JP2005325693A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2005325693A
JP2005325693A JP2004142434A JP2004142434A JP2005325693A JP 2005325693 A JP2005325693 A JP 2005325693A JP 2004142434 A JP2004142434 A JP 2004142434A JP 2004142434 A JP2004142434 A JP 2004142434A JP 2005325693 A JP2005325693 A JP 2005325693A
Authority
JP
Japan
Prior art keywords
fuel ratio
exhaust
catalyst
air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004142434A
Other languages
English (en)
Inventor
Takayuki Demura
隆行 出村
Shigeki Miyashita
茂樹 宮下
Yasuyuki Irisawa
泰之 入澤
Hirobumi Kubota
博文 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004142434A priority Critical patent/JP2005325693A/ja
Publication of JP2005325693A publication Critical patent/JP2005325693A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 タンデム型NOX吸蔵還元触媒の被毒回復操作を効率的に実行する。
【解決手段】 機関1の排気通路2に、触媒前段7aと触媒後段7bとからなるタンデム型NOX吸蔵還元触媒7を配置する。機関リーン空燃比運転中にNOX吸蔵還元触媒に吸蔵されたSOX成分量が所定量に到達すると、機関の電子制御ユニット(ECU)30は、まず、比較的空燃比差の大きいリッチ空燃比排気とリーン空燃比排気とを比較的短い周期で交互に触媒7に供給することにより、触媒前段の被毒回復を行う。そして、前段の被毒回復が完了すると、ECUは比較的空燃比差の小さいリッチ空燃比排気とリーン空燃比排気とを比較的長い周期で交互に触媒7に供給することにより、触媒前段の被毒回復を行う。
【選択図】 図1

Description

本発明は内燃機関の排気浄化装置に関し、詳細には排気通路に直列に配置した複数の排気浄化用触媒を備えた内燃機関の排気浄化装置に関する。
内燃機関の排気通路に配置した排気浄化触媒を備え、排気中の有害物質を浄化する排気浄化装置が知られている。このような排気浄化触媒には、使用とともに排気中の特定の成分(被毒物質)を吸収、吸着等により吸蔵し、被毒物質の吸蔵量増大とともに排気浄化能力が低下するものがある。
例えば、流入する排気空燃比がリーンのときに排気中の窒素酸化物(NOX)を吸収、吸着またはその両方により吸蔵し、流入する排気空燃比がリッチになったときに吸蔵したNOXを還元浄化するNOX吸蔵還元触媒を排気浄化触媒として使用する場合、排気中に硫黄酸化物(SOX)が含まれると、NOX吸蔵還元触媒にはNOXと同様にSOXが吸蔵される。
SOXはNOX吸蔵還元触媒内で安定した硫酸塩を形成するため、NOX吸蔵還元触媒からNOXが放出される条件下でも触媒から放出されない。このため、NOX吸蔵還元触媒中に吸蔵された硫黄成分の量は徐々に増大し、それにつれてNOXの吸蔵能力が低下する。すなわち、NOX吸蔵還元触媒は排気中の特定成分としての硫黄を吸蔵し、排気浄化能力の低下(この場合には、硫黄による被毒)を生じる。
NOX吸蔵還元触媒の硫黄被毒を解消するためには、排気空燃比を理論空燃比またはリッチ空燃比に維持した状態で触媒温度を通常運転時より高い所定の温度まで上昇させる被毒回復操作が必要となる。
被毒回復操作時に触媒温度を通常運転時より高い所定温度まで上昇させるためには、触媒に未燃燃料などの炭化水素(HC)やCO成分を比較的多量に供給するとともに、充分な酸素を供給してHCやCO成分を触媒上で燃焼させることが有効である。
このため、例えば多気筒機関の場合には被毒回復操作時に一部の気筒をリッチ空燃比で運転し、他の気筒をリーン空燃比で運転することにより被毒回復操作を行うことが提案されている。
すなわち、多気筒機関の一部の気筒をリッチ空燃比で運転すると、この気筒の排気にはHC成分等が多量に含まれるようになる。また、他の気筒をリーン空燃比で運転するとこの気筒からの排気には比較的多量の酸素が含まれるようになる。従って、このようにリッチ空燃比運転する気筒とリーン空燃比運転する気筒とを設けることにより、排気通路に配置されたNOX吸蔵還元触媒にはリッチ空燃比の排気とリーン空燃比の排気とが交互に到達するようになる。
これらの排気はNOX吸蔵還元触媒内で混合し、リッチ空燃比排気中のHC等とリーン排気中の酸素とがNOX吸蔵還元触媒上で反応し、反応熱により触媒が加熱されるようになる。
この種の被毒回復操作を行う排気浄化装置の例としては、例えば特許文献1に記載されたものがある。
特許文献1の装置では、被毒回復操作時に上記の気筒別空燃比制御を行う際にリッチ空燃比運転気筒における空燃比のリッチ度合いと空気量とに基づいて空燃比フィードバック目標値を設定し、この目標値になるようにNOX吸蔵還元触媒上流側に配置した空燃比センサ出力に基づいて燃料噴射量をフィードバック制御している。
前述したように、NOX吸蔵還元触媒から吸蔵した硫黄を放出させるためには、理論空燃比またはリッチ空燃比雰囲気で触媒を昇温する必要がある。この場合、排気中のHC、CO成分などを有効に活用して最も効率的に触媒を昇温するためには、排気の平均空燃比を理論空燃比近傍に維持することが好ましい。ところが、通常リッチ空燃比運転を行うと排気中に比較的多量のH2が含まれるようになり、このH2の影響により空燃比センサ出力が不正確になる場合がある。
特許文献1の装置では、上記のようにNOX吸蔵還元触媒上流側に設けた空燃比センサ出力に基づいて燃料噴射量をフィードバック制御する際に、リッチ空燃比運転気筒のリッチ度合いと空気量とに基づいてフィードバック目標値を設定することにより、リッチ空燃比気筒で発生するH2による空燃比センサ出力の変化を補償し、排気の平均空燃比を理論空燃比に制御することを可能とするものである。
一方、特許文献6はNOX吸蔵還元触媒を排気通路に間隔をあけて直列に配置し、上流側触媒と下流側触媒との特性(例えば硫黄吸着特性)を変えることにより全体としてNOX吸蔵能力を向上させた、いわゆるタンデム型排気浄化触媒を開示している。
特開2001−132498号公報 特開2000−80943号公報 特開2002−349316号公報 特開2000−18021号公報 特開2000−230421号公報 特開2001−863号公報
上述したように、特許文献1の排気浄化装置では、排気浄化触媒にリッチ空燃比の排気とリーン空燃比の排気とを交互に到達させることにより、触媒を昇温させて被毒回復を行っている。
ところが、特許文献1のようにリッチ空燃比の排気とリーン空燃比の排気とを交互に排気浄化触媒に供給して触媒の昇温を行う被毒回復操作を、特許文献6のようなタンデム型排気浄化触媒に適用すると問題が生じる場合がある。
例えば、触媒上で酸化反応を生じさせるためには、交互に触媒に到達するリーン空燃比とリッチ空燃比の排気が互いに拡散混合して未反応の炭化水素(HC)等と酸素との両方を多量に含む理論空燃比近傍の排気を生成させる必要がある。
ところが、特許文献6のようなタンデム型排気浄化触媒では、上流側触媒(以下、「触媒前段」と称する)と下流側触媒(以下、「触媒後段」と称する)とが間隔をあけて配置されている。このため、触媒前段では排気は前段の各セルに流入する際のに流路の急縮小による流れの乱れのみにより拡散、混合を受けるが、触媒後段に流入する排気は、触媒前段流入時の流路の急縮小による乱れに加えて前段から流出する際の流路の急拡大、触媒後段に流入する際の流路の急縮小による流れの乱れをそれぞれ受けるため、触媒前段での排気の拡散、混合状態は触媒後段における排気の拡散、混合状態より悪くなる。
従って、触媒に交互にリーン空燃比とリッチ空燃比との排気を供給すると、前段では混合状態が比較的悪い排気が到達するため酸化反応が比較的生じにくいものの、後段には混合状態の良好な排気が到達するようになり、酸化反応が生じやすくなる。このため、一般には触媒後段では温度上昇幅が前段より大きくなる傾向が生じる。しかも、タンデム型触媒では、前段と後段とが間隔をあけて配置されるため触媒後段で発生した熱は前段には直接伝達されず、両者の間に大きな温度差が生じる場合がある。
一方、硫黄などの被毒物質は触媒後段より前段にに多く吸蔵されるため、短時間で被毒回復を行うためには被毒回復操作時に触媒前段の温度を後段より高くする必要がある。
このため、触媒前段で被毒回復に十分な温度を得ようとすると、後段では温度が過度に上昇して触媒の熱劣化を生じたり、或いは触媒後段で熱劣化を生じない温度を維持すると触媒前段では硫黄被毒の回復が不十分になる問題が生じるのである。
本発明は、上記問題に鑑み、排気通路に複数の触媒を間隔をあけて直列に配置した形式のタンデム型排気浄化触媒に、交互にリーン空燃比とリッチ空燃比の排気を供給して被毒回復操作を行う場合に、触媒の熱劣化が生じることを防止しながら全部の触媒の十分な被毒回復を行うことが可能な内燃機関の排気浄化装置を提供することを目的としている。
請求項1に記載の発明によれば、排気中の有害物質を浄化するとともに排気中の特定成分を吸蔵して排気浄化能力が低下する排気浄化用触媒を内燃機関の排気通路上に2つ直列に配置した内燃機関の排気浄化装置であって、前記2つの排気浄化触媒の上流側の排気通路にリッチ空燃比の排気とリーン空燃比の排気とを交互に供給することにより触媒温度を上昇させて前記吸蔵した特定成分を排気浄化触媒から放出させる被毒回復操作を行う際に、まず比較的空燃比の差の大きいリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して上流側の排気浄化触媒から前記特定成分を放出させ、前記上流側排気浄化触媒から特定成分の放出終了後に比較的空燃比差の小さいリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して下流側の排気浄化触媒の被毒回復操作を行う、内燃機関の排気浄化装置が提供される。
すなわち、請求項1の発明では上流側触媒(触媒前段)の被毒回復操作は空燃比差の比較的大きいリッチ空燃比の排気とリーン空燃比の排気とを交互に触媒に供給することにより行う。これにより、触媒前段の被毒回復操作時には比較的空燃比の低いリッチ空燃比の排気と比較的空燃比の高いリッチ空燃比の排気とが交互に供給されるため、比較的多量の炭化水素等と比較的多量の酸素とが交互に供給されることになり、酸化反応により発生する熱量も大きくなる。これにより、比較的特定成分を多く吸蔵した触媒前段では高温で被毒回復操作が行われる。
また、下流側触媒(触媒後段)の被毒回復操作時は空燃比差の比較的小さいリッチ空燃比の排気とリーン空燃比の排気とを供給することにより行う。これにより、触媒後段の被毒回復操作時には、比較的空燃比の高いリッチ空燃比の(すなわち、比較的炭化水素等の可燃成分濃度が低い)排気と比較的空燃比の低いリーン空燃比の(砂なち、比較的酸素濃度の低い)排気とが交互に供給されるようになるため、酸化反応により発生する熱量も比較的小さくなる。これにより、比較的特定成分吸蔵量の少ない触媒後段では比較的低温で被毒回復操作が行われるようになる。
請求項2に記載の発明によれば、排気中の有害物質を浄化するとともに排気中の特定成分を吸蔵して排気浄化能力が低下する排気浄化用触媒を内燃機関の排気通路上に2つ直列に配置した内燃機関の排気浄化装置であって、前記2つの排気浄化触媒の上流側の排気通路にリッチ空燃比の排気とリーン空燃比の排気とを交互に供給することにより触媒温度を上昇させて前記吸蔵した特定成分を排気浄化触媒から放出させる被毒回復操作を行う際に、まず比較的短い周期でリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して上流側の排気浄化触媒から前記特定成分を放出させ、前記上流側排気浄化触媒からの特定成分の放出終了後に比較的長い周期でリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して下流側の排気浄化触媒からの前記特定成分を放出させる、内燃機関の排気浄化装置が提供される。
すなわち、請求項2の発明では触媒前段の被毒回復操作時には比較的短い周期で、触媒後段の被毒回復操作時には比較的長い周期で、それぞれリーン空燃比とリッチ空燃比の排気が交互に排気通路に供給される。
交互に供給されたリーン空燃比排気とリッチ空燃比排気とが触媒上で酸化反応を生じるためには、リーン空燃比の排気とリッチ空燃比の排気とが互いに拡散、混合し、炭化水素等の可燃成分と酸素との両方を含んだ混合排気を形成する必要がある。
この場合、交互に供給されるリーン空燃比排気とリッチ空燃比排気とは触媒前段流入時及び通過時に互いに拡散、混合するが、この混合の度合いはリーン空燃比排気とリッチ空燃比排気との切換周期が短いほど良好になり、長いほど悪化する。
このため、タンデム型排気浄化触媒に供給するリーン空燃比排気とリッチ空燃比排気との切換周期が短い場合には、触媒前段での混合が良好になり、主に触媒前段で酸化反応が生じるようになる。このため、排気中の炭化水素などの可燃成分の大部分は触媒前段で燃焼し、触媒後段には可燃成分が到達しにくくなり、触媒後段では酸化反応が生じにくくなる。
すなわち、タンデム型排気浄化触媒にリーン空燃比排気とリッチ空燃比排気とを短い切換周期で供給することにより、主に触媒前段を加熱、昇温することができる。
一方、触媒前段では、流入するリーン空燃比排気とリッチ空燃比排気との切換周期が長くなるほど排気の混合状態が悪化するため酸化反応が生じにくくなり、炭化水素などの可燃成分と酸素とが未反応のまま触媒前段を通過するようになる。ところが、触媒前段を通過した排気は触媒前段から流出する際の流路拡大による乱れ等により混合が促進された状態で触媒下段に流入する。このため、タンデム型排気浄化触媒に供給されるリーン空燃比排気とリッチ空燃比排気の切換周期が比較的長い場合であっても触媒後段には良好な混合状態の排気が流入するようになり、排気中の炭化水素などの可燃成分は主に触媒後段で燃焼するようになる。
すなわち、タンデム型排気浄化触媒にリーン空燃比排気とリッチ空燃比排気とを長い切換周期で供給することにより、主に触媒後段を加熱、昇温することができる。
本発明では、まず切換周期の短いリーン空燃比排気とリッチ空燃比排気をタンデム型排気浄化触媒に供給することにより触媒前段(上流側排気浄化触媒)の被毒回復操作を行い、触媒前段の被毒回復が終了した後にリーン空燃比排気とリッチ空燃比排気との切換周期を長くすることにより、触媒後段(下流側排気浄化触媒)の被毒回復操作を行う。
これにより、触媒前段と触媒後段との被毒回復操作を個別に行うことができ、触媒前段と触媒後段の被毒回復時の温度条件をそれぞれの触媒に最適な値に設定することができるようになる。
請求項3に記載の発明によれば、前記排気浄化触媒は、流入する排気の空燃比がリーン空燃比のときに排気中の酸素成分を吸収し、流入する排気の空燃比がリッチ空燃比になったときに吸収した酸素を放出する酸素貯蔵能力を備え、前記2つの排気浄化触媒のうち上流側に配置された排気浄化触媒は下流側に配置された排気浄化触媒より前記酸素貯蔵能力が小さい、請求項1または2に記載の内燃機関の排気浄化装置が提供される。
すなわち、請求項3の発明ではタンデム型排気浄化触媒の触媒前段の酸素貯蔵能力が比較的小さくなるようにされている。触媒の酸素貯蔵能力は流入する排気の空燃比がリーン空燃比のときに排気中の酸素成分を吸収し、流入する排気の空燃比がリッチ空燃比になったときに吸収した酸素を放出するものであるため、触媒にリーン空燃比排気とリッチ空燃比排気とが交互に流入する場合には、リーン空燃比排気とリッチ空燃比排気との混合状態が多少悪くても酸素吸蔵能力が大きければ酸化反応が生じるようになる。
このため、触媒前段での酸素吸蔵能力が大きいと流入する排気中の炭化水素などの可燃成分は触媒前段で大部分が消費されてしまい、触媒後段に到達する炭化水素などの可燃成分の量が少なくなり、触媒後段を被毒回復に十分な程度まで昇温できなくなる可能性がある。
そこで、本発明では触媒前段の酸素貯蔵能力を小さく設定し、触媒後段の昇温を十分に行うことができるようにしている。これにより、触媒後段の被毒回復操作を効率的に行うことができる。
請求項4に記載の発明によれば、更に、前記2つの排気浄化触媒の中間の排気通路、または下流側排気浄化触媒の下流側の排気通路の少なくとも一方に配置された空燃比センサを備え、前記被毒回復操作時に前記少なくとも一方に配置された空燃比センサで検出した排気空燃比が理論空燃比になるように機関への燃料供給量を補正する、請求項1から3のいずれか1項に記載の内燃機関の排気浄化装置が提供される。
すなわち、請求項4の発明では、空燃比センサの出力に基づいて排気の平均空燃比が理論空燃比になるように燃料噴射量がフィードバック制御される。被毒回復操作時にはリッチ空燃比排気とリーン空燃比排気とが交互に供給されるが、触媒前段通過後の排気はこれらが均一に混合した状態になる。このため、被毒回復操作時には触媒前段と後段との間に配置された空燃比センサ出力に基づいてフィードバック制御することにより、正確に排気の空燃比(全体としての機関運転空燃比)を理論空燃比に制御することができる。
また、触媒後段下流側に空燃比センサを配置する場合には、更に排気の混合が良好になるとともに、触媒後段で比較的酸素貯蔵能力が大きい場合にもそれに応じてリッチ空燃比排気のリッチ度合いが高くなるように空燃比を補正することができるため、効率的な被毒回復操作を行うことが可能となる。
各請求項に記載の発明によれば、排気通路に複数の触媒を間隔をあけて直列に配置した形式のタンデム型排気浄化触媒に、交互にリーン空燃比とリッチ空燃比の排気を供給して被毒回復操作を行う場合に、触媒の熱劣化が生じることを防止しながら全部の触媒の十分な被毒回復を行うことが可能となる共通の効果を奏する。
以下、添付図面を用いて本発明の実施形態について説明する。
図1は、本発明を自動車用内燃機関に適用した場合の、実施形態の概略構成を説明する図である。
図1において、1は自動車用内燃機関を示す。本実施形態では、機関1は#1から#4の4つの気筒を備えた4気筒ガソリン機関とされ、#1から#4気筒には直接気筒内に燃料を噴射する燃料噴射弁111から114が設けられている。後述するように、本実施形態の内燃機関1は、理論空燃比より高い(リーンな)空燃比で運転可能なリーンバーンエンジンとされている。
また、本実施形態では#1から#4の気筒は互いに点火時期が連続しない2つの気筒からなる2つの気筒群にグループ分けされている。(例えば、図1の実施形態では、気筒点火順序は1−3−4−2であり、#1、#4の気筒と#2、#3の気筒とがそれぞれ気筒群を構成している。)また、各気筒の排気ポートは気筒群毎に排気マニホルドに接続され、気筒群毎の排気通路に接続されている。
図1において、21aは#1、#4気筒からなる気筒群の排気ポートを個別排気通路2aに接続する排気マニホルド、21bは#2、#3気筒からなる気筒群の排気ポートを個別排気通路2bに接続する排気マニホルドである。本実施形態では、個別排気通路2a、2b上には、三元触媒からなるスタートキャタリスト(以下「SC」と呼ぶ)5aと5bがそれぞれ配置されている。また、個別排気通路2a、2bはSC下流側で共通の排気通路2に合流している。
共通排気通路2上には、後述するNOX吸蔵還元触媒7をケーシングに収納したコンバータ70が配置されている。
図2は、本実施形態のコンバータ70の構成を示す断面図である。コンバータ70は、ケーシング70a内にNOX吸蔵還元触媒7を収納した形式とされている。また、本実施形態ではNOX吸蔵還元触媒7は上流側NOX吸蔵還元触媒7a(触媒前段)と、上流側NOX吸蔵還元触媒7aと適宜な空隙を介して下流側に直列配置された下流側NOX吸蔵還元触媒7b(触媒後段)との2つの触媒を備えた、タンデム型排気浄化触媒(タンデム型NOX吸蔵還元触媒)とされている。
図2に示すように、本実施形態では触媒前段7aと触媒後段7bとの間には、触媒前段7aを通過した排気中の空燃比を検出する上流側空燃比センサ31aが、また、コンバータ70出口の排気通路には触媒後段7bを通過した排気中の空燃比を検出する下流側空燃比センサ31bが、それぞれ配置されている。
本実施形態では空燃比センサ31a、31bは、広い空燃比範囲で排気空燃比に対応する電圧信号を出力するいわゆるリニア空燃比センサとされているが、本発明ではリニア空燃比センサの代わりに、排気中の酸素濃度を検出し出力が理論空燃比を境に急激に変化する、いわゆるZ型出力特性を有するO2センサを使用することも可能である。
更に、図1に30で示すのは機関1の電子制御ユニット(ECU)である。ECU30は、本実施形態ではRAM、ROM、CPUを備えた公知の構成のマイクロコンピュータとされ、機関1の点火時期制御や燃料噴射制御等の基本制御を行っている。また、本実施形態では、ECU30は上記の基本制御を行う他に、後述するようにNOX吸蔵還元触媒7a、7bのNOX吸蔵状態に応じてリーン空燃比運転中に燃料噴射弁111から114の燃料噴射量を変更して、短時間機関をリッチ空燃比で運転し、NOX吸蔵還元触媒7a、7bから吸蔵したNOXを放出させるするリッチスパイク操作を行う。
また、ECU30はNOX吸蔵還元触媒に吸蔵した硫黄成分をNOX吸蔵還元触媒の温度を上昇させることにより放出させる、後述する硫黄被毒回復操作をおこなう。
これらの制御を行うため、ECU30の入力ポートには、図示しない機関吸気マニホルドに設けられた吸気圧センサ33から機関の吸気圧力に対応する信号と、機関クランク軸(図示せず)近傍に配置された回転数センサ35から機関回転数に対応する信号、機関1のアクセルペダル(図示せず)近傍に配置したアクセル開度センサ37から運転者のアクセルペダル踏込み量(アクセル開度)を表す信号、がそれぞれ入力されている他、上流側空燃比センサ31aから触媒前段7a出口排気の空燃比が、下流側空燃比センサ31bから触媒後段7b出口排気の空燃比が、それぞれ入力されている。
本実施形態では、ECU30は吸気圧センサ33で検出した機関吸気圧力と回転数センサ35で検出した機関回転数とに基づいて機関1の吸入空気流量を算出し、機関の理論空燃比またはリッチ空燃比運転時の燃料噴射量を制御する。
また、ECU30はアクセル開度センサ37で検出したアクセル開度と機関回転数と似基づいて機関のリーン空燃比運転時の燃料噴射量を制御する。
また、ECU30の出力ポートは、各気筒への燃料噴射量と燃料噴射時期を制御するために、図示しない燃料噴射回路を介して各気筒の燃料噴射弁111から114に接続されている。
これらの燃料噴射制御としては、いずれの公知の制御を用いることができるため、ここでは詳細な説明は省略する。
次に、本実施形態のNOX吸蔵還元触媒7(7a、7b)について説明する。
本実施形態のNOX吸蔵還元触媒7は、例えばハニカム状に形成したコージェライト等の担体を用いて、この担体表面にアルミナのコーティングを形成し、アルミナ層上に、例えばカリウムK、ナトリウムNa 、リチウムLi 、セシウムCs のようなアルカリ金属、バリウムBa 、カルシウムCa のようなアルカリ土類、ランタンLa 、セリウムCe、イットリウムYのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持させたものである。NOX吸蔵還元触媒は流入する排気ガスの空燃比がリーンのときに、排気中のNOX(NO2、NO)を吸収、吸着またはその両方により吸蔵し、流入排気ガス中の酸素濃度が低下すると吸蔵したNOXをNO2の形で放出するNOXの吸放出作用を行う。
例えば、機関1がリーン空燃比で運転されNOX吸蔵還元触媒7に流入する排気がリーン空燃比である場合には、排気中のNOX(NO、NO2)はNOX吸蔵還元触媒7に吸蔵され、NOX吸蔵還元触媒7を通過した排気中のNOX濃度はほぼゼロになる。
また、流入排気中の酸素濃度が大幅に低下すると(すなわち、排気の空燃比が理論空燃比またはリッチ空燃比になると)、NOX吸蔵還元触媒7に吸蔵されたNOXは排気中のCOやH2等還元剤として機能する成分やHC成分(以下、還元成分等)により還元され、NO2の形でNOX吸蔵還元触媒7から放出される。
本実施形態では、ECU30はNOX吸蔵還元触媒7に吸蔵されたNOXの量が所定値に到達する毎に機関1を短時間リッチ空燃比で運転し、NOX吸蔵還元触媒にリッチ空燃比の排気を供給するリッチスパイク操作を行う。これにより、NOX吸蔵還元触媒7から吸蔵されたNOXがNO2の形で放出され、NOX吸蔵還元触媒が吸収したNOXにより飽和することが防止される。
なお、本実施形態におけるリッチスパイク操作としては公知のいずれの方法を用いることができるため、ここでは詳細な説明は省略する。
ところが、上記のようなNOX吸蔵還元触媒7を排気浄化触媒として使用する場合には、排気中に硫黄酸化物(SOX)等の特定成分が含まれると問題が生じる場合がある。
すなわち、リーン空燃比排気中にSOX等が含まれていると、排気中のSOXはNOXと全く同様なメカニズムでNOX吸蔵還元触媒7に吸蔵される。しかし、SOXはNOX吸蔵還元触媒に吸蔵された状態ではNOXよりはるかに安定な化合物を形成するため、単に触媒7にリッチ空燃比の排気を供給するリッチスパイク操作を行っただけでは、NOXを放出させることはできてもSOXを放出させるには不十分である。
このため、排気中にSOXが含まれるとリッチスパイク操作を定期的に行っていても触媒7内にはSOXが蓄積されるようになり、NOX吸蔵還元触媒7の吸蔵可能なNOX量(NOX吸蔵能力)は触媒内に吸蔵されたSOXの量だけ低下するようになる。従って、吸蔵されたSOXの量が増大すると、NOX吸蔵還元触媒7は排気中のNOXを吸蔵することができなくなり、未浄化のNOXが吸蔵されないままNOX吸蔵還元触媒7を通過するようになる。
すなわち、NOX吸蔵還元触媒7は、排気中の特定成分としてのSOXを吸蔵することにより排気浄化能力が低下する、いわゆる硫黄被毒が生じるのである。
NOX吸蔵還元触媒7に吸蔵されたSOXは、NOX吸蔵還元触媒7を理論空燃比またはリッチ空燃比雰囲気で所定の高温状態に維持することによりNOX吸蔵還元触媒7から放出されることが知られている。このため、排気中にSOXが含まれる場合にはNOX吸蔵還元触媒7に吸蔵されたSOX量が増大する毎に、NOX吸蔵還元触媒7に理論空燃比またはリッチ空燃比の排気を供給しつつ通常の運転温度よりも高い温度にNOX吸蔵還元触媒7を保持する、被毒回復操作を行う必要がある。
例えば、前述の特許文献1では触媒に交互にリーン空燃比とリッチ空燃比の排気を供給して触媒上でリッチ空燃比排気中のHC等をリーン空燃比排気中の酸素を用いて燃焼させることにより触媒を昇温して被毒回復操作を行っている。
このように、リーン空燃比とリッチ空燃比の排気を交互に触媒に供給して触媒を昇温することにより、別途触媒上流側の排気通路にHC等や二次空気を供給する装置を設けることなく、簡易に触媒にHC等の可燃成分と酸素とを供給することができるものの、図1に示したようなタンデム型NOX吸蔵還元触媒にリーン空燃比とリッチ空燃比の排気を交互に供給する被毒回復操作を行うと、前述したように触媒前段、後段のいずれかの被毒回復が不十分になったり、触媒の熱劣化を生じたりする問題がある。
本実施形態では、交互にリーン空燃比とリッチ空燃比の排気を供給して被毒回復操作を行う場合に、以下に説明する方法で触媒の熱劣化が生じることを防止しながら全部の触媒の十分な被毒回復を行うことを可能としている。
すなわち、本実施形態では、触媒前段と触媒後段とを個別に被毒回復操作を行うことにより、触媒前段と後段との被毒回復条件を個別に設定することにより、上記の問題が生じることを防止しているのである。
本実施形態では被毒回復操作開始後まず、主に触媒前段を昇温させて触媒前段の被毒回復を行い、触媒前段の被毒回復が終了した後に、主に触媒後段を昇温させて触媒後段の被毒回復を行う。
本実施形態のように直列に触媒を配置した場合には、触媒前段を通過した排気がそのまま触媒後段を通過することになるため、従来、触媒前段と後段とで被毒回復条件を変えることは困難と考えられていた。
これに対して、本実施形態では交互に供給するリッチ空燃比排気とリーン空燃比排気との空燃比差と、リッチ空燃比排気とリーン空燃比排気との切換周期とを変更することにより、触媒前段と後段とで被毒回復条件を変更可能としている。
以下、触媒前段7aと後段7bとの被毒回復操作について具体的に説明する。
(1)触媒前段7aの被毒回復操作
被毒回復操作が開始されると、ECU30はまず機関1の#1、#4気筒をリッチ空燃比で運転し、#2、#3気筒をリーン空燃比で運転する。また、このとき#1、#4気筒の運転空燃比は(RST−α)、#2、#3気筒の運転空燃比は(RST+α)となるようにして、機関1行程サイクル当たりの平均空燃比がRST(RSTは理論空燃比)になるようにされる。
前述したように#1、#4気筒はスタートキャタリスト(SC)5aに接続された排気通路2aに、#2、#3気筒はSC5bに接続された排気通路2bにそれぞれ接続されており、機関の気筒点火順序は1−3−4−2となっている。このため、#1、#4気筒を連続的にリッチ空燃比で、#2、#3気筒を連続的にリーン空燃比で、それぞれ運転することにより、排気通路2aからはクランク角360度毎にリッチ空燃比の排気が、排気通路2bからはクランク角360度毎にリーン空燃比の排気が、互いにクランク角180度の位相差で共通排気通路2に流入する。
すなわち、これによりNOX吸蔵還元触媒7にはクランク角180度毎に交互にリッチ空燃比排気とリーン空燃比排気とが流入するようになる。
この場合、#1、#4気筒の排気は常にリッチ空燃比であるため、SC5aでは酸化反応は生じず、排気中の未反応HC等の可燃成分はSC5a上で消費されることなくNOX吸蔵還元触媒7に到達する。
更に、上記のように、比較的短い周期(クランク角180度毎)で交互にリーン空燃比排気とリッチ空燃比排気とを触媒7に供給すると、供給された排気は触媒前段7aでも比較的良好に混合するようになり、触媒前段7a上にはHC等の可燃成分と酸素とを比較的多量に含んだ平均空燃比が理論空燃比近傍の混合排気が形成される。
このため、触媒前段7a上では酸化反応が活発に生じるようになり、多量の反応熱が発生するため温度が上昇する。また、この場合、触媒前段で混合排気が形成され、酸化反応が生じるためHC成分の大部分は触媒前段で消費されるため、触媒前段を出た排気中の未反応のHC等の量は比較的少なくなる。従って、触媒後段7bではあまり酸化反応は生じず触媒後段7bの温度はあまり上昇しない。
また、リーン空燃比排気とリッチ空燃比排気との空燃比差(2α)が大きいほど混合排気中に含まれる未反応のHC等と酸素との量は多くなるため、触媒上で多くのHC等が酸化される。従って、触媒前段7aの被毒回復操作時には、供給するリーン空燃比排気とリッチ空燃比排気との空燃比差(2α)が大きいほど触媒前段7aでの発熱量が大きくなり、触媒前段7aの温度が高くなる。
通常、タンデム型NOX吸蔵還元触媒7では吸着されるSOXの量は触媒後段7bより触媒前段7aで多くなる。特に、全体としての排気浄化能力を向上させるために触媒前段7aのNOX吸蔵能力を触媒後段7bのNOX吸蔵能力より大きくしたような場合には、それに応じて触媒前段7aでのSOX吸着量も増大する。このため、触媒前段7aの被毒回復操作を効率的に行うためには触媒前段7aの温度を触媒熱劣化が生じない範囲でできるだけ高く維持することが好ましい。
ところが、前述したように従来の方法では、交互にリッチ空燃比とリーン空燃比との排気を触媒に供給した場合には後段での温度上昇が大きくなり、触媒後段7bの熱劣化を防止するために、触媒前段7aの温度を十分に上昇させることができなかった。
これに対して、本実施形態ではリッチ空燃比排気とリーン空燃比排気とを交互に比較的短い周期でタンデム型NOX吸蔵還元触媒7に供給するとともに、供給するリッチ空燃比排気とリーン空燃比排気との空燃比差を比較的大きく設定することにより、触媒後段7bでの温度上昇を比較的小さく抑制しながら触媒前段7aを十分高い温度まで昇温することにより、触媒前段の被毒回復を効率的に行うことが可能となっている。
(2)触媒後段7bの被毒回復操作
上記の操作により触媒前段7aの被毒回復操作が終了した後、触媒後段7bの被毒回復操作が行われる。
上記の触媒前段7aの被毒回復操作では、#1、#4気筒はリッチ空燃比で、#2、#3気筒はリーン空燃比で、それぞれ別の空燃比で運転されていたが、触媒前段7aの被毒回復操作が終了すると、ECU30は機関1の全気筒を同一の空燃比で運転し、一定期間毎(例えばクランク角720度毎)に#1〜#4の全気筒の空燃比をリッチ空燃比とリーン空燃比との間で切り換える。
すなわち、この場合には機関からはリッチ空燃比の排気とリーン空燃比の排気とが比較的長い周期(クランク角720度毎)に交互にNOX吸蔵還元触媒7に供給されるようになる。
また、この場合も機関運転空燃比はリッチ空燃比運転時には(RST−β)、リーン空燃比運転時には(RST+β)とされ、機関の平均運転空燃比はRST(理論空燃比)となるようにされる。また、リッチ空燃比とリーン空燃比との空燃比差は触媒前段7aの被毒回復時のそれ(2α)に較べて小さくなるように(すなわち、α>βとなるように)設定される。
このように比較的長い周期でリッチ空燃比排気とリーン空燃比排気とをNOX吸蔵還元触媒7に供給すると、供給された排気は触媒前段7aでは混合しにくくなり、触媒前段7aでは酸化反応により消費されにくくなる。このため、触媒前段7aでの発熱量は比較的小さくなるとともに、触媒前段7aを通過したリッチ空燃比排気とリーン空燃比排気とには、それぞれ比較的多量の未反応のHC等と酸素とが含まれるようになる。
また、触媒前段7aの酸素貯蔵能力を比較的小さく設定し、その分触媒後段7bの酸素貯蔵能力を比較的大きく設定するようにして、タンデム型NOX吸蔵還元触媒7全体での酸素貯蔵能力を従来と同等にするようにすれば、更に触媒前段7aで消費されるリッチ空燃比排気中の可燃成分の量を低減し、触媒後段7bに効率的にHC等の可燃成分を到達させることができる。
これらのリッチ空燃比排気とリーン空燃比排気とは触媒前段7a通過時の流れの乱れにより触媒後段7b到達時には比較的良好な混合状態になる。このため、触媒後段7b上では酸化反応が活発に生じるようになり、比較的多量の反応熱が発生する。
このように、比較的長い周期のリッチ空燃比排気とリーン空燃比排気とを交互にタンデム型NOX吸蔵還元触媒7に供給することにより、排気中のHC等の可燃成分が触媒前段7aで消費されてしまうことなく触媒後段7bに到達するようになるため、触媒後段7bを昇温させて触媒後段7bの被毒回復を十分に行うことができる。
また、前述したようにタンデム型NOX吸蔵還元触媒では触媒後段7bのSOX吸着量は触媒前段7bのそれより小さくなる。このため、触媒後段7bの被毒回復操作時の温度は、触媒前段7aの被毒回復操作時の温度より低く設定しても効率的な被毒回復操作を行うことができる。
そこで、本実施形態では触媒後段7bの被毒回復操作時には、リッチ空燃比排気とリーン空燃比排気との空燃比差(2β)を触媒前段7aの被毒回復操作時の空燃比差(2α)より小さく設定し、触媒後段7bでの発生熱量を比較的小さくしている。
すなわち、本実施形態ではリッチ空燃比排気とリーン空燃比排気とを交互に比較的長い周期でタンデム型NOX吸蔵還元触媒7に供給するとともに、供給するリッチ空燃比排気とリーン空燃比排気との空燃比差を比較的小さく設定することにより、触媒後段7bに十分な量のHC等の可燃成分を到達させ、比較的低い温度で被毒回復操作を行うことが可能となっている。
図3は、上述した本実施形態の被毒回復操作を具体的に説明するフローチャートである。本操作はECU30により一定時間毎に実行されるルーチンとして行われる。
図3の操作では、まずステップ301で現在被毒回復操作実行フラグXSの値が1に設定されているか否かが判定される。
本実施形態では、被毒回復操作実行フラグXSの値は、ECU30により別途実行される図示しない被毒回復実行判定操作により1にセットされ、触媒後段7bの被毒回復操作終了後ステップ311で0にリセットされる。
本実施形態の被毒回復実行判定操作では、ECU30はNOX吸蔵還元触媒7に吸蔵されたSOX量を推定し、吸蔵SOX量が予め定めた判定値に到達したときにフラグXSを1にセットする。
排気中に含まれるSOXは、そのほぼ全量が燃料に含まれた微量の硫黄成分が燃焼室内で燃焼することにより発生する。従って、排気とともにNOX吸蔵還元触媒7に流入するSOXの量は機関に供給される燃料量にほぼ比例する。また、排気空燃比がリーン空燃比である場合には、このNOX吸蔵還元触媒7に流入したSOXのうち所定の割合のSOXがNOX吸蔵還元触媒7に吸蔵、蓄積される。
従って、機関のリーン空燃比運転中には、機関に供給された燃料量に比例した量だけNOX吸蔵還元触媒7のSOX吸蔵量が増大する。
そこで、本実施形態の被毒回復実行判定操作では、NOX吸蔵還元触媒7のSOX吸蔵量を表すSOXカウンタを設け、ECU30は機関がリーン空燃比運転されている場合には一定期間毎にその期間に機関に供給された燃料量(燃料噴射量の積算値)に所定の割合を乗じた値をSOXカウンタに加算するようにしている。これにより、SOXカウンタの値はNOX吸蔵還元触媒7に吸蔵されたSOX量を表すようになる。
ECU30により実行される被毒回復実行判定操作では、上記のSOXカウンタの値が予め定めた判定値(NOX吸蔵還元触媒7のNOX吸蔵能力低下の許容範囲下限値に対応する値)に到達したときに、被毒回復操作実行フラグXSの値を1にセットする。これにより、図3ステップ301で被毒回復操作が開始される。
なお、図3において触媒後段7bの被毒回復が完了すると、ステップ311でフラグXSがゼロにセットされるとともにSOXカウンタの値もゼロにリセットされる。
図3の説明に戻ると、ステップ301でXS≠1であった場合には、NOX吸蔵還元触媒7のSOX吸蔵量は未だ少なく、NOX吸蔵還元触媒7のNOX吸蔵能力の低下は未だ許容範囲内であるため、ECU30はステップ303以下の操作を行うことなく今回の操作実行を終了する。
ステップ301でフラグXSの値が1であった場合には、NOX吸蔵還元触媒7に吸蔵されたSOX量が許容値を越えて増大しているため、ECU30はステップ303以下を実行して触媒前段7aと後段7bとの被毒回復操作を個別に行う。
この場合、ステップ303、305ではまず触媒前段7aの被毒回復操作が実行される。すなわち、ステップ303では触媒前段の被毒回復が完了したか否かが判定され、完了していない場合には、ステップ305に進む。
ステップ305では、ECU30は機関1の#1、#4気筒を所定のリッチ空燃比(空燃比RST−α)で、また、#2、#3気筒を所定のリーン空燃比(空燃比RST+α)で、それぞれ連続的に運転する。これにより、NOX吸蔵還元触媒7にはリッチ空燃比の排気とリーン空燃比の排気とが比較的短い切換周期(クランク角180度毎)に到達するようになり、触媒前段7での排気の混合が良好になる。従って、触媒前段7a上で酸化反応が活発に生じるようになり触媒前段7a温度が上昇する。
なお、ステップ305の操作実行中、ECU30は上流側空燃比センサ31a(図2)で検出した触媒前段7a下流側での排気空燃比の機関1行程サイクルの平均値が理論空燃比(RST)に一致するように各気筒の燃料噴射量をフィードバック補正する。すなわち、上記の平均空燃比が理論空燃比よりリーン側であった場合には、平均空燃比が理論空燃比になるまで#1、#4気筒及び#2、#3気筒の燃料噴射量をそれぞれ一定量ずつ増量補正し、理論空燃比よリッチ側であった場合には平均空燃比が理論空燃比になるまで#1、#4気筒及び#2、#3気筒の燃料噴射量をそれぞれ一定量ずつ減量補正する。
このように、上流側空燃比センサ31aで検出した排気空燃比に基づいて燃料噴射量をフィードバック補正することにより、排気の平均空燃比を正確に理論空燃比に維持することができるため、平均空燃比がリーン側になって触媒前段の被毒回復が不十分になったり、リッチ側になって燃料消費量が無駄に増大することが防止される。
ステップ305の操作は、ステップ303で触媒前段の被毒回復が完了するまで実行される。
なお、本実施形態では、ECU30はステップ305の操作が予め定めた時間(吸蔵されたSOXの全量が放出されるのに十分な時間)だけ行われたときに、触媒前段7aの被毒回復が完了したと判定するが、例えば被毒回復操作時の触媒温度が高い程SOXの放出速度は大きくなる。このため、例えば触媒床に温度センサを配置して実際の触媒前段温度を検出し(或いは、他の適宜な方法で触媒前段温度を推定し)、触媒前段7aの温度に応じて被毒回復操作を継続する時間を定めるようにしても良い。
ステップ305で触媒前段の被毒回復が完了したと判断された場合には、次にステップ307以下の触媒後段7bの被毒回復操作を実行する。
すなわち、ステップ307では触媒後段7bの被毒回復が完了したか否かを判断し、完了していない場合には、ステップ309に進む。
ステップ309では、機関全気筒の運転空燃比を機関1行程サイクル毎(クランク角720度毎)に空燃比RST−βのリッチ空燃比と空燃比RST+βのリーン空燃比とに交互に切り換えて運転する。これにより、NOX吸蔵還元触媒7には比較的長い切換周期で交互にリッチ空燃比排気とリーン空燃比排気とが到達するようになり、リッチ空燃比排気中のHC等の可燃成分が触媒前段7aで酸素と反応することなく触媒後段7bまで到達し、触媒後段上で酸化反応を生じるようになる。これにより、触媒後段7bの温度が上昇し、触媒後段に吸蔵されていたSOXが放出される。
なお、本実施形態ではECU30は触媒後段7bの被毒回復操作時(ステップ309)には、触媒後段7b下流側の下流側空燃比センサ31bで検出した混合後の排気空燃比が理論空燃比になるようにリッチ空燃比運転時とリーン空燃比運転時の燃料噴射量を補正する。
すなわち、下流側空燃比センサ31bで検出した混合後の排気空燃比が理論空燃比よりリッチである場合には、ECU30は検出した排気空燃比が理論空燃比に一致するまで、リッチ空燃比運転時とリーン空燃比運転時両方の燃料噴射量を一定量ずつ減量補正し、検出した排気空燃比が理論空燃比よりリーンである場合には理論空燃比に一致するまで逆に一定量ずつ増大補正する。
このように下流側空燃比センサ31b出力に基づいて機関の燃料噴射量をフィードバック補正することにより、正確にリッチ空燃比運転時とリーン空燃比運転時との平均の排気空燃比が理論空燃比に維持されるとともに、比較的大きい触媒後段7bの酸素貯蔵能力により、空燃比切り換え初期に一時的に平均空燃比がリッチ空燃比またはリーン空燃比になることが防止される。
なお、前述したように、触媒後段7bの被毒回復操作時のリッチ空燃比運転時とリーン空燃比運転時との排気の空燃比差(2β)は、触媒前段7aの被毒回復操作時の空燃比差(2α)より小さく設定され、触媒後段7bの温度は比較的低くなる。
ステップ309の操作が所定の時間継続すると、ステップ307では触媒後段7bの被毒回復が完了したと判定され、次いでステップ311が実行され被毒回復操作実行フラグXSの値は0にリセットされる。これにより、今回の被毒回復操作は完了する。
なお、ステップ307での触媒後段7bの被毒回復完了の判定に際しては、触媒前段7aの場合と同様に、触媒後段7bの温度に応じて被毒回復操作実行継続の判定時間を変更することも可能なのは言うまでもない。
また、図3の操作では、触媒前段7aの被毒回復操作時には上流側空燃比センサ31aの出力に基づいて機関の燃料供給量をフィードバック制御し、触媒後段7bの被毒回復操作時には下流側空燃比センサ31bの出力に基づいて機関の燃料供給量をフィードバック制御している。しかし、制御を簡略化するために、触媒前段と後段とで燃料量のフィードバック制御用の空燃比センサを切り換えずに、全被毒回復操作を通じて上流側空燃比センサ31aまたは下流側空燃比センサ31bのいずれか一方のセンサ出力に基づいて燃料量をフィードバック制御するようにしても良い。
本発明を自動車用内燃機関に適用した場合の、実施形態の概略構成を説明する図である。 図1の実施形態のタンデム型NOX吸蔵還元触媒7の構成を示す断面図である。 本発明の排気浄化装置におけるタンデム型排気浄化触媒の被毒回復操作の一例を説明するフローチャートである。
符号の説明
1…機関本体
2…排気通路
5…スタートキャタリスト
7…タンデム型NOX吸蔵還元触媒
7a…触媒前段(上流側NOX吸蔵還元触媒)
7b…触媒後段(下流側NOX吸蔵還元触媒)
31a…上流側空燃比センサ
31b…下流側空燃比センサ

Claims (4)

  1. 排気中の有害物質を浄化するとともに排気中の特定成分を吸蔵して排気浄化能力が低下する排気浄化用触媒を内燃機関の排気通路上に2つ直列に配置した内燃機関の排気浄化装置であって、
    前記2つの排気浄化触媒の上流側の排気通路にリッチ空燃比の排気とリーン空燃比の排気とを交互に供給することにより触媒温度を上昇させて前記吸蔵した特定成分を排気浄化触媒から放出させる被毒回復操作を行う際に、まず比較的空燃比の差の大きいリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して上流側の排気浄化触媒から前記特定成分を放出させ、前記上流側排気浄化触媒から特定成分の放出終了後に比較的空燃比差の小さいリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して下流側の排気浄化触媒の被毒回復操作を行う、内燃機関の排気浄化装置。
  2. 排気中の有害物質を浄化するとともに排気中の特定成分を吸蔵して排気浄化能力が低下する排気浄化用触媒を内燃機関の排気通路上に2つ直列に配置した内燃機関の排気浄化装置であって、
    前記2つの排気浄化触媒の上流側の排気通路にリッチ空燃比の排気とリーン空燃比の排気とを交互に供給することにより触媒温度を上昇させて前記吸蔵した特定成分を排気浄化触媒から放出させる被毒回復操作を行う際に、まず比較的短い周期でリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して上流側の排気浄化触媒から前記特定成分を放出させ、前記上流側排気浄化触媒からの特定成分の放出終了後に比較的長い周期でリッチ空燃比排気とリーン空燃比排気とを前記排気通路に交互に供給して下流側の排気浄化触媒からの前記特定成分を放出させる、内燃機関の排気浄化装置。
  3. 前記排気浄化触媒は、流入する排気の空燃比がリーン空燃比のときに排気中の酸素成分を吸収し、流入する排気の空燃比がリッチ空燃比になったときに吸収した酸素を放出する酸素貯蔵能力を備え、前記2つの排気浄化触媒のうち上流側に配置された排気浄化触媒は下流側に配置された排気浄化触媒より前記酸素貯蔵能力が小さい、請求項1または2に記載の内燃機関の排気浄化装置。
  4. 更に、前記2つの排気浄化触媒の中間の排気通路、または下流側排気浄化触媒の下流側の排気通路の少なくとも一方に配置された空燃比センサを備え、前記被毒回復操作時に前記少なくとも一方に配置された空燃比センサで検出した排気空燃比が理論空燃比になるように機関への燃料供給量を補正する、請求項1から3のいずれか1項に記載の内燃機関の排気浄化装置。
JP2004142434A 2004-05-12 2004-05-12 内燃機関の排気浄化装置 Withdrawn JP2005325693A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142434A JP2005325693A (ja) 2004-05-12 2004-05-12 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142434A JP2005325693A (ja) 2004-05-12 2004-05-12 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2005325693A true JP2005325693A (ja) 2005-11-24

Family

ID=35472228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142434A Withdrawn JP2005325693A (ja) 2004-05-12 2004-05-12 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2005325693A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187402A (ja) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2015187403A (ja) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2016109063A (ja) * 2014-12-08 2016-06-20 三菱自動車工業株式会社 エンジンの排気浄化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187402A (ja) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2015187403A (ja) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2016109063A (ja) * 2014-12-08 2016-06-20 三菱自動車工業株式会社 エンジンの排気浄化装置

Similar Documents

Publication Publication Date Title
EP0971104B1 (en) An exhaust gas purification device for an internal combustion engine
US6205773B1 (en) Exhaust gas purification device for an internal combustion engine
JP3901194B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2004239218A (ja) 内燃機関の排気ガス浄化システム
JP2010127251A (ja) 内燃機関の排気浄化装置
JP2000027677A (ja) 希薄燃焼内燃機関の排気浄化装置
JP4475117B2 (ja) エンジンの空燃比制御装置
JP6988648B2 (ja) 内燃機関の排気浄化装置
JP2001303937A (ja) 内燃機関の排気浄化装置
JP4120563B2 (ja) 内燃機関の排気浄化装置
JP3552603B2 (ja) 内燃機関の排気浄化装置
JP2006348904A (ja) 内燃機関の排気浄化装置
JP2005325693A (ja) 内燃機関の排気浄化装置
JP3509482B2 (ja) 内燃機関の排気浄化装置
JP3680237B2 (ja) 内燃機関の排気浄化装置
JP3613660B2 (ja) 内燃機関の排気浄化装置
JP4506348B2 (ja) 内燃機関の排気浄化装置
JP2000227038A (ja) 内燃機関の排気浄化装置
JP3633295B2 (ja) 希薄燃焼内燃機関の排気浄化装置
JP3890775B2 (ja) 内燃機関の空燃比制御装置
JP2009024521A (ja) 内燃機関の排気浄化装置
JP2006183636A (ja) エンジンの空燃比制御装置
JP2010019171A (ja) 内燃機関の排気浄化装置
JP2000352308A (ja) 内燃機関の排気浄化装置
JP2000087732A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114