JP2005326316A - 動的形状測定装置 - Google Patents

動的形状測定装置 Download PDF

Info

Publication number
JP2005326316A
JP2005326316A JP2004145628A JP2004145628A JP2005326316A JP 2005326316 A JP2005326316 A JP 2005326316A JP 2004145628 A JP2004145628 A JP 2004145628A JP 2004145628 A JP2004145628 A JP 2004145628A JP 2005326316 A JP2005326316 A JP 2005326316A
Authority
JP
Japan
Prior art keywords
light
measured
light source
displacement
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004145628A
Other languages
English (en)
Other versions
JP4307321B2 (ja
Inventor
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004145628A priority Critical patent/JP4307321B2/ja
Publication of JP2005326316A publication Critical patent/JP2005326316A/ja
Application granted granted Critical
Publication of JP4307321B2 publication Critical patent/JP4307321B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】余分なコストを掛けることなく、確実に被測定物の動的形状を測定可能とする。
【解決手段】 変位中の被測定物1に光を照射する第1の光源5と、照射光学系7、8、9と、前記被測定物1の変位と光の照射とのタイミングを調整するタイミング調整手段3と、被測定物1からの反射光と参照光とを干渉させるための干渉光学系12と、この干渉縞を受光する受光手段11と、干渉縞を受光面上で結像させる結像手段10と、干渉縞から前記被測定物1の表面形状を求める演算器とから構成される変位中の被測定物の表面形状を求める動的形状測定装置において、前記光源5の発光時間中、あるいは前記受光手段11の受光時間中における前記被測定物1の変位量が前記光源5の波長の半分以下になるような時間幅で、前記被測定物1にパルス光を照射、あるいは前記干渉縞を受光し、得られる干渉縞から変位中の前記被測定物1の形状輪郭を求める。
【選択図】図1

Description

本発明は、可動物の動作性能評価分野、例えばポリゴンミラーの動的形状測定等の変位中の被測定物の表面形状を求める動的形状測定装置に関するものであり、特に可動物の性能評価を行う方法及び装置に関する。
従来から、被測定物の周期運動に同期させてパルス光を被測定物に照射し、被測定物からの反射光と参照光とを干渉させた干渉縞を時間変調することにより被測定物の運動中における変位量をナノメータオーダで測定する技術は提案されている(例えば特許文献1参照)。
特許文献1においては、また、被測定物の運動周期と僅かに異なる周期でパルス光を被測定物に照射し、両者の周期の差異に伴う干渉縞の強度変化を検出することにより被測定物の運動中における変位量をナノメータオーダで測定することが開示されている。
尚、通常の干渉計測における干渉縞は被測定物が静止していると観測されるが、被測定物が動くと干渉縞が消えてしまって測定できなくなるため、上記の測定方法では、被測定物に照射する光をパルス化することによって、被測定物が動いていても干渉縞を観測可能とする。
また共振ミラーの動的形状と共振中のベースに対する角度とを同時に測定する振動物体の動的測定方法および装置も研究されており、この技術はパルス光干渉と位相シフト法、もしくはフーリエ変換法を応用させて測定する。
また、フーリエ変換法を用いた可動物の動的形状測定において、被測定物の非周期運動成分に起因する測定時間の増大、操作性の低下という課題を解決する可動物の動的形状測定装置および方法も研究されている。
さらに、フーリエ変換法を用いた可動物の動的形状測定において、被測定物の形状の符号(形状の凹凸)を明確にしたうえで、形状測定する可動物の動的形状測定装置および方法も研究されている。
特許第3150239号
図16は本発明に関連する測定対象となる可動物の一例で、レーザプリンタやデジタルコピー機といった画像機器の書き込み光学系において使用されるポリゴンミラーである。
ポリゴンミラー1は軸心1bを軸にして高速で回転しながら光源からポリゴンミラー面(図の1a)に照射された光ビームを高速走査する。画像機器に要求される書き込み速度に応じてポリゴンミラーの回転数が決められる。
高速書き込みが要求され、高速回転が要求される近年のポリゴンミラーにおいては、回転に伴う熱や遠心力の影響等によりミラー面が変形を起こすことがある。変形した面により反射されたビームは所定の位置に結像しなくなるため、高速回転中のポリゴンミラーの面形状を正確に測定および評価したいという要求がある。
静止状態のポリゴンミラーの面形状測定には干渉計が使えるが、ミラー面が回転すると干渉縞が観察できなくなるため、回転中のポリゴンミラー面形状を測定することはできない。
ポリゴンミラーのような可動物の動的形状をナノメータオーダで測定可能な方法として、特許文献1に開示された微小周期振動変位の測定装置がある。この装置では被測定物に入力する信号の周期と光源をパルス発光させるための信号の周期との間にわずかな差を与え、被測定物の表面変位を前記両周期の差に基づくビート信号として測定することを特徴としている。
また、特許文献1の参考例に示されている方法では、信号に応じて変位する被測定物に与える信号と同期させて光源を瞬間的に発生させることにより、表面変位を静止画像データとして取り込んで測定する。
しかしながら、上記測定法においては、被測定物の動作速度に対するパルス光の時間幅が明確化されていないため、被測定物の動作速度がパルス光の時間幅に対して速くなったとき干渉縞が観測できなくなるという不具合がある。
フェムト秒パルス光源等の超短パルス光源を用いると多くの可動物の動作速度より十分短い時間幅のパルス光が得られるため干渉縞が観測できるが、被測定物によっては必要以上のパルス光の時間幅を用いていることになり、その分余分なコストが掛ってしまう。
同様のことが、現在研究されている上述した振動物体の動的測定方法および装置、可動物の動的形状測定装置および方法、および可動物の動的形状測定装置および方法でもいえる。
図17は被測定面の微小な変位を説明する概略図である。図18は図17と異なる被測定面の微小な変位を説明する概略図である。光源の発光時間、あるいは受光手段の受光時間内においても被測定面は微小に変位しており、発光、あるいは受光を開始するタイミングによって、その変位の仕方が異なる。
具体的に、図17および図18に変位の仕方の相違を示すが、図17では被測定面1a、基準軸(例えば照射光学系光軸)2で、この基準軸2に対して被測定面1aが垂直になったとき(図の実線1a)の変位量を0とする。
図17の上方への変位(図の点線1a’)を正の変位、下方への変位(図の一点鎖線1a’’)を負の変位として、発光、あるいは受光時間内における被測定面1aの変位量をAとしている。
図17では、被測定面1aが基準軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが均等な変位量±A/2だけ変位している。一方、図18では、変位量0に対して正の方向にAだけ変位し、負の方向への変位が0となっている。
そのように発光、受光を開始するタイミングによって基準に対する被測定面の変位の仕方が異なり、変位の仕方の相違は参照面に対する被測定面の角度の相違となる。
参照面に対する被測定面の角度は干渉縞の間隔に影響し、干渉縞間隔が干渉縞を受光する手段における画素の整数倍となったとき最も正確な測定値が得られる。したがって干渉縞間隔が受光手段における画素の整数倍となるようなタイミングで、光源の発光、あるいは受光手段の受光を開始すると常に正確な測定ができる。
被測定物が略周期変位する物体の場合、変位の周期に同期をとって光を照射するが、変位の周期に誤差がある場合、すなわち周期が変動する場合、測定を実施することが困難になる。
本発明は、上述した実情を考慮して、光源の発光時間中、あるいは受光手段の受光時間中における被測定物の変位量が光源波長の半分以下になるような時間幅で、被測定物にパルス光を照射、あるいは前記干渉縞を受光することにより、動作中の被測定物の形状を反映した干渉縞を取得し、取得した干渉縞から被測定物形状を求める。それにより余分なコストを掛けることなく、確実に被測定物の動的形状を測定可能とする動的形状測定装置を提供することにある。
上記の課題を解決するために、請求項1に記載の発明は、変位中の被測定物に光を照射する第1の光源と、この第1の光源からの光を前記被測定物に照射するための照射光学系と、前記被測定物の変位とこの被測定物への光の照射とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、この干渉光学系による干渉縞を受光する受光手段と、前記干渉縞を受光面上で結像させる結像手段と、前記受光手段にて検出した前記干渉光学系による干渉縞から前記被測定物の表面形状を求める演算器とから構成される、変位中の被測定物の表面形状を求める動的形状測定装置において、前記光源の発光時間中、あるいは前記受光手段の受光時間中における前記被測定物の変位量が前記光源の波長の半分以下になるような時間幅により、前記被測定物にパルス光を照射、あるいは前記干渉縞を受光し、得られる干渉縞から変位中の前記被測定物の形状輪郭を求める動的形状測定装置を特徴とする。
また、請求項2に記載の発明は、前記受光手段の受光面上における干渉縞の間隔が前記受光手段の画素の整数倍となるときの被測定面角度を基準に前記第1の光源の発光時間中、あるいは前記受光手段の受光時間中における被測定面の角度変化が略均等になるように、前記第1の光源の発光、あるいは前記受光手段の受光を開始させる請求項1記載の動的形状測定装置を特徴とする。
また、請求項3に記載の発明は、被測定面の照射光学系光軸に対する角度を検知するために前記被測定物に光を照射するための第2の光源と、前記被測定物により反射された前記第2の光源2からの光を受光するための第2の受光手段と、前記第2の受光手段の出力に基づき干渉縞を作るための第1の光源から前記被測定物に光を照射するタイミング、あるいは干渉縞を受光する第1の受光手段により干渉縞を受光するタイミングを計算するための第2の演算器と、を更に備えた構成である請求項2記載の動的形状測定装置を特徴とする。
また、請求項4に記載の発明は、前記第1の光源と前記第2の光源とで偏光方向を異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の偏光方向に近い光以外をカットする偏光フィルタを設けた請求項3記載の装置を特徴とする。
また、請求項5に記載の発明は、前記第1の光源と前記第2の光源とで偏光方向を異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の偏光方向に近い光以外をカットする偏光フィルタを設けた請求項3記載の装置を特徴とする。
また、請求項6に記載の発明は、前記被測定物の変位と前記被測定物への光の照射とのタイミング調整手段に前記第1の光源から前記被測定物までの光路内に設置した遅延光学系を用いる請求項1または2記載の動的形状測定装置を特徴とする。
また、請求項7に記載の発明は、前記遅延光学系に光ファイバを用いた請求項6記載の動的形状測定装置を特徴とする。
本発明によれば、光源の発光時間内での被測定物の変位量が、光源波長の半分以下になるように、被測定物の変位速度に合わせて前記光源の発光の時間幅を設定することにより、被測定物の動作速度に対して必要なパルス光の時間幅を明確化し、それにより余分なコストを掛けることなく、確実に干渉縞を観測でき、動的形状輪郭を測定可能とすることができる。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による動的形状測定装置の第1の実施形態の構成を示す概略図である。図1において、被測定物であるポリゴンミラー1はパルス発生器3からの所定周波数のパルス信号を受けてドライバ4により回転駆動される。
所定のパルス幅のパルス光を発光する光源(第1の光源)である半導体レーザ5はパルス発生器3からの信号をレーザドライバ6に外部トリガとして入力し、所定の発光周波数にて発光する。半導体レーザ5からの光の強度を調整するためのNDフィルタ7およびビームエキスパンダ8が設けられる。
ビームエキスパンダ8にて拡大された光の一部はビームスプリッタ9を透過し、一部はビームスプリッタ9で反射される。ビームスプリッタ9を透過した光は、被測定物であるポリゴンミラー1に照射される。
ポリゴンミラー(被測定物)1において反射された光は到来した光路を逆行して、ビームスプリッタ9にて反射され、結像レンズ10を介してCCDカメラ11に到達する。
一方、ビームスプリッタ9にて反射された光は、参照ミラー12に照射され、参照ミラー12にて反射された光は到来した光路を逆行して、ビームスプリッタ9を透過して、結像レンズ10を介してCCD11に到達する。
ポリゴンミラー1にて反射された物体光と参照ミラー12にて反射された参照光について、物体光の光路長と参照光の光路長との差を光源である半導体レーザ(第1の光源)5のコヒーレンス長以下に設定しておき、物体光と参照光の光軸を略一致させれば、両者は干渉を起こして干渉縞が発生する。
結像レンズ10は被測定物1の像がCCDカメラ11の撮像面上で結像するように、その位置が調整されている。物体光と参照光との間で発生した干渉縞はCCDカメラ11にて撮像される。
この干渉縞はフレームグラバ13にて捕捉されてコンピュータ14に転送され、コンピュータ14のメモリに記憶されるとともにコンピュータのモニタに表示される。なお、符号15はCCDドライバである。
CCDカメラ11にて撮像される干渉縞からポリゴンミラー面形状輪郭を求めるためには、例えば、ポリゴンミラー面と参照ミラー面との間に所定量の傾斜を与えて干渉縞に空間的な変調をかけてフーリエ変換法を実行する演算器(図示せず)を使用する。
または、参照ミラー12にこの参照ミラー12を光軸方向に微動させるためのピエゾアクチュエータを取り付け、干渉縞に時間変調をかけて位相シフト法を実行する演算器(図示せず)を使用すればよい。
図2はポリゴンミラードライバに供給するパルス電圧信号と半導体レーザドライバに供給するパルス電圧信号とのタイミングを示す図である。共通のパルス発生器3から両ドライバに信号を供給することにより、ポリゴンミラー1の回転と半導体レーザ5の発光とは同期が取れる。
同じパルス発生器3の異なるチャンネルからそれぞれのドライバに信号を供給する場合、半導体レーザ用信号の周波数をポリゴンミラー用信号の周波数と一致させるか、もしくは約数に設定し、チャンネル間での信号の位相を調整すれば、前記回転と発光との間で、同期を取ったうえでタイミング調整ができる。
信号のタイミング調整により、ポリゴンミラー1に光が照射された瞬間におけるポリゴンミラー面の測定光学系光軸に対する角度が調整できるため、ポリゴンミラー面が測定光学系の光軸に対して略垂直になるように信号のタイミングを調整すれば、ポリゴンミラー1からの反射光と参照光とが干渉をお越し干渉縞が発生し、CCDカメラ11にて干渉縞を撮像できる。
半導体レーザ5の発光周波数がCCDカメラ11の撮像周波数より低い場合は、半導体レーザドライバ6への供給信号と同期の取れた同じ周波数の信号をCCDドライバ15とフレームグラバ13に供給して外部トリガを掛けるとよく、その場合CCDカメラ11の露光時間中に半導体レーザ5が発光するようにタイミングを調整する。
半導体レーザ5の発光周波数がCCDカメラ11の撮像周波数より高い場合は、CCDカメラ11の内部同期で撮像を行えばよいが、その場合は半導体レーザ5の発光周波数をCCDカメラ11の撮像周波数で割った商だけの回数の平均化強度画像が得られることになる。
半導体レーザ5の発光の時間幅とポリゴンミラー1の回転速度について、回転に伴うポリゴンミラー面の光学系光軸方向への変位速度をV(x)とし、発光の時間幅をtとすると、発光時間中にポリゴンミラー面は光学系光軸方向にV(x)・tだけ変位する。
xはポリゴンミラー面の長手方向における位置を表し、ポリゴンミラー面の中心を0とし、ミラー面の最端を±xmaxとすると、V(0)はゼロであり、V(±xmax)は最大となる。
図3は半導体レーザの発光の時間幅がポリゴンミラー面の光学系光軸方向への変位速度に対して十分短いとき得られる干渉縞を示す模式図である。図4は発光時間幅が変位速度に対して十分短くなっていないときに得られる干渉縞画像を示す模式図である。
図3および図4において、符号16で表したモニタ画面において、1aは図16と同様なミラー面、1bは回転軸で、1dは干渉縞を示している。図4において、ポリゴンミラー面上の中心付近の光軸方向への変位速度が小さい領域では干渉縞が観察される。
しかし、ポリゴンミラー面の長手方向において端に近づくにつれ変位速度が速くなり、それに伴い干渉縞1dのコントラストが低下してしまい(1d’参照)、やがて正常に観察できなくなることを示している。正常に干渉縞が観察できないと形状輪郭を求めることはできない。
図5は光学系光軸に対してポリゴンミラー面が略垂直になったとき得られる干渉縞のポリゴンミラー長手方向に対する断面強度分布のシミュレーション例を示す図である。図6は角度が90度から僅かにずれたときの断面強度分布のシミュレーション例を示す図である。
ポリゴンミラー1は回転中に光学系光軸に対する角度を変化させるため、光学系光軸に対してポリゴンミラー面が垂直に近いときの干渉縞の半導体レーザ発光時間中における合成が干渉縞画像として観察されることになる。
図7は半導体レーザ発光時間中における合成干渉縞の断面強度分布のシミュレーション例を示す図である。図8はポリゴンミラーの長手方向の最端部分において、光源発光時間中におけるポリゴンミラー面の変位が光源波長の半分より小さいときの合成干渉縞の断面強度分布のシミュレーション例を示す図である。
図9は半導体レーザ発光時間中におけるポリゴンミラー面の変位が光源波長の半分より大きいときの合成干渉縞の断面強度分布のシミュレーション例を示す図である。
しかし、図9におけるポリゴンミラー1の端部のように半導体レーザ発光時間中におけるポリゴンミラー面の変位が半導体レーザ5の波長の半分より大きくなったとき干渉縞のコントラストが失われる。
そのためポリゴンミラー1の仕様から最高速度Vmaxを求め、次の(1)式を満足するようなパルス発光時間幅を有する半導体レーザを、光源として用いればよい。
Vmax・t<λ/2・・・・(1)
光源には、半導体レーザ以外でパルス光を発光するものを用いてもよいし、光源にHe―NeレーザなどのCW光を用い、それを回転チョッパなどの外部パルス変調器で変調して所定時間幅のパルス光を得てもよい。
また、CW光源を用い、CCDカメラの露光時間を調整することにより、光源のパルス発光時間幅を調整することと同様の効果を得てもよい。その場合(1)式におけるtはCCDカメラの露光時間に相当する。
フーリエ変換法のように空間的に変調した干渉縞を1ショット画像として収録し、被測定物1の形状を求める測定法では、干渉縞の間隔がCCDカメラ等の受光手段の画素の整数倍のとき最も正確な測定値が得られる。例えば干渉縞が3.5画素に1本観察されるときより3画素に1本観察されるときのほうが正確な測定結果が得られる。
図10は干渉縞間隔が画素の整数倍のときに求めたポリゴンミラーの長手方向断面形状のシミュレーション例を示す図である。図11は干渉縞間隔が画素の整数倍でないときに求めた形状のシミュレーション例を示す図である。
しかし、図10に対して図11に測定誤差が生じている。干渉縞の間隔は被測定物1の反射光の光軸と参照光の光軸との傾きにより決まるため、被測定物1を静止させた状態で干渉縞が画素の整数倍になるように物体反射光と参照光との角度を調整しておき、その後被測定物1を変位させて測定を行うとよい。
しかしながら、図17および図18の例に示したように、被測定物1に照射する光の発光タイミングにより参照光に対する物体反射光の傾きが変わるため、それに応じて干渉縞の間隔が若干変わってしまう。本発明では、誤差が最小になるように、常に図18の状態で測定する。
例えばポリゴンミラー1を静止させた状態でほぼ照射光学系光軸に対して垂直になるようにセットして、そのとき観察される干渉縞間隔がCCD画素の整数倍になるように参照光用のミラーの傾きを調整しておく。その後ポリゴンミラー1を回転させる。
パルス発生器3のチャンネル間位相調整による信号遅延の分解能が要求される第1の光源(半導体レーザ)5のパルス発光時間幅より小さい場合に、ポリゴンミラー1と半導体レーザ5のそれぞれのドライバ4、6にパルス発生器3から信号を供給し、CCD画像のモニタに干渉縞が観察されるまでチャンネル間位相を調整する。
干渉縞が観察されたらチャンネル間位相をさらに微調整し、干渉縞が観察され得るチャンネル間位相の上限と下限を、モニタした干渉縞を見ながら確認し、上限と下限の中心に位相を合わせる。
すると、被測定面1aが照射光学系光軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが基準に対して均等な変位量±A/2だけ変位することになる。したがってそのような状態にしてから干渉縞を収録して測定を行うようにすれば、常に図10の状態で測定ができ、測定誤差を低減することができる。
図12は本発明による動的形状測定装置の第2の実施の形態の構成を示す概略図である。図12において図1と同じ番号の部品は図1と共通であり、作用も等しい。
図12において、回転中の被測定ポリゴンミラー1にCWレーザ光を照射するための半導体レーザ(第2の光源)17は略平行光7/9を照射する。半導体レーザ17はレーザドライバ18によって駆動される。
半導体レーザ17からの光は回転中のポリゴンミラー1により反射、走査されて、走査された光のうち一部がフォトダイオード(第2の受光手段)19で受光される。フォトダイオード19はポリゴンミラー1の各面により反射された光をパルスとして検出できるように高速で応答するものが望ましい。
変換器20はフォトダイオード19からの出力を電流−電圧変換し、カウンタ21はフォトダイオード19の出力をカウントする。ポリゴンミラー1の回転に伴いフォトダイオード19により検出されるパルス状の信号をカウンタ21でカウントし、所定回数カウントしたのちパルス発生器3にパルス信号を発生させるためのトリガ信号を出力する。
例えば図12のポリゴンミラー1は6面体であるため、6つのパルス信号出力をカウントするたびにパルス発生器3にトリガ信号を出力すればよく、ポリゴンミラー1の回転の数周期で1回の光源パルス発光を行う場合は、それに応じてカウント回数を増やせばよい。
電流−電圧変換した信号はアナログ状であるため、信号にノイズがある場合はフィルタやコンパレータを用いてパルス波形を整形するとよい。ポリゴンミラー1を回転させながらフォトダーオード19の出力によりトリガを掛けて半導体レーザ17を発光させる。
干渉縞が観察できるように、トリガ信号に対する半導体レーザ5の発光の遅延を調整する。干渉縞が観察できたら前述したように、パルス発生器3のチャンネル間位相の調整により遅延量をさらに微調整する。
干渉縞が観察され得る遅延量の上限と下限を、モニタした干渉縞を見ながら確認して、上限と下限の中心に遅延量を合わせると、被測定面1aが照射光学系光軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが対称な変位量±A/2だけ変位することになる。
それによりポリゴンミラー1の回転周波数が変動する場合においても常に図10の状態で測定ができ、測定誤差を低減することができる。
図13は本発明による動的形状測定装置の第3の実施の形態の構成を示す概略図である。図13において図12と同じ番号の部品は図12と共通であり、作用も等しい。
図13において、所定の波長の光のみを透過させる波長フィルタ22が示されている。例えばポリゴンミラー面の形状を測定するための半導体レーザ5の光の波長を635nmとし、ポリゴンミラーの回転周波数変動をモニタするための半導体レーザ17の光の波長を405nmとする。
そこで波長フィルタ22に635nm近傍の波長の光のみを透過させるフィルタを用いると、CCDカメラ11では形状測定のための干渉縞のみが観察される。ノイズ光が防げるため正確な測定が可能となる。
図14は本発明による動的形状測定装置の第4の実施の形態の構成を示す概略図である。図14において図1と同じ番号の部品は図1と共通で作用も同様である。
図14において、第1の光源(半導体レーザ)5からの光を折り返して取り出すためのミラー23が示されている。このミラー23によって取り出された光はミラー24により折り返され、リトロリフレクタ25によって到来した方向に折り返される。
リトロリフレクタ25により折り返された光は、ミラー26、27で反射され、被測定物1に照射する計測光となる。ミラー23からミラー27までの光路の分だけ計測光に時間遅延が与えられる。リトロリフレクタ25を矢印方向に進退させることにより遅延量を連続的に変えられる。
図15は本発明による動的形状測定装置の第5の実施の形態の構成を示す概略図である。図15において図1と同じ番号の部品は図1と共通で、その作用も同様である。
図15において、光源5からの光を折り返して取り出すためのミラー28が示されており、このミラー28により照射光学系光路から取り出された光はカップリングレンズ29により光ファイバ30に導かれ、カップリングレンズ31により光ファイバ30から取り出され、ミラー32により照射光学系光路に戻される。
ミラー32により反射された光は測定物1に照射される計測光となる。光は1ナノ秒で約30cm進むため、光ファイバ30の長さを指定することにより、被測定物1に照射する光のタイミングをナノ秒水準で調整できる。
光ファイバ端をFCコネクタ等で規格化しておけば、容易に交換ができるため、長さの異なる光ファイバを幾つか用意しておけば、必要な遅延量に合わせた調整が可能となる。
パルス発生器3等を用いた電気的な時間遅延と光ファイバ30による遅延を併用して、電気的な遅延の分解能以下での遅延の調整を、光ファイバ30により補完すれば、より正確なタイミング調整が可能となる。
上述した光ファイバ30と同様の伝送長の考え方で、パルス発生器3と光源(半導体レーザ)ドライバ6とを繋ぐ電気ケーブルの長さによりタイミング調整してもよい。
前述したリトロリフレクタ25による遅延光学系を併用して、大きな遅延量を光ファイバ30により与え、小さな遅延をリトロリフレクタ25により与えれば、高分解能で広いレンジの遅延を、装置を大型化することなく得ることができる。
本発明によれば、照射光学系光軸に対して略垂直となったときの被測定面に対して発光、あるいは受光の時間内での被測定面の変位量が略対称となるタイミングで、被測定物1に光を照射、あるいは被測定物1からの反射光を受光することにより、発光、あるいは受光時間内での被測定面の変位量が正、負均等になるようにし、それにより形状測定結果における誤差を最小にすることができる。
本発明によれば、タイミング調整手段を、被測定物1に光を照射する第1の光源5と、この第1の光源5の被測定物1からの反射光を受光する受光手段19と、前記受光手段19の出力に基づき第1の光源5(干渉縞をつくるための光源)から被測定物1への光の照射タイミングを演算する演算器(カウンタ)21とから構成する。
被測定物1の変位周期変動に追従しながら前記所定タイミングで被測定物1に光を照射、あるいは被測定物1からの反射光を受光することにより、被測定物1の変位周期に変動があってもその影響を抑えて被測定面の照射光学系光軸に対する角度検知を実施可能とすることができる。
本発明によれば、形状測定用の第1の光源5と周波数変動検知用の第2の光源17とで波長が異なるものを用い、被測定物1からの反射光の被測定物1から受光手段9までの光路中に前記形状測定用の光源5の波長に近い光以外をカットするバンドパスフィルタ22を設ける。
それにより前記形状測定用の光源5からの光が受光手段9に入射しないようにする。それにより形状測定のためにはノイズ光となる第2の光源17からの光を干渉縞画像から除去し、より正確な形状測定を実現することができる。
本発明によれば、形状測定用の光源5と周波数変動検知用の第2の光源17とで光の偏光方向を異なる方向とし、被測定物(形状測定用の光源)1からの反射光の被測定物1から受光手段9までの光路中に前記形状測定用の第1の光源5の偏光方向に近い光以外をカットする偏光フィルタを設ける。
これによって第2の光源17からの光が受光手段に入射しないようにする。それにより形状測定のためにはノイズ光となる第2の光源17からの光を干渉縞画像から除去し、より正確な形状測定を実現することができる。
本発明によれば、第1の光源5から被測定物1の間の光路内に光路長を長くするための光学系を設置し、被測定物に照射する光のタイミングに光路長が長くなった分だけの遅延を与えることにより前記タイミング調整を行う。それにより装置コストを低減することができる。
前述した遅延光学系に光ファイバ30を用いることにより、装置を大型化することなく大きな光学遅延量を得ることができる。
本発明による動的形状測定装置の第1の実施の形態の構成を示す概略図。 ポリゴンミラードライバに供給するパルス電圧信号と半導体レーザドライバに供給するパルス電圧信号とのタイミングを示す図。 半導体レーザの発光の時間幅がポリゴンミラー面の光学系光軸方向への変位速度に対して十分短いとき得られる干渉縞を示す模式図。 発光時間幅が変位速度に対して十分短くなっていないときに得られる干渉縞画像を示す模式図。 光学系光軸に対してポリゴンミラー面が略垂直になったとき得られる干渉縞のポリゴンミラー長手方向に対する断面強度分布のシミュレーション例を示す図。 角度が90度から僅かにずれたときの断面強度分布のシミュレーション例を示す図。 半導体レーザ発光時間中における合成干渉縞の断面強度分布のシミュレーション例を示す図。 ポリゴンミラーの長手方向の最端部分において、光源発光時間中におけるポリゴンミラー面の変位が光源波長の半分より小さいときの合成干渉縞の断面強度分布のシミュレーション例を示す図。 半導体レーザ発光時間中におけるポリゴンミラー面の変位が光源波長の半分より大きいときの合成干渉縞の断面強度分布のシミュレーション例を示す図。 干渉縞間隔が画素の整数倍のときに求めたポリゴンミラーの長手方向断面形状のシミュレーション例を示す図。 干渉縞間隔が画素の整数倍でないときに求めた形状のシミュレーション例を示す図。 本発明による動的形状測定装置の第2の実施の形態の構成を示す概略図。 本発明による動的形状測定装置の第3の実施の形態の構成を示す概略図。 本発明による動的形状測定装置の第4の実施の形態の構成を示す概略図。 本発明による動的形状測定装置の第5の実施の形態の構成を示す概略図。 本発明に関連する測定対象となる可動物の一例で、レーザプリンタやデジタルコピー機といった画像機器の書き込み光学系において使用されるポリゴンミラーを示す図。 被測定面の微小な変位を説明する概略図。 図17と異なる被測定面の微小な変位を説明する概略図。
符号の説明
1 被測定物(ポリゴンミラー)
3 タイミング調整手段(パルス発生器)
5 第1の光源(半導体レーザ)
7 照射光学系(NDフィルタ)
8 照射光学系(ビームエキスパンダ)
9 照射光学系(ビームスプリッタ)
10 結像手段(決像レンズ)
11 受光手段(CCDカメラ)
12 干渉光学系
17 第2の光源(半導体レーザ)
19 第2の受光手段
22 バンドパスフィルタ
30 遅延光学系(タイミング調整手段、光ファイバ)

Claims (7)

  1. 変位中の被測定物に光を照射する第1の光源と、この第1の光源からの光を前記被測定物に照射するための照射光学系と、前記被測定物の変位とこの被測定物への光の照射とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、この干渉光学系による干渉縞を受光する受光手段と、前記干渉縞を受光面上で結像させる結像手段と、前記受光手段にて検出した前記干渉光学系による干渉縞から前記被測定物の表面形状を求める演算器とから構成される変位中の被測定物の表面形状を求める動的形状測定装置において、前記光源の発光時間中、あるいは前記受光手段の受光時間中における前記被測定物の変位量が前記光源の波長の半分以下になるような時間幅により、前記被測定物にパルス光を照射、あるいは前記干渉縞を受光し、得られる干渉縞から変位中の前記被測定物の形状輪郭を求めることを特徴とする動的形状測定装置。
  2. 前記受光手段の受光面上における干渉縞の間隔が前記受光手段の画素の整数倍となるときの被測定面角度を基準に前記第1の光源の発光時間中、あるいは前記受光手段の受光時間中における被測定面の角度変化が略均等になるように、前記第1の光源の発光、あるいは前記受光手段の受光を開始させることを特徴とする請求項1記載の動的形状測定装置。
  3. 被測定面の照射光学系光軸に対する角度を検知するために前記被測定物に光を照射するための第2の光源と、前記被測定物により反射された前記第2の光源2からの光を受光するための第2の受光手段と、前記第2の受光手段の出力に基づき干渉縞を作るための第1の光源から前記被測定物に光を照射するタイミング、あるいは干渉縞を受光する第1の受光手段により干渉縞を受光するタイミングを計算するための第2の演算器と、を更に備えたことを特徴とする請求項2記載の動的形状測定装置。
  4. 前記第1の光源1と前記第2の光源2とで波長が異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の波長に近い光以外をカットするバンドパスフィルタを設けたことを特徴とする請求項3記載の動的形状測定装置。
  5. 前記第1の光源と前記第2の光源とで偏光方向を異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の偏光方向に近い光以外をカットする偏光フィルタを設けたことを特徴とする請求項3記載の動的形状測定装置。
  6. 前記被測定物の変位と前記被測定物への光の照射とのタイミング調整手段に前記第1の光源から前記被測定物までの光路内に設置した遅延光学系を用いることを特徴とする請求項1または2記載の動的形状測定装置。
  7. 前記遅延光学系に光ファイバを用いたことを特徴とする請求項6記載の動的形状測定装置。
JP2004145628A 2004-05-14 2004-05-14 動的形状測定装置 Expired - Fee Related JP4307321B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145628A JP4307321B2 (ja) 2004-05-14 2004-05-14 動的形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145628A JP4307321B2 (ja) 2004-05-14 2004-05-14 動的形状測定装置

Publications (2)

Publication Number Publication Date
JP2005326316A true JP2005326316A (ja) 2005-11-24
JP4307321B2 JP4307321B2 (ja) 2009-08-05

Family

ID=35472780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145628A Expired - Fee Related JP4307321B2 (ja) 2004-05-14 2004-05-14 動的形状測定装置

Country Status (1)

Country Link
JP (1) JP4307321B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240344A (ja) * 2006-03-09 2007-09-20 Fujitsu Ltd 動的形状計測方法及び動的形状計測装置
CN105043286A (zh) * 2014-04-28 2015-11-11 Snu精密股份有限公司 干涉测量中的扫描同步方法
JP2018054769A (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240344A (ja) * 2006-03-09 2007-09-20 Fujitsu Ltd 動的形状計測方法及び動的形状計測装置
CN105043286A (zh) * 2014-04-28 2015-11-11 Snu精密股份有限公司 干涉测量中的扫描同步方法
JP2018054769A (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置
WO2018061816A1 (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置

Also Published As

Publication number Publication date
JP4307321B2 (ja) 2009-08-05

Similar Documents

Publication Publication Date Title
US7312876B2 (en) Optical image measuring apparatus
US20060077395A1 (en) Optical image measuring apparatus and optical image measuring method
JP5336921B2 (ja) 振動計測装置及び振動計測方法
US20110261347A1 (en) Method for interferometric detection of surfaces
US7274466B2 (en) Method and apparatus for measuring dynamic configuration surface
JP6979391B2 (ja) 距離測定装置、距離測定方法、及び立体形状測定装置
CN110869696B (zh) 耐振白色光干涉显微镜及其振动影响去除方法
JP5268425B2 (ja) 表面形状測定装置及び露光装置
JP6360051B2 (ja) 光学距離測定システムを備えるマイクロリソグラフィー用の投影露光装置
JP2008003597A (ja) 物体の光学的測定を行うための走査型顕微鏡
JP5514641B2 (ja) レーザー干渉バンプ測定器
JP4307321B2 (ja) 動的形状測定装置
JPH07502810A (ja) 光学系内の境界面の傾斜を測定する方法及び装置
CN112731345B (zh) 具有主动光学防抖功能的抗振型面阵扫频测距/厚的装置和方法
JP6570343B2 (ja) 光干渉断層計、面発光レーザ
JP4468153B2 (ja) テラヘルツイメージング装置およびテラヘルツイメージング方法
JP6501307B2 (ja) ヘテロダイン干渉装置
JP2006119099A (ja) 周期可動物の変位測定装置
JP2006162523A (ja) 周期可動物の速度測定装置及び変位測定装置
JPH0772005A (ja) 微小周期振動変位の測定装置
KR20140023792A (ko) 표면형상 측정장치
JPH08178632A (ja) 表面形状測定装置
KR20100111908A (ko) 고속카메라와 연속위상주사 방법을 이용한 진동둔감 간섭계
JPH1089930A (ja) 焦点調節方法、およびそれを使用する形状測定器
KR101545491B1 (ko) 간섭계의 스캐닝 동기화 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees