JP2005336233A - 複数段炭化炉を用いた有機性物質ガス化システム - Google Patents
複数段炭化炉を用いた有機性物質ガス化システム Download PDFInfo
- Publication number
- JP2005336233A JP2005336233A JP2004153359A JP2004153359A JP2005336233A JP 2005336233 A JP2005336233 A JP 2005336233A JP 2004153359 A JP2004153359 A JP 2004153359A JP 2004153359 A JP2004153359 A JP 2004153359A JP 2005336233 A JP2005336233 A JP 2005336233A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbonization
- dry distillation
- furnace
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coke Industry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
【課題】有機性物質を主要成分とする原料を炭化させると共に、炭化処理の際に発生する乾留ガスを改質させて発電等の他の用途に使用できる複数段炭化炉を用いた有機性物質ガス化システムを提供する。
【解決手段】原料供給口90から炭化物吐出口91にかけて並設され原料Aを加熱処理する複数の乾留室2とを有する炭化炉1が設けられている。炭化炉1から吐出された乾留ガスを改質して改質ガスとする改質炉100が設けられている。炭化炉1の乾留室2から延設され乾留室2からそれぞれ吐出された乾留ガスを改質炉100に供給する複数のガス通路70からなるガス通路群を有するガス供給系7が設けられている。複数のガス通路70のうちの1個または2個以上は、当該ガス通路70を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素70を有する。
【選択図】図3
【解決手段】原料供給口90から炭化物吐出口91にかけて並設され原料Aを加熱処理する複数の乾留室2とを有する炭化炉1が設けられている。炭化炉1から吐出された乾留ガスを改質して改質ガスとする改質炉100が設けられている。炭化炉1の乾留室2から延設され乾留室2からそれぞれ吐出された乾留ガスを改質炉100に供給する複数のガス通路70からなるガス通路群を有するガス供給系7が設けられている。複数のガス通路70のうちの1個または2個以上は、当該ガス通路70を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素70を有する。
【選択図】図3
Description
本発明は動物糞等の有機性物質を主要成分とする原料を炭化させる複数段炭化炉を用いた有機性物質ガス化システムに関する。
有機性廃棄物を例にとって従来技術を説明する。従来、動物糞、紙屑、繊維屑、プラスチック屑等の有機性廃棄物の処分が要請されている。しかし近年、法規制にて、焼却炉の使用が制限されていることから、上記した有機性廃棄物は専門の外部処理業者に委託して処分することが余儀なくされているが、コスト高となる。そこで近年本発明者は、酸素の供給が制限された乾留室において有機性廃棄物等の原料を蒸し焼きして乾留することにより、有機性廃棄物等の原料を炭化物とすることを着想し、この着想のもとに炭化炉を開発した(特許文献1,2)。この炭化炉は、有機性原料等原料が供給されると共に酸素の供給が制限された乾留加熱処理を行う乾留室を有する。
特開2002−180062号
特開2002−180061号
上記した利点をもつガスの炭化炉を用いたシステムの開発が要請されている。本発明は上記した実情に鑑みてなされたものであり、有機性物質を主要成分とする原料を炭化させると共に、炭化処理の際に発生する乾留ガスを改質させて発電等の他の用途に使用できる複数段炭化炉を用いた有機性物質ガス化システムを提供することを課題とする。
(1)第1発明に係る複数段炭化炉を用いた有機性物質ガス化システムは、
有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、炭化炉の乾留室から延設された複数のガス通路と複数のガス通路を流れる乾留ガスを合流させて改質炉に供給する共通ガス通路とを有するガス供給系が設けられていることを特徴とするものである。
有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、炭化炉の乾留室から延設された複数のガス通路と複数のガス通路を流れる乾留ガスを合流させて改質炉に供給する共通ガス通路とを有するガス供給系が設けられていることを特徴とするものである。
原料供給口から炭化物吐出口にかけて複数の乾留室が並設されている。原料供給口側の乾留室から吐出される乾留ガスの組成と、炭化物吐出口側の乾留室から吐出される乾留ガスの組成とは必ずしも同一ではない。組成は水蒸気または可燃成分等の量を含む意味である。乾留室からガス通路にそれぞれ個別に吐出された乾留ガスは、共通ガス通路において合流し、改質炉に供給される。これにより改質炉において改質反応のバラツキが低減される。
(2)第2発明に係る複数段炭化炉を用いた有機性物質ガス化システムは、
有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、
炭化炉の乾留室から延設され乾留室からそれぞれ吐出された乾留ガスを改質炉に供給する複数のガス通路を有するガス供給系が設けられており、複数のガス通路のうちの1個または2個以上は、当該ガス通路を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素を有することを特徴とするものである。
有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、
炭化炉の乾留室から延設され乾留室からそれぞれ吐出された乾留ガスを改質炉に供給する複数のガス通路を有するガス供給系が設けられており、複数のガス通路のうちの1個または2個以上は、当該ガス通路を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素を有することを特徴とするものである。
原料供給口から炭化物吐出口にかけて複数の乾留室が並設されている。原料供給口側の乾留室から改質炉に向けて吐出される乾留ガスの組成と、炭化物吐出口側の乾留室から改質炉に向けて吐出される乾留ガスの組成とは必ずしも同一ではない。例えば、原料供給口側の乾留室から吐出される乾留ガスは、炭化物吐出口側の乾留室から吐出される乾留ガスに比較して水蒸気を相対的に多く含む。また、炭化物吐出口側の乾留室から吐出される乾留ガスは、原料供給口側の乾留室から吐出される乾留ガスに比較して水蒸気を相対的に少なく含む。このため改質炉における改質反応や炭化炉の状況によっては、流量調整要素により、ガス通路を流れる乾留ガスの単位時間当たりの流量を調整し、改質炉に供給する水蒸気の割合、可燃成分の割合等を調整できる。このように炭化炉から改質炉に供給されるガス(改質ガスの原料ガス)の組成等を、炭化炉や改質炉の運転状況等に応じて、流量調整要素の機能により調整できる。故に改質炉における改質反応を調整できる。
第1発明、第2発明によれば、ガス供給系は、乾留室から個別に延設された複数のガス通路と、複数のガス通路の開口量を調整する開口量調整要素と、複数のガス通路と改質炉とをつなぐ共通ガス通路とを有する態様にできる。複数の乾留室は高さ方向に沿って配置されている態様にできる。改質炉で生成された改質ガスを燃料とする駆動源が設けられている態様にできる。炭化炉は、乾留室を外側から覆う加熱室と、乾留室の1個または2個以上と加熱室とを連通し当該乾留室からの乾留ガスを燃焼させて加熱室を加熱する火口と、加熱室の温度が低下しているとき燃焼作用を発揮するバーナとをもつ態様にできる。
有機性廃棄物等の有機性物質を炭化させると共に、炭化処理の際に発生する乾留ガスを改質させて発電等の他の用途に使用できる複数段炭化炉を用いた有機性物質ガス化システムを提供できる。更に、炭化炉で生成された乾留ガスを改質炉で改質するようにしており、炭化炉の運転により乾留ガス(改質ガスの原料ガス)が生成されるため、改質ガスを連続的に生成させるのに有利である。更に、乾留室は原料の蒸し焼きに適するように閉鎖性が高いため、乾留室で生成された乾留ガスに含まれている非可燃成分である窒素ガスが少ない。このため改質ガスに含まれる可燃成分の濃度を高めるのに有利となり、改質ガスの安定化に貢献できる。殊に炭化炉と改質炉とがガス供給系を介して接続されているため、乾留ガスへの外気の混入が抑制され、改質ガスに含まれる窒素ガスの量を少なくでき、改質ガスに含まれる可燃成分の濃度を確保するのに有利となる。
(1)炭化炉1
図1は内燃式の複数段式の炭化炉1の構造を模式的に示す。この炭化炉1は、上下方向に複数段(例えば6段)に固定状態に設けられた複数個(例えば6個)の乾留室2を有する炭化炉本体6と、複数段の乾留室2を同軸的またはほぼ同軸的に隣設され乾留室2をこれの外側からほぼ同軸的に包囲するように横断面でリング形状をなす加熱室3を形成する包囲壁4と、乾留室2に連通し乾留室2内で発生した乾留ガスを加熱室3に案内して燃焼させる乾留ガス燃焼手段として機能するガスパイプ5と、加熱室3のガスを加熱室3外に排気する排気口8とを備える。加熱室3から乾留室2への伝熱を考慮して、乾留室2は耐熱性及び高温耐食性をもつ金属(例えばステンレス鋼等の合金鋼)の壁2pで形成されている。上下方向(Y方向)の最上側の乾留室2には、原料が供給される原料供給口90が設けられている。上下方向(Y方向)の最下側の乾留室2には、原料が炭化された後の炭化物が吐出される炭化物吐出口91が設けられている。炭化物吐出口91から吐出された炭化物は、スクリュー式等の搬送装置94により吐出される。更に、上下に隣設する乾留室2同士を連通する原料落下口92が乾留室2の金属(例えばステンレス鋼等の合金鋼)製の横方向に沿った床面2xに設けられている。なお、一つの床面2xに形成されている原料落下口92の数としては1個でも,複数個でも良い。
図1は内燃式の複数段式の炭化炉1の構造を模式的に示す。この炭化炉1は、上下方向に複数段(例えば6段)に固定状態に設けられた複数個(例えば6個)の乾留室2を有する炭化炉本体6と、複数段の乾留室2を同軸的またはほぼ同軸的に隣設され乾留室2をこれの外側からほぼ同軸的に包囲するように横断面でリング形状をなす加熱室3を形成する包囲壁4と、乾留室2に連通し乾留室2内で発生した乾留ガスを加熱室3に案内して燃焼させる乾留ガス燃焼手段として機能するガスパイプ5と、加熱室3のガスを加熱室3外に排気する排気口8とを備える。加熱室3から乾留室2への伝熱を考慮して、乾留室2は耐熱性及び高温耐食性をもつ金属(例えばステンレス鋼等の合金鋼)の壁2pで形成されている。上下方向(Y方向)の最上側の乾留室2には、原料が供給される原料供給口90が設けられている。上下方向(Y方向)の最下側の乾留室2には、原料が炭化された後の炭化物が吐出される炭化物吐出口91が設けられている。炭化物吐出口91から吐出された炭化物は、スクリュー式等の搬送装置94により吐出される。更に、上下に隣設する乾留室2同士を連通する原料落下口92が乾留室2の金属(例えばステンレス鋼等の合金鋼)製の横方向に沿った床面2xに設けられている。なお、一つの床面2xに形成されている原料落下口92の数としては1個でも,複数個でも良い。
ガスパイプ5は各乾留室2と加熱室3とを連通させており、乾留室2で発生した可燃性の乾留ガスを加熱室3に導くように加熱室3内に導出されている。乾留室2は、原料供給口90、炭化物吐出口91、ガスパイプ5以外は、基本的には密閉構造とされており、乾留室2への空気の供給は制限されており、原料の蒸し焼きに適する。炭化炉1には、原料を攪拌させる攪拌要素である旋回式の攪拌手段10が設けられている。攪拌手段10は、各乾留室2の中央域において縦方向に沿って配置された回転可能な駆動軸11と、駆動軸11に接続されて各乾留室2内を旋回して各乾留室2内の原料を攪拌する羽根状の攪拌部12とを有する。駆動軸11は図略の駆動源11c(モータ機構等)により回転される。攪拌部12の旋回速度は一定でも可変でも良い。
有機性物質である有機性廃棄物を主要成分とする原料Aは、投入装置96により、炭化炉1の上側の原料供給口90から最上側の乾留室2に供給される。ここで攪拌部12が各乾留室2で回転するため、各乾留室2の原料は攪拌部12によって攪拌され、原料Aは攪拌の際に原料落下口92を通り、下側の乾留室2に次第に落下する。このようにして原料は炭化されつつ順次下方に搬送される。加熱室3の底部付近には補助加熱部としてのバーナ17が装備されている。バーナ17は、主として、複数段式の炭化炉1の立ち上げ時期に複数段式の炭化炉1の加熱室3を予熱したり、乾留ガスの発生量が著しく少ないときに乾留室2の温度を確保したり、ガスパイプ5の火口55から吹き出される可燃性をもつ乾留ガスを着火させたりするために使用される。ガス流路であるガスパイプ5は図1に示すように、複数本配設されており、耐熱性及び高温耐食性をもつ材料(例えばステンレス鋼等)で形成されている。ガスパイプ5の先端である下端には火口55が設けられている。火口55は、乾留室2で生成された乾留ガスを加熱室3内で燃焼させるノズルである。
炭化炉1で乾留加熱処理を行う場合には、複数段式の炭化炉1の加熱室3内をバーナ17で予熱しておく。そして原料Aを投入装置96により原料供給口90から最上側の乾留室2に供給する。原料Aは、有機性廃棄物(鶏糞、牛糞、豚糞等の動物糞である家畜糞、プラスチックの屑、食品残滓、繊維屑、紙屑、木材片、植物等)を主要成分とする。乾留室2内において攪拌部12が回転するため、各乾留室2の原料Aは攪拌部12によって攪拌され、攪拌途中において各乾留室2の床面2xの原料落下口92を介して、下部の乾留室2に落下して順次下方に搬送される。乾留室2は前述したように基本的には密閉構造であり、空気の供給が制限されて酸素が低濃度とされているため、乾留室2における原料Aの燃焼は抑えられ、蒸し焼き状態またはほぼ蒸し焼き状態となる。よって、乾留室2内で搬送されている原料Aは、炭化が次第に進行すると共に、可燃性の乾留ガスが原料Aから熱分解により原料Aから乾留室2内で発生する。そして、排気口8に連通する負圧生成用の図略の負圧発生機が作動するため、排気口8に吸引作用が生じる。このため、乾留室2で発生した熱分解ガスである乾留ガスはガスパイプ5を経て、ガスパイプ5の先端の火口55から加熱室3に導かれる。火口55から吹き出される乾留ガスは加熱室3の熱で燃焼火炎WAを火口55で生成する。このようにガスパイプ5により加熱室3に導かれた可燃性の乾留ガスは、加熱室3の熱で燃焼火炎WAとして燃焼し、その燃焼熱が乾留室2で原料を蒸し焼きする熱源となる。このように加熱室3は、原料Aの乾留により発生した可燃性の乾留ガスの燃焼により加熱される。従ってバーナ17は、つまり乾留ガス以外の燃料は、複数段式の炭化炉1の立ち上げ時期以外は、ほとんど必要とされず、省エネルギを図り得る。上記のように乾留加熱処理が進行すると、原料Aは炭化物となり、運転中または運転停止後に炭化物吐出口91を経て搬送装置94により取り出される。加熱室3の温度は原料Aの種類に応じて異なるものの、一般的には400〜1000℃、殊に600〜800℃程度となる。乾留室2の温度は300〜800℃、殊に400〜600℃程度となる。但し加熱室3の温度及び乾留室2の温度はこれに限定されるものではなく、原料A等に応じて適宜変更できる。なお、原料Aが鶏糞等の動物糞を主要成分とする場合には、原料Aを乾留加熱処理した後の残滓である炭化物は、炭素、カルシウム、カリウム、リン、窒素等を主要成分とするため、肥料、土壌改良材等として利用できる。
(2)改質炉100
図2(A)は改質炉100の概念を示す。図2(A)はあくまでも概念図であり、細部まで限定されるものではない。改質炉100は、中空状の改質域151を有する改質容器部分150と、改質ガスを改質ガス導出路HGに導出する中空室状の改質ガス流動部分170とを有する。改質容器部分150の壁153又は壁体152には、高温空気が吹き込まれる高温空気供給口154が形成されている。供給路MGの端部が高温空気供給口154に接続されている。改質炉100の改質域151の内壁面を形成する壁体152には、ネット又はバー材等の支持体161が架設されている。球形のセラミックス162の積層体からなる通気性遮熱壁160が支持体161上に形成されている。改質炉100の改質ガス流動部分170の流路171、172は、改質ガスの慣性力集塵又は重力集塵を行うばかりでなく、好ましくは、640℃以上、更に好ましくは、740℃以上の高温且つ低酸素濃度の雰囲気下にされており、ダイオキシン前駆物質又はダイオキシン類を分解するように働く。流路171、172は、このような高温滞留により改質ガスを浄化する空間として機能する。
図2(A)は改質炉100の概念を示す。図2(A)はあくまでも概念図であり、細部まで限定されるものではない。改質炉100は、中空状の改質域151を有する改質容器部分150と、改質ガスを改質ガス導出路HGに導出する中空室状の改質ガス流動部分170とを有する。改質容器部分150の壁153又は壁体152には、高温空気が吹き込まれる高温空気供給口154が形成されている。供給路MGの端部が高温空気供給口154に接続されている。改質炉100の改質域151の内壁面を形成する壁体152には、ネット又はバー材等の支持体161が架設されている。球形のセラミックス162の積層体からなる通気性遮熱壁160が支持体161上に形成されている。改質炉100の改質ガス流動部分170の流路171、172は、改質ガスの慣性力集塵又は重力集塵を行うばかりでなく、好ましくは、640℃以上、更に好ましくは、740℃以上の高温且つ低酸素濃度の雰囲気下にされており、ダイオキシン前駆物質又はダイオキシン類を分解するように働く。流路171、172は、このような高温滞留により改質ガスを浄化する空間として機能する。
遮熱壁160に形成されている間隙165は、遮熱壁160の全域に分散しており、図2(B)に示すように、不規則に連続する多数の狭小流路を形成する。故に、改質炉100の改質域151に流入した乾留ガス及び高温空気は、遮熱壁160の間隙165に分散し、高温雰囲気の各間隙165において効果的に混合される。このため、乾留ガスに含有されているタール状成分を形成する炭化水素系物質と水蒸気とによる水蒸気改質反応は、高温ガスが遮熱壁160の間隙165を通過する際に効果的に進行し、水蒸気改質反応の反応時間は短縮される。同時に、遮熱壁160は、乾留ガス中の煤や、タール状成分の凝縮液等を捕獲し、改質ガスを浄化する浄化手段として働くことができる。即ち、改質域151及び間隙165における乾留ガスと高温空気との混合により、乾留ガスに含まれている炭化水素物質と水蒸気及び空気とが高温雰囲気の下で反応し、乾留ガスに含まれている炭化水素物質の水蒸気改質反応が進行する。ここで、球形のセラミックス162は高温ガスに伝熱接触して蓄熱し、間隙165の高温状態は持続する。セラミックス162の断面形状は、必ずしも真円形でなくとも良く、楕円形又は偏平した球形等の形態に設計しても良い。高温空気の温度を低め(例えば100〜500℃)に設定し得る場合、ステンレス製金属球を上記球形耐熱材料として使用することも可能である。前記したように乾留ガスに含まれている炭化水素物質は水蒸気改質により水蒸気及び空気と反応する。炭化水素及び水蒸気の反応は、一般的に、下式(1) で示される吸熱反応であると考えられる。炭化水素及び空気の反応は、下式(2) で示される発熱反応であると考えられる。
CnHm+H2O→CO+H2+H2O…(1)
CnHm+O2+N2→CO+CO2+H2+H2O+N2…(2)
水蒸気は、原料の熱分解により生成した乾留ガスと反応する。故に乾留ガスは、比較的多量の一酸化炭素及び水素を含有する改質ガスとして改質される。炭化水素物質及び空気の発熱反応によって発生した熱は、炭化水素物質及び水蒸気の吸熱改質反応に要する熱として消費されると考えられる。このように乾留ガスの水蒸気改質反応が進行し、乾留ガスは水素を含む改質ガスとして改質される。
CnHm+O2+N2→CO+CO2+H2+H2O+N2…(2)
水蒸気は、原料の熱分解により生成した乾留ガスと反応する。故に乾留ガスは、比較的多量の一酸化炭素及び水素を含有する改質ガスとして改質される。炭化水素物質及び空気の発熱反応によって発生した熱は、炭化水素物質及び水蒸気の吸熱改質反応に要する熱として消費されると考えられる。このように乾留ガスの水蒸気改質反応が進行し、乾留ガスは水素を含む改質ガスとして改質される。
(実施形態1のガス化システム)
図3は実施形態1のガス化システムを示す。図3に示すように、このシステムは、炭化炉1と、炭化炉1から吐出された乾留ガスを水蒸気を利用して改質して改質ガスとする改質炉100とをもつ。このシステムは、改質炉100の出口100cから吐出された改質ガスに含まれている塵埃を除去するダストフィルタ101と、高温の改質ガスを冷却するガス冷却装置102と、改質ガスに含まれている硫黄成分等の物質を除去して浄化させるガス精製装置103と、炭化炉1で生成した乾留ガスを吸引する吸引源として機能できる吸引ブロア104と、改質ガスを燃料ガスとして駆動する駆動源104とを備える。駆動源104は、発電用のエンジン105と、エンジン105で駆動される発電機106とを有する。改質炉100で生成された改質ガスを燃料としてエンジン105が駆動すると、発電機106が駆動するため、発電され、電気エネルギが取り出される。更に、エンジン105を冷却させる冷却水が加熱されるため、加熱された冷却水との熱交換により熱回収も行われ、温水を生成するのに有利となる。更に図3に示すように、炭化炉1の加熱室3の排気口8は流路110を経て排ガス処理部111に接続されている。排気ブロア112が作動すると、炭化炉1の加熱室3のガスは流路110を経て排ガス処理部111に供給されて排ガス処理され、除塵機113を経て外気に排気される。改質炉100に、改質反応に適する高温空気を供給する空気供給系200が設けられている。空気供給系200は、空気を圧縮するコンプレッサ201と、空気を加熱する加熱部202とを有する。
図3は実施形態1のガス化システムを示す。図3に示すように、このシステムは、炭化炉1と、炭化炉1から吐出された乾留ガスを水蒸気を利用して改質して改質ガスとする改質炉100とをもつ。このシステムは、改質炉100の出口100cから吐出された改質ガスに含まれている塵埃を除去するダストフィルタ101と、高温の改質ガスを冷却するガス冷却装置102と、改質ガスに含まれている硫黄成分等の物質を除去して浄化させるガス精製装置103と、炭化炉1で生成した乾留ガスを吸引する吸引源として機能できる吸引ブロア104と、改質ガスを燃料ガスとして駆動する駆動源104とを備える。駆動源104は、発電用のエンジン105と、エンジン105で駆動される発電機106とを有する。改質炉100で生成された改質ガスを燃料としてエンジン105が駆動すると、発電機106が駆動するため、発電され、電気エネルギが取り出される。更に、エンジン105を冷却させる冷却水が加熱されるため、加熱された冷却水との熱交換により熱回収も行われ、温水を生成するのに有利となる。更に図3に示すように、炭化炉1の加熱室3の排気口8は流路110を経て排ガス処理部111に接続されている。排気ブロア112が作動すると、炭化炉1の加熱室3のガスは流路110を経て排ガス処理部111に供給されて排ガス処理され、除塵機113を経て外気に排気される。改質炉100に、改質反応に適する高温空気を供給する空気供給系200が設けられている。空気供給系200は、空気を圧縮するコンプレッサ201と、空気を加熱する加熱部202とを有する。
図3に示すように、炭化炉1の乾留室2から吐出された乾留ガスを原料ガスとして改質炉100に供給するガス供給系7が設けられている。ガス供給系7は、複数の乾留室2のガス吐出口2xからそれぞれ個別に延設された複数のガス通路70と、複数のガス通路70の開口量をそれぞれ独立して調整できる開口量調整要素として機能する複数の弁部71と、複数のガス通路70と改質炉100とをつなぐと共に各乾留室2からの乾留ガスを合流させる合流通路72xをもつ縦方向に延設された共通ガス通路72とを有する。ガス通路70は耐熱性を有するパイプで形成されている。図3に示すようにガス通路70の一部は加熱室3内に配置され、加熱室3の雰囲気に露出している。ガス通路70の他端側は改質炉100に向けて炭化炉1の外方に導出されている。図3に示すように、最も下流側の乾留室2にはガス通路70が設けられていないが、これに限らず設けても良い。
弁部71は複数のガス通路70にそれぞれ個別に設けられており、開口量を連続的にまたは段階的に変化させることができる。弁部71は、当該ガス通路70を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素として機能することができる。弁部71は制御装置で制御される電磁バルブでも良いし、手動式バルブでも良い。弁部71及び共通ガス通路72はこれらの熱劣化を抑制すべく、炭化炉1の加熱室3の外方に配置されている。このため弁部71及び共通ガス通路72のメンテナンスおよび清掃に有利である。共通ガス通路72はメンテナンス及び清掃用のドア72dをもつ。
前述したように、原料供給口90から炭化物吐出口91にかけて複数の乾留室2が上下方向にそって並設されている。原料供給口90側の乾留室2から吐出される乾留ガスの組成と、炭化物吐出口91側の乾留室2から吐出される乾留ガスの組成とは必ずしも同一ではない。具体的には、原料Aに含まれている水分の影響で、原料供給口90側の乾留室2から吐出される乾留ガスは、炭化物吐出口91側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に高い。また、炭化物吐出口91側の乾留室2から吐出される乾留ガスは、原料供給口90側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に少ない。このため改質炉100における改質反応の状況によっては、複数の弁部71の開口量調整により、各ガス通路70を流れる乾留ガスの単位時間当たりの流量を調整することができ、炭化炉1から改質炉100に供給する乾留ガス(改質ガスの原料ガス)に含まれている水蒸気の濃度を調整できる。
また原料供給口90側の乾留室2から吐出される乾留ガスは、炭化物吐出口91側の乾留室2から吐出される乾留ガスに比較して可燃成分の濃度が相対的に高い傾向がある。また、炭化物吐出口91側の乾留室2から吐出される乾留ガスは、原料供給口90側の乾留室2から吐出される乾留ガスに比較して可燃成分の濃度が相対的に少ない傾向がある。このため本実施形態によれば、改質炉100における改質反応や炭化炉1の状況によっては、複数の弁部71の開口量調整により、各ガス通路70を流れる乾留ガスの単位時間当たりの流量、各ガス通路70を流れる乾留ガスの可燃成分の濃度を調整できる。この結果、改質炉100に供給される水蒸気量を調整することができ、ひいては改質炉100における改質反応を調整できる。また、改質炉100に供給される可燃成分の濃度を調整するのに有利となる。
具体的には、改質炉100における改質反応に消費される水蒸気の量の要求度が相対的に高いときには、原料供給口90側の乾留室2に繋がるガス通路70の弁部71の開口量を相対的に増加させれば良い。逆に、改質炉100における改質反応に消費される水蒸気の量の要求度が相対的に低いときには、原料供給口90側の乾留室2に繋がるガス通路70の弁部71の開口量を相対的に減少させれば良い。炭化炉1で処理する前の原料Aは水分を含む。炭化炉1で処理する前の原料Aが鶏糞等の家畜糞であるときには、種類及び乾燥状況等にもよるが、一般的には、2〜60重量%程度、5〜40重量%程度、10〜30重量%の水分を含むと言われている。なお炭化炉1で生成されたタール成分も乾留ガスと共に改質炉100に供給され、改質ガスの原料となり得る。
以上説明したように本実施形態によれば、有機性物質を主要成分とする原料Aをほぼ蒸し焼きさせて炭化させると共に、炭化処理の際に発生する可燃成分を含む乾留ガスを改質させて発電等の他の用途に使用できる複数段炭化炉1を用いた有機性物質ガス化システムを提供することができる。更に、炭化炉1で生成された乾留ガスを直ちに改質炉100で改質するため、炭化炉1が運転されていると、乾留ガスが炭化炉1で連続的に生成されるため、改質炉100で連続的に改質ガスを生成させるのに有利である。更に、乾留室2は原料Aの蒸し焼きに適するように閉鎖性が高く、空気が多量に供給される開放型ではないため、乾留室2で生成された乾留ガスに含まれている非可燃成分である窒素ガスが少なくなり、これにより改質ガスに含まれる可燃成分の濃度を相対的に高めることができ、改質ガスの可燃成分の濃度の安定化に貢献できる。殊に、炭化炉1と改質炉100とがガス供給系7を介して直接的に繋がれているため、改質炉100に供給される乾留ガスに外気が混入することが抑制され、改質ガスに含まれる窒素ガスの濃度を少なくするのに有利となり、改質ガスの可燃成分の濃度を確保するのに有利となる。なお弁部71の開口量が減少したときには、ガスパイプ5の火口55に送られる乾留ガスの単位時間あたりの流量が増加し、加熱室3の加熱に消費される。図4に示す形態では、複数のガス通路70のうち、原料供給口90側のガス通路70に弁部71が設けられているが、原料吐出口91側のガス通路70には弁部71が設けられていない。この場合においても弁部71の開口量を調整すれば、改質炉100における改質反応に使用される水蒸気等の量を調整できる。原料供給口90側の乾留室2で生成される乾留ガスは水蒸気量が多いため、原料供給口90側のガス通路70のみに弁部71を設ける構成であっても、水蒸気の量の調整に有効である。しかも弁部71の数を減少させ得るため、コスト低減に有利である。図5に示す形態では、複数のガス通路70のうち、原料供給口90側のガス通路70に弁部71が設けられていないが、原料吐出口91側のガス通路70に弁部71が設けられている。この場合においても弁部71の開口量を調整すれば、改質炉100における改質反応に使用される可燃成分、水蒸気等の量を調整できる。
(実施形態2のガス化システム)
図6は実施形態2のガス化システムを示す。実施形態2のシステムは実施形態1のシステムと基本的には同様な構成、作用効果を有する。以下、相違する部分を中心として説明する。図6に示すように、炭化炉1の乾留室2から吐出された乾留ガスを改質炉100に供給するガス供給系7が設けられている。ガス供給系7は、複数の乾留室2からそれぞれ個別に延設された複数のガス通路70と、複数のガス通路70と改質炉100とをつなぐと共に各乾留室2からの乾留ガスを合流させる共通ガス通路72とを有する。複数のガス通路70に弁部71は設けられていない。上記したように原料供給口90から炭化物吐出口91にかけて複数の乾留室2が並設されている。原料供給口90側の乾留室2から吐出される乾留ガスの組成と、炭化物吐出口91側の乾留室2から吐出される乾留ガスの組成とは必ずしも同一ではない。各乾留室2から吐出される乾留ガスの温度も必ずしも同一ではない。例えば、前述したように原料供給口90側の乾留室2から吐出される乾留ガスは、炭化物吐出口91側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に高い。また、炭化物吐出口91側の乾留室2から吐出される乾留ガスは、原料供給口90側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に少ない。この点本実施形態によれば、乾留室2からそれぞれ個別に吐出された乾留ガスは、ガス供給系7の共通ガス通路72で合流して改質炉100に供給される。これにより複数の乾留室2から吐出される乾留ガスの組成、温度等が必ずしも同一でないときであっても、乾留ガスの組成の均一化を図り得、改質炉100における改質反応のバラツキが低減され、良好な改質ガスを安定的に生成できる。
図6は実施形態2のガス化システムを示す。実施形態2のシステムは実施形態1のシステムと基本的には同様な構成、作用効果を有する。以下、相違する部分を中心として説明する。図6に示すように、炭化炉1の乾留室2から吐出された乾留ガスを改質炉100に供給するガス供給系7が設けられている。ガス供給系7は、複数の乾留室2からそれぞれ個別に延設された複数のガス通路70と、複数のガス通路70と改質炉100とをつなぐと共に各乾留室2からの乾留ガスを合流させる共通ガス通路72とを有する。複数のガス通路70に弁部71は設けられていない。上記したように原料供給口90から炭化物吐出口91にかけて複数の乾留室2が並設されている。原料供給口90側の乾留室2から吐出される乾留ガスの組成と、炭化物吐出口91側の乾留室2から吐出される乾留ガスの組成とは必ずしも同一ではない。各乾留室2から吐出される乾留ガスの温度も必ずしも同一ではない。例えば、前述したように原料供給口90側の乾留室2から吐出される乾留ガスは、炭化物吐出口91側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に高い。また、炭化物吐出口91側の乾留室2から吐出される乾留ガスは、原料供給口90側の乾留室2から吐出される乾留ガスに比較して水蒸気の濃度が相対的に少ない。この点本実施形態によれば、乾留室2からそれぞれ個別に吐出された乾留ガスは、ガス供給系7の共通ガス通路72で合流して改質炉100に供給される。これにより複数の乾留室2から吐出される乾留ガスの組成、温度等が必ずしも同一でないときであっても、乾留ガスの組成の均一化を図り得、改質炉100における改質反応のバラツキが低減され、良好な改質ガスを安定的に生成できる。
(実施形態3のガス化システム)
図7は実施形態3のガス化システムを示す。実施形態3のシステムは実施形態1のシステムと基本的には同様な構成、作用効果を有する。以下、相違する部分を中心として説明する。図7に示すように、炭化炉1の乾留室2から吐出された乾留ガスを改質炉100に供給するガス供給系7が設けられている。ガス供給系7は、複数の乾留室2からそれぞれ個別に延設された複数のガス通路70と、複数のガス通路70の開口量を調整する開口量調整要素としての複数の弁部71と、複数のガス通路70と改質炉とをつなぐと共に各乾留室2からの乾留ガスを合流させる共通ガス通路72とを有する。弁部71は3個のポートを有する三方弁であり、複数のガス通路70にそれぞれ個別に設けられている。弁部71は、改質炉100に連通すると共に、中間路75及び流路110を介して排ガス処理部11にも繋がれている。これによりガス供給系7のガス通路70は、余剰の乾留ガスを排ガス処理部11に流すべく、排ガス処理部11(乾留ガス使用部)に繋がれている。弁部71は、開口量を連続的にまたは段階的に変化させることができ、乾留室2と改質炉100との連通度の調整を行うことができる。更に、弁部71により、乾留室2と排ガス処理部111との連通度の調整を行うことができる。ここで、運転状況によっては、乾留室2と改質炉100とを連通させる弁部71の開口量が低下し、乾留室2から改質炉100へ供給される乾留ガスの単位時間当たりの流量が低下することがある。この場合、ガス通路70において余剰の乾留ガスが存在するおそれがある。そこで、ガス通路70の乾留ガスを改質炉100に供給しつつも、ガス通路70内の余剰の乾留ガスを弁部71の作用により、中間路75,流路110を経て排ガス処理部111に供給し、排ガス処理部11で処理した後、外気に放出する。
図7は実施形態3のガス化システムを示す。実施形態3のシステムは実施形態1のシステムと基本的には同様な構成、作用効果を有する。以下、相違する部分を中心として説明する。図7に示すように、炭化炉1の乾留室2から吐出された乾留ガスを改質炉100に供給するガス供給系7が設けられている。ガス供給系7は、複数の乾留室2からそれぞれ個別に延設された複数のガス通路70と、複数のガス通路70の開口量を調整する開口量調整要素としての複数の弁部71と、複数のガス通路70と改質炉とをつなぐと共に各乾留室2からの乾留ガスを合流させる共通ガス通路72とを有する。弁部71は3個のポートを有する三方弁であり、複数のガス通路70にそれぞれ個別に設けられている。弁部71は、改質炉100に連通すると共に、中間路75及び流路110を介して排ガス処理部11にも繋がれている。これによりガス供給系7のガス通路70は、余剰の乾留ガスを排ガス処理部11に流すべく、排ガス処理部11(乾留ガス使用部)に繋がれている。弁部71は、開口量を連続的にまたは段階的に変化させることができ、乾留室2と改質炉100との連通度の調整を行うことができる。更に、弁部71により、乾留室2と排ガス処理部111との連通度の調整を行うことができる。ここで、運転状況によっては、乾留室2と改質炉100とを連通させる弁部71の開口量が低下し、乾留室2から改質炉100へ供給される乾留ガスの単位時間当たりの流量が低下することがある。この場合、ガス通路70において余剰の乾留ガスが存在するおそれがある。そこで、ガス通路70の乾留ガスを改質炉100に供給しつつも、ガス通路70内の余剰の乾留ガスを弁部71の作用により、中間路75,流路110を経て排ガス処理部111に供給し、排ガス処理部11で処理した後、外気に放出する。
(その他)上記した実施形態1では、複数のガス通路70のそれぞれに弁部71が設けられているが、これに限らず、複数のガス通路70のうち、弁部71が設けられたガス通路70、弁部70が設けられていないガス通路70が存在していても良い。複数のガス通路70のうち過半数に弁部71が設けられていることが好ましい。その他、本発明は上記した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。実施の形態に記載の語句は一部であっても請求項に記載できるものである。上記した記載から次の技術的思想も把握できる。
[付記項1]有機性物質を主要成分とする原料が供給される原料供給口と炭化された原料が吐出する炭化物吐出口と原料を加熱処理する乾留室とを有する炭化炉と、炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、乾留室は、原料を蒸し焼きするように壁で覆われて閉鎖性が高いことを特徴とする炭化炉を用いた有機性物質ガス化システム。乾留室は原料の蒸し焼きに適するように閉鎖性が高いため、乾留室で生成された乾留ガスに含まれている非可燃成分である窒素ガスが少ない。このため改質ガスに含まれる可燃成分の濃度を確保するのに有利となり、改質ガスの燃焼の安定化に貢献できる。殊に炭化炉と改質炉とが接続されているため、改質ガスに含まれる窒素ガスの量を少なくでき、改質ガスに含まれる可燃成分の濃度を確保するのに有利となる。
[付記項1]有機性物質を主要成分とする原料が供給される原料供給口と炭化された原料が吐出する炭化物吐出口と原料を加熱処理する乾留室とを有する炭化炉と、炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、乾留室は、原料を蒸し焼きするように壁で覆われて閉鎖性が高いことを特徴とする炭化炉を用いた有機性物質ガス化システム。乾留室は原料の蒸し焼きに適するように閉鎖性が高いため、乾留室で生成された乾留ガスに含まれている非可燃成分である窒素ガスが少ない。このため改質ガスに含まれる可燃成分の濃度を確保するのに有利となり、改質ガスの燃焼の安定化に貢献できる。殊に炭化炉と改質炉とが接続されているため、改質ガスに含まれる窒素ガスの量を少なくでき、改質ガスに含まれる可燃成分の濃度を確保するのに有利となる。
本発明は廃棄物等の有機性物質を原料とする有機性物質ガス化システムに利用される。
1は炭化炉、2は乾留室、3は加熱室、7はガス供給系、70はガス通路、71は弁部、72は共通ガス通路、100は改質炉、104は駆動源、105はエンジン、106は発電機を示す。
Claims (6)
- 有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、
炭化炉の乾留室から延設された複数のガス通路と複数のガス通路を流れる乾留ガスを合流させて改質炉に供給する共通ガス通路とを有するガス供給系が設けられていることを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。 - 有機性物質を主要成分とする原料が供給される原料供給口と、炭化された原料が吐出する炭化物吐出口と、原料供給口から炭化物吐出口にかけて並設され原料を加熱処理する複数の乾留室とを有する炭化炉と、
炭化炉から吐出された乾留ガスを改質して改質ガスとする改質炉とを具備しており、
炭化炉の乾留室から延設され乾留室からそれぞれ吐出された乾留ガスを改質炉に供給する複数のガス通路を有するガス供給系が設けられており、
複数のガス通路のうちの1個または2個以上は、当該ガス通路を流れる乾留ガスの単位時間当たりの流量を調整可能とする流量調整要素を有することを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。 - 請求項1または請求項2において、ガス供給系は、乾留室から個別に延設された複数のガス通路と、複数のガス通路の開口量を調整する開口量調整要素と、複数のガス通路と改質炉とをつなぐ共通ガス通路とを有することを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。
- 請求項1〜請求項3のうちのいずれか一項において、複数の乾留室は高さ方向に沿って配置されていることを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。
- 請求項1〜請求項4のうちのいずれか一項において、改質炉で生成された改質ガスを燃料とする駆動源が設けられていることを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。
- 請求項1〜請求項5のうちのいずれか一項において、炭化炉は、乾留室を外側から覆う加熱室と、乾留室の1個または2個以上と加熱室とを連通し当該乾留室からの乾留ガスを燃焼させて加熱室を加熱する火口と、加熱室の温度が低下しているとき燃焼作用を発揮するバーナとをもつことを特徴とする複数段炭化炉を用いた有機性物質ガス化システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004153359A JP2005336233A (ja) | 2004-05-24 | 2004-05-24 | 複数段炭化炉を用いた有機性物質ガス化システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004153359A JP2005336233A (ja) | 2004-05-24 | 2004-05-24 | 複数段炭化炉を用いた有機性物質ガス化システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005336233A true JP2005336233A (ja) | 2005-12-08 |
Family
ID=35490150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004153359A Pending JP2005336233A (ja) | 2004-05-24 | 2004-05-24 | 複数段炭化炉を用いた有機性物質ガス化システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005336233A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035115A (ja) * | 2004-07-28 | 2006-02-09 | Toshiba Corp | 廃棄物熱分解処理システム |
WO2008136134A1 (ja) * | 2007-04-24 | 2008-11-13 | Environmental Science Co., Ltd. | 畜糞処理方法 |
WO2009057617A1 (ja) * | 2007-11-01 | 2009-05-07 | Yanmar Co., Ltd. | ガス化装置 |
WO2012012823A1 (en) * | 2010-07-27 | 2012-02-02 | Curtin University Of Technology | A method of gasifying carbonaceous material and a gasification system |
GB2488616A (en) * | 2011-08-18 | 2012-09-05 | Chinook Sciences Ltd | Improvements in the gasification and/or pyrolysis of matter |
JP2021534969A (ja) * | 2018-10-10 | 2021-12-16 | クールブルック オーワイ | 化学反応を行うための回転装置 |
-
2004
- 2004-05-24 JP JP2004153359A patent/JP2005336233A/ja active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035115A (ja) * | 2004-07-28 | 2006-02-09 | Toshiba Corp | 廃棄物熱分解処理システム |
JP4550512B2 (ja) * | 2004-07-28 | 2010-09-22 | 株式会社東芝 | 廃棄物熱分解処理システム |
WO2008136134A1 (ja) * | 2007-04-24 | 2008-11-13 | Environmental Science Co., Ltd. | 畜糞処理方法 |
WO2009057617A1 (ja) * | 2007-11-01 | 2009-05-07 | Yanmar Co., Ltd. | ガス化装置 |
JP2009114227A (ja) * | 2007-11-01 | 2009-05-28 | Yanmar Co Ltd | ガス化装置 |
US20130306913A1 (en) * | 2010-07-27 | 2013-11-21 | Curtin University Of Technology | Method of gasifying carbonaceous material and a gasification system |
CN103119135A (zh) * | 2010-07-27 | 2013-05-22 | 科廷科技大学 | 气化含碳材料的方法及气化系统 |
JP2013532742A (ja) * | 2010-07-27 | 2013-08-19 | カーティン ユニバーシティ オブ テクノロジー | 炭素質材料のガス化方法およびガス化システム |
WO2012012823A1 (en) * | 2010-07-27 | 2012-02-02 | Curtin University Of Technology | A method of gasifying carbonaceous material and a gasification system |
AU2011284780B2 (en) * | 2010-07-27 | 2015-06-18 | Renergi Pty Ltd | A method of gasifying carbonaceous material and a gasification system |
US10144887B2 (en) | 2010-07-27 | 2018-12-04 | Curtin University Of Technology | Method of gasifying carbonaceous material and a gasification system |
GB2488616A (en) * | 2011-08-18 | 2012-09-05 | Chinook Sciences Ltd | Improvements in the gasification and/or pyrolysis of matter |
GB2488616B (en) * | 2011-08-18 | 2016-08-10 | Chinook Sciences Ltd | Improvements in gasification and/or pyrolysis of material |
JP2021534969A (ja) * | 2018-10-10 | 2021-12-16 | クールブルック オーワイ | 化学反応を行うための回転装置 |
JP7038258B2 (ja) | 2018-10-10 | 2022-03-17 | クールブルック オーワイ | 化学反応を行うための回転装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5480814B2 (ja) | 炭化処理装置及び炭化処理方法 | |
US9803857B2 (en) | Apparatus and methods for reducing wood burning apparatus emissions | |
UA76091C2 (en) | A method for pyrolysis with gasification of organic substances or mixtures of organic substances and a plant for realizing the same | |
SI20749A (sl) | Postopek uplinjenja organskih snovi in zmesi snovi | |
JP2007177106A (ja) | バイオマスガス化装置 | |
KR20090117973A (ko) | 회전 반응로용 가스 분배 장치 | |
KR101292233B1 (ko) | 폐기물 처리 시스템 | |
JP2007127330A (ja) | 炭化炉による熱併給発電方法及びシステム | |
JP2011080664A (ja) | 廃棄物の熱分解、炭化・ガス化方法及び装置 | |
JP5634158B2 (ja) | バイオマスの炭化処理装置、及び炭化物の製造方法 | |
WO2017138157A1 (ja) | 改質炉及びそれを用いたガス化システム | |
TW200905139A (en) | Pyrolysis gas treating method and its device for highly hydrous organic matter carbonizing system | |
CN101373070B (zh) | 高含水有机物碳化处理系统的热分解气体处理方法及其装置 | |
JP2005336233A (ja) | 複数段炭化炉を用いた有機性物質ガス化システム | |
CA2910329C (en) | Small heating system with improved ventilation and cyclonic combustion chamber | |
JP4937363B2 (ja) | 燃焼装置 | |
JP6006467B1 (ja) | 改質炉及びそれを用いたガス化システム | |
JP3939459B2 (ja) | 水蒸気改質方法及び水蒸気改質装置 | |
KR101005850B1 (ko) | 가연성 또는 유기성 폐기물의 건조 및 탄화 장치 | |
CA2723601C (en) | Method and apparatus for efficient production of activated carbon | |
JP2004043587A (ja) | 炭化装置及び炭化物の製造方法 | |
JP2005211719A (ja) | 有機物処理方法及びそのシステム | |
CN101659881A (zh) | 一种小颗粒油页岩干馏装置 | |
WO2014184923A1 (ja) | 固形有機原料のガス化方法及びガス化装置 | |
JP3737162B2 (ja) | 活性炭の製造方法及び装置 |