JP2005321246A - Poly-capillary lens - Google Patents

Poly-capillary lens Download PDF

Info

Publication number
JP2005321246A
JP2005321246A JP2004138104A JP2004138104A JP2005321246A JP 2005321246 A JP2005321246 A JP 2005321246A JP 2004138104 A JP2004138104 A JP 2004138104A JP 2004138104 A JP2004138104 A JP 2004138104A JP 2005321246 A JP2005321246 A JP 2005321246A
Authority
JP
Japan
Prior art keywords
face
capillary
incident
rays
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004138104A
Other languages
Japanese (ja)
Other versions
JP4133923B2 (en
Inventor
Shoji Kuwabara
章二 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004138104A priority Critical patent/JP4133923B2/en
Publication of JP2005321246A publication Critical patent/JP2005321246A/en
Application granted granted Critical
Publication of JP4133923B2 publication Critical patent/JP4133923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein an X-ray having an angle not below the critical angle on a reflecting surface in the middle of passage is generated in a conventional poly-capillary lens, to thereby lower a passage efficiency, and outgoing light passing through an optical path different from an essential lens action acts as an interfering line. <P>SOLUTION: The bending shape of each capillary 2 is formed so that the radius of curvature at the incident end face is minimum, and that the radius of curvature is equal or becomes larger gradually toward the outgoing end face. Hereby, an X-ray entering the capillary 2 through the incident end face and totally-reflected once by the internal surface is guaranteed to have the incident angle below the critical angle to the internal surface until reaching the outgoing end face, to thereby repeat surely total reflection. Though a part of the X-ray hitting onto the internal surface at an incident angle exceeding the critical angle is not totally reflected but transmitted near the incident end face, since the outgoing end face is far, the part is absorbed in the middle of transmission through the inner wall or absorbed by hitting onto a housing 4 and does not reach the outgoing end face. Hereby, the passage efficiency of the X-ray is heightened, and the convergence efficiency is also heightened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば電子線プローブ微小分析装置、走査電子顕微鏡、透過電子顕微鏡、蛍光X線分析装置などの分析装置等において、X線、中性子線等のごく短波長の放射線を集束するため又は平行化するために利用されるポリキャピラリレンズに関する。   The present invention, for example, in an analyzer such as an electron probe microanalyzer, a scanning electron microscope, a transmission electron microscope, or a fluorescent X-ray analyzer, focuses radiation of very short wavelengths such as X-rays and neutrons or in parallel. The present invention relates to a polycapillary lens that is used to make a lens.

従来より、主として試料の表面分析などを行うためにX線を利用した各種の分析装置がある。例えば電子線プローブ微小分析装置(EPMA)では、高エネルギーを有する電子線を励起線として試料に照射し、それによって試料の含有成分の内側電子が励起された際に外部に放出される固有X線を分析することにより、元素の同定や定量を行ったり、元素の分布を調べたりする。一方、蛍光X線分析装置では、一次X線を励起線として試料に照射し、それによって試料から放出される固有X線(蛍光X線)をEPMAと同様に分析する。   2. Description of the Related Art Conventionally, there are various analyzers that use X-rays mainly for performing surface analysis of a sample. For example, in an electron beam probe microanalyzer (EPMA), a specific X-ray emitted to the outside when an electron beam having a high energy is irradiated as an excitation beam to the sample and the inner electrons of the components contained in the sample are thereby excited. By analyzing the above, the element is identified and quantified, and the distribution of the element is examined. On the other hand, a fluorescent X-ray analyzer irradiates a sample with primary X-rays as excitation rays, and thereby analyzes intrinsic X-rays (fluorescent X-rays) emitted from the sample in the same manner as EPMA.

こうしたX線分析装置において、近年、X線を集光したり平行化したりするために、ポリキャピラリレンズと呼ばれるX線レンズが用いられている。図7、図8は例えば特許文献1、2などに記載の従来から知られているポリキャピラリレンズの概略構成図、図6はポリキャピラリレンズを構成する1本のキャピラリ2内をX線が通過する状態を模式的に示す図である。ポリキャピラリレンズ1は硼珪酸ガラスから成る細管(キャピラリ)を多数束ねた基本構造を有しており、その外側を被覆するように設けられた金属などから成るハウジングケース4により保持されている。図6に示すように1本のキャピラリ2の内側に入射されたX線は、そのガラス内壁3の内周面に当たって全反射しながら進行してゆく。こうした原理により、X線を効率良く案内することができる。   In such an X-ray analyzer, in recent years, an X-ray lens called a polycapillary lens has been used to collect and collimate X-rays. 7 and 8 are schematic configuration diagrams of a conventionally known polycapillary lens described in, for example, Patent Documents 1 and 2, and FIG. 6 is an X-ray passing through one capillary 2 constituting the polycapillary lens. It is a figure which shows the state to do typically. The polycapillary lens 1 has a basic structure in which a large number of thin tubes (capillaries) made of borosilicate glass are bundled, and is held by a housing case 4 made of metal or the like provided to cover the outside. As shown in FIG. 6, the X-rays incident on the inside of one capillary 2 strike the inner peripheral surface of the glass inner wall 3 and proceed while being totally reflected. With such a principle, X-rays can be guided efficiently.

図7に示したポリキャピラリレンズ1は、殆ど点とみなし得るX線出射源C1から出たX線を入射端面で大きな立体角で以て取り込み、反対側の出射端面から出たX線を一点C2に集束させるものである。他方、図8に示したポリキャピラリレンズ1は、同様に入射端面の一点から出たX線を大きな立体角で以て取り込んだ後、出射端面から平行線光を出射する或いはその逆の経路とするものである。   The polycapillary lens 1 shown in FIG. 7 takes in X-rays emitted from an X-ray emission source C1, which can be regarded as almost a point, at a large solid angle at the incident end face, and sets one point of X-rays emitted from the opposite emission end face. Focusing on C2. On the other hand, the polycapillary lens 1 shown in FIG. 8 similarly takes X-rays emitted from one point on the incident end face with a large solid angle, and then emits parallel light from the exit end face, or vice versa. To do.

図6(a)に示すように、キャピラリ2の内部でX線が全反射するためには次の(1)式を満たす臨界角(全反射臨界角)θcよりも小さな角度で以てX線がガラス内壁3に入射する必要がある。
θc≒1.64×10-3 λ√ρ …(1)
ここで、ρはキャピラリ材料の密度、λは入射X線の波長である。
As shown in FIG. 6 (a), in order for X-rays to be totally reflected inside the capillary 2, X-rays are formed at an angle smaller than a critical angle (total reflection critical angle) θc that satisfies the following equation (1). Needs to enter the glass inner wall 3.
θc≈1.64 × 10 −3 λ√ρ (1)
Here, ρ is the density of the capillary material, and λ is the wavelength of the incident X-ray.

図7、図8に示すポリキャピラリレンズ1では、入射端面で臨界角θc以下で入射し、各キャピラリ2内部で全反射したX線はその後、繰り返し全反射しながら出射端面へと進むが、途中でキャピラリ2の曲率半径がそれまでよりも小さな屈曲部分があると、その部分のガラス内壁3に当たったX線のうちの一部の入射角は臨界角θcよりも大きくなる可能性がある。その場合、全反射しなかったX線はガラス内壁3に吸収されてしまうか或いは透過し、いずれにしても出射端面まで到達するX線の割合、つまりX線の有効通過率が低下してしまう。また、途中でガラス内壁3を透過したX線が完全には吸収されずに出射端面まで達してしまうと、そのX線の光路は本来のレンズの集束作用の光路とは異なるものであるため、図7における所望の集束点C2には集束せずに却って妨害線となり得る。   In the polycapillary lens 1 shown in FIGS. 7 and 8, the X-rays incident at the critical angle θc or less at the incident end face and totally reflected inside each capillary 2 then proceed to the exit end face while being repeatedly totally reflected, but in the middle If there is a bent portion where the radius of curvature of the capillary 2 is smaller than before, the incident angle of a part of the X-rays hitting the glass inner wall 3 at that portion may be larger than the critical angle θc. In that case, the X-rays that have not been totally reflected are absorbed or transmitted by the glass inner wall 3, and in any case, the ratio of the X-rays that reach the exit end face, that is, the effective X-ray transmission rate decreases. . In addition, when the X-ray transmitted through the glass inner wall 3 is not completely absorbed and reaches the exit end face, the optical path of the X-ray is different from the original focusing optical path of the lens. Instead of focusing on the desired focusing point C2 in FIG.

上記(1)式から分かるように、臨界角θcはX線波長にほぼ比例するため、波長が短いほどつまりエネルギーが高いほど臨界角θcは小さくなって、上記のようにキャピラリ2の屈曲部での吸収や透過の影響が大きくなる。そのため、図7に示す構成において出射端面外方の集束点C2を含む面P上でのエネルギー強度分布を測定すると、図9に示すように低エネルギーX線では集束点C2近傍への集束効率が高いのに対し、高エネルギーX線では集束点C2近傍への集束効率が非常に悪く、広い範囲にエネルギーが分散してしまう。   As can be seen from the above equation (1), the critical angle θc is substantially proportional to the X-ray wavelength, so that the shorter the wavelength, that is, the higher the energy, the smaller the critical angle θc. The effect of absorption and permeation increases. Therefore, when the energy intensity distribution on the plane P including the converging point C2 outside the emission end face is measured in the configuration shown in FIG. 7, the focusing efficiency near the converging point C2 is low with low energy X-rays as shown in FIG. On the other hand, high energy X-rays have very poor focusing efficiency near the focusing point C2, and energy is dispersed over a wide range.

特公平7−11600号公報Japanese Examined Patent Publication No. 7-11600 特公平7−40080号公報Japanese Patent Publication No. 7-40080

本発明はかかる課題を解決するために成されたものであり、その目的とするところは、特に高いエネルギーを有するX線等の放射線に対しても高い通過効率を達成し、且つエネルギーの集中度合を高めて放射線を有効に利用することができるポリキャピラリレンズを提供することである。   The present invention has been made to solve such a problem, and the object of the present invention is to achieve a high passing efficiency even for radiation such as X-rays having a particularly high energy, and the degree of energy concentration. It is to provide a polycapillary lens that can effectively use radiation by increasing the height.

上記課題を解決するために成された第1発明は、複数本の束ねられたキャピラリから構成され、入射端面の外方に位置する一点から発したX線や中性子線等のごく短波長の放射線を、各キャピラリ内に通過させつつ出射端面まで導いて該出射端面の外方に位置する一点に集束させる又は平行線として出射させるポリキャピラリレンズにおいて、
各キャピラリは、その長手方向に沿った任意の2箇所における曲率半径が、等しいか又は入射端面側の箇所よりも出射端面側の箇所において大きくなるように形成されていることを特徴としている。
The first invention made to solve the above-mentioned problem is composed of a plurality of bundled capillaries, and radiation of a very short wavelength such as X-rays and neutrons emitted from one point located outside the incident end face. In a polycapillary lens that guides to the exit end face while passing through each capillary and focuses it to one point located outside the exit end face or emits it as a parallel line,
Each capillary is characterized in that the radii of curvature at any two locations along the longitudinal direction are equal or larger at the exit end face side than at the entrance end face side.

例えば一点又は一点とみなし得る放射線出射源から出射した放射線が第1発明に係るポリキャピラリレンズの入射端面を通して各キャピラリに入射すると、そのキャピラリの内壁面に臨界角以下の入射角で以て当たる放射線が全反射されて後方へと送られる。第1発明に係るポリキャピラリレンズでは、各キャピラリの曲率半径は入射端面で最小であってそこから出射端面へ向かうに従い大きくなるか或いは少なくとも等しくなる(つまり曲率半径が入射端面側よりも出射端面側で小さくなることはない)ように形成されている。そのため、一旦、キャピラリの内壁面で全反射した放射線は、それ以降、内壁面に当たる際に入射角がそれ以前の入射角よりも大きくなることはなく、出射端面に至るまで確実に臨界角以下の入射角となることが保証される。それによって、出射端面から出射するまで全反射が繰り返され、途中でキャピラリの内壁面に吸収されたり透過してしまったりすることがない。   For example, when radiation emitted from a radiation source that can be regarded as one point or one point enters each capillary through the incident end face of the polycapillary lens according to the first invention, the radiation hits the inner wall surface of the capillary with an incident angle less than the critical angle. Is totally reflected and sent to the rear. In the polycapillary lens according to the first aspect of the invention, the radius of curvature of each capillary is the smallest at the incident end face, and becomes larger or at least equal from there toward the exit end face (that is, the radius of curvature is closer to the exit end face than the entrance end face). It is formed so as not to become smaller. Therefore, once the radiation totally reflected by the inner wall surface of the capillary is incident on the inner wall surface, the incident angle does not become larger than the previous incident angle, and is surely below the critical angle until reaching the exit end surface. The angle of incidence is guaranteed. Thereby, total reflection is repeated until it exits from the exit end face, and it is not absorbed or transmitted through the inner wall surface of the capillary.

また、放射線出射源から出射した又はほぼ平行光線として到来する放射線がポリキャピラリレンズの入射端面に入射する際には全反射条件を満たさない放射線が存在し、こうした放射線はキャピラリの内壁面に吸収されたり透過したりする。しかしながら、ここは出射端面から最も遠い部位であるため、透過した放射線が出射端面に至るまでにはキャピラリの壁面が幾層も存在し、各層でそれぞれ吸収を受けることになる。また、こうした透過した放射線の光路は出射端面から出る本来の光路の方向とは全く異なるため、仮にキャピラリ壁面による吸収が少なかったとしても、出射端面に到達するまでに当該レンズの外周を被覆するハウジングケースに当たってしまう可能性が高い。そのため、こうした不所望の放射線が出射端面まで到達してしまうことは殆どない。したがって、出射端面の外方における放射線の広がりも抑制できる。   In addition, there is radiation that does not satisfy the total reflection condition when radiation that is emitted from a radiation source or arrives as an almost parallel light beam is incident on the incident end face of the polycapillary lens, and such radiation is absorbed by the inner wall surface of the capillary. Or permeate. However, since this is the part farthest from the exit end face, there are several layers of capillary walls before the transmitted radiation reaches the exit end face, and each layer receives absorption. Further, since the optical path of such transmitted radiation is completely different from the original direction of the optical path exiting from the exit end face, even if there is little absorption by the capillary wall surface, the housing that covers the outer periphery of the lens before reaching the exit end face There is a high possibility of hitting the case. Therefore, such undesired radiation hardly reaches the emission end face. Therefore, the spread of radiation outside the emission end face can also be suppressed.

ところで、平行光である入射放射線をポリキャピラリレンズを通して一点に集束したい場合、通常、各キャピラリの入射端部を平行に揃えて束ねることになり、この場合、入射端での各キャピラリの曲率半径は無限大である。したがって、この場合には上記第1発明に係るポリキャピラリレンズの構成を採用することはできない。そこで、このような場合には、上記課題を解決するために次のような第2発明の構成とするとよい。   By the way, when the incident radiation which is parallel light is focused on one point through the polycapillary lens, the incident end portions of the capillaries are usually aligned and bundled in parallel. In this case, the radius of curvature of each capillary at the incident end is It is infinite. Therefore, in this case, the configuration of the polycapillary lens according to the first invention cannot be adopted. Therefore, in such a case, the following configuration of the second invention may be used to solve the above-described problem.

すなわち、第2発明は、複数本の束ねられたキャピラリから構成され、入射端面の外方に位置する一点から発した又は平行線として入射するX線や中性子線等のごく短波長の放射線を、各キャピラリ内に通過させつつ出射端面まで導いて該出射端面の外方に位置する一点に集束させる又は平行線として出射させるポリキャピラリレンズにおいて、
各キャピラリは、その長手方向の全範囲の中で曲率半径が最小となる屈曲部を入射端面に近い位置に有し、該屈曲部と出射端面との間の範囲で、その長手方向に沿った任意の2箇所における曲率半径が、等しいか又は屈曲部側の箇所よりも出射端面側の箇所において大きくなるように形成されていることを特徴としている。
That is, the second invention is composed of a plurality of bundled capillaries, and emits radiation with a very short wavelength such as X-rays and neutrons emitted from one point located outside the incident end face or incident as parallel lines. In a polycapillary lens that guides to the exit end face while passing through each capillary and focuses it to one point located outside the exit end face or emits it as a parallel line,
Each capillary has a bent portion having a minimum radius of curvature in the entire range in the longitudinal direction, at a position close to the incident end surface, and extends along the longitudinal direction in the range between the bent portion and the exit end surface. It is characterized in that the radii of curvature at any two locations are the same or formed so as to be larger at the location on the exit end face side than at the location on the bent portion side.

上記第1発明では、入射端面のごく近傍において各キャピラリの曲率半径は最小であったが、この第2発明に係るポリキャピラリレンズでは、例えば上述したように入射端面近傍では全キャピラリを平行に束ねるために直線状にする必要がある等の制約によって、入射端面のごく近傍で曲率半径を小さくすることができない。その場合でも、曲率半径が最小となる屈曲部をできるだけ入射端面に近い位置に設け、その屈曲部から出射端面までの間では第1発明に係るポリキャピラリレンズと同様の曲率半径の条件が満たされるようにする。したがって、屈曲部を通過した放射線が出射端面に至るまで確実に臨界角以下の入射角となることが保証される。それによって、出射端面から出射するまで全反射が繰り返され、途中でキャピラリの内壁面に吸収されたり透過してしまったりすることがない。   In the first invention, the radius of curvature of each capillary is minimum in the vicinity of the incident end face. In the polycapillary lens according to the second invention, for example, as described above, all the capillaries are bundled in parallel in the vicinity of the incident end face. For this reason, the radius of curvature cannot be reduced very close to the incident end face due to restrictions such as the need for a straight line. Even in such a case, a bent portion having a minimum radius of curvature is provided as close to the incident end face as possible, and the condition of the radius of curvature similar to that of the polycapillary lens according to the first invention is satisfied between the bent portion and the exit end face. Like that. Therefore, it is guaranteed that the radiation that has passed through the bent portion has an incident angle that is less than or equal to the critical angle until reaching the exit end face. Thereby, total reflection is repeated until it exits from the exit end face, and it is not absorbed or transmitted through the inner wall surface of the capillary.

一方、入射端面から屈曲部に至るまでの間では臨界角以下の入射角とならない場合があり、全反射しなかった放射線はキャピラリ壁面を透過する可能性がある。ただし、その場合であっても、入射端面に比較的近い位置で透過が生じることから、上述したように透過した放射線が出射端面に至るまでには吸収を受ける機会が多く、またハウジングケースに当たる可能性が高い。それによって、こうした不所望の放射線が出射端面まで到達してしまうことを軽減でき、出射端面の外方における放射線の広がりを抑制するのに有効である。なお、こうした作用・効果の点から考えると、第2発明に係るポリキャピラリレンズにおいて上記屈曲部の位置は、入射端面と屈曲部との間で臨界角よりも大きな角度で内壁面に当たったことによって反射せずに透過してしまった光が、このレンズの外周を被覆するハウジングケースの内壁に当たることが保証される位置とすることが好ましい。   On the other hand, the incident angle below the critical angle may not be reached between the incident end surface and the bent portion, and the radiation that has not been totally reflected may pass through the capillary wall surface. However, even in that case, since transmission occurs at a position relatively close to the incident end face, there are many opportunities to receive the absorbed radiation before reaching the exit end face as described above, and it is possible to hit the housing case. High nature. Accordingly, it is possible to reduce the arrival of such undesired radiation to the emission end face, and it is effective for suppressing the spread of the radiation outside the emission end face. In view of these actions and effects, in the polycapillary lens according to the second invention, the position of the bent portion hits the inner wall surface at an angle larger than the critical angle between the incident end surface and the bent portion. It is preferable to set the position where it is guaranteed that the light that has been transmitted without being reflected by the light hits the inner wall of the housing case that covers the outer periphery of the lens.

第1及び第2発明に係るポリキャピラリレンズによれば、CdKαやSnKαなどの高エネルギーを有する放射線に対しても高い通過効率で以て出射端面まで導き、出射端面の外方の一点に集束させたり平行光線として出射することができる。したがって、このポリキャピラリレンズをX線分析装置等に使用することによって、高エネルギーX線を高い感度で分析することができるようになる。また、本来のレンズの集束作用とは異なる光路で出射端面から出て来る放射線を低減することができるので、特に一点に集光する際にエネルギーの集中度合が高まり、高いレンズ効果を得ることができる。   According to the polycapillary lens according to the first and second inventions, even high-energy radiation such as CdKα and SnKα is guided to the emission end face with high passing efficiency and is focused on one point outside the emission end face. Or can be emitted as parallel rays. Therefore, high energy X-rays can be analyzed with high sensitivity by using this polycapillary lens in an X-ray analyzer or the like. In addition, since the radiation coming out from the exit end face can be reduced by an optical path different from the focusing action of the original lens, the degree of energy concentration increases especially when condensing at one point, and a high lens effect can be obtained. it can.

以下、本発明の一実施例であるポリキャピラリレンズについて図面を参照して説明する。   Hereinafter, a polycapillary lens according to an embodiment of the present invention will be described with reference to the drawings.

図2は第1発明の一実施例によるポリキャピラリレンズの全体構成図であり、図1はそのうちの1本のキャピラリ2を示す図である。この実施例のポリキャピラリレンズは、入射端面の外方に位置する点C1から出射したX線を大きな立体角で取り込み、出射端面からその外方に位置する点C2にX線を集束させるものである。1本のキャピラリ2は例えば従来と同様の、内径が例えば数μm程度の円筒管形状のガラスから成るものであるが、その全体形状が従来のこの種のポリキャピラリレンズとは異なる。   FIG. 2 is an overall configuration diagram of a polycapillary lens according to an embodiment of the first invention, and FIG. 1 is a diagram showing one capillary 2 among them. The polycapillary lens of this embodiment takes in X-rays emitted from the point C1 located outside the incident end face with a large solid angle, and focuses the X-rays from the exit end face to a point C2 located outside thereof. is there. One capillary 2 is made of, for example, a cylindrical tube-shaped glass having an inner diameter of, for example, about several μm, as in the prior art, but its overall shape is different from this conventional polycapillary lens.

すなわち、図1に示すように、外周側つまり周囲を被覆するハウジングケース4に近い位置のキャピラリ2は全体として湾曲した形状であるが、入射端面での曲率半径Rin、出射端面での曲率半径Rout、及び、入射端面と出射端面との間の任意の位置での曲率半径Rnの関係は次のようになっている。
Rin≦Rn≦Rout
また、任意の2箇所の位置での曲率半径Rn1、Rn2(但し、Rn1はRn2よりも入射端面に近い)の関係は、
Rn1≦Rn2
である。すなわち、1本のキャピラリ2でみた場合、入射端面において曲率半径は最小となっており、出射端面に向かって曲率半径は必ず単調増加(少なくとも減少はしない)となっている。
That is, as shown in FIG. 1, the capillary 2 at a position close to the outer peripheral side, ie, the housing case 4 covering the periphery, has a curved shape as a whole, but has a curvature radius Rin at the entrance end face and a curvature radius Rout at the exit end face. The relationship of the radius of curvature Rn at an arbitrary position between the incident end face and the exit end face is as follows.
Rin ≦ Rn ≦ Rout
Further, the relationship between the radii of curvature Rn1 and Rn2 at two arbitrary positions (where Rn1 is closer to the incident end face than Rn2) is as follows:
Rn1 ≦ Rn2
It is. That is, when viewed with a single capillary 2, the radius of curvature is minimal at the entrance end face, and the radius of curvature always increases monotonously (at least does not decrease) toward the exit end face.

キャピラリ2が上述したような形状となっているため、入射端面を通してキャピラリ2に導入され、そのガラス内壁面で1回全反射したX線が次にガラス内壁面に当たる際の入射角は、その直前の反射時の入射角と同一か又はその入射角よりも小さくなる。そして、全反射が何回繰り替えされる場合でも同様であり、X線が出射端面に至るまでに全ての入射角が臨界角θc以下になるという全反射条件が満たされる。したがって、理想的には、1回全反射したX線はキャピラリ2の通過途中でガラス壁面に吸収されたり透過したりすることがない。また、レンズ1を構成する全てのキャピラリ2において上記と同様の条件が満たされている。これによって、X線の通過効率は非常に高く、エネルギーはほぼ保存される。   Since the capillary 2 has the shape as described above, the incident angle when the X-ray which is introduced into the capillary 2 through the incident end face and is totally reflected once by the inner wall surface of the glass next hits the inner wall surface of the capillary 2 is immediately before that. Is equal to or smaller than the incident angle at the time of reflection. The same is true regardless of how many times the total reflection is repeated, and the total reflection condition that all incident angles are equal to or smaller than the critical angle θc before the X-ray reaches the emission end face is satisfied. Therefore, ideally, X-rays that have been totally reflected once are not absorbed or transmitted by the glass wall surface in the course of passing through the capillary 2. Further, all the capillaries 2 constituting the lens 1 satisfy the same conditions as described above. As a result, the X-ray passage efficiency is very high and energy is almost conserved.

一方、1本のキャピラリ2の入射端面には様々な向きのX線が入射して来るから、実際上、臨界角θc以下の入射角で以てガラス内壁に当たるX線は一部に過ぎず、他のX線は臨界角θcを越えた入射角で以てガラス内壁に当たりガラス内壁に侵入する。このX線はガラス内壁を通過する際に吸収を受けながら透過してゆく。しかしながら、上述したようにこうした透過が生じるのは、その多くが入射端面から入って初めてガラス内壁に当たった部分であるので、入射端面に非常に近い位置である。逆に言えば、出射端面からは非常に遠い位置であり、ガラス内壁を透過したX線が出射端面に達するまでには多数のキャピラリ2のガラス内壁を透過する必要がある。X線はガラス内壁を透過する毎に吸収を受けて強度が減じるから、仮に出射端面までX線が達したとしても、多数のガラス内壁を透過することによってそのX線の強度は無視できる程度にまで低下している。   On the other hand, since X-rays of various directions are incident on the incident end face of one capillary 2, in practice, only a part of the X-rays hitting the glass inner wall with an incident angle equal to or smaller than the critical angle θc, Other X-rays hit the glass inner wall at an incident angle exceeding the critical angle θc and enter the glass inner wall. This X-ray passes through the glass inner wall while being absorbed. However, as described above, such transmission occurs at a position very close to the incident end face because most of the transmission hits the inner wall of the glass only after entering from the incident end face. In other words, the position is very far from the emission end face, and it is necessary that the X-rays that have passed through the glass inner wall pass through the glass inner walls of many capillaries 2 before reaching the emission end face. X-rays are absorbed and reduced in intensity each time they pass through the glass inner wall. Even if X-rays reach the exit end face, the intensity of the X-rays is negligible by passing through many glass inner walls. It has dropped to.

また、図2を見れば分かるように、入射端面近傍でキャピラリ2のガラス内壁を透過するような光路(軌跡)をとるX線はその多くが周囲を取り囲むハウジングケース4に接触する。金属製であるハウジングケース4はガラス内壁よりも格段に大きな吸収作用を有するから、こうした光路の点からみても入射端面近傍で透過したX線が出射端面まで到達し得る確率はきわめて低いと言える。したがって、実質的には、このポリキャピラリレンズ1の本来の光路である各キャピラリ2の内部を通過したX線のみが出射端面から出射し、点C2に集束することになる。   As can be seen from FIG. 2, most of the X-rays that take an optical path (trajectory) that passes through the glass inner wall of the capillary 2 in the vicinity of the incident end face come into contact with the housing case 4 that surrounds the periphery. Since the housing case 4 made of metal has a much larger absorption effect than the inner wall of the glass, it can be said that the probability that X-rays transmitted near the incident end face can reach the output end face is extremely low even from the viewpoint of such an optical path. Accordingly, substantially only the X-rays that have passed through the inside of each capillary 2 that is the original optical path of the polycapillary lens 1 are emitted from the emission end face and focused on the point C2.

図3は本実施例のポリキャピラリレンズによる、集束点C2を含む面P上でのエネルギー強度分布を示す図である。この図3の横軸、縦軸は図9と同一であり、両者を比較すれば明らかなように、本実施例では、本来のレンズ効果によって、集束点C2近傍へのエネルギーの集束が非常に良好であることが分かる。特に、従来は広い範囲にエネルギーが分散してしまっていた高エネルギーX線も良好に集束できることが分かる。また、X線の通過効率が高まることによって、エネルギーの波高値自体も高くなり、この点でもレンズ効果が大きいことが分かる。   FIG. 3 is a diagram showing an energy intensity distribution on the surface P including the focal point C2 by the polycapillary lens of the present embodiment. The horizontal and vertical axes in FIG. 3 are the same as those in FIG. 9. As is apparent from comparison between the two, in this embodiment, the energy is very focused near the focusing point C2 by the original lens effect. It turns out that it is favorable. In particular, it can be seen that high-energy X-rays, in which energy was dispersed in a wide range in the past, can be well focused. Further, as the X-ray passing efficiency increases, the peak value of energy itself increases, and it can be seen that the lens effect is great also in this respect.

上記実施例は点から点への集束であるが、図4に示すように、入射端面の外方に位置する点C1から出射したX線を取り込んで出射端面から平行光線として出射するようなポリキャピラリレンズ1でも上記実施例と全く同様の原理で構成することができる。   In the above embodiment, focusing is performed from point to point. However, as shown in FIG. 4, a polycrystal that takes in X-rays emitted from the point C1 located outside the incident end face and emits parallel rays from the exit end face. The capillary lens 1 can also be configured based on the same principle as in the above embodiment.

これに対し、入射端面に平行光線であるX線が入射し、これを出射端面の外方に位置する集束点C2に集束させるようなポリキャピラリレンズでは変形を要する。図5はこうした変形を加えた第2発明の一実施例によるポリキャピラリレンズ1の全体構成図である。   On the other hand, a polycapillary lens in which X-rays, which are parallel rays, are incident on the incident end face and is focused on a focusing point C2 located outside the exit end face requires deformation. FIG. 5 is an overall configuration diagram of a polycapillary lens 1 according to an embodiment of the second invention to which such a modification is added.

この構成では、略平行に入射するX線を効率良く取り込むために、ポリキャピラリレンズの入射端面では各キャピラリ2がほぼ完全に平行に配置されている。したがって、この入射端面でのキャピラリの曲率半径は無限大であるから、上記実施例における曲率半径の設定条件を満たすことはできない。つまり、必ずRin>Rnとなる位置が存在する。そこで、この実施例では、キャピラリ2の長手方向に沿った全範囲の中で曲率半径が最小となる屈曲部5をできるだけ入射端面に近い位置に設けるようにし、その屈曲部5と出射端面との間でのみ上記実施例における曲率半径の設定条件を満たせるようにする。すなわち、屈曲部5での曲率半径をRminとするとともに、屈曲部5と出射端面との間での任意の2箇所の位置での曲率半径をRn1、Rn2(但し、Rn1はRn2よりも屈曲部5に近い)としたとき、
Rmin≦Rout
Rn1≦Rn2
が満たされるようにする。
In this configuration, the capillaries 2 are arranged almost completely in parallel on the incident end face of the polycapillary lens in order to efficiently capture X-rays incident substantially in parallel. Therefore, since the radius of curvature of the capillary at the incident end face is infinite, the condition for setting the radius of curvature in the above embodiment cannot be satisfied. That is, there is always a position where Rin> Rn. Therefore, in this embodiment, the bent portion 5 having the smallest radius of curvature in the entire range along the longitudinal direction of the capillary 2 is provided as close to the incident end face as possible, and the bent portion 5 and the exit end face are arranged as much as possible. The setting condition of the radius of curvature in the above-described embodiment can be satisfied only in between. That is, the radius of curvature at the bent portion 5 is Rmin, and the radius of curvature at any two positions between the bent portion 5 and the emission end face is Rn1, Rn2 (where Rn1 is a bent portion rather than Rn2). (Close to 5)
Rmin ≦ Rout
Rn1 ≦ Rn2
To be satisfied.

したがって、各キャピラリ2において屈曲部5と出射端面との間では上記実施例と同じであり、X線は全反射が保証される。一方、入射端面と屈曲部5との間では、一部のX線の入射角が臨界角θc以下にならずにキャピラリ2のガラス内壁を透過する可能性がある。但し、屈曲部5を出射端面に近い位置でなく入射端面に近い位置に設けることによって、上記のように透過したX線は既述のように出射端面に到達するまでに多数のキャピラリのガラス内壁を透過することとなり、吸収によってエネルギーが大幅に減衰する。また、ハウジングケース4の内壁面に当たる可能性も高くなる。それによって、本来のレンズ作用の光路以外の不所望の光路を通って出射端面から出て来るX線は殆どなく、上記実施例とほぼ同様に高いエネルギー集束効果を得ることができる。   Therefore, in each capillary 2, between the bent part 5 and the exit end face, it is the same as the above embodiment, and the X-ray is guaranteed to be totally reflected. On the other hand, between the incident end face and the bent portion 5, there is a possibility that the incident angle of some X-rays does not go below the critical angle θc and passes through the glass inner wall of the capillary 2. However, by providing the bent portion 5 not at a position close to the exit end face but at a position close to the entrance end face, the X-rays transmitted as described above can reach the exit end face as described above until the glass inner walls of many capillaries. The energy is greatly attenuated by absorption. Further, the possibility of hitting the inner wall surface of the housing case 4 is increased. As a result, almost no X-rays are emitted from the exit end face through an undesired optical path other than the optical path of the original lens action, and a high energy focusing effect can be obtained in substantially the same manner as in the above embodiment.

なお、上記実施例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正或いは追加を行っても本願請求項に包含されることは当然である。   Each of the above embodiments is merely an example of the present invention, and it is obvious that any modification, correction, or addition as appropriate within the scope of the present invention is included in the claims of the present application.

第1発明の一実施例によるポリキャピラリレンズにおける1本のキャピラリを示す概略外観図。1 is a schematic external view showing one capillary in a polycapillary lens according to one embodiment of the first invention. FIG. 第1発明の一実施例によるポリキャピラリレンズの全体構成図。The whole block diagram of the polycapillary lens by one Example of 1st invention. 図2のポリキャピラリレンズのエネルギー強度分布特性を示す図。The figure which shows the energy intensity distribution characteristic of the polycapillary lens of FIG. 第1発明の他の実施例によるポリキャピラリレンズの全体構成図。The whole block diagram of the polycapillary lens by other Example of 1st invention. 第2発明の一実施例によるポリキャピラリレンズの全体構成図。The whole block diagram of the polycapillary lens by one Example of 2nd invention. ポリキャピラリレンズにおける1本のキャピラリ内でX線が通過する状態を模式的に示す図。The figure which shows typically the state through which X-ray | X_line passes within one capillary in a polycapillary lens. 従来のポリキャピラリレンズの構成例の全体図。The whole figure of the example of composition of the conventional polycapillary lens. 従来のポリキャピラリレンズの構成例の全体図。The whole figure of the example of composition of the conventional polycapillary lens. 図7のポリキャピラリレンズのエネルギー強度分布特性を示す図。The figure which shows the energy intensity distribution characteristic of the polycapillary lens of FIG.

符号の説明Explanation of symbols

1…ポリキャピラリレンズ
2…キャピラリ
3…ガラス内壁
4…ハウジング
5…屈曲部
C1…X線出射源
C2…集束点
DESCRIPTION OF SYMBOLS 1 ... Polycapillary lens 2 ... Capillary 3 ... Glass inner wall 4 ... Housing 5 ... Bending part C1 ... X-ray emission source C2 ... Focusing point

Claims (2)

複数本の束ねられたキャピラリから構成され、入射端面の外方に位置する一点から発したX線や中性子線等のごく短波長の放射線を、各キャピラリ内に通過させつつ出射端面まで導いて該出射端面の外方に位置する一点に集束させる又は平行線として出射させるポリキャピラリレンズにおいて、
各キャピラリは、その長手方向に沿った任意の2箇所における曲率半径が、等しいか又は入射端面側の箇所よりも出射端面側の箇所において大きくなるように形成されていることを特徴とするポリキャピラリレンズ。
It is composed of a plurality of bundled capillaries, and guides very short wavelength radiation such as X-rays and neutrons emitted from one point located outside the entrance end face to the exit end face while passing through each capillary. In a polycapillary lens that converges to one point located outside the emission end face or emits as a parallel line,
Each capillary is formed such that the radii of curvature at any two locations along the longitudinal direction are equal or larger at the exit end face side than at the entrance end face side lens.
複数本の束ねられたキャピラリから構成され、入射端面の外方に位置する一点から発した又は平行線として入射するX線や中性子線等のごく短波長の放射線を、各キャピラリ内に通過させつつ出射端面まで導いて該出射端面の外方に位置する一点に集束させる又は平行線として出射させるポリキャピラリレンズにおいて、
各キャピラリは、その長手方向の全範囲の中で曲率半径が最小となる屈曲部を入射端面に近い位置に有し、該屈曲部と出射端面との間の範囲で、その長手方向に沿った任意の2箇所における曲率半径が、等しいか又は屈曲部側の箇所よりも出射端面側の箇所において大きくなるように形成されていることを特徴とするポリキャピラリレンズ。
It is composed of a plurality of bundled capillaries, and X-rays and neutron rays such as X-rays and neutrons that are emitted from one point located outside the incident end face or incident as parallel lines are passed through each capillary. In the polycapillary lens that guides to the exit end face and converges it to one point located outside the exit end face or emits it as a parallel line,
Each capillary has a bent portion having a minimum radius of curvature in the entire range in the longitudinal direction, at a position close to the incident end surface, and extends along the longitudinal direction in the range between the bent portion and the exit end surface. A polycapillary lens, characterized in that the curvature radii at any two locations are equal or larger at a location closer to the emission end face than a location closer to the bent portion.
JP2004138104A 2004-05-07 2004-05-07 Polycapillary lens Expired - Lifetime JP4133923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138104A JP4133923B2 (en) 2004-05-07 2004-05-07 Polycapillary lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138104A JP4133923B2 (en) 2004-05-07 2004-05-07 Polycapillary lens

Publications (2)

Publication Number Publication Date
JP2005321246A true JP2005321246A (en) 2005-11-17
JP4133923B2 JP4133923B2 (en) 2008-08-13

Family

ID=35468656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138104A Expired - Lifetime JP4133923B2 (en) 2004-05-07 2004-05-07 Polycapillary lens

Country Status (1)

Country Link
JP (1) JP4133923B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040992A (en) * 2005-07-29 2007-02-15 Panalytical Bv Device and method for executing x-ray analysis
JP2007304063A (en) * 2006-05-15 2007-11-22 Shimadzu Corp Solar slit
CN102890975A (en) * 2012-10-09 2013-01-23 北京师范大学 Optical device for focusing synchrotron radiation light source
WO2014042126A1 (en) * 2012-09-14 2014-03-20 浜松ホトニクス株式会社 Polycapillary lens
RU2555191C1 (en) * 2014-04-24 2015-07-10 Владимир Константинович Егоров Device for x-ray-fluorescent analysis of materials with flux generation by flat x-ray waveguide-resonator
RU2584066C1 (en) * 2014-12-18 2016-05-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Device for energy-dispersive x-ray fluorescence analysis based on secondary emitters
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137233A (en) 2011-12-02 2013-06-05 佳能株式会社 X-ray waveguide and X-ray waveguide system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040992A (en) * 2005-07-29 2007-02-15 Panalytical Bv Device and method for executing x-ray analysis
JP2007304063A (en) * 2006-05-15 2007-11-22 Shimadzu Corp Solar slit
WO2014042126A1 (en) * 2012-09-14 2014-03-20 浜松ホトニクス株式会社 Polycapillary lens
JP2014059173A (en) * 2012-09-14 2014-04-03 Hamamatsu Photonics Kk Poly-capillary lens
CN102890975A (en) * 2012-10-09 2013-01-23 北京师范大学 Optical device for focusing synchrotron radiation light source
RU2555191C1 (en) * 2014-04-24 2015-07-10 Владимир Константинович Егоров Device for x-ray-fluorescent analysis of materials with flux generation by flat x-ray waveguide-resonator
RU2584066C1 (en) * 2014-12-18 2016-05-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Device for energy-dispersive x-ray fluorescence analysis based on secondary emitters
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method
CN115389538B (en) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X-ray analysis device and method

Also Published As

Publication number Publication date
JP4133923B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US4780903A (en) X-ray source
JP5326987B2 (en) X-ray focusing device
JP2007093316A (en) X-ray focusing arrangement
EP3790025B1 (en) X-ray analyzer
JP4711590B2 (en) Gas cell
JP4133923B2 (en) Polycapillary lens
US20080056442A1 (en) X-ray analysis apparatus
JP6730373B2 (en) Optical multiple reflection container
JP4470816B2 (en) X-ray focusing device
JP4837964B2 (en) X-ray focusing device
JP4483754B2 (en) X-ray focusing device
JP5338483B2 (en) X-ray focusing device
JP2005249559A (en) X-ray concentrator
JP2005519288A (en) X-ray microscope
CN208432556U (en) For the X-ray dioptric apparatus of X-ray array combination refractor integrated package to be miniaturized
CN208780643U (en) A kind of micromation X-ray array combination refractor integrated package
WO2006046327A1 (en) Polycapillary
JP4639971B2 (en) X-ray analyzer
JP2011053096A (en) Neutron optical element
CN106872502A (en) A kind of EDXRF detection means with light beam adjustment
CN217359672U (en) Micro-area X-ray spectral analysis system
CN217387084U (en) Target plate placing platform, mass spectrum imaging ion source device and mass spectrometer
CN108318516A (en) A kind of micromation X-ray array combination refractor integrated package
JPH10255701A (en) X-ray irradiation apparatus and fluorescent x-ray spectroscopy apparatus using it
CN108398449A (en) X-ray dioptric apparatus for X-ray array combination refractor integrated package to be miniaturized

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6