JP2005322327A - サンプルホールド回路 - Google Patents

サンプルホールド回路 Download PDF

Info

Publication number
JP2005322327A
JP2005322327A JP2004139808A JP2004139808A JP2005322327A JP 2005322327 A JP2005322327 A JP 2005322327A JP 2004139808 A JP2004139808 A JP 2004139808A JP 2004139808 A JP2004139808 A JP 2004139808A JP 2005322327 A JP2005322327 A JP 2005322327A
Authority
JP
Japan
Prior art keywords
circuit
hold
voltage
period
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004139808A
Other languages
English (en)
Other versions
JP4415748B2 (ja
Inventor
Masumi Horie
真清 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004139808A priority Critical patent/JP4415748B2/ja
Publication of JP2005322327A publication Critical patent/JP2005322327A/ja
Application granted granted Critical
Publication of JP4415748B2 publication Critical patent/JP4415748B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

【課題】 ホールド電圧の変動が極めて小さく且つ高精度のサンプルホールド回路を提供する。
【解決手段】 サンプリング期間中はスイッチ7が閉じられ、入力電圧Vinがリングオシレータ100の電源電圧となる。インバータ101〜131の反転動作時間tdは電源電圧に依存する。通過素子数計数回路4は、クロックCKLの周期Tcごとに、当該1周期中のリングオシレータ100における周回パルス信号のインバータ通過素子数を求め、それをレジスタ5に保持する。ホールド期間中はスイッチ7がオフとされ、帰還電圧生成回路6は、レジスタ5に保持された通過素子数と遂次計測されるレジスタ19の通過素子数とを比較して帰還電圧VFBを生成する。この帰還電圧VFBは、インバータ101〜131の電源電圧になるとともにホールド電圧Vhとなる。
【選択図】 図1

Description

本発明は、ホールドコンデンサを用いずに構成可能なサンプルホールド回路に関する。
従来から、特許文献1の図4に記載されているようなホールドコンデンサとスイッチを用いたサンプルホールド回路が用いられている。このサンプルホールド回路は、ホールドコンデンサからスイッチを通して流れるリーク電流、スイッチをオンからオフに切り替える時に生じるフィードスルーオフセットの影響が大きいため、特許文献1の図1および図2には、これらの影響を低減したサンプルホールド回路が開示されている。
すなわち、特許文献1の図1に示すサンプルホールド回路は、ホールドコンデンサと、ホールドコンデンサに保持された電圧を出力するバッファアンプと、入力信号とバッファアンプの出力信号とを切り替える第1のスイッチと、ホールドコンデンサへの入力信号の書き込み/保持を制御する第2のスイッチとを備えている。サンプリング期間では、第1のスイッチを入力信号側に切り替えるとともに第2のスイッチをオンし、ホールド期間では、第2のスイッチをオフし、第1のスイッチをバッファアンプ出力信号側に切り替える。これによれば、ホールド時において、特許文献1の図2に示すトランジスタM5、M6で構成されるスイッチSW2のソース・ドレイン間の電位差が0Vとなるので、ソースからドレイン(またはドレインからソース)に流れるリーク電流は0となる。
特開平7−262789号公報
しかしながら、トランジスタのリーク電流経路はソース・ドレイン間のみでなくウェルとソース、ウェルとドレインの逆バイアスされたPN接合部にも存在するため、ホールド時にホールドコンデンサから流れ出る(または流れ込む)リーク電流を完全に0にすることはできない。従って、コンデンサの電荷を保持することでサンプリングされた電圧を保持するという従来のサンプルホールド回路においては、リーク電流によるホールド電圧の変動は避けられず、長時間のホールドは困難であった。また、リーク電流は高温になるほど指数関数的に増大するため、例えば高温下での動作が求められる車載用システム、例えばエンジン制御ECUなどに搭載されるICでは、特に影響が大きかった。
また、コンデンサとスイッチで構成されたサンプルホールド回路では、サンプル動作からホールド動作へ移行する瞬間に、スイッチを構成するトランジスタのゲート・ドレイン(ソース)間容量を介してコンデンサに注入される電荷によって引き起こされるオフセット誤差いわゆるフィードスルーの影響を完全に排除することができず、オフセット誤差を0にすることは困難であった。
本発明は上記事情に鑑みてなされたもので、その目的は、ホールド電圧の変動が極めて小さく且つ精度の高いサンプルホールド回路を提供することにある。
請求項1に記載した手段によれば、電源電圧に応じて遅延時間が変化する複数の遅延素子がリング状に連結されてなるパルス周回回路において、パルス信号が遅延素子の遅延時間つまり電源電圧に応じた速度で周回する。この周回速度は、通過素子数計数回路により、一定の計数時間内にパルス信号が通過する遅延素子数を計数することにより得られる。サンプリング期間中は、サンプリング対象電圧である入力電圧が切替回路を通して遅延素子の電源電圧となり、通過素子数計数回路は、サンプリング期間において少なくとも1回、パルス信号が通過した遅延素子数(通過素子数)を計数し、その計数値を保持回路に保持する。保持された計数値は、サンプリングした入力電圧すなわちサンプリング電圧に対応する。
サンプリング期間からホールド期間に移行すると、帰還電圧生成回路は、通過素子数計数回路から出力される計数値と保持回路に保持された計数値との比較に基づいて帰還電圧を生成し、この帰還電圧が切替回路を通してパルス周回回路の遅延素子の電源電圧として印加される。このフィードバック制御により、ホールド期間中は、保持回路に保持された計数値と通過素子数計数回路から逐次出力される計数値とが一致し、帰還電圧すなわちホールド電圧はサンプリング電圧に等しくなる。
本手段によれば、アナログの入力電圧をデジタル値である通過素子数に変換して保持し、ホールド期間において計数値のフィードバック制御を行うので、従来のホールドコンデンサを用いた方式に比べ、長時間且つ高精度のホールド動作が可能となる。また、フィードバック経路に使われるアナログ回路には高い精度は必要ないので、構成し易いという利点もある。さらに、本手段によれば、従来問題となっていたフィードスルーの影響も現れない。
請求項2に記載した手段によれば、帰還電圧生成回路は、ホールド期間において通過素子数計数回路から出力される計数値と保持回路に保持された計数値とを比較し、その比較結果に応じた電圧を積分して帰還電圧を生成する。積分回路を用いると、計数値の偏差を定常的にゼロに制御することができるので、サンプリング電圧とホールド電圧とを高精度に一致させることができる。
請求項3に記載した手段によれば、帰還電圧生成回路は、ホールド期間において通過素子数計数回路から出力される計数値と保持回路に保持された計数値との差を演算し、この演算された計数値の差を積分して帰還電圧を生成する。積分回路を用いると、計数値の偏差を定常的にゼロに制御することができるので、サンプリング電圧とホールド電圧とを高精度に一致させることができる。
請求項4に記載した手段によれば、通過素子数計数回路は、パルス周回回路におけるパルス信号の周回数を計数するとともに、パルス周回回路におけるパルス信号の位置を検出し、一定の計数時間におけるパルス信号の周回数と位置の変化分に基づいてパルス信号が通過した遅延素子数を演算する。
請求項5に記載した手段によれば、電源電圧に応じて遅延時間が変化する複数の遅延素子がリング状に連結されてなるリングオシレータにおいて、パルス信号が遅延素子の遅延時間つまり電源電圧に応じた速度で周回する。この周回速度は、周回速度計測回路により測定される。サンプリング期間中は、サンプリング対象電圧である入力電圧が切替回路を通して遅延素子に電源電圧として印加され、周回速度計測回路は、サンプリング期間において少なくとも1回周回速度を計測し、その周回速度を保持回路に保持する。保持された周回速度は、サンプリングした入力電圧すなわちサンプリング電圧に対応する。
サンプリング期間からホールド期間に移行すると、帰還電圧生成回路は、周回速度計測回路により計測される周回速度と、保持回路に保持された周回速度との比較に基づいた帰還電圧を生成し、この帰還電圧が切替回路を通してパルス周回回路の遅延素子の電源電圧として印加される。このフィードバック制御により、ホールド期間中は、保持回路に保持された周回速度と周回速度計測回路により逐次計測される周回速度とが一致し、帰還電圧すなわちホールド電圧は、サンプリング電圧に等しくなる。
本手段によれば、従来のホールドコンデンサを用いた方式に比べ、長時間且つ高精度のホールド動作が可能となる。また、フィードバック経路に使われるアナログ回路には高い精度は必要ないので構成し易い。さらに、フィードスルーの影響もない。
以下、本発明の一実施形態について図面を参照しながら説明する。
図1は、車載用ECUに搭載された半導体集積回路装置に用いられるサンプルホールド回路の電気的構成を示している。このサンプルホールド回路1は、サンプリング期間において信号入力端子2に印加された入力電圧Vinをサンプリングし、ホールド期間においてそのサンプリング電圧を信号出力端子3からホールド電圧Vhとして出力するものである。サンプルホールド回路1は、リングオシレータ100、通過素子数計数回路4、レジスタ5(保持回路に相当)、帰還電圧生成回路6、スイッチ7(切替回路に相当)、オペアンプ8から構成されており、上記信号入力端子2は、スイッチ7を介して、ボルテージフォロアの接続形態を持つオペアンプ8の非反転入力端子に接続されている。
リングオシレータ100(パルス周回回路に相当)は、31個(つまり奇数個)のインバータ101〜131(遅延素子に相当)が全体としてリング状となるように直列に接続されており、この中をパルス信号が周回するようになっている。インバータ101〜131の電源線9はオペアンプ8の出力端子に接続されており、電源線10はグランドに接続されている。電源線9と10との間には、コンデンサ11が接続されている。インバータ101〜131の反転動作時間td(遅延時間に相当)は、電源線9、10間の電圧(以下、電源電圧と称す)が高いほど小さくなり、それに伴ってパルス信号の周回速度が速くなる。
通過素子数計数回路4は、クロックCKLの各周期ごとに、当該クロックCKLの1周期(一定の計数時間に相当)にリングオシレータ100においてパルス信号が通過したインバータの数(以下、通過素子数と称す)を求めるものである。この通過素子数計数回路4は、リングオシレータ100におけるパルス信号の周回数をカウントする周回数計数回路12、リングオシレータ100におけるパルス信号の位置を検出する位置検出回路13、信号処理回路14(通過素子数演算回路に相当)およびレジスタ19から構成されている。周回数計数回路12は、10ビットのカウンタ15とレジスタ16とから構成されており、位置検出回路13は、パルスセレクタ17とエンコーダ18とから構成されている。
カウンタ15のクロック端子は、インバータ131の出力端子に接続されており、データ出力端子は、レジスタ16のデータ入力端子に接続されている。レジスタ16のクロック端子にはクロックCKLが入力されており、データ出力端子は信号処理回路14のデータ入力端子に接続されている。また、パルスセレクタ17は、各インバータ101〜131の出力をデータ入力としCKLをクロック入力とするフリップフロップと、相隣り合う上記フリップフロップの出力を2つの入力とするイクスクルーシブOR回路(何れも図示せず)とを内蔵しており、インバータ101〜131の各出力信号を入力し、リングオシレータ100を周回するパルス信号(周回パルス信号)の位置を出力するようになっている。工ンコーダ18は、パルスセレクタ17から出力されたパルス位置を5ビットの位置データに変換(エンコード)して出力するようになっている。
信号処理回路14は、レジスタ16から出力された周回数を上位10ビット、工ンコーダ18から出力されたパルス位置を下位5ビットとして入力し、前回入力した値との差分を求め、それを通過素子数として出力するようになっている。レジスタ19は、クロックCKBのアップエッジに同期して、信号処理回路14からの出力値を保持し、レジスタ5は、クロックCKAのアップエッジに同期して、レジスタ19からの出力値を保持するようになっている。クロックCKA、CKBは、クロックCKLと逆位相のクロック信号である。クロックCKLとCKBがサンプリング期間およびホールド期間において常に与えられるのに対し、クロックCKAはサンプリング期間においてのみ与えられる。
帰還電圧生成回路6は、比較回路20と積分回路21とから構成されている。比較回路20は、常時レジスタ19の出力値とレジスタ5の出力値とを比較し、レジスタ19の出力値がレジスタ5の出力値より小さい場合または同じ場合には、Lレベルの電圧Vc(例えば0V)を出力し、レジスタ19の出力値がレジスタ5の出力値より高い場合には、Hレベルの電圧Vc(例えば5V)を出力するようになっている。
図2は、積分回路21の電気的構成を示している。上記電圧Vcが入力される入力端子は、スイッチ22と抵抗23を介してオペアンプ24の反転入力端子に接続されており、そのオペアンプ24の非反転入力端子には基準電圧Vrefが与えられている。オペアンプ24の反転入力端子とホールド電圧Vhの出力端子との間には抵抗25が接続されており、この抵抗25と並列にコンデンサ26とスイッチ27との直列回路が接続されている。コンデンサ26とスイッチ27との共通接続点(帰還電圧VFBの出力ノード)は、オペアンプ8の非反転入力端子に接続されている(図1参照)。なお、スイッチ7、22、27はアナログスイッチから構成されており、図示しない制御回路によりオンオフ制御されるようになっている。
次に、本実施形態の動作について図3に示すタイミングチャートも参照しながら説明する。
上述したように、クロックCKLとCKBは互いに逆位相の関係にある一定周期Tcのクロック信号であり、サンプリング期間とホールド期間において定常的に入力されている。これに対して、クロックCKAは、サンプリング期間中はクロックCKBと同じクロック信号であって、ホールド期間中はHレベルまたはLレベルに固定さる信号である。周期Tcは、例えば1μsecに設定してある。以下、サンプリング期間とホールド期間に分けて動作を説明する。
(1)サンプリング期間
図示しない制御回路により、信号入力端子2に接続されたスイッチ7がオン、積分回路21のスイッチ22と27がオフとされ、周期Tcごとに繰り返し入力電圧Vinのサンプリングが行われる。すなわち、リングオシレータ100において、例えばインバータ101の入力レベルがHレベルからLレベルに変化すると、インバータ101の出力は反転動作時間tdだけ遅延してLレベルからHレベルに変化し、これを受けて次段のインバータ102の出力は、さらに反転動作時間tdだけ遅れてHレベルからLレベルに変化する。
こうした反転動作により作られるパルス信号は、反転動作時間tdだけ遅延しながら順に次段のインバータに進んでいく。結局、インバータ131の出力は、インバータ101の入力レベルがHレベルからLレベルに変化した時刻から起算して(31×td)だけ遅延した後にLレベルからHレベルに変化する。そして、インバータ131の出力はインバータ101の入力に接続されているため、これを受けてインバータ101の出力はHレベルからLレベルに変化する。
つまり、リングオシレータ100を構成する各インバータの接続ノード(以下、単に接続ノードという)は、時間(31×td)ごとにレベルの反転が生じる。このため、インバータ131の出力ノードに接続された10ビットのカウンタ15は、インバータ131の出力の立ち上がりおよび立ち下がりに同期して周期(31×td)ごとにカウントアップする。このカウント値は、パルス信号の周回数である。
一方、リングオシレータ100は奇数個のインバータ101〜131により構成されており、各インバータ101〜131の接続ノードのレベルは反転動作時間tdだけ遅延しながら順次変化していくため、任意の瞬間の各インバータ101〜131の入出力レベルを見てみると、入力レベルと出力レベルとが同じ電圧レベルとなっているインバータが唯1個存在する。このインバータは、この瞬間にまさに出力が変化しようとしており、周回するパルス信号の現在位置と見ることができる。
パルスセレクタ17は、この周回パルス信号の位置を検出するための回路であり、クロックCKLの立ち上がり時点の各接続ノードの電圧を内部のフリップフロップに保持し、これらの出力をイクスクルーシブOR回路に入力して隣接する接続ノードの電圧レベルを比較して上記周回パルス信号の位置を検出する。パルスセレクタ17の出力は、エンコーダ18によって5ビットのデータにエンコードされる。
クロックCKLは10ビットのレジスタ16のクロック端子にも入力されており、レジスタ16は、クロックCKLの立ち上がりに同期してカウンタ15の出力値を保持する。信号処理回路14は、レジスタ16から出力された周回数を上位10ビット、工ンコーダ18から出力されたパルス位置を下位5ビットとする15ビットのデータを生成し、クロックCKLの前回の立ち上がりに同期して入力した15ビットのデータとの差分を求める。このデータは、周期Tcの間に周回パルス信号が通過したインバータの数つまり通過素子数となる。
例えば、時刻t10から時刻t20の周期Tcの間における周回パルス信号の通過素子数N4は、時刻t20に対しエンコーダ18および信号処理回路14の処理時間だけ遅れて確定し、時刻t21においてレジスタ19に保持される。同様に、時刻t20から時刻t30の周期Tcの間における周回パルス信号の通過素子数N5は、時刻t30に対しエンコーダ18および信号処理回路14の処理時間だけ遅れて確定し、時刻t31においてレジスタ19に保持される。レジスタ19とレジスタ5はシフトレジスタの関係にあるため、時刻t31において、前回の通過素子数N4はレジスタ19からレジスタ5に移される。クロックCKLとクロックCKA、CKBとが半周期ずれているのは、上記処理時間による遅れを考慮したものである。
以上説明した動作により、レジスタ19、5は、クロックCKB、CKAの立ち上がりに同期して、それに先行する周期Tcにおける通過素子数を2進デジタル値として出力する。この通過素子数は、電源線9、10間の電源電圧の増加に対して単調増加する特性を有しており、サンプリング電圧に対応している。
(2)ホールド期間
時刻t31においてクロックCKAが立ち上がりHレベルに固定されると、レジスタ5の出力値N4(時刻t10からt20の期間のカウント値)が、時刻t31以後保持される。そして、時刻t40において、図示しない制御回路により、信号入力端子2に接続されたスイッチ7がオフ、積分回路21のスイッチ22と27がオンにされるとホールド動作が開始する。ホールド期間において、積分回路21は、周期Tcごとに更新される比較回路20の出力電圧を積分し、この積分回路から出力される帰還電圧VFBは、バッファ回路として動作するオペアンプ8を通してリングオシレータ100の電源線9、10間に与えられる。
より具体的には、時刻t31においてクロックCKA、CKBが立ち上がると、それまでレジスタ19に保持されていた通過素子数N4がレジスタ5に保持され、時刻t20から時刻t30までの間における周回パルス信号の通過素子数N5が新たにレジスタ19に保持される。比較回路20は、レジスタ19の値N5とレジスタ5の値N4とを比較し、例えばN5<N4とすればLレベル(0V)の電圧Vcを出力する。ホールド期間に移行する時刻t40以降、積分回路21は電圧Vcを入力として積分動作を行う。スイッチ27がオンとなるホールド期間では、帰還電圧VFBとホールド電圧Vhは等しい。
その後、時刻t41においてクロックCKBが立ち上がると、時刻t30から時刻t40までの間における周回パルス信号の通過素子数N6がレジスタ19に保持される。比較回路20は、レジスタ19の値N6とレジスタ5の値N4とを比較し、例えばN6>N4とすればHレベル(5V)の電圧Vcを出力する。その結果、積分回路21が出力する帰還電圧VFBは徐々に低下する。その後も同様にして帰還電圧VFBが生成される。
このフィードバック動作によれば、サンプリング期間において計測された通過素子数N4に対し、ホールド期間において逐次計測される通過素子数N6、N7、N8、…が大きくなるとインバータ101〜131の電源電圧が下げられ、逆に小さくなるとインバータ101〜131の電源電圧が上げられる。その結果、サンプリング期間において計測された通過素子数と、ホールド期間において逐次計測される通過素子数とが精度よく一致する。これは、すなわち、サンプリング期間である時刻t10から時刻t20の間においてインバータ101〜131の電源電圧であった入力電圧Vin(サンプリング電圧)と、ホールド期間においてインバータ101〜131の電源電圧(帰還電圧VFB)となるホールド電圧Vhとが精度よく一致することを意味する。
以上説明した本実施形態によれば、リングオシレータ100を構成するインバータ101〜131の反転動作時間tdが電源電圧に依存する特性を利用し、サンプリングする入力電圧Vinを、リングオシレータ100における周回パルス信号の周回速度として計測・保持し、ホールド期間中の周回速度が保持した周回速度と一致するようにインバータ101〜131の電源電圧をフィードバック制御している。そして、周回速度は、一定の周期Tcの間に周回パルス信号が通過したインバータの数(通過素子数)を計測することにより得ている。
この構成によれば、アナログの入力電圧Vinをデジタル値である通過素子数に変換して保持し、ホールド期間において通過素子数のフィードバック制御を行うので、従来のホールドコンデンサを用いた方式に比べ、長時間且つ高精度のホールド動作が可能となる。また、オペアンプ8のオフセット誤差の影響を受けることがなく、フィードバック経路に使われるアナログ回路(例えばオペアンプ8)に高い精度は必要ないので、構成し易いという利点もある。さらに、従来問題となっていたフィードスルーの影響もない。
サンプリング期間では、積分回路21のスイッチ22、27がオフとされた状態で、コンデンサ26の一端に入力電圧Vinが与えられ、コンデンサ26が入力電圧Vinで初期充電されているようになっている。これにより、サンプリング期間からホールド期間に移行した直後の過渡現象が抑えられ、移行直後から安定したホールド電圧Vhを得ることができる。
従来のホールドコンデンサを用いた方式では高温になるほどリーク電流が指数関数的に増大するのに対し、本実施形態のサンプルホールド回路1は、ホールドコンデンサを用いていないため、高温下での動作が求められる車載用システム例えばエンジン制御ECUなどに搭載されるICに好適となる。なお、インバータ101〜131の反転動作時間tdは温度により変化するため、上記ホールド電圧Vhを正確にサンプリング電圧と一致させるためには、温度を一定に保つ必要がある。しかし、通常のホールド時間内であればチップのジャンクション温度の変化は極めて小さいため、精度に対する影響は非常に小さくなる。
サンプルホールド回路1が搭載されたICのシステムクロックを整数分の1に分周してクロックCKL、CKA、CKBを生成することにより、システムクロックに起因するクロックノイズを除去することができる。
なお、本発明は上記し且つ図面に示す実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
パルス周回回路は、リングオシレータ100に限られない。一般に、電源電圧により遅延時間が変化する複数の遅延素子がリング状に連結され、パルス信号がこれら遅延素子を周回する構成であればよい。また、遅延素子はインバータに限られず、その連結個数も偶数、奇数の何れであってもよい。ただし、上述したリングオシレータ100では、発振条件を満たすために奇数個のインバータを用いる必要がある。
上記実施形態では、サンプリング期間中に周期的に通過素子数を求めたが、サンプリング期間中に少なくとも1回通過素子数を求めるように構成してもよい。ただし、入力電圧Vinのサンプリングすなわち通過素子数の計数は、ホールド期間に移行する直前に行うのが好ましい。
帰還電圧生成回路は、通過素子数計数回路4のレジスタ19に遂次保持される通過素子数とレジスタ5に保持された通過素子数との差を差分演算回路(例えば減算回路)により求め、この差分値を積分回路により積分して帰還電圧VFBを生成するようにしてもよい。また、帰還電圧生成回路6で用いる積分回路21に替えて、比例回路、比例・積分回路その他の調節器を用いてもよい。
リングオシレータ100における周回パルス信号の周回速度を、リングオシレータ100の発振周波数や発振周期を基に計測してもよい。
コンデンサ11は、ノイズ除去のために適宜設ければよい。
本発明の一実施形態を示すサンプルホールド回路の電気的構成図 積分回路の電気的構成図 サンプリング期間とホールド期間のタイミングチャート
符号の説明
1はサンプルホールド回路、4は通過素子数計数回路(周回速度計測回路)、5はレジスタ(保持回路)、6は帰還電圧生成回路、7はスイッチ(切替回路)、12は周回数計数回路、13は位置検出回路、14は信号処理回路(通過素子数演算回路)、20は比較回路、21は積分回路、100はリングオシレータ(パルス周回回路)、101〜131はインバータ(遅延素子)である。

Claims (5)

  1. 電源電圧により遅延時間が変化する複数の遅延素子がリング状に連結され、パルス信号がこれら遅延素子を周回するパルス周回回路と、
    サンプリング期間においては少なくとも1回、ホールド期間においては周期的に、一定の計数時間内に前記パルス周回回路において前記パルス信号が通過した遅延素子数を計数する通過素子数計数回路と、
    前記サンプリング期間から前記ホールド期間に移行する前に前記通過素子数計数回路から出力された計数値を保持する保持回路と、
    前記ホールド期間において、前記通過素子数計数回路から出力される計数値と前記保持回路に保持された計数値との比較に基づいて帰還電圧を生成する帰還電圧生成回路と、
    前記サンプリング期間にあっては入力電圧を前記遅延素子の電源電圧とし、前記ホールド期間にあっては前記帰還電圧を前記遅延素子の電源電圧とするように切り替え制御を行う切替回路とを備えていることを特徴とするサンプルホールド回路。
  2. 前記帰還電圧生成回路は、
    前記ホールド期間において前記通過素子数計数回路から出力される計数値と前記保持回路に保持された計数値とを比較し、その比較結果に応じた電圧を出力する比較回路と、
    この比較回路から出力される電圧を積分する積分回路とから構成されていることを特徴とする請求項1記載のサンプルホールド回路。
  3. 前記帰還電圧生成回路は、
    前記ホールド期間において前記通過素子数計数回路から出力される計数値と前記保持回路に保持された計数値との差を演算する差分演算回路と、
    この差分演算回路により演算された計数値の差を積分する積分回路とから構成されていることを特徴とする請求項1記載のサンプルホールド回路。
  4. 前記通過素子数計数回路は、
    前記パルス周回回路における前記パルス信号の周回数を計数する周回数計数回路と、
    前記パルス周回回路における前記パルス信号の位置を検出する位置検出回路と、
    前記一定の計数時間における前記パルス信号の周回数と位置の変化分に基づいて前記パルス信号が通過した遅延素子数を演算する通過素子数演算回路とから構成されていることを特徴とする請求項1ないし3の何れかに記載のサンプルホールド回路。
  5. 電源電圧により遅延時間が変化する複数の遅延素子がリング状に連結され、パルス信号がこれら遅延素子を周回するリングオシレータと、
    サンプリング期間においては少なくとも1回、ホールド期間においては繰り返し、前記リングオシレータにおける前記パルス信号の周回速度を計測する周回速度計測回路と、
    前記サンプリング期間において前記周回速度計測回路により計測された周回速度を保持する保持回路と、
    前記ホールド期間において、前記周回速度計測回路により計測される周回速度と、前記保持回路に保持された周回速度との比較に基づいて帰還電圧を生成する帰還電圧生成回路と、
    前記サンプリング期間にあっては入力電圧を前記遅延素子の電源電圧とし、前記ホールド期間にあっては前記帰還電圧を前記遅延素子の電源電圧とするように切り替え制御を行う切替回路とを備えていることを特徴とするサンプルホールド回路。

JP2004139808A 2004-05-10 2004-05-10 サンプルホールド回路 Expired - Fee Related JP4415748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139808A JP4415748B2 (ja) 2004-05-10 2004-05-10 サンプルホールド回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139808A JP4415748B2 (ja) 2004-05-10 2004-05-10 サンプルホールド回路

Publications (2)

Publication Number Publication Date
JP2005322327A true JP2005322327A (ja) 2005-11-17
JP4415748B2 JP4415748B2 (ja) 2010-02-17

Family

ID=35469489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139808A Expired - Fee Related JP4415748B2 (ja) 2004-05-10 2004-05-10 サンプルホールド回路

Country Status (1)

Country Link
JP (1) JP4415748B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141685A (ja) * 2008-12-12 2010-06-24 Denso Corp パルス遅延回路およびa/d変換回路
JP2011024023A (ja) * 2009-07-16 2011-02-03 Olympus Corp 時間ad変換器及び固体撮像装置
JP2013255222A (ja) * 2012-05-09 2013-12-19 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141685A (ja) * 2008-12-12 2010-06-24 Denso Corp パルス遅延回路およびa/d変換回路
JP4645734B2 (ja) * 2008-12-12 2011-03-09 株式会社デンソー パルス遅延回路およびa/d変換回路
US7932848B2 (en) 2008-12-12 2011-04-26 Denso Corporation Pulse delay circuit and A/D converter including same
JP2011024023A (ja) * 2009-07-16 2011-02-03 Olympus Corp 時間ad変換器及び固体撮像装置
US8587689B2 (en) 2009-07-16 2013-11-19 Olympus Corporation Time AD converter and solid state image pickup device
JP2013255222A (ja) * 2012-05-09 2013-12-19 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法

Also Published As

Publication number Publication date
JP4415748B2 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
US8358231B2 (en) Tracking analog-to-digital converter (ADC) with a self-controlled variable clock
TWI384210B (zh) 溫度偵測裝置與溫度偵測方法
JP4269710B2 (ja) 周波数測定回路およびそれを用いた振動センサ式差圧・圧力伝送器
US8866474B2 (en) Magnetic sensor device
EP3557206B1 (en) Temperature sensor in an integrated circuit having offset cancellation
CN107402322B (zh) 零交检测电路及传感器装置
CN110007154B (zh) 数字测量电路和使用数字测量电路的存储器系统
US20200366298A1 (en) Time-to-digital converter and phase locked loop
KR20170131254A (ko) 제로크로스 검출 회로 및 센서 장치
JP5475047B2 (ja) Ad変換回路
CN110068401B (zh) 温度感测设备和温度-电压转换器
JP2002217758A (ja) フィルタ機能を有する信号レベル検出方法及び装置
JP5210289B2 (ja) 逐次比較型a/d変換器
JP4415748B2 (ja) サンプルホールド回路
CN111585244B (zh) 漏电保护电路、集成电路、电子设备以及方法
JP6503198B2 (ja) 比較回路およびセンサ装置
JPH03125514A (ja) 物理量検出装置
JP4349266B2 (ja) A/d変換装置
JP2005244758A (ja) A/d変換装置
US10656032B2 (en) Temperature sensor in an integrated circuit and method of calibrating the temperature sensor
JP3864583B2 (ja) 可変遅延回路
JP6393669B2 (ja) センサ装置及びセンシング方法
US20240110959A1 (en) Frequency Monitoring Circuitry with Voltage Conversion
US20240175763A1 (en) Temperature sensor
JP2009229165A (ja) クーロンカウンタ、その内部電源制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees