JP2005313608A5 - - Google Patents

Download PDF

Info

Publication number
JP2005313608A5
JP2005313608A5 JP2005053251A JP2005053251A JP2005313608A5 JP 2005313608 A5 JP2005313608 A5 JP 2005313608A5 JP 2005053251 A JP2005053251 A JP 2005053251A JP 2005053251 A JP2005053251 A JP 2005053251A JP 2005313608 A5 JP2005313608 A5 JP 2005313608A5
Authority
JP
Japan
Prior art keywords
pvdf
domain
molecular weight
level
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053251A
Other languages
Japanese (ja)
Other versions
JP2005313608A (en
JP4745684B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005053251A priority Critical patent/JP4745684B2/en
Priority claimed from JP2005053251A external-priority patent/JP4745684B2/en
Publication of JP2005313608A publication Critical patent/JP2005313608A/en
Publication of JP2005313608A5 publication Critical patent/JP2005313608A5/ja
Application granted granted Critical
Publication of JP4745684B2 publication Critical patent/JP4745684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

<実施例1−3>
実施例1−1において作製したPVDF/PA11=80/20ブレンド試料の走査型電子顕微鏡による測定結果を図に示す。図に示されるように、PVDFリッチな系では、PVDFとPA11とは微視的な共連続構造(両方の高分子成分が微視的に相互に連続的に繋がった構造)を形成していることが分かった。図中、黒い部分がPA11ドメインであり、白っぽく見える部分はPVDFドメイン中にナノレベルのPA11ドメインが入りこんでいるものである。
<Example 1-3>
The measurement results by the scanning electron microscope of PVDF / PA11 = 80/20 blend samples prepared in Example 1 -1 shown in Fig. As shown in the figure, in a PVDF rich system, PVDF and PA11 form a microscopic co-continuous structure (a structure in which both polymer components are microscopically continuously connected to each other). I understood that. In the figure, the black portion is the PA11 domain, and the portion that appears whitish is that in which the nano-level PA11 domain has entered the PVDF domain.

<実施例1−4>
実施例1−1において作製したPVDF/PA11=80/20ブレンド試料の倍率をさらに上げ、PVDFドメイン中にナノレベルのPA11ドメインが入りこんでいる構造を透過電子顕微鏡で観察したのが図である。図右の写真において、白い部分がPVDFドメインであり、その中に分散している黒い部分(小さな丸)がPA11ドメインである。ここでは、100nmレベルのものと、さらに小さな10〜数10nmレベルのPA11ドメインが存在することが分かった。
<Example 1-4>
Further increasing the magnification of the prepared in Example 1 -1 PVDF / PA11 = 80/ 20 blend sample is in Figure 7 for the structure PA11 domain of nano level is just enters into the PVDF domain was observed by a transmission electron microscope . In the photograph on the right side of FIG. 7 , the white part is the PVDF domain, and the black part (small circles) dispersed therein is the PA11 domain. Here, it has been found that there are PA11 domains at a level of 100 nm and a smaller level of 10 to several tens of nm.

<実施例1−5>
実施例1−2において作製したポリスチレン(PS)押出し物の重量平均分子量(Mw)とスクリュー回転速度との関係を図に示す。この図において、混練時間は1分間とした。図に示されるように、スクリュー回転数が上昇するに従い、分子量も徐々に低下するが、その低下率はほぼ85%程度であることが分かった。
<Example 1-5>
The relationship between the weight average molecular weight of polystyrene (PS) extrudate prepared in Example 1 2 (Mw) to the screw rotational speed shown in FIG. In this figure, the kneading time was 1 minute. As shown in the figure, it was found that the molecular weight gradually decreased as the screw rotation speed increased, but the decrease rate was about 85%.

<実施例1−6>
実施例1−2において作製したポリスチレン(PS)押出し物の重量平均分子量(Mw)と混練時間との関係を図に示す。図において、スクリュー回転速度として500rpmと1000rpmの2通りを選んだ。図からも分かるように、混練時間が増すにつれて、分子量も徐々に低下するが、その低下率はほぼ85%程度であることが分かった。
<Example 1-6>
The weight average molecular weight of polystyrene (PS) extrudate prepared in Example 1 2 (Mw) to the relation between kneading time shown in FIG. In the figure, two screw rotation speeds of 500 rpm and 1000 rpm were selected. As can be seen from the figure, the molecular weight gradually decreased as the kneading time increased, but the decrease rate was found to be about 85%.

JP2005053251A 2004-03-31 2005-02-28 Method for producing polymer blend material Active JP4745684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053251A JP4745684B2 (en) 2004-03-31 2005-02-28 Method for producing polymer blend material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004108130 2004-03-31
JP2004108130 2004-03-31
JP2005053251A JP4745684B2 (en) 2004-03-31 2005-02-28 Method for producing polymer blend material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010260116A Division JP5238926B2 (en) 2004-03-31 2010-11-22 Shear forming machine

Publications (3)

Publication Number Publication Date
JP2005313608A JP2005313608A (en) 2005-11-10
JP2005313608A5 true JP2005313608A5 (en) 2006-10-05
JP4745684B2 JP4745684B2 (en) 2011-08-10

Family

ID=35441513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053251A Active JP4745684B2 (en) 2004-03-31 2005-02-28 Method for producing polymer blend material

Country Status (1)

Country Link
JP (1) JP4745684B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868396B2 (en) * 2006-05-09 2012-02-01 独立行政法人産業技術総合研究所 Nylon-6 / polyvinylidene fluoride blend film and method for producing the same
US8349953B2 (en) 2006-08-17 2013-01-08 National Institute Of Advanced Industrial Science And Technology Resin melting and shearing method, resin molding processing method and resin products
JP5207351B2 (en) 2007-03-23 2013-06-12 独立行政法人産業技術総合研究所 Melt-kneaded product, resin molded product and method for producing the same
JP2009029114A (en) * 2007-06-22 2009-02-12 National Institute Of Advanced Industrial & Technology Production method of filler-dispersed melt-kneaded product, molded resin product obtained by production method of melt-kneaded product, and production method or use thereof
US8048948B2 (en) 2007-06-22 2011-11-01 National Institute Of Advanced Industrial Science And Technology Filler-dispersed melt-kneaded products, molded resin products thereof, and production method thereof
JP5152711B2 (en) * 2007-07-06 2013-02-27 独立行政法人産業技術総合研究所 Structure composed of filler and incompatible resin or elastomer, production method thereof and use thereof
JP2009196196A (en) * 2008-02-21 2009-09-03 National Institute Of Advanced Industrial & Technology Melt kneading method, molding processing method, and resin molded product of polycarbonate and polymethyl methacrylate
JP5292854B2 (en) * 2008-02-29 2013-09-18 東レ株式会社 Thermoplastic resin composition and method for producing the same
JP5333723B2 (en) * 2008-07-23 2013-11-06 住友ゴム工業株式会社 Rubber composition
JP5177748B2 (en) * 2008-09-02 2013-04-10 独立行政法人産業技術総合研究所 Aliphatic polyester composition and method for producing the same
EP2359999B1 (en) * 2008-11-26 2017-01-04 National Institute of Advanced Industrial Science And Technology Melting and kneading method
JP2010155953A (en) * 2009-01-05 2010-07-15 National Institute Of Advanced Industrial Science & Technology Structure composed of filler and non-compatible resin or elastomer, method for producing the same, and use of the same
US9199393B2 (en) 2009-02-05 2015-12-01 Niigata Machine Techno Co., Ltd. High-shear melt-kneader and method of high shearing
JP5284814B2 (en) * 2009-02-06 2013-09-11 オリンパス株式会社 Circulating kneader
JP5371526B2 (en) * 2009-04-15 2013-12-18 オリンパス株式会社 Kneading machine and extrusion molding device
JP5420318B2 (en) * 2009-06-12 2014-02-19 オリンパス株式会社 Kneading method and kneader
JP5379584B2 (en) * 2009-07-15 2013-12-25 オリンパス株式会社 Kneading machine and molding device
JP2011020341A (en) * 2009-07-15 2011-02-03 Olympus Corp Kneader, molding apparatus, and method for producing fluid of kneaded substance
JP5404236B2 (en) * 2009-08-04 2014-01-29 オリンパス株式会社 Kneading device and kneading molding device
JP2011225832A (en) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd Method of manufacturing thermoplastic resin composition
JP2011213050A (en) * 2010-04-01 2011-10-27 Olympus Corp Kneading device and method for manufacturing resin using the same
JP5716307B2 (en) * 2010-07-22 2015-05-13 株式会社三菱ケミカルホールディングス Composite resin composition having vibration damping properties and method for producing the same
JP5838575B2 (en) 2011-03-25 2016-01-06 住友化学株式会社 Process for producing modified propylene polymer
JP2012201790A (en) 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd Method for producing modified propylene polymer
JP5659900B2 (en) 2011-03-25 2015-01-28 住友化学株式会社 Modified propylene polymer
JP5822119B2 (en) * 2011-09-29 2015-11-24 株式会社ニイガタマシンテクノ High shear processing equipment
KR20140112019A (en) 2012-01-17 2014-09-22 독립행정법인 산업기술종합연구소 Plant-derived plastic blend and production method therefor
JP5911011B2 (en) * 2012-03-13 2016-04-27 株式会社ニイガタマシンテクノ High shear processing apparatus and separation method thereof
DE102013015417A1 (en) 2012-09-24 2014-03-27 Sumitomo Chemical Company, Limited Propylene resin material and process for its preparation
JP6446310B2 (en) 2014-04-10 2018-12-26 東芝機械株式会社 Screw for extruder, extruder and extrusion method
JP6550253B2 (en) 2014-04-24 2019-07-24 東芝機械株式会社 Screw for extruder, extruder and extrusion method
JP6527742B2 (en) * 2014-04-24 2019-06-05 東芝機械株式会社 Screw for extruder, extruder and extrusion method
JP6746278B2 (en) * 2015-04-28 2020-08-26 芝浦機械株式会社 Extruder screw, extruder and extrusion method
JP6464025B2 (en) * 2015-04-28 2019-02-06 東芝機械株式会社 Screw for extruder, extruder and extrusion method
US11261324B2 (en) 2017-06-28 2022-03-01 Daikin Industries, Ltd. Resin composition including a polycarbonate resin and a fluorine-containing polymer, and molded article
JP2019199003A (en) * 2018-05-15 2019-11-21 東芝機械株式会社 Method for producing conductive composite material
JP7181465B2 (en) 2019-03-27 2022-12-01 ダイキン工業株式会社 Resin composition and molded product
CN116057113A (en) 2020-08-07 2023-05-02 大金工业株式会社 Film, wire-wrapped coating material, film for flexible printed circuit board, and laminate
EP4215568A1 (en) 2020-09-30 2023-07-26 Daikin Industries, Ltd. Composition for three-dimensional shaping and three-dimensional shaped object
EP4215585A1 (en) 2020-09-30 2023-07-26 Daikin Industries, Ltd. Insulated electrical wire and resin composition
EP4215593A1 (en) 2020-09-30 2023-07-26 Daikin Industries, Ltd. Powder composition, coating film, and three-dimensional shaped article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637054B2 (en) * 1974-04-11 1981-08-28
JPS5329741Y2 (en) * 1976-05-10 1978-07-25
JPS5573330U (en) * 1978-11-15 1980-05-20
JPH082532B2 (en) * 1988-10-11 1996-01-17 東芝シリコーン株式会社 Method for continuously producing heat-vulcanizable silicone rubber compound
JP4030150B2 (en) * 1997-03-31 2008-01-09 東京インキ株式会社 Production method of polymer blend
JP3597070B2 (en) * 1999-01-20 2004-12-02 東芝機械株式会社 Apparatus and method for producing impact-resistant thermoplastic resin
JP4023058B2 (en) * 2000-01-05 2007-12-19 三菱化学株式会社 Process for producing olefinic thermoplastic elastomer
JP5258130B2 (en) * 2001-07-11 2013-08-07 旭化成ケミカルズ株式会社 Colored polycarbonate flame retardant resin composition and method for producing the same
JP2003119292A (en) * 2001-08-08 2003-04-23 Calp Corp Production method for molding material, and molded article
JP3773439B2 (en) * 2001-10-24 2006-05-10 株式会社ユポ・コーポレーション Resin film
JPWO2003077827A1 (en) * 2002-03-19 2005-07-14 日本新薬株式会社 Method for producing pharmaceutical solid dispersion

Similar Documents

Publication Publication Date Title
JP2005313608A5 (en)
Yu et al. Self‐assembled asymmetric block copolymer membranes: bridging the gap from ultra‐to nanofiltration
Lv et al. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals
Zhang et al. Using cellulose nanocrystals as a sustainable additive to enhance hydrophilicity, mechanical and thermal properties of poly (vinylidene fluoride)/poly (methyl methacrylate) blend
Kameoka et al. Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning
Reid et al. The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids
Liu et al. Phase Behavior and Dimensional Scaling of Symmetric Block Copolymer− Homopolymer Ternary Blends in Thin Films
Cho et al. Morphology and rheology of polypropylene/polystyrene/clay nanocomposites in batch and continuous melt mixing processes
Mao et al. Anti-fouling and easy-cleaning PVDF membranes blended with hydrophilic thermo-responsive nanofibers for efficient biological wastewater treatment
Virgilio et al. Novel self-assembling close-packed droplet array at the interface in ternary polymer blends
Wang et al. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation
Zhao et al. Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO 2 (SiO 2) composites prepared by in situ polymerization
Bai et al. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane
Jain et al. Physico-mechanical characterization and biodegradability behavior of polypropylene/poly (L-lactide) polymer blends
Yuan et al. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite
Ran et al. A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers
Li et al. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide
Pouresmaeel-Selakjani et al. Synthesis of cellulose/silica nanocomposite through electrostatic interaction to reinforce polysulfone membranes
Nematollahi et al. Investigation of nanoparticle–polymer interaction in bio-based nanosilica-filled PLA/NR nanocomposites: molecular dynamics simulation
Lin et al. Improved dielectric performance of polypropylene/multiwalled carbon nanotube nanocomposites by solid‐phase orientation
Tang et al. Fabrication and characterization of nanocrystalline cellulose films prepared under vacuum conditions
George et al. Designing a novel poly (methyl vinyl ether maleic anhydride) based polymeric membrane with enhanced antifouling performance for removal of pentachlorophenol from aqueous solution
CN105713235A (en) Method for improving dispersibility of multiwalled carbon nanotubes in aqueous solution
Zhang et al. Synergistic effects of silica nanoparticles and reactive compatibilizer on the compatibilization of polystyrene/polyamide 6 blends
Kari̇per A low-cost, high-efficiency, new generation material for fog harvesting fumed silica-doped polypropylene