絶縁体6又は絶縁体12
によって隔離される構造となっており、これら全てが電
池ケース1に収納されている。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and shows a state where a battery is operating normally.
The power generation unit 2 is connected to an internal terminal 4 having a pressure release hole 5 by a lead wire 3, and the internal terminal 4 is electrically connected to a pressure switch plate 7 having a rupture groove 9 by a contact B,
Further, the pressure switch plate 7 is a current-carrying plate 8 having a pressure release hole 5.
Current interrupting element 30 connected to external terminal 15 through
And at the contact A. The current interruption element 30
The shape memory alloy coil 11 is mechanically joined (caulked, screwed, etc.) between the conducting plate 10 and the external terminal fixing plate 16 with the support rod 14 as a central axis, and further, the internal resistance of the battery is reduced as much as possible. As a device, a copper wire 13 is welded between the current-carrying plate 10 and the external terminal fixing plate 16, and the external terminal fixing plate 16 is welded to the center of the inner surface of the external terminal 15. However, the copper wire 13 can be omitted by using a metal member for the support rod 14.
Further, between the internal terminal 4 and the pressure switch plate 7 and between the internal
Between the insulator 6 and the insulator 12 so that the contacts B and A are insulated when the contacts B and A are separated.
, All of which are housed in the battery case 1.

【0012】尚、発電部2の更に詳細な構成は図11に
示されているように、正極50と、負極51と負極リー
ド52を一体とした負極板とをセパレータ53を介して
捲回したものを、絶縁板54によって正極50が電池ケ
ース1を介して導通しないように金属製の電池ケース1
に挿入し、一方、負極リード52は電池ケース1の内面
に接続される。また、電解液は電極捲回部に充填され、
更に絶縁板55によって負極板とリード線3とが接触し
ない構造としている。
As shown in FIG. 11, a more detailed configuration of the power generation unit 2 is such that a positive electrode 50 and a negative electrode plate in which a negative electrode 51 and a negative electrode lead 52 are integrated are wound with a separator 53 interposed therebetween. The battery case 1 is made of metal so that the positive electrode 50 is not conducted through the battery case 1 by the insulating plate 54.
, While the negative electrode lead 52 is connected to the inner surface of the battery case 1. The electrolyte is filled in the electrode winding part,
Further, the structure is such that the negative electrode plate and the lead wire 3 are not in contact with each other by the insulating plate 55.

【0013】また、本発明におけるリチウム二次電池の
正極活物質としては、通常、コバルト酸リチウム(Li
CoO2)といったリチウムとコバルトを主成分とする
複合酸化物が使用され、負極活物質には黒鉛やハードカ
ーボン等の炭素質材料が使用され、電解液としては、有
機溶媒に六フッ化リン酸リチウム電解質を溶解したもの
が主に用いられる。
The positive electrode active material of the lithium secondary battery of the present invention is usually lithium cobalt oxide (Li).
A composite oxide containing lithium and cobalt as main components such as CoO 2 ) is used, a carbonaceous material such as graphite or hard carbon is used as a negative electrode active material, and hexafluorophosphoric acid is used as an organic solvent in an organic solvent. A material in which a lithium electrolyte is dissolved is mainly used.

【0014】本実施形態において使用される内部端子
4、圧力スイッチ板7、通電板8、外部端子15、通電
板10、外部端子固定板16等の通電性部材としては、
電気抵抗が小さく、加工が容易で安価な、銅が好適に用
いられるが、ニッケルやニッケル−銅合金等も使用可能
である。また、絶縁体6はシート状のものが好ましく、
絶縁性プラスチック等の加工が容易なものが好適に使用
されるが、耐久性の点から、形状記憶合金コイル11の
作動温度以上の融点を有するものが好ましい。また、絶
縁体12においては、形状記憶合金コイル11の長さに
応じた厚みが必要であることから、軟質性の絶縁部材を
使用した場合には、電池ケース1への圧着収納の際に絶
縁部材12が変形して各構造部材を定位置に保持するこ
とができなくなる可能性があることから、絶縁性プラス
チックを使用する場合には硬質部材が好ましく、また、
アルミナやジルコニア等の絶縁性セラミックス部材も好
適に使用することができる。
The conductive members such as the internal terminal 4, the pressure switch plate 7, the conductive plate 8, the external terminal 15, the conductive plate 10, and the external terminal fixing plate 16 used in the present embodiment include:
Copper, which has a small electric resistance, is easy to process and is inexpensive, is preferably used, but nickel or a nickel-copper alloy can also be used. Further, the insulator 6 is preferably in the form of a sheet,
Insulating plastics or the like that are easy to process are preferably used, but those having a melting point equal to or higher than the operating temperature of the shape memory alloy coil 11 are preferable from the viewpoint of durability. In addition, since the insulator 12 needs to have a thickness corresponding to the length of the shape memory alloy coil 11, when a soft insulating member is used, the insulator is insulated when crimped and stored in the battery case 1. When an insulating plastic is used, a hard member is preferable, since the member 12 may be deformed and may not be able to hold each structural member in a fixed position.
Insulating ceramic members such as alumina and zirconia can also be suitably used.

【0015】図2は、図1に示した本発明の実施形態に
おいて、外部端子短絡による過電流や充電異常による過
充電等、何らかの理由によって電池温度が上昇し、電流
遮断素子30が作動した状態を示す断面図である。電流
遮断素子30が形状記憶合金コイル11の形状記憶温度
以上となった時に、瞬時に形状記憶合金コイル11が収
縮し、接点Aが離れて電流が遮断される。従って、従来
のPTC素子と異なり、電流が完全に瞬時に遮断される
ことから、異常事態に迅速に対処することができるの
で、信頼性と安全性を向上させることができる。更に、
本実施形態は、電流を遮断したにも係わらず、充放電に
起因する温度上昇が急激すぎて、電流の遮断後もある一
定時間は発熱反応が継続し、電池の内圧が更に大きくな
った場合には、内蔵された破裂溝9が破裂して電池内圧
を開放する従来の安全機構を装着することが好ましい。
FIG. 2 shows the state of the embodiment of the present invention shown in FIG. 1 in which the battery temperature rises for some reason, such as overcurrent due to external terminal short circuit or overcharge due to abnormal charging, and the current cutoff element 30 is activated. FIG. When the current cutoff element 30 becomes higher than the shape memory temperature of the shape memory alloy coil 11, the shape memory alloy coil 11 contracts instantaneously, the contact A is separated, and the current is cut off. Therefore, unlike the conventional PTC element, the current is completely cut off instantaneously, so that an abnormal situation can be promptly dealt with, so that reliability and safety can be improved. Furthermore,
In the present embodiment, the temperature rise due to charge and discharge is too rapid despite the interruption of the current, the exothermic reaction continues for a certain period of time after the interruption of the current, and the internal pressure of the battery further increases It is preferable to mount a conventional safety mechanism for releasing the internal pressure of the battery by rupture of the built-in rupture groove 9.

【0016】図3は、電流遮断素子31の形状記憶合金
コイル17が、その形状記憶設定温度以上では、通常の
状態よりも延びて電流を遮断する場合の実施形態を示し
ており、図4は、図3に示した実施形態において、電流
遮断素子31が作動した状態を示したものである。この
安全機構は、上記の図1及び図2における安全機構の場
合と同様にして作動する。但し、本実施形態において
は、図1に示した銅線13を装着していない。これは、
電流遮断素子31が作動し、再び通常状態に復帰する際
に、銅線13が通電板8と形状記憶合金コイル17との
間に挟まる等して接点Aが良好に形成されない場合がな
いようにしたものであるが、形状記憶合金コイル17は
金属ゆえに良導体であり、また、支持棒14に金属部材
を使用することで実用上の問題は発生しない。
FIG. 3 shows an embodiment in which the shape memory alloy coil 17 of the current cutoff element 31 extends beyond the normal state and cuts off the current at a temperature higher than the shape memory set temperature, and FIG. 3 shows a state in which the current interrupting element 31 is activated in the embodiment shown in FIG. This safety mechanism operates in the same manner as the safety mechanism in FIGS. 1 and 2 described above. However, in the present embodiment, the copper wire 13 shown in FIG. 1 is not mounted. this is,
When the current interrupting element 31 operates and returns to the normal state again, there is no case where the copper wire 13 is sandwiched between the conductive plate 8 and the shape memory alloy coil 17 so that the contact A is not formed well. However, the shape memory alloy coil 17 is a good conductor because it is made of metal, and the use of a metal member for the support rod 14 causes no practical problem.

【0017】図5は、本発明の別の実施形態を示す断面
図である。本実施形態においては、板バネ状の形状記憶
合金部材18が、放圧孔5を有する通電板10及び外部
端子固定板16の間に機械的に接合(かしめ、ねじ止め
等)されて構成される電流遮断素子32を用いており、
電流遮断素子32は、接点Cを通して圧力スイッチ板7
と接触している。この場合の作動の形態は図1に示した
実施形態に準ずる。本実施形態においても、板バネ状の
形状記憶合金部材18の断面積が一般的にはコイルの場
合よりも大きく、且つ、良導体であることから、図1に
示されるような銅線13を設置する必要は殆どない。
尚、図1に示した実施形態に対して、形状記憶合金コイ
ル11の伸縮方向が逆方向である形状記憶合金コイル1
7を用いた図3の実施形態があったように、本実施形態
においても、同様に、形状記憶合金板バネ18の伸縮方
向が逆方向である実施形態が考えられることは言うまで
もない。
FIG. 5 is a sectional view showing another embodiment of the present invention. In the present embodiment, a leaf spring-shaped shape memory alloy member 18 is mechanically joined (caulked, screwed, etc.) between the conducting plate 10 having the pressure release holes 5 and the external terminal fixing plate 16. Current interrupting element 32,
The current interrupting element 32 is connected to the pressure switch plate 7 through the contact C.
Is in contact with The mode of operation in this case conforms to the embodiment shown in FIG. Also in this embodiment, since the cross-sectional area of the leaf spring-shaped shape memory alloy member 18 is generally larger than that of the coil and is a good conductor, the copper wire 13 as shown in FIG. There is little need to do this.
The shape memory alloy coil 1 in which the direction of expansion and contraction of the shape memory alloy coil 11 is opposite to that of the embodiment shown in FIG.
As in the embodiment of FIG. 3 using No. 7, it is needless to say that an embodiment in which the expansion and contraction direction of the shape memory alloy leaf spring 18 is the opposite direction is also conceivable in this embodiment.

【0018】図6は、形状記憶合金コイル11とバネ性
のある金属板19からなる電流遮断素子33を用いた安
全機構を示した一実施形態である。バネ性のある金属板
19は接点Dにおいて内部端子4と接続されており、形
状記憶合金コイル11とバネ性のある金属板19との接
点Eは、接触によって形成されており、形状記憶合金コ
イル11が電流路を兼ねている。
FIG. 6 shows an embodiment showing a safety mechanism using a current interrupting element 33 comprising a shape memory alloy coil 11 and a metal plate 19 having spring properties. The metal plate 19 having the spring property is connected to the internal terminal 4 at the contact D, and the contact E between the shape memory alloy coil 11 and the metal plate 19 having the spring property is formed by contact. Reference numeral 11 also serves as a current path.

【0019】図7は、図6に示した実施形態における安
全機構が作動した状態を示している。即ち、電池内圧が
上昇した場合には、内圧によってバネ性のある金属板1
9が屈曲して接点Dが瞬時に離れ、電流を遮断する。こ
の状態で、異常の原因が取り除かれれば、バネ性のある
金属板19と形状記憶合金コイル11との接点Eは接続
された状態で保持され、内圧が通常状態に復帰したとき
には、形状記憶合金コイル11の伸縮力によってバネ性
のある金属板19の屈曲部が元の状態に戻り、接点Dが
再び形成されて電池の再使用が可能となる。しかし、接
点Dにおいて電流が遮断されたにもかかわらず、更に電
流遮断素子33の温度上昇が継続して形状記憶合金コイ
ル11の形状記憶温度に達した場合には、形状記憶合金
コイル11が形状記憶作用によって更に収縮し、接点E
も離れる。これらの安全機構の作動により、異常原因が
除去され、電池内圧が通常状態に復帰した場合、又は温
度が形状記憶合金コイル11の形状記憶温度以下となっ
た場合には、接点D及び接点Eが再び形成されるように
なるが、このとき、両接点が形成されなければ、電池の
再使用ができない仕組みとなっている。即ち、接点Dの
接触/非接触による圧力スイッチと、接点Eの接触/非
接触による温度スイッチの両方を備えた安全機構とする
ことで、より一層の安全性確保が図られる。また、従来
の圧力スイッチと異なり、電流が瞬時に遮断されること
から、接点Dにおいて放電現象(スパーク)が生じて電
解液に悪影響を与えることがない。しかし、これら2つ
の電流遮断素子の作動にもかかわらず、電池の内圧が上
昇するような異常時には、破裂溝9が破裂して内部圧力
が開放され、この場合には、電池は再使用できなくな
る。
FIG. 7 shows a state in which the safety mechanism in the embodiment shown in FIG. 6 is operated. That is, when the internal pressure of the battery rises, the metal plate 1 having a spring property is generated by the internal pressure.
9 bends and the contact D separates instantaneously, interrupting the current. In this state, if the cause of the abnormality is removed, the contact point E between the metal plate 19 having a spring property and the shape memory alloy coil 11 is maintained in a connected state, and when the internal pressure returns to the normal state, the shape memory alloy The bent portion of the metal plate 19 having the spring property returns to the original state by the expansion and contraction force of the coil 11, the contact D is formed again, and the battery can be reused. However, even if the current is cut off at the contact point D, if the temperature of the current cutoff element 33 further rises and reaches the shape memory temperature of the shape memory alloy coil 11, the shape memory alloy coil 11 It contracts further by the memory action, and the contact E
Also leave. By the operation of these safety mechanisms, when the cause of the abnormality is eliminated and the internal pressure of the battery returns to the normal state, or when the temperature becomes equal to or lower than the shape memory temperature of the shape memory alloy coil 11, the contacts D and E are set. The battery is formed again, but at this time, the battery cannot be reused unless both contacts are formed. That is, the safety mechanism is provided with both a pressure switch based on contact / non-contact of the contact D and a temperature switch based on contact / non-contact of the contact E, thereby further ensuring safety. Further, unlike the conventional pressure switch, since the current is instantaneously interrupted, a discharge phenomenon (spark) does not occur at the contact point D and the electrolytic solution is not adversely affected. However, in the event of an abnormality in which the internal pressure of the battery rises despite the operation of these two current interrupting elements, the rupture groove 9 bursts and the internal pressure is released, and in this case, the battery cannot be reused. .

【0020】図8は、図1に示した実施形態と図6で示
した実施形態とを組み合わせた実施形態の断面図であ
る。本実施形態の場合には、バネ性のある金属板19に
接するバネ20は、図6の実施形態で示したような形状
記憶合金である必要はない。何故なら、バネ性のある金
属板19は通電板8と直接接触しているために、バネ性
のある金属板19とバネ20との接点Fによる電流の遮
断は不要であり、バネ20は単純に離れた接点Dを再形
成する機能だけを有すればよいからである。即ち、本実
施形態は、電池の温度上昇に感応して作動する電流遮断
機構と、電池の内圧上昇に感応して作動する電流遮断機
構とを装着し、安全性の確保を図っている。また、電池
本体に外部から応力が加わって変形し、内圧が上がった
状態が継続する場合等では、接点Dが離れて使用が不可
能となるので、不良電池を誤って使用することを回避で
きる。
FIG. 8 is a sectional view of an embodiment in which the embodiment shown in FIG. 1 and the embodiment shown in FIG. 6 are combined. In the case of the present embodiment, the spring 20 in contact with the metal plate 19 having the spring property does not need to be a shape memory alloy as shown in the embodiment of FIG. Because the springy metal plate 19 is in direct contact with the current-carrying plate 8, it is not necessary to cut off the current by the contact F between the springy metal plate 19 and the spring 20, and the spring 20 is simple. This is because it is only necessary to have a function of re-forming the contact D that is farther away from the target. That is, in the present embodiment, a current interrupting mechanism that operates in response to an increase in the temperature of the battery and a current interrupting mechanism that operates in response to an increase in the internal pressure of the battery are mounted to ensure safety. Further, in the case where the battery body is deformed by applying an external stress and the internal pressure continues to rise, the contact D is separated and cannot be used, so that it is possible to avoid erroneous use of the defective battery. .

【0021】本実施形態の安全機構の作動形態は次の通
りである。先ず、充放電の異常や動作環境によって電池
温度が上昇した場合、電池本体が密閉構造であることか
ら、図9に示すように、電池の内部圧力が増加してバネ
性のある金属板19が屈曲して接点Dが離れて電流を遮
断する。しかし、異常の原因が除去され、電池温度が通
常温度に下がり、電池内部圧力が通常値に復帰すると、
バネ20による伸縮力によって接点Dが再形成され、通
電が可能となる。ところが、接点Dの剥離により、電流
を遮断したにもかかわらず、温度上昇が継続した場合に
は図9に示されるように、形状記憶合金素子30も作動
し、接点Aが離れる。即ち、この場合には、電池内での
電流遮断点が2箇所となるため、接点Dの再形成による
電池内圧の異常の解除と、接点Aの再形成による温度異
常の解除の両方が行われなければ、電池を再使用するこ
とができない。勿論、これらの2つの安全機構の作動に
もかかわらず、電池の内圧が上昇した場合には、破裂溝
9が破裂して内部圧力が開放される従来の安全機構をも
並設する。
The operation mode of the safety mechanism according to the present embodiment is as follows. First, when the battery temperature rises due to charging / discharging abnormality or operating environment, since the battery body has a hermetically sealed structure, as shown in FIG. The contact D is bent and cuts off the current. However, when the cause of the abnormality is removed, the battery temperature drops to the normal temperature, and the battery internal pressure returns to the normal value,
The contact D is re-formed by the expansion and contraction force of the spring 20, and the electricity can be supplied. However, when the temperature continues to rise despite the interruption of the current due to the separation of the contact D, as shown in FIG. 9, the shape memory alloy element 30 also operates, and the contact A is separated. That is, in this case, since the current interruption points in the battery are two places, both the release of the abnormality of the battery internal pressure by re-forming the contact D and the release of the temperature abnormality by re-forming the contact A are performed. Without it, the batteries cannot be reused. Of course, if the internal pressure of the battery rises despite the operation of these two safety mechanisms, a conventional safety mechanism in which the rupture groove 9 ruptures to release the internal pressure is also provided in parallel.

【0022】以上、本発明の実施形態について詳述して
きたが、本発明はこれらの実施形態によって何ら限定を
受けるものではないことはいうまでもないところであ
る。また、本発明には上記の実施形態の他にも本発明の
趣旨を逸脱しない限りにおいて、当業者の知識に基づい
て種々の変更、修正、改良等の加え得るものであること
が理解されるべきである。
The embodiments of the present invention have been described in detail above, but it goes without saying that the present invention is not limited by these embodiments. In addition, it is understood that various changes, modifications, improvements, and the like can be made to the present invention based on the knowledge of those skilled in the art without departing from the spirit of the present invention in addition to the above-described embodiments. Should.

【0023】[0023]

【発明の効果】以上、説明したように、本発明の形状記
憶合金部材を用いた安全機構を装着したリチウム二次電
池によれば、安全機構に使用される形状記憶合金部材自
体が金属であるために、抵抗率が小さく、且つ、特に大
型電池の場合にも、電流集中が起こり難いために、安定
した電池特性が得られるという利点がある。また、バネ
性のある金属板を用いた電流遮断素子の作動が瞬時に行
われるので、内部端子と電流遮断素子との接点部におい
て、放電(スパーク)が生じることがなく、スパークに
よる接点部の接触抵抗の増大と、電解液の分解が防止さ
れて、充放電事故を防止できるという顕著な効果を奏す
る。
As described above, according to the lithium secondary battery equipped with the safety mechanism using the shape memory alloy member of the present invention, the shape memory alloy member itself used for the safety mechanism is metal. Therefore, there is an advantage that a stable battery characteristic can be obtained because the current concentration is unlikely to occur even in the case of a large-sized battery having a low resistivity. In addition, since the operation of the current interrupting element using a metal plate having a spring property is performed instantaneously, no discharge (spark) occurs at the contact portion between the internal terminal and the current interrupting element, and the contact portion due to the spark is not generated. The contact resistance is increased, and the decomposition of the electrolytic solution is prevented, so that a remarkable effect of preventing a charge / discharge accident can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の図1に示した実施形態の絶縁作動状態
を示す断面図である。
FIG. 2 is a cross-sectional view showing an insulation operation state of the embodiment shown in FIG. 1 of the present invention.

【図3】本発明の別の実施形態を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of the present invention.

【図4】本発明の図3に示した実施形態の絶縁作動状態
を示す断面図である。
FIG. 4 is a cross-sectional view showing an insulation operation state of the embodiment shown in FIG. 3 of the present invention.

【図5】本発明の更に別の実施形態を示す断面図であ
る。
FIG. 5 is a sectional view showing still another embodiment of the present invention.

【図6】本発明の更に別の実施形態の断面図である。FIG. 6 is a cross-sectional view of yet another embodiment of the present invention.

【図7】本発明の図6に示した実施形態の絶縁作動状態
を示す断面図である。
FIG. 7 is a cross-sectional view showing an insulation operation state of the embodiment shown in FIG. 6 of the present invention.

【図8】本発明の更に別の実施形態のを示す断面図であ
る。
FIG. 8 is a sectional view showing still another embodiment of the present invention.

【図9】本発明の図8に示した実施形態の絶縁作動状態
を示す断面図である。
FIG. 9 is a cross-sectional view showing an insulation operation state of the embodiment shown in FIG. 8 of the present invention.

【図10】従来のリチウム二次電池の安全機構の断面図
である。
FIG. 10 is a sectional view of a conventional safety mechanism for a lithium secondary battery.

【図11】本発明のリチウム二次電池の発電部の構造図
である。
FIG. 11 is a structural diagram of a power generation unit of the lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1…電池ケース、2…発電部、3…リード線、4…内部
端子、5…放圧孔、6…絶縁体、7…圧力スイッチ板、
8…通電板、9…破裂溝、10…通電板、11…形状記
憶合金コイル、12…絶縁体、13…銅線、14…支持
棒、15…外部端子、16…外部端子固定板、17…形
状記憶合金コイル、18…板バネ状の形状記憶合金部材
(形状記憶合金板バネ)、19…バネ性のある金属板、
20…バネ、21…PTC素子、30…電流遮断素子、
31…電流遮断素子、32…電流遮断素子、33…電流
遮断素子、50…正極、51…負極、52…負極リー
ド、53…セパレータ、54…絶縁板、55…絶縁板、
A…電流遮断素子(30、31)と通電板8との接点、
B…内部端子4と圧力スイッチ板7との接点、C…電流
遮断素子32と圧力スイッチ板7との接点、D…内部端
子4とバネ性のある金属板19との接点、E…形状記憶
合金コイル11とバネ性のある金属板19との接点、F
…バネ20とバネ性のある金属板19との接点
DESCRIPTION OF SYMBOLS 1 ... Battery case, 2 ... Power generation part, 3 ... Lead wire, 4 ... Internal terminal, 5 ... Pressure relief hole, 6 ... Insulator, 7 ... Pressure switch plate,
Reference numeral 8: conductive plate, 9: burst groove, 10: conductive plate, 11: shape memory alloy coil, 12: insulator, 13: copper wire, 14: support rod, 15: external terminal, 16: external terminal fixing plate, 17 ... shape memory alloy coil, 18 ... leaf spring shape memory alloy member (shape memory alloy leaf spring), 19 ... metal plate having spring property,
20: spring, 21: PTC element, 30: current cutoff element,
31 current interrupting element, 32 current interrupting element, 33 current interrupting element, 50 positive electrode, 51 negative electrode, 52 negative electrode lead, 53 separator, 54 insulating plate, 55 insulating plate,
A: contact point between the current interrupting element (30, 31) and the conducting plate 8,
B: contact point between the internal terminal 4 and the pressure switch plate 7, C ... contact point between the current interrupting element 32 and the pressure switch plate 7, D ... contact point between the internal terminal 4 and the metal plate 19 having spring properties, E ... shape memory Contact point between the alloy coil 11 and the metal plate 19 having spring property, F
... Point of contact between spring 20 and metal plate 19 having spring properties

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウム(Li)、コバルト(Co)を主
成分とする複合金属酸化物を正極活物質とし、炭素質材
料を負極活物質とするリチウム二次電池において、 任意に設定されたある温度において伸縮する形状記憶合
金からなる部材を電流遮断機構用素子として装着した安
全機構を備えたことを特徴とするリチウム二次電池。
1. A lithium secondary battery in which a composite metal oxide containing lithium (Li) and cobalt (Co) as main components is used as a positive electrode active material and a carbonaceous material is used as a negative electrode active material. A lithium secondary battery comprising a safety mechanism in which a member made of a shape memory alloy that expands and contracts at a temperature is mounted as an element for a current interruption mechanism.
【請求項2】該安全機構が、該リチウム二次電池の発電
部に接続する内部端子と、電気を外部に取り出す外部端
子とを有するとともに、該内部端子と該外部端子との間
に形状記憶合金からなる部材を嵌挿させ、該リチウム二
次電池の通常作動時においては両端子間を電気的に接続
させ、該リチウム二次電池の異常昇温時においては、該
形状記憶合金部材を変形させて両端子間の電気的接続を
解除させることを特徴とする請求項1記載のリチウム二
次電池。
2. The safety mechanism has an internal terminal connected to a power generation unit of the lithium secondary battery, and an external terminal for extracting electricity to the outside, and has a shape memory between the internal terminal and the external terminal. A member made of an alloy is inserted, and both terminals are electrically connected at the time of normal operation of the lithium secondary battery, and at the time of abnormal temperature rise of the lithium secondary battery, the shape memory alloy member is deformed. 2. The lithium secondary battery according to claim 1, wherein the electrical connection between both terminals is released.
【請求項3】該形状記憶合金部材が、棒状、コイル状又
は板バネ状に構成されていることを特徴とする請求項1
又は2記載のリチウム二次電池。
3. The device according to claim 1, wherein said shape memory alloy member is formed in a rod shape, a coil shape or a leaf spring shape.
Or the lithium secondary battery according to 2.
JP8310821A 1996-11-21 1996-11-21 Lithium secondary battery Pending JPH10154530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8310821A JPH10154530A (en) 1996-11-21 1996-11-21 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8310821A JPH10154530A (en) 1996-11-21 1996-11-21 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10154530A true JPH10154530A (en) 1998-06-09

Family

ID=18009825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8310821A Pending JPH10154530A (en) 1996-11-21 1996-11-21 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10154530A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223204A (en) * 1997-02-12 1998-08-21 Denso Corp Safety apparatus for battery
US6018286A (en) * 1998-11-20 2000-01-25 Therm-O-Disc, Incorporated Thermal switch
JP2000090963A (en) * 1998-09-10 2000-03-31 Samsung Display Devices Co Ltd Cap assembly for secondary battery
US6342826B1 (en) * 1999-08-11 2002-01-29 Therm-O-Disc, Incorporated Pressure and temperature responsive switch assembly
US6426867B1 (en) * 2000-05-05 2002-07-30 Wilson Greatbatch, Ltd. Protection device having tapered ribs and method of assembling a battery with a protection device and an electrical component
US6451473B1 (en) 1999-06-01 2002-09-17 Nec Tokin Corporation Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2004281116A (en) * 2003-03-13 2004-10-07 Yuasa Corp Sealed storage battery
JP2005340053A (en) * 2004-05-28 2005-12-08 Yuasa Corp Sealed storage battery
JP2009538505A (en) * 2006-05-24 2009-11-05 エバレデイ バツテリ カンパニー インコーポレーテツド Battery current interrupting device
KR20150097042A (en) * 2014-02-17 2015-08-26 주식회사 엘지화학 Cap assembly and cylinderical type battery comprising the same
JP2015233008A (en) * 2012-04-12 2015-12-24 株式会社豊田自動織機 Power storage device
WO2016157748A1 (en) * 2015-03-27 2016-10-06 三洋電機株式会社 Circular cylindrical battery and method for manufacturing same
JP2016186931A (en) * 2015-07-30 2016-10-27 三洋電機株式会社 Cylindrical battery
KR20180118949A (en) * 2017-04-24 2018-11-01 주식회사 엘지화학 Battery Cell Having a Top Cap on Which a Shape Memory Alloy Is Formed
JP2019046613A (en) * 2017-08-31 2019-03-22 トヨタ自動車株式会社 Power storage device
CN109962205A (en) * 2017-12-25 2019-07-02 惠州比亚迪电池有限公司 Battery cover board assembly, single battery, battery modules, power battery pack and electric car
KR20190109072A (en) * 2018-03-16 2019-09-25 주식회사 엘지화학 Secondary battery and manufacture method for the same
JP2021524136A (en) * 2018-11-30 2021-09-09 エルジー・ケム・リミテッド A battery module with improved safety, a battery pack containing the battery module, and a vehicle containing the battery pack.
CN114955197A (en) * 2022-05-16 2022-08-30 维沃移动通信有限公司 Electronic equipment set

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223204A (en) * 1997-02-12 1998-08-21 Denso Corp Safety apparatus for battery
JP2000090963A (en) * 1998-09-10 2000-03-31 Samsung Display Devices Co Ltd Cap assembly for secondary battery
US6018286A (en) * 1998-11-20 2000-01-25 Therm-O-Disc, Incorporated Thermal switch
US6078244A (en) * 1998-11-20 2000-06-20 Therm-O-Disc, Incorporated Thermal switch
US6451473B1 (en) 1999-06-01 2002-09-17 Nec Tokin Corporation Non-aqueous electrolyte secondary battery and method of manufacturing the same
DE10027001C2 (en) * 1999-06-01 2002-10-24 Nec Corp Secondary battery with a non-aqueous electrolyte and process for producing it
US6342826B1 (en) * 1999-08-11 2002-01-29 Therm-O-Disc, Incorporated Pressure and temperature responsive switch assembly
US6426867B1 (en) * 2000-05-05 2002-07-30 Wilson Greatbatch, Ltd. Protection device having tapered ribs and method of assembling a battery with a protection device and an electrical component
JP4537662B2 (en) * 2003-03-13 2010-09-01 株式会社Gsユアサ Sealed storage battery
JP2004281116A (en) * 2003-03-13 2004-10-07 Yuasa Corp Sealed storage battery
JP2005340053A (en) * 2004-05-28 2005-12-08 Yuasa Corp Sealed storage battery
JP2009538505A (en) * 2006-05-24 2009-11-05 エバレデイ バツテリ カンパニー インコーポレーテツド Battery current interrupting device
US7763375B2 (en) 2006-05-24 2010-07-27 Eveready Battery Company, Inc. Current interrupt device for batteries
JP2015233008A (en) * 2012-04-12 2015-12-24 株式会社豊田自動織機 Power storage device
KR20150097042A (en) * 2014-02-17 2015-08-26 주식회사 엘지화학 Cap assembly and cylinderical type battery comprising the same
JPWO2016157748A1 (en) * 2015-03-27 2018-01-18 三洋電機株式会社 Cylindrical battery and manufacturing method thereof
WO2016157748A1 (en) * 2015-03-27 2016-10-06 三洋電機株式会社 Circular cylindrical battery and method for manufacturing same
US10601002B2 (en) 2015-03-27 2020-03-24 Sanyo Electric Co., Ltd. Cylindrical battery and method for producing the same
JP2016186931A (en) * 2015-07-30 2016-10-27 三洋電機株式会社 Cylindrical battery
KR20180118949A (en) * 2017-04-24 2018-11-01 주식회사 엘지화학 Battery Cell Having a Top Cap on Which a Shape Memory Alloy Is Formed
JP2019046613A (en) * 2017-08-31 2019-03-22 トヨタ自動車株式会社 Power storage device
CN109962205A (en) * 2017-12-25 2019-07-02 惠州比亚迪电池有限公司 Battery cover board assembly, single battery, battery modules, power battery pack and electric car
CN109962205B (en) * 2017-12-25 2021-09-21 惠州比亚迪电池有限公司 Battery cover plate assembly, single battery, battery module, power battery pack and electric automobile
KR20190109072A (en) * 2018-03-16 2019-09-25 주식회사 엘지화학 Secondary battery and manufacture method for the same
JP2021524136A (en) * 2018-11-30 2021-09-09 エルジー・ケム・リミテッド A battery module with improved safety, a battery pack containing the battery module, and a vehicle containing the battery pack.
US11881597B2 (en) 2018-11-30 2024-01-23 Lg Energy Solution, Ltd. Battery module with improved safety, battery pack comprising battery module, and vehicle comprising battery pack
CN114955197A (en) * 2022-05-16 2022-08-30 维沃移动通信有限公司 Electronic equipment set

Similar Documents

Publication Publication Date Title
JPH10154530A (en) Lithium secondary battery
JP3210593B2 (en) Lithium secondary battery
KR100578804B1 (en) Cap assembly and Secondary battery thereof
KR101183008B1 (en) Secondary Battery and Manufacturing method for the Same
JP3683283B2 (en) Secondary battery current interrupt device
KR100720282B1 (en) Secondary battery having an improved safety
KR20180064221A (en) Cylindrical secondary battery module
CN110120557B (en) Protection device and battery
CN108511670B (en) Battery electrode component, cover plate component and battery
JP6143434B2 (en) Nonaqueous electrolyte secondary battery
JP2003111269A (en) Secondary battery with protection circuit
JP5111760B2 (en) Battery protection element and battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
KR20000038817A (en) Secondary lithium battery
JPH10188945A (en) Lithium secondary battery
KR20130089375A (en) Secondary battery and element used for secondary battery
JP4751500B2 (en) Electrode wound type secondary battery
CN114093669B (en) Capacitor and electronic device
JPH11260220A (en) Thermal protector
KR20040037547A (en) Secondary battery pack
JPH10334883A (en) Safety structure for sealed battery
JP2001283828A (en) Polymer lithium secondary battery
CN112216934A (en) Battery cover plate assembly and single battery
CN109792032B (en) Secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227