JP5404236B2 - Kneading device and kneading molding device - Google Patents

Kneading device and kneading molding device Download PDF

Info

Publication number
JP5404236B2
JP5404236B2 JP2009181540A JP2009181540A JP5404236B2 JP 5404236 B2 JP5404236 B2 JP 5404236B2 JP 2009181540 A JP2009181540 A JP 2009181540A JP 2009181540 A JP2009181540 A JP 2009181540A JP 5404236 B2 JP5404236 B2 JP 5404236B2
Authority
JP
Japan
Prior art keywords
polymer material
kneading
cylinder
kneading apparatus
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009181540A
Other languages
Japanese (ja)
Other versions
JP2011031543A (en
Inventor
武志 木田
博章 藤井
弘和 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009181540A priority Critical patent/JP5404236B2/en
Publication of JP2011031543A publication Critical patent/JP2011031543A/en
Application granted granted Critical
Publication of JP5404236B2 publication Critical patent/JP5404236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Description

本発明は、混練装置および混練成形装置、より詳しくは高分子材料の混練に用いられる溶融混練装置および溶融混練成形装置に関する。   The present invention relates to a kneading apparatus and a kneading and forming apparatus, and more particularly to a melt kneading apparatus and a melt kneading and forming apparatus used for kneading polymer materials.

従来、高分子材料を混練するための装置として、溶融された高分子材料に対してその温度を制御しながら剪断力を与える溶融混練装置が知られている。溶融混練装置によれば、高分子材料が均一に混練され分散性が高い被混練物が得られる。   2. Description of the Related Art Conventionally, as a device for kneading a polymer material, a melt kneading device that applies a shearing force to a melted polymer material while controlling its temperature is known. According to the melt-kneading apparatus, a polymer material is uniformly kneaded and a material to be kneaded having high dispersibility can be obtained.

このような混練装置の例として、特許文献1には、先端が縮径され互いに対向する方向に動作する2つのスクリューを備えた混練装置が記載されている。特許文献1に記載の混練装置によれば、先端が縮径されたスクリューによって高分子材料に圧力を加えるとともにスクリューが互いに噛み合う部分で高分子材料に対して剪断力を与える。その結果、溶融された高分子材料による被混練物の分散性を高めることができる。   As an example of such a kneading apparatus, Patent Document 1 describes a kneading apparatus that includes two screws that are reduced in diameter at the tip and operate in directions facing each other. According to the kneading apparatus described in Patent Document 1, pressure is applied to the polymer material with a screw whose tip is reduced in diameter, and a shearing force is applied to the polymer material at a portion where the screws mesh with each other. As a result, the dispersibility of the material to be kneaded with the molten polymer material can be enhanced.

しかしながら、溶融された高分子材料は、強い剪断力が加わると剪断発熱によって高分子材料自体が発熱する。また、高い圧力で剪断力を加えると高分子材料の混練性が高まる一方で剪断発熱が大きくなる。
このため、特許文献1に記載の混練装置のような従来の混練装置では、剪断発熱によって高分子材料が過剰に発熱して劣化あるいは分解してしまうという問題があった。
However, when a high shear force is applied to the molten polymer material, the polymer material itself generates heat due to shear heat generation. In addition, when a shearing force is applied at a high pressure, the kneadability of the polymer material is enhanced while shearing heat generation is increased.
For this reason, the conventional kneading apparatus such as the kneading apparatus described in Patent Document 1 has a problem that the polymer material excessively generates heat due to shearing heat generation and deteriorates or decomposes.

米国特許第6129450号明細書US Pat. No. 6,129,450

高分子材料の発熱による劣化あるいは分解の問題を解消するためには、スクリューが配置された混練シリンダに水冷あるいは空冷等の温度制御手段を設けることが考えられる。しかしながら、特許文献1に記載されたような循環式の混練装置では、温度制御手段を用いて高分子材料を急冷しようとすると、混練シリンダによる加工間の温度調整に時間がかかるため、被混練物の生産性が悪いという問題があった。   In order to solve the problem of degradation or decomposition due to heat generation of the polymer material, it is conceivable to provide temperature control means such as water cooling or air cooling in the kneading cylinder in which the screw is arranged. However, in the circulation-type kneading apparatus described in Patent Document 1, when the polymer material is rapidly cooled using the temperature control means, it takes time to adjust the temperature during processing by the kneading cylinder. There was a problem of poor productivity.

また、特許文献1に記載の混練装置では、スクリューが噛み合った部分で特に剪断発熱が生じるため、溶融された高分子材料の温度に偏りがある。この溶融された高分子材料の温度を水冷あるいは空冷によって冷却する場合、温度制御にかかる装置構成が非常に複雑になり、混練装置自体の製造コストが高くなってしまうという問題があった。   Moreover, in the kneading apparatus described in Patent Document 1, since shearing heat is generated particularly at the portion where the screw is engaged, the temperature of the molten polymer material is uneven. When the temperature of the molten polymer material is cooled by water cooling or air cooling, there is a problem that the apparatus configuration for temperature control becomes very complicated and the manufacturing cost of the kneading apparatus itself increases.

このため、高分子材料を水冷あるいは空冷で冷却するという手段では高分子材料に生じる剪断発熱を好適に抑制することが困難であった。   For this reason, it has been difficult to suitably suppress shearing heat generated in the polymer material by means of cooling the polymer material by water cooling or air cooling.

本発明は、上述した事情に鑑みてなされたものであって、その目的は高分子材料の劣化・分解を抑制しつつ高い剪断力を付与し、分散性のよい被混練物を生産することができる混練装置の提供を図ることにある。   The present invention has been made in view of the above-described circumstances, and its purpose is to produce a kneaded material with good dispersibility by imparting a high shearing force while suppressing deterioration and decomposition of the polymer material. It is to provide a kneading apparatus that can be used.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の混練装置は、高分子材料が供給されるシリンダを少なくとも1つと、該各シリンダ内に配置され、回転駆動されることにより前記高分子材料を一方向に搬送するスクリューと、前記各シリンダの前記高分子材料の搬送方向下流側に開口するように設けられ、前記高分子材料を排出する排出経路と、前記排出経路と前記シリンダとの間に設けられ、前記高分子材料を前記シリンダにおける前記高分子材料の搬送方向上流側へ還流させる帰還経路と、を備え、前記排出経路と前記帰還経路とのそれぞれの断面積が、前記排出経路の断面積>前記帰還経路の断面積とされていることを特徴としている。
In order to solve the above problems, the present invention proposes the following means.
The kneading apparatus of the present invention includes at least one cylinder to which a polymer material is supplied, a screw that is disposed in each cylinder and is rotated to convey the polymer material in one direction, and each cylinder. The polymer material is provided so as to open downstream in the transport direction of the polymer material, and is provided between a discharge path for discharging the polymer material, the discharge path and the cylinder, and the polymer material is disposed in the cylinder. A return path that returns the polymer material to the upstream side in the conveyance direction, and the cross-sectional area of each of the discharge path and the return path is set such that the cross-sectional area of the discharge path> the cross-sectional area of the return path It is characterized by being.

また、本発明の混練装置は、前記スクリューと前記シリンダとの組を複数組備え、前記排出経路は互いに合流する合流部をさらに備え、前記帰還経路は複数の前記シリンダに連通されていてもよい。   Further, the kneading apparatus of the present invention may include a plurality of sets of the screw and the cylinder, the discharge path further includes a merging portion that merges with each other, and the return path may be communicated with the plurality of cylinders. .

また、本発明の混練装置は、前記排出経路に連通され、前記高分子材料を溶融させて前記排出経路内へ搬送する材料搬送部をさらに備えてもよい。   In addition, the kneading apparatus of the present invention may further include a material transport unit that communicates with the discharge path and melts the polymer material and transports the polymer material into the discharge path.

本発明の混練成形装置は本発明の混練装置と、前記混練装置において前記被混練物を所定の形状に成形する成形部と、を備えることを特徴としている。
この発明によれば、混練装置に成形部が設けられていることで混練と成形との工程を連続的に行うことができるので生産リードタイムを短縮できる。また、混練された被混練物への空気の混入を抑制できるので成形された成形品への気泡の混入が抑制できる。
The kneading and forming apparatus of the present invention is characterized by comprising the kneading apparatus of the present invention and a molding unit for forming the material to be kneaded into a predetermined shape in the kneading apparatus.
According to this invention, since the molding unit is provided in the kneading apparatus, the steps of kneading and molding can be performed continuously, so that the production lead time can be shortened. Moreover, since mixing of air into the kneaded material to be kneaded can be suppressed, mixing of air bubbles into the molded product can be suppressed.

本発明の混練装置によれば、高分子材料の劣化・分解を抑制しつつ高い剪断力を付与し、分散性のよい被混練物を生産することができる。
また、本発明の混練成形装置によれば、被混練物を成形する際の生産リードタイムを低減するとともに、成形された成形品への気泡の混入を抑制することができる。
According to the kneading apparatus of the present invention, it is possible to produce a material to be kneaded with good dispersibility by applying a high shearing force while suppressing deterioration and decomposition of the polymer material.
Moreover, according to the kneading and molding apparatus of the present invention, it is possible to reduce production lead time when molding the material to be kneaded and to suppress the mixing of bubbles into the molded product.

(A)は本発明の第1実施形態の混練装置の構成を一部断面で示す平面図、(B)は同混練装置の一部の構成を拡大して示す断面図である。(A) is a top view which shows the structure of the kneading apparatus of 1st Embodiment of this invention in a partial cross section, (B) is sectional drawing which expands and shows a part of structure of the kneading apparatus. 本発明の第2実施形態の混練装置の構成を一部断面で示す平面図である。It is a top view which shows the structure of the kneading apparatus of 2nd Embodiment of this invention in a partial cross section. 本発明の第3実施形態の混練装置の構成を一部断面で示す平面図である。It is a top view which shows the structure of the kneading apparatus of 3rd Embodiment of this invention in a partial cross section. 同混練装置の構成を示す側面図である。It is a side view which shows the structure of the kneading apparatus. 本発明の第4実施形態の混練装置の構成を示す正面図である。It is a front view which shows the structure of the kneading apparatus of 4th Embodiment of this invention. 同混練装置の変形例を示す側面図である。It is a side view which shows the modification of the kneading apparatus.

(第1実施形態)
以下、本発明の第1実施形態の混練装置について図1(A)および(B)を参照して説明する。
図1(A)は、本実施形態の混練装置の概略構成図で、混練装置100の一部を断面視した平面図である。また、図1(B)は、混練装置100の一部の構成を拡大して示す断面図である。図1(A)および図1(B)に示すように、混練装置100は、高分子材料Mが供給されるシリンダ3と、シリンダ3内に配置され、駆動部1によって回転駆動されることにより高分子材料Mを一方向(図中aからb方向)に搬送するスクリュー2とを備えている。
(First embodiment)
Hereinafter, the kneading apparatus of the first embodiment of the present invention will be described with reference to FIGS. 1 (A) and 1 (B).
FIG. 1A is a schematic configuration diagram of the kneading apparatus of the present embodiment, and is a plan view of a part of the kneading apparatus 100 as a cross-sectional view. FIG. 1B is an enlarged cross-sectional view showing a part of the configuration of the kneading apparatus 100. As shown in FIG. 1 (A) and FIG. 1 (B), the kneading apparatus 100 is disposed in the cylinder 3 to which the polymer material M is supplied, and is rotationally driven by the drive unit 1 by being disposed in the cylinder 3. And a screw 2 for conveying the polymer material M in one direction (direction a to b in the figure).

以下本明細書では、高分子材料Mが搬送される方向を、シリンダ3におけるa側を上流、b側を下流として説明する。   Hereinafter, in the present specification, the direction in which the polymer material M is conveyed will be described with the a side in the cylinder 3 being the upstream side and the b side being the downstream side.

スクリュー2には、その外周面に沿って螺旋状に延びて設けられて凸条部12が形成されている。凸条部12の間は一続きの溝になっており、スクリュー2とシリンダ3との間には、高分子材料Mを搬送するための空間Cが生じている。   The screw 2 is provided so as to extend spirally along the outer peripheral surface of the screw 2 to form a ridge 12. A continuous groove is formed between the ridges 12, and a space C for conveying the polymer material M is formed between the screw 2 and the cylinder 3.

シリンダ3には、外周面に固定されたバンドヒーター4が設けられている。バンドヒーター4は例えば電力が供給されることで発熱しシリンダ3および空間Cを加熱する発熱体を有する。   The cylinder 3 is provided with a band heater 4 fixed to the outer peripheral surface. The band heater 4 includes a heating element that generates heat when power is supplied, for example, and heats the cylinder 3 and the space C.

シリンダ3の下流側には、押出し先端部8が固定されている。押出し先端部8には、一端が空間Cに連通されるように開口して形成された排出経路6が設けられている。本実施形態では、排出経路6は径方向断面の形状が直径S1を有する円形になっている。排出経路6には、排出経路6に内に高分子材料Mを搬入するとともに、混練された被混練物を排出経路6から排出するための搬入搬出弁5が取り付けられている。また、搬入搬出弁5には、排出経路6の内部における温度を検出するための図示しない熱電対が一体に構成されている。   An extrusion tip 8 is fixed downstream of the cylinder 3. The extrusion tip 8 is provided with a discharge path 6 that is open and formed so that one end communicates with the space C. In this embodiment, the discharge path 6 has a circular shape with a radial cross section having a diameter S1. A loading / unloading valve 5 for carrying the polymer material M into the discharge path 6 and discharging the kneaded material to be kneaded from the discharge path 6 is attached to the discharge path 6. Further, the carry-in / out valve 5 is integrally configured with a thermocouple (not shown) for detecting the temperature inside the discharge path 6.

排出経路6とシリンダ3との間には、筒状の流通管7が設けられている。流通管7の一端7aは排出経路6に連通され、流通管7の他端7bはシリンダ3の空間Cに連通するようにシリンダ3に接続されている。流通管7の内部は、径方向断面の形状がS2の内径を有する円形になっており、高分子材料Mをシリンダ3における高分子材料Mの搬送方向上流側へ還流させる帰還経路9になっている。   A cylindrical flow pipe 7 is provided between the discharge path 6 and the cylinder 3. One end 7 a of the flow pipe 7 is connected to the discharge path 6, and the other end 7 b of the flow pipe 7 is connected to the cylinder 3 so as to communicate with the space C of the cylinder 3. The inside of the flow pipe 7 has a circular shape with a radial cross section having an inner diameter of S2, and becomes a return path 9 for returning the polymer material M to the upstream side in the transport direction of the polymer material M in the cylinder 3. Yes.

図1(B)に示すように、排出経路6と帰還経路9とのそれぞれの直径はS1>S2を満たしており、すなわち排出経路6の径方向における断面積>帰還経路9の径方向における断面積である。   As shown in FIG. 1B, the respective diameters of the discharge path 6 and the return path 9 satisfy S1> S2, that is, the cross-sectional area in the radial direction of the discharge path 6> the cross section in the radial direction of the return path 9. It is an area.

以上に説明する構成の、本実施形態の混練装置の作用について、図1(A)および図1(B)を参照しながら説明を行う。
混練装置100では、搬入搬出弁5を通じて高分子材料Mがシリンダ3へと供給される。駆動部1が駆動されるとスクリュー2が軸回りに回転動作される。スクリュー2の外周面に形成された螺旋状の凸条部12と高分子材料Mとが接触された部分では、スクリュー2の回転運動がスクリュー2の軸方向への推力に変換される。すると、高分子材料Mがスクリュー2の先端(図1(A)に示すb方向)へと搬送される。ここで、バンドヒーター4によって高分子材料Mは加熱され、溶融された状態になっている。
The operation of the kneading apparatus of the present embodiment having the configuration described above will be described with reference to FIGS. 1 (A) and 1 (B).
In the kneading apparatus 100, the polymer material M is supplied to the cylinder 3 through the loading / unloading valve 5. When the drive unit 1 is driven, the screw 2 is rotated around the axis. In a portion where the spiral ridge 12 formed on the outer peripheral surface of the screw 2 and the polymer material M are in contact with each other, the rotational motion of the screw 2 is converted into thrust in the axial direction of the screw 2. Then, the polymer material M is conveyed to the tip of the screw 2 (direction b shown in FIG. 1A). Here, the polymer material M is heated and melted by the band heater 4.

高分子材料Mは、スクリュー2による推力によってシリンダ3から押し出され、排出経路6内へと移動する。さらに、高分子材料Mは、排出経路6から帰還経路9へと押圧移動される。   The polymer material M is pushed out of the cylinder 3 by the thrust of the screw 2 and moves into the discharge path 6. Further, the polymer material M is pressed and moved from the discharge path 6 to the return path 9.

ここで、図1(B)に示すように、排出経路6と帰還経路9との境界部L0では、直径S1を有する排出経路6内にある高分子材料Mが、直径S1よりも小さい直径S2を有する帰還経路9へと流入する。このとき、高分子材料Mには断熱圧縮が生じ、高分子材料Mにかかる圧力が排出経路6における圧力P0よりも高い圧力P1となる。   Here, as shown in FIG. 1B, at the boundary portion L0 between the discharge path 6 and the return path 9, the polymer material M in the discharge path 6 having the diameter S1 has a diameter S2 smaller than the diameter S1. Into the return path 9 having At this time, adiabatic compression occurs in the polymer material M, and the pressure applied to the polymer material M becomes a pressure P1 higher than the pressure P0 in the discharge path 6.

溶融された高分子材料Mでは、等しい温度であっても加えられる圧力が高いときには見かけの粘度が低下する。そのため、直径S2を有する帰還経路9の内部における圧力P1の高分子材料Mの流動性は圧力P0における流動性より高い。   In the molten polymer material M, even when the temperature is equal, the apparent viscosity decreases when the applied pressure is high. Therefore, the fluidity of the polymer material M at the pressure P1 inside the return path 9 having the diameter S2 is higher than the fluidity at the pressure P0.

高分子材料Mの種類によって圧力変化に対する見かけの粘性の変化の程度は異なるが、圧力P0よりも高い圧力P1がかけられた高分子材料Mは、帰還経路9の中心軸線付近では排出経路6における流速V0よりも速い流速V1で流通する。一方、帰還経路9の壁面付近では、高分子材料Mと帰還経路9の壁面との間の抵抗によって高分子材料Mの流速が流速V1よりも遅い。このため、図1(B)に符号L1〜L3で示すように、帰還経路9の中心軸線付近と帰還経路9の壁面付近との間で高分子材料Mの移動距離に差が生じ、中心軸線方向に剪断応力が発生する。   Although the degree of the apparent viscosity change with respect to the pressure change varies depending on the type of the polymer material M, the polymer material M applied with the pressure P1 higher than the pressure P0 is in the discharge path 6 in the vicinity of the central axis of the return path 9. It circulates at a flow velocity V1 that is faster than the flow velocity V0. On the other hand, in the vicinity of the wall surface of the return path 9, the flow rate of the polymer material M is slower than the flow rate V1 due to the resistance between the polymer material M and the wall surface of the return path 9. For this reason, as indicated by reference numerals L1 to L3 in FIG. 1B, a difference occurs in the moving distance of the polymer material M between the vicinity of the central axis of the feedback path 9 and the vicinity of the wall surface of the feedback path 9, and the central axis Shear stress is generated in the direction.

従って、境界部L0において揃って流入された高分子材料Mは、帰還経路9を通過する間にたとえば符号L3で示すように境界面が湾曲されており帰還経路9の中心軸線付近の高分子材料Mが先にシリンダ3に還流する。このように高分子材料Mが還流する時間に差があることで、空間C、排出経路6、および帰還経路9を通じて循環する高分子材料Mは分散されて均一に混練される。   Accordingly, the polymer material M that has flowed in at the boundary portion L0 is curved at the boundary surface as indicated by, for example, L3 while passing through the feedback path 9, and the polymer material near the central axis of the feedback path 9 M first flows back to the cylinder 3. Thus, the polymer material M circulating through the space C, the discharge path 6 and the return path 9 is dispersed and uniformly kneaded due to the difference in the time for which the polymer material M is refluxed.

ところで、高分子材料Mが帰還経路9に流入される際には、断熱圧縮されることで発熱し、また帰還経路9を高分子材料Mが通過する際には剪断応力を受けることで剪断発熱する。ここで、これらの発熱が生じるのは高分子材料Mが帰還経路9に流入してから帰還経路9から流出するまでの間である。また、高分子材料Mが帰還経路9から流出された際には、直径S2を有する帰還経路9よりも広い空間Cへ流出するとともに、帰還経路9の内壁面との間に生じていた剪断応力がなくなる。このため、空間Cにある高分子材料Mの温度は帰還経路9の内部に高分子材料Mがあったときよりも低下する。   By the way, when the polymer material M flows into the return path 9, heat is generated by adiabatic compression, and when the polymer material M passes through the return path 9, shear heat is generated by receiving shear stress. To do. Here, these heat generations occur during the period from when the polymer material M flows into the return path 9 until it flows out of the return path 9. Further, when the polymer material M flows out from the return path 9, it flows into the space C wider than the return path 9 having the diameter S <b> 2 and the shear stress generated between the inner wall surface of the return path 9. Disappears. For this reason, the temperature of the polymer material M in the space C is lower than when the polymer material M is in the return path 9.

混練装置100では、空間C、排出経路6、および帰還経路9を通じて循環する高分子材料Mは分散されて均一に混練され、高分子材料Mが均一に混練された被混練物が生産される。被混練物は、搬入搬出弁5を通じて混練装置100の外部に搬出され、引き続いて適宜の加工工程に使用される。   In the kneading apparatus 100, the polymer material M circulating through the space C, the discharge path 6, and the return path 9 is dispersed and uniformly kneaded, and a material to be kneaded in which the polymer material M is uniformly kneaded is produced. The material to be kneaded is carried out of the kneading apparatus 100 through the carry-in / out valve 5 and subsequently used for an appropriate processing step.

以上説明したように、本実施形態に係る混練装置100によれば、帰還経路9の内壁面との間に生じる剪断応力によって高分子材料Mが混練され、高分子材料Mに生じる剪断発熱は帰還経路9から空間Cに流出する際に放熱される。このため、混練装置100において高分子材料Mが循環して混練されても剪断発熱が高分子材料Mに蓄積されることが抑制されている。従って、高分子材料の劣化・分解を抑制しつつ高い剪断力を付与し、分散性のよい被混練物を生産することができる。   As described above, according to the kneading apparatus 100 according to the present embodiment, the polymer material M is kneaded by the shear stress generated between the inner wall surface of the return path 9 and the shearing heat generated in the polymer material M is returned. Heat is dissipated when it flows from the path 9 to the space C. For this reason, even if the polymer material M is circulated and kneaded in the kneading apparatus 100, the accumulation of shear heat is suppressed in the polymer material M. Therefore, it is possible to produce a material to be kneaded with good dispersibility by imparting a high shearing force while suppressing deterioration and decomposition of the polymer material.

(第2実施形態)
次に、本発明の第2実施形態の混練装置について図2を参照して説明する。なお、以下に説明する各実施形態において、上述した第1実施形態の混練装置100と構成を共通とする箇所には同一符号を付けて、説明を省略することにする。
(Second Embodiment)
Next, the kneading apparatus of 2nd Embodiment of this invention is demonstrated with reference to FIG. In each embodiment described below, portions having the same configuration as those of the kneading apparatus 100 of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

図2は、本実施形態の混練装置の概略構成を示す図であって、混練装置の一部を断面視した平面図である。図2に示すように、本実施形態の混練装置200は、スクリュー2とシリンダ3との組を2組備えている点で第1実施形態の混練装置100と構成が異なっている。   FIG. 2 is a diagram showing a schematic configuration of the kneading apparatus of the present embodiment, and is a plan view in which a part of the kneading apparatus is viewed in cross section. As shown in FIG. 2, the kneading apparatus 200 of the present embodiment is different in configuration from the kneading apparatus 100 of the first embodiment in that it includes two sets of screws 2 and cylinders 3.

また、駆動部1とスクリュー2との間には、ベルト1a、1bが介在されており、駆動部1による回転力はベルト1aによってスクリュー2aに伝達され、スクリュー2aの回転動作がベルト1bによってスクリュー2bに伝達される。   Further, belts 1a and 1b are interposed between the drive unit 1 and the screw 2. The rotational force of the drive unit 1 is transmitted to the screw 2a by the belt 1a, and the rotational operation of the screw 2a is screwed by the belt 1b. 2b.

また、押出し先端部8に代えて押出し先端部18を備えている。押出し先端部18は、排出経路6に代えて排出経路16a、16bを有し、それぞれ一端がシリンダ3a、3bにおける下流側に開口されている。本実施形態では、排出経路16a、16bのそれぞれの他端は集合された合流部16cになっている。   Further, an extrusion tip portion 18 is provided instead of the extrusion tip portion 8. The extrusion tip 18 has discharge paths 16a and 16b instead of the discharge path 6, and one end thereof is opened on the downstream side of the cylinders 3a and 3b. In this embodiment, the other end of each of the discharge paths 16a and 16b is a merged part 16c.

また、流通管7に代えて、合流部16cとシリンダ3a、3bとの間に設けられた流通管17を備え、流通管17の内腔には、排出経路16a、16bと、空間Ca、Cbとのそれぞれに連通する帰還経路19が形成されている。   Further, in place of the flow pipe 7, a flow pipe 17 provided between the merging portion 16c and the cylinders 3a and 3b is provided. In the lumen of the flow pipe 17, the discharge paths 16a and 16b and the spaces Ca and Cb are provided. And a return path 19 that communicates with each other.

合流部16cは排出経路16a、16bのそれぞれの径方向における断面積の総和と等しい断面積を有して合流後管路16dに連通されている。合流後管路16dは、排出経路の一部として機能し、排出経路16a、16bのそれぞれの径方向における断面積の総和と等しい断面積を有して帰還経路19に連通されている。帰還経路19では、合流後管路16d側の開口面積は排出経路16a、16bの断面積の総和よりも小さい。   The merge portion 16c has a cross-sectional area equal to the sum of the cross-sectional areas in the radial direction of the discharge paths 16a and 16b and communicates with the post-merging pipe line 16d. The post-merging pipe line 16d functions as a part of the discharge path and has a cross-sectional area equal to the sum of the cross-sectional areas in the radial direction of the discharge paths 16a and 16b and communicates with the return path 19. In the return path 19, the opening area on the side of the post-merging pipe line 16d is smaller than the sum of the cross-sectional areas of the discharge paths 16a and 16b.

また、帰還経路19は、シリンダ3a、3bへと経路が分岐されているが、この分岐(分岐部19a)からシリンダ3a、3bに至るまでの帰還経路19の断面積の総和は、合流後管路16d側における断面積と等しい。   The return path 19 is branched to the cylinders 3a and 3b. The sum of the cross-sectional areas of the return path 19 from the branch (branch portion 19a) to the cylinders 3a and 3b is the post-merging pipe. It is equal to the cross-sectional area on the side of the path 16d.

このように、本実施形態の混練装置200では、排出経路16a、16bが集合された合流部16cが合流後管路16dを介して帰還経路19と接続されている。合流後管路16dと帰還経路19とのそれぞれの断面積は、合流後管路16dの断面積>帰還経路19の断面積を満たしている。また、排出経路16a,16のそれぞれの径方向における断面積の総和>帰還経路19の径方向における断面積の総和、の関係も満たされている。従って、第1実施形態の混練装置100と同様に帰還経路19の内壁面との間に生じる剪断応力によって高分子材料Mが混練され、高分子材料Mに生じる剪断発熱は帰還経路19から空間Ca、Cbに流出する際に放熱される。このため、混練装置200において高分子材料Mが循環して混練されても剪断発熱が高分子材料Mに蓄積されることが抑制されている。従って、高分子材料の劣化・分解を抑制しつつ高い剪断力を付与し、分散性のよい被混練物を生産することができる。また、本実施形態では合流部19を備えており、高分子材料Mの合流による混練効果も有する。   Thus, in the kneading apparatus 200 of the present embodiment, the merging portion 16c in which the discharge paths 16a and 16b are assembled is connected to the return path 19 via the post-merging pipe line 16d. The cross-sectional areas of the post-merging pipe line 16d and the return path 19 satisfy the cross-sectional area of the post-merging pipe line 16d> the cross-sectional area of the return path 19. Further, the relationship of the sum of the cross-sectional areas in the radial direction of the discharge paths 16a and 16> the sum of the cross-sectional areas in the radial direction of the return path 19 is also satisfied. Accordingly, the polymer material M is kneaded by the shear stress generated between the inner wall surface of the return path 19 and the shearing heat generated in the polymer material M from the return path 19 to the space Ca similarly to the kneading apparatus 100 of the first embodiment. The heat is dissipated when it flows out to Cb. For this reason, even if the polymer material M is circulated and kneaded in the kneading apparatus 200, shear heat generation is suppressed from being accumulated in the polymer material M. Therefore, it is possible to produce a material to be kneaded with good dispersibility by imparting a high shearing force while suppressing deterioration and decomposition of the polymer material. Moreover, in this embodiment, the joining part 19 is provided and it has the kneading | mixing effect by the joining of the polymeric material M. FIG.

(第3実施形態)
次に、本発明の第3実施形態の混練装置について図3および図4を参照して説明する。
図3は本実施形態の混練装置の概略構成図であって、混練装置の一部を断面視で示す平面図である。また、図4は同混練装置の側面図である。
図3および図4に示すように、本実施形態の混練装置300は、材料搬送部35を備えている点で第2実施形態の混練装置200と構成が異なっている。
材料搬送部35は、高分子材料Mが供給されるシリンダ23と、シリンダ23内に配置され、駆動部11によってベルト11aを介して回転駆動されることにより高分子材料Mを一方向(シリンダ3a、3b側)に搬送するスクリュー22とを備えている。
(Third embodiment)
Next, a kneading apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a schematic configuration diagram of the kneading apparatus of the present embodiment, and is a plan view showing a part of the kneading apparatus in a sectional view. FIG. 4 is a side view of the kneading apparatus.
As shown in FIG. 3 and FIG. 4, the kneading apparatus 300 of the present embodiment is different in configuration from the kneading apparatus 200 of the second embodiment in that it includes a material transport unit 35.
The material transport unit 35 is disposed in the cylinder 23 to which the polymer material M is supplied, and is rotationally driven by the driving unit 11 via the belt 11a, thereby causing the polymer material M to move in one direction (cylinder 3a). 3b side).

スクリュー22はスクリュー2と同様に螺旋状の凸条部12を有しており、スクリュー22とシリンダ23との間には、高分子材料Mを搬送するための空間Ccが生じている。   The screw 22 has a spiral ridge portion 12 like the screw 2, and a space Cc for conveying the polymer material M is generated between the screw 22 and the cylinder 23.

シリンダ23には、材料を貯留して空間Ccに供給するためのホッパー34が設けられている。また、シリンダ23には、ヒーター24が内蔵されている。ヒーター24は例えば電力が供給されることで発熱しシリンダ23および空間Ccを加熱する発熱体を有する。   The cylinder 23 is provided with a hopper 34 for storing material and supplying it to the space Cc. The cylinder 23 has a built-in heater 24. For example, the heater 24 has a heating element that generates heat when electric power is supplied to heat the cylinder 23 and the space Cc.

シリンダ23の下流側には、押出し先端部18に代えて設けられた押出し先端部28が固定されている。押出し先端部28では、合流部16cに弁26cが設けられ、弁26cによってシリンダ23と排出経路26a、26bとの間の投入経路31の連通状態が開状態あるいは閉状態になるように動作される。さらに、弁26cは図4に示すように混練装置300の外部に開口する排出口33と排出経路26a、26bとを連通させるように流路を選択可能に構成されている。   An extrusion tip portion 28 provided in place of the extrusion tip portion 18 is fixed on the downstream side of the cylinder 23. In the extrusion tip portion 28, a valve 26c is provided in the junction portion 16c, and the valve 26c is operated so that the communication state of the input path 31 between the cylinder 23 and the discharge paths 26a and 26b becomes an open state or a closed state. . Further, as shown in FIG. 4, the valve 26c is configured such that the flow path can be selected so as to connect the discharge port 33 opened to the outside of the kneading apparatus 300 and the discharge paths 26a and 26b.

また、本実施形態では高分子材料Mの温度は流通管17に設けられた熱電対25によって測定されている。   In this embodiment, the temperature of the polymer material M is measured by a thermocouple 25 provided in the flow pipe 17.

本実施形態の混練装置300では、材料搬送部35において、ホッパー34にストックされた高分子材料Mのペレットは、自重によって空間Ccの内部に送られる。空間Ccに送られた高分子材料Mは、シリンダ23に内蔵されたヒーターによって溶融される。溶融された高分子材料Mは、スクリュー22の回転動作によって押出し先端部28に向かって搬送され、投入経路31から排出経路26a、26b、合流部16c、合流後管路16d、帰還経路19のそれぞれを通じて空間Ca、Cbへと押圧移動される。   In the kneading apparatus 300 of this embodiment, the pellets of the polymer material M stocked in the hopper 34 in the material transport unit 35 are sent into the space Cc by their own weight. The polymer material M sent to the space Cc is melted by a heater built in the cylinder 23. The melted polymer material M is conveyed toward the extrusion tip portion 28 by the rotation operation of the screw 22, and each of the discharge route 26 a, 26 b, the merging portion 16 c, the post-merging conduit 16 d, and the return route 19 from the charging path 31. Through the spaces Ca and Cb.

続いて、弁26cによって投入経路31が閉鎖され、第2実施形態の混練装置200と同様に高分子材料Mが混練される。高分子材料Mの混練の工程が完了したら、弁26cによって排出経路26a、26bと排出口33とが連通され、排出口33を通じて高分子材料Mが混練された被混練物が排出される。この被混練物は適宜の後工程に使用される。   Subsequently, the introduction path 31 is closed by the valve 26c, and the polymer material M is kneaded in the same manner as the kneading apparatus 200 of the second embodiment. When the kneading step of the polymer material M is completed, the discharge paths 26a and 26b and the discharge port 33 are communicated with each other by the valve 26c, and the material to be kneaded with the polymer material M is discharged through the discharge port 33. This material to be kneaded is used in an appropriate post-process.

本実施形態においても、第2実施形態の混練装置200と同様に、排出経路26a、26bが集合された合流部16cと帰還経路19とが合流後管路16dを介して接続されている。合流後管路16dと帰還経路19とのそれぞれの断面積は、合流後管路16d>帰還経路19の断面積を満たしている。
従って、第2実施形態の混練装置200と同様に帰還経路19の内壁面との間に生じる剪断応力によって高分子材料Mが混練され、高分子材料Mに生じる剪断発熱は帰還経路19から空間Ca、Cbに流出する際に放熱される。
Also in the present embodiment, like the kneading apparatus 200 of the second embodiment, the merging portion 16c in which the discharge paths 26a and 26b are gathered and the return path 19 are connected via the post-merging pipe line 16d. The cross-sectional areas of the post-merging pipe line 16 d and the return path 19 satisfy the cross-sectional area of the post-merging pipe line 16 d> the return path 19.
Therefore, like the kneading apparatus 200 of the second embodiment, the polymer material M is kneaded by the shear stress generated between the inner wall surface of the return path 19 and the shear heat generated in the polymer material M is generated from the return path 19 to the space Ca. The heat is dissipated when it flows out to Cb.

このため、混練装置200において高分子材料Mが循環して混練されても剪断発熱が高分子材料Mに蓄積されることが抑制されている。従って、高分子材料の劣化・分解を抑制しつつ高い剪断力を付与し、分散性のよい被混練物を生産することができる。   For this reason, even if the polymer material M is circulated and kneaded in the kneading apparatus 200, shear heat generation is suppressed from being accumulated in the polymer material M. Therefore, it is possible to produce a material to be kneaded with good dispersibility by imparting a high shearing force while suppressing deterioration and decomposition of the polymer material.

また、材料搬送部35において高分子材料Mがヒーター24によって溶融され、投入経路31から順にそれぞれの経路が高分子材料Mで満たされていく。このため、それぞれの経路には気泡が残留することが抑制されている。   In addition, the polymer material M is melted by the heater 24 in the material transport unit 35, and the respective paths are filled with the polymer material M in order from the charging path 31. For this reason, it is suppressed that a bubble remains in each path | route.

(第4実施形態)
次に、本発明の第4実施形態の混練成形装置について図5および図6を参照して説明する。図5は本実施形態の混練成形装置の側面図である。また、図6は本実施形態の混練成形装置の変形例を示す側面図である。
(Fourth embodiment)
Next, a kneading and forming apparatus according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a side view of the kneading and forming apparatus of the present embodiment. FIG. 6 is a side view showing a modification of the kneading and forming apparatus of the present embodiment.

図5に示すように、本実施形態の混練成形装置400は、第3実施形態の混練装置300に対して、排出口33に連通する成形型41と、成形型41を通じて外部に排出された高分子材料Mの被混練物を成形型41の鉛直下方に引き取る引取機42とをさらに備えている。成形型41と引取機42とによって成形部43が構成されている。
引取機42は、被混練物の方向を変えるプーリー42aと、被混練物を巻き取る本体42bとを有している。
As shown in FIG. 5, the kneading and forming apparatus 400 of the present embodiment is different from the kneading apparatus 300 of the third embodiment in that the forming die 41 communicated with the discharge port 33 and the high amount discharged to the outside through the forming die 41. A take-up machine 42 is further provided for pulling the material to be kneaded of the molecular material M vertically below the mold 41. A molding part 43 is constituted by the molding die 41 and the take-up machine 42.
The take-up machine 42 has a pulley 42a that changes the direction of the material to be kneaded and a main body 42b that winds up the material to be kneaded.

本実施形態では、排出口33から排出された高分子材料Mの被混練物は成形型41に送られる。成形型41では、所定の金型形状にならい、例えばチューブ状など所定の形状に被混練物が成形され、続いて成形された被混練物が成形型41から排出される。さらに引取機42によって成形型41から排出された被混練物が引き取られ、空気によって冷却されて固化した成形品が生産される。   In the present embodiment, the material to be kneaded of the polymer material M discharged from the discharge port 33 is sent to the molding die 41. In the molding die 41, the material to be kneaded is shaped into a predetermined shape such as a tube shape, for example, following a predetermined mold shape, and then the molded material to be kneaded is discharged from the molding die 41. Further, the material to be kneaded discharged from the mold 41 is taken up by the take-up machine 42, and a molded product that is cooled and solidified by air is produced.

このように、本実施形態の混練成形装置400によれば、排出口33から排出される被混練物を連続的に成形して成形品を生産することができるので、成形品の生産リードタイムを短縮することができる。   As described above, according to the kneading and forming apparatus 400 of this embodiment, since the material to be kneaded discharged from the discharge port 33 can be continuously formed to produce a molded product, the production lead time of the molded product can be reduced. It can be shortened.

また、成形部43において成形型41から排出された被混練物を鉛直下方に引き取ることができるので、被混練物が空気によって冷却されて固化する過程における成形品の撓みなどの影響を低減して成形品の成形精度を高く保つことができる。   Further, since the material to be kneaded discharged from the molding die 41 can be taken vertically downward in the molding part 43, the influence of the bending of the molded product in the process in which the material to be kneaded is cooled and solidified by air is reduced. The molding accuracy of the molded product can be kept high.

(変形例)
以下では、本実施形態の混練成形装置の変形例について図6を参照して説明する。図6は本変形例の混練成形装置500の側面図である。
図6に示すように、本変形例の混練成形装置500は、成形部43に代えて成形部51を備えている。成形部51は、成形部43と異なり射出形成に好適に適用可能な成形部である。
(Modification)
Below, the modification of the kneading-molding apparatus of this embodiment is demonstrated with reference to FIG. FIG. 6 is a side view of a kneading and forming apparatus 500 of this modification.
As shown in FIG. 6, the kneading and forming apparatus 500 of this modification includes a forming unit 51 instead of the forming unit 43. Unlike the molding part 43, the molding part 51 is a molding part that can be suitably applied to injection molding.

本変形例においても、上述の第4実施形態と同様に、排出口33から排出される被混練物を連続的に成形して成形品を生産することができるので、成形品の生産リードタイムを短縮することができる。   Also in this modified example, since the material to be kneaded discharged from the discharge port 33 can be continuously formed to produce a molded product, as in the fourth embodiment described above, the production lead time of the molded product can be increased. It can be shortened.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、本発明の各実施形態では、帰還経路の直径が排出経路の直径よりも小さく構成されている例を示したが、これに限らず、帰還経路の経路上の少なくとも一部に帰還経路の断面積が排出経路の断面積よりも小さい小径部があれば本発明の効果を奏することができる。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, in each embodiment of the present invention, an example is shown in which the diameter of the return path is configured to be smaller than the diameter of the discharge path. If there is a small-diameter portion whose cross-sectional area is smaller than the cross-sectional area of the discharge path, the effect of the present invention can be achieved.

また、本発明の第1実施形態では、排出経路6と帰還経路9とが径方向断面が円形である例を示したが、これに限らず排出経路の断面積>帰還経路の断面積の関係を満たしていれば他の形状を採用することができる。例えば排出経路と帰還経路との径方向断面の形状が多角形でもよいし、排出経路と帰還経路との径方向断面の形状が互いに異なっていても構わない。   In the first embodiment of the present invention, an example in which the discharge path 6 and the return path 9 have a circular cross section in the radial direction is shown. However, the present invention is not limited thereto, and the relationship of the cross-sectional area of the discharge path> the cross-sectional area of the return path. Other shapes can be adopted as long as the above is satisfied. For example, the shape of the radial cross section of the discharge path and the return path may be polygonal, or the shape of the radial cross section of the discharge path and the return path may be different from each other.

また、本発明の第2実施形態では、合流後管路16dは排出経路の一部である構成を採用したが、これに限らず、合流部16cまでが排出経路で、合流後管路19は帰還経路の一部であり、合流後管路16dの断面積が、排出経路16a、16bの断面積の総和および合流部16cの断面積よりも小さい構成を採用しても良い。   In the second embodiment of the present invention, the post-merging pipe line 16d is configured to be a part of the discharge path. However, the present invention is not limited to this, and the merging portion 16c is the discharge path. A configuration that is a part of the return path, and in which the cross-sectional area of the post-merging pipe line 16d is smaller than the sum of the cross-sectional areas of the discharge paths 16a and 16b and the cross-sectional area of the merging portion 16c may be employed.

また、上述の実施形態及び変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
例えば、第3実施形態において説明した材料搬送部35は、第1実施形態の混練装置100に対しても好適に組み合わせることができる。すなわち、搬入搬出弁5に代えて材料搬送部35を備えることができる。この場合、材料搬送部35は押出し先端部8において排出経路6に連通するように構成され、排出経路6や帰還経路9を通じて高分子材料Mをシリンダ3の内部の空間Cに充填することができる。
Further, the constituent elements shown in the above-described embodiments and modifications can be combined as appropriate.
For example, the material conveyance part 35 demonstrated in 3rd Embodiment can be combined suitably also with the kneading apparatus 100 of 1st Embodiment. In other words, the material carrying part 35 can be provided instead of the carry-in / out valve 5. In this case, the material conveying unit 35 is configured to communicate with the discharge path 6 at the extrusion tip 8, and the polymer material M can be filled into the space C inside the cylinder 3 through the discharge path 6 and the return path 9. .

2、2a、2b スクリュー
3、3a、3b シリンダ
6、16a、16b、26a、26b 排出経路
9、19 帰還経路
16c 合流部
35 材料搬送部
43、51 成形部
2, 2a, 2b Screw 3, 3a, 3b Cylinder 6, 16a, 16b, 26a, 26b Discharge path 9, 19 Return path 16c Merging part 35 Material conveying part 43, 51 Molding part

Claims (4)

高分子材料が供給されるシリンダを少なくとも一つと、
該各シリンダ内に配置され、回転駆動されることにより前記高分子材料を一方向に搬送するスクリューと、
前記各シリンダの前記高分子材料の搬送方向下流側に開口するように設けられ、前記高分子材料を排出する排出経路と、
前記排出経路と前記シリンダとの間に設けられ、前記高分子材料を前記シリンダにおける前記高分子材料の搬送方向上流側へ還流させる帰還経路と、
を備え、
前記排出経路と前記帰還経路のそれぞれの径方向におけるそれぞれの断面積が
前記排出経路の断面積>前記帰還経路の断面積
とされている、
混練装置。
At least one cylinder to which a polymer material is supplied;
A screw that is disposed in each cylinder and is driven to rotate to convey the polymer material in one direction;
A discharge path that is provided so as to open to the downstream side in the conveying direction of the polymer material of each cylinder, and discharges the polymer material;
A return path that is provided between the discharge path and the cylinder and returns the polymer material to the upstream side in the transport direction of the polymer material in the cylinder;
With
The cross-sectional area of each of the discharge path and the return path in the radial direction is the cross-sectional area of the discharge path> the cross-sectional area of the return path,
Kneading device.
前記スクリューと前記シリンダとの組を複数組備え、
前記排出経路は互いに合流する合流部をさらに備え、
前記帰還経路は複数の前記シリンダに連通されている、
請求項1に記載の混練装置。
A plurality of sets of the screw and the cylinder are provided,
The discharge path further includes a merge portion that merges with each other,
The return path communicates with a plurality of the cylinders;
The kneading apparatus according to claim 1.
前記排出経路に連通され、前記高分子材料を溶融させて前記排出経路内へ搬送する材料搬送部をさらに備える請求項1または2に記載の混練装置。   3. The kneading apparatus according to claim 1, further comprising a material transport unit that communicates with the discharge path, melts the polymer material, and transports the polymer material into the discharge path. 請求項1〜3のいずれか一項に記載の混練装置と、
前記混練装置において前記被混練物を所定の形状に成形する成形部と、
を備える混練成形装置。
A kneading apparatus according to any one of claims 1 to 3,
A molding part for molding the material to be kneaded into a predetermined shape in the kneading apparatus;
A kneading and forming apparatus.
JP2009181540A 2009-08-04 2009-08-04 Kneading device and kneading molding device Active JP5404236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181540A JP5404236B2 (en) 2009-08-04 2009-08-04 Kneading device and kneading molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181540A JP5404236B2 (en) 2009-08-04 2009-08-04 Kneading device and kneading molding device

Publications (2)

Publication Number Publication Date
JP2011031543A JP2011031543A (en) 2011-02-17
JP5404236B2 true JP5404236B2 (en) 2014-01-29

Family

ID=43761097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181540A Active JP5404236B2 (en) 2009-08-04 2009-08-04 Kneading device and kneading molding device

Country Status (1)

Country Link
JP (1) JP5404236B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140593A (en) * 1994-11-25 1996-06-04 Sugino Mach Ltd Device for continuously pressurizing and treating liquid material
JP2000062002A (en) * 1998-08-24 2000-02-29 Japan Steel Works Ltd:The Retention-proof structure in apex part of biaxial extruder
JP2002144396A (en) * 2000-11-13 2002-05-21 Japan Steel Works Ltd:The Screw type kneading extruder
JP4495510B2 (en) * 2003-05-02 2010-07-07 宏平 澤 Multi-axis kneading apparatus and material kneading method
JP4284597B2 (en) * 2003-07-30 2009-06-24 東洋紡績株式会社 Polyester resin profile extrusion process
JP4745684B2 (en) * 2004-03-31 2011-08-10 独立行政法人産業技術総合研究所 Method for producing polymer blend material
RU2386537C2 (en) * 2005-01-21 2010-04-20 ДСМ АйПи АССЕТС Б.В. Mini-extruder

Also Published As

Publication number Publication date
JP2011031543A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
US10684603B2 (en) Dynamically controlled screw-driven extrusion
JP6130533B2 (en) Injection molding apparatus and injection molding method
CN108136645B (en) Extruding machine
TW577798B (en) Apparatus for injection molding multilayered articles
JP4928315B2 (en) Continuous mixing equipment
EP3107707B1 (en) Apparatus for extruding plastic materials
CN105142876B (en) Single screw rod Plasticator, one group of equipment and the method for plastifying output
JP5088818B2 (en) Resin multiple pipe extrusion molding equipment
CN102205620A (en) Differential-speed conical twin-screw extruder
CN101394985A (en) Apparatus for plastifying pellets, in particular plastics pellets, and injection-moulding or extrusion system equipped with this apparatus
US20050259507A1 (en) Cast extrusion barrel with integral heat-exchangers and method for making same
JP2009269183A (en) Plasticization and delivery device and injection molding machine using it
JP5404236B2 (en) Kneading device and kneading molding device
EP3381644A1 (en) Molding machine screw
CN102922715A (en) Charging device and twin-screw extruder provided with the same
JP6419681B2 (en) Kneading method and kneading apparatus
JP5913075B2 (en) Plasticizing apparatus, injection molding apparatus and injection molding method
CN114222655B (en) Method and extrusion device for extruding a fiber-reinforced plastic material for additive manufactured components
JP6072289B2 (en) Extrusion blow molding method and apparatus for its execution
JP6831172B2 (en) Extruder
JP2006341527A (en) On-line blending type injection molding machine
JP6134772B1 (en) Pushing device and kneading device
JP3236234B2 (en) Plasticizer
JPH05104609A (en) Vent extruding machine
US20240100762A1 (en) Melt conveyor for an extrusion tool of an extrusion system, extrusion tool, extrusion system and method for operating an extrusion system of this type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R151 Written notification of patent or utility model registration

Ref document number: 5404236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250