JP2005311196A - Dust core for vehicle-mounted motor, and manufacturing method thereof - Google Patents

Dust core for vehicle-mounted motor, and manufacturing method thereof Download PDF

Info

Publication number
JP2005311196A
JP2005311196A JP2004128769A JP2004128769A JP2005311196A JP 2005311196 A JP2005311196 A JP 2005311196A JP 2004128769 A JP2004128769 A JP 2004128769A JP 2004128769 A JP2004128769 A JP 2004128769A JP 2005311196 A JP2005311196 A JP 2005311196A
Authority
JP
Japan
Prior art keywords
dust core
powder
vehicle
soft magnetic
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128769A
Other languages
Japanese (ja)
Inventor
Takanobu Saitou
貴伸 斉藤
Hideaki Ono
秀昭 小野
Nobuo Kawashita
宜郎 川下
Tetsuro Tayu
哲朗 田湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004128769A priority Critical patent/JP2005311196A/en
Publication of JP2005311196A publication Critical patent/JP2005311196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core for a vehicle-mounted motor which has high density and low iron loss, and to provide a manufacturing method thereof. <P>SOLUTION: The dust core for the vehicle-mounted motor is a compressed compact of soft magnetic powder, substantially having a composition of 1.0 to 7.0 mass% Si and Fe for the rest and also having its surface coated with an insulating film, the relative density of ≥95% and the electric resistivity of ≥200×10<SP>-8</SP>Ωm. This is manufactured by compressing and compacting the soft magnetic powder coated with the insulating film under the conditions of pressure of ≥200 MPa and temperature of 400 to 900°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は車両搭載モータ用圧粉磁心とその製造方法に関し、更に詳しくは、高密度でかつ低鉄損であって、モータ磁気回路の3次元化を可能にして高効率、大出力密度/大トルク密度のモータの実現を可能にし、とりわけ自動車駆動用モータに組み込まれて好適な圧粉磁心とその製造方法の提供を目的とする。   The present invention relates to a dust core for a motor mounted on a vehicle and a manufacturing method thereof. More specifically, the present invention relates to a high-density and low iron loss, and enables high-efficiency, high output density / high-speed by enabling three-dimensional motor magnetic circuit An object of the present invention is to provide a dust core suitable for being incorporated in a motor for driving an automobile, and a method for manufacturing the same, which can realize a motor having a torque density.

一般的なモータを構成する磁心は、複数枚の薄い電磁鋼板を積層してバルク体にしたものである。この磁心は、電磁鋼板の積層方向と直交する面内方向では優れた軟磁気特性を示すが、積層方向では磁気特性が極端に低下するという問題がある。
これに対し、圧粉磁心は、3次元的にほぼ等方的な磁気特性を示すので、これを用いてモータの磁気回路を3次元的に構成することが可能である。したがって、圧粉磁心を用いることにより、電磁鋼板を用いた2次元的な磁気回路で構成される従来のモータとはその構造が異なるモータを実現することができる。
A magnetic core constituting a general motor is formed by stacking a plurality of thin electromagnetic steel sheets into a bulk body. This magnetic core exhibits excellent soft magnetic properties in the in-plane direction perpendicular to the laminating direction of the electromagnetic steel sheets, but has a problem that the magnetic properties are extremely lowered in the laminating direction.
On the other hand, since the dust core exhibits substantially three-dimensional isotropic magnetic characteristics, the magnetic circuit of the motor can be configured three-dimensionally using this. Therefore, by using the dust core, it is possible to realize a motor having a structure different from that of a conventional motor constituted by a two-dimensional magnetic circuit using an electromagnetic steel plate.

ところで、この圧粉磁心は、通常、次のようにして製造されている。
まず、所定組成の軟磁性合金に機械粉砕法やアトマイズ法を適用して所定の粒径と粒度分布を有する軟磁性粉末を製造する。
ついで、この軟磁性粉末に、絶縁材料であると同時に結着能を有するバインダ成分でもある例えば水ガラスのような絶縁バインダの所定量を混合することにより、軟磁性粉末の表面を前記絶縁バインダから成る絶縁皮膜で被覆する。
By the way, this powder magnetic core is normally manufactured as follows.
First, a soft magnetic powder having a predetermined particle size and particle size distribution is manufactured by applying a mechanical grinding method or an atomizing method to a soft magnetic alloy having a predetermined composition.
Next, the surface of the soft magnetic powder is separated from the insulating binder by mixing a predetermined amount of an insulating binder such as water glass which is an insulating material and a binder component having a binding ability at the same time. Cover with an insulating film.

ついで、上記した混合物を例えばステアリン酸亜鉛のような潤滑剤と一緒に金型に充填したのち、通常は常温下において所定の圧力を印加して圧縮成形する。
そして最後に、得られた圧縮成形体に熱処理を行って、圧縮成形時に蓄積された歪みを除去する。
このようにして製造された圧粉磁心は、絶縁皮膜で被覆された軟磁性粉末の各粒子が互いに前記した絶縁皮膜を介して結着した組織構造になっている。
Next, after filling the above-mentioned mixture into a mold together with a lubricant such as zinc stearate, compression molding is usually performed by applying a predetermined pressure at room temperature.
Finally, the obtained compression-molded body is subjected to a heat treatment to remove distortion accumulated during the compression molding.
The dust core produced as described above has a structure in which the particles of the soft magnetic powder coated with the insulating film are bound to each other through the insulating film.

現在、圧粉磁心の主流は軟磁性粉末としてFe基合金の粉末を用いたものであるが、これをモータ用途に適用する場合には次のような問題がある。
まず、モータ駆動は概して低周波領域(概略10kHz以下)で行われるが、その場合、圧粉磁心は電磁鋼板の磁心に比べて鉄損が大きくなる。そのため、高効率が要求されるモータに適用することが困難である。
At present, the mainstream of powder magnetic cores is that using Fe-based alloy powder as soft magnetic powder. However, when this is applied to motor applications, there are the following problems.
First, motor driving is generally performed in a low frequency region (approximately 10 kHz or less). In this case, the iron core of the dust core is larger than that of the magnetic steel sheet. Therefore, it is difficult to apply to a motor that requires high efficiency.

したがって、高効率なモータへの圧粉磁心の適用を考える場合、当該圧粉磁心の鉄損をより一層低減することが必要になる。
また、従来の圧粉磁心は、軟磁性粉末の充填密度がそれほど高いというわけではないので、例えばモータのトルクを向上させることを考えた場合、従来の圧粉磁心の磁束密度の水準では必ずしも満足できないという問題がある。
Therefore, when considering application of the dust core to a highly efficient motor, it is necessary to further reduce the iron loss of the dust core.
In addition, since the packing density of the soft magnetic powder is not so high in the conventional dust core, for example, when considering improving the torque of the motor, the magnetic flux density level of the conventional dust core is not always satisfactory. There is a problem that you can not.

したがって、トルク密度の高いモータへの圧粉磁心の適用を考える場合、当該圧粉磁心における軟磁性粉末の充填密度を高めて高密度化することにより、より一層磁束密度を高めることが必要になる。
本発明は圧粉磁心をモータ用途に適用する際における上記した問題を考慮することによって開発された圧粉磁心であって、低鉄損であり、かつ高密度であるため、高効率で、大出力密度/大トルク密度で作動する例えば車両駆動用モータにも用いることができる圧粉磁心とその製造方法の提供を目的とする。
Therefore, when considering the application of a dust core to a motor having a high torque density, it is necessary to further increase the magnetic flux density by increasing the packing density of the soft magnetic powder in the dust core to increase the density. .
The present invention is a dust core developed by considering the above-mentioned problems when applying the dust core to a motor application, and has a low iron loss and high density, so that it is highly efficient and large. An object of the present invention is to provide a dust core that can be used for, for example, a vehicle drive motor that operates at an output density / a large torque density, and a method for manufacturing the same.

本発明者らは、上記した目的を達成するための研究過程で、開発する圧粉磁心の高密度化の目標値を相対密度表示で95%以上に設定した。
相対密度が95%以上になっていれば、その圧粉磁心における軟磁性粉末の占有率は高く、したがって、磁束密度も高く、モータ用途への適用も可能と判断できるからである。
また、本発明者らは、鉄損は用いる軟磁性粉末特有のヒステリシス損と、圧粉磁心における渦電流損との総和であることに鑑み、前者に関しては後述するFe−Si系粉末を用いることによって対処した。
In the research process for achieving the above object, the present inventors set a target value for densification of the powder magnetic core to be developed to 95% or more in terms of relative density.
This is because if the relative density is 95% or higher, the occupation ratio of the soft magnetic powder in the powder magnetic core is high, and therefore the magnetic flux density is high, and it can be determined that the application to motor use is possible.
In view of the fact that the iron loss is the sum of the hysteresis loss peculiar to the soft magnetic powder to be used and the eddy current loss in the dust core, the Fe-Si based powder described later is used for the former. Addressed by.

また、後者に関しては粉末相互間の絶縁状態を規定することによって対処した。具体的には、圧粉磁心の低鉄損化の目標値を電気抵抗率表示で200×10-8Ω・m以上に設定した。
圧粉磁心の電気抵抗率が200×10-8Ω・m以上になっていれば、その圧粉磁心の低周波領域における渦電流損は事実上無視することができ、高効率のモータに組み込むことが可能であると判断されるからである。
The latter was dealt with by defining the insulation state between the powders. Specifically, the target value for reducing the iron loss of the dust core was set to 200 × 10 −8 Ω · m or more in terms of electrical resistivity.
If the electric resistivity of the dust core is 200 × 10 −8 Ω · m or more, the eddy current loss in the low frequency region of the dust core can be virtually ignored, and it is incorporated into a high-efficiency motor. This is because it is determined that it is possible.

以上の目標値を実現するために、本発明者らは製造過程における条件、とりわけ圧縮成形時の条件に関して検討を加えた結果、後述する条件下で上記した目標値の実現が可能であるとの事実を見出し、本発明を開発するに至った。
すなわち、本発明の車両搭載モータ用圧粉磁心は、Si:1.0〜7.0質量%、残部が実質的にFeから成る組成を有し、かつ表面が絶縁皮膜で被覆されている軟磁性粉末の圧縮成形体であって、
相対密度が95%以上であり、かつ電気抵抗率が200×10-8Ω・m以上であることを特徴とする。
In order to realize the above target value, the present inventors have studied the conditions in the manufacturing process, particularly the conditions at the time of compression molding, and as a result, the target value described above can be realized under the conditions described later. The facts were found and the present invention was developed.
That is, the dust core for a vehicle-mounted motor of the present invention has a composition of Si: 1.0 to 7.0% by mass, the balance being substantially composed of Fe, and the surface is covered with an insulating film. A compression molded body of magnetic powder,
The relative density is 95% or more, and the electrical resistivity is 200 × 10 −8 Ω · m or more.

また、本発明においては、Si:1.0〜7.0質量%、残部が実質的にFeから成る軟磁性粉末と絶縁バインダとを混合して前記軟磁性粉末の表面を絶縁皮膜で被覆し、ついで得られた粉末を、圧力200MPa以上、温度400〜900℃の条件下で圧縮成形することを特徴とする車両搭載モータ用圧粉磁心の製造方法、好ましくは、圧縮成形後に、更に、温度500℃以上で熱処理を行う車両搭載モータ用圧粉磁心の製造方法が提供される。   Further, in the present invention, Si: 1.0 to 7.0% by mass, and the balance of the soft magnetic powder substantially consisting of Fe and an insulating binder are mixed to coat the surface of the soft magnetic powder with an insulating film. Then, the powder obtained is compression-molded under the conditions of a pressure of 200 MPa or more and a temperature of 400 to 900 ° C., preferably a method for producing a dust core for a vehicle-mounted motor, preferably after compression molding, A method of manufacturing a dust core for a vehicle-mounted motor that performs heat treatment at 500 ° C. or higher is provided.

本発明の圧粉磁心は、表面に絶縁バインダの絶縁皮膜が形成されているFe−Si系軟磁性粉末を、圧力200MPa以上、温度400〜900℃の条件下で圧縮成形されているので、相対密度は95%以上と高密度であり、また、電気抵抗率も200×10-8Ω・m以上と絶縁性も高い。
そのため、この圧粉磁心は、高磁束密度を有するとともに低鉄損でもあり、高効率が要請される車両搭載用モータに組み込むことができる。
In the dust core of the present invention, Fe-Si soft magnetic powder having an insulating binder insulating film formed on the surface thereof is compression-molded under conditions of a pressure of 200 MPa or more and a temperature of 400 to 900 ° C. The density is as high as 95% or more, and the electrical resistivity is also 200 × 10 −8 Ω · m or more, and the insulation is high.
Therefore, the dust core has a high magnetic flux density and low iron loss, and can be incorporated in a vehicle-mounted motor that requires high efficiency.

本発明の圧粉磁心は相対密度が95%以上と緻密化しており、かつ電気抵抗率が200×10-8Ω・m以上であり、高い絶縁性を備えている。
なお、ここでいう相対密度とは、ある体積の圧粉磁心の重量を、当該圧粉磁心に用いた軟磁性合金から成る同一体積の溶製材の重量で除算した値に100を乗算した値であり、%表示である。
The dust core of the present invention has a relative density of 95% or higher, an electric resistivity of 200 × 10 −8 Ω · m or higher, and high insulation.
The relative density referred to here is a value obtained by multiplying the value obtained by dividing the weight of a certain volume of the dust core by the weight of the same volume of the melted material made of the soft magnetic alloy used for the dust core. Yes, in%.

また、電気抵抗率は、直流四端子法で測定した値である。
この圧粉磁心は次のようにして製造される。
まず、用いる軟磁性粉末として、Fe−Si系合金の粉末が用意される。用いる理由は、このFe−Si系合金がFeに比べて結晶磁気異方性と磁歪が小さく、低周波領域におけるヒステリシス損が小さい材料であるからである。すなわち、製造する圧粉磁心の低鉄損化に寄与する材料であるからである。
The electrical resistivity is a value measured by a direct current four-terminal method.
This dust core is manufactured as follows.
First, as a soft magnetic powder to be used, an Fe-Si alloy powder is prepared. The reason for using it is that this Fe—Si-based alloy has a smaller magnetocrystalline anisotropy and magnetostriction than Fe, and a small hysteresis loss in the low frequency region. That is, it is a material that contributes to a reduction in iron loss of the dust core to be produced.

ここで、用いるFe−Si系合金粉末としては、Siの含有量が1.0〜7.0質量%であるものに限定される。
Siの含有量が1.0質量%より少ない合金粉末を用いると上記した効果は発現せず、逆に圧粉磁心では鉄損の増加が起こりはじめる。また、Siの含有量が7.0質量%より多い合金粉末を用いると、得られた圧粉磁心の飽和磁束密度が急激に低下して、モータ用途の磁心としての適合性を消失する。
Here, the Fe—Si based alloy powder to be used is limited to those having a Si content of 1.0 to 7.0 mass%.
When an alloy powder having a Si content of less than 1.0% by mass is used, the above-described effects are not exhibited, and conversely, an increase in iron loss starts to occur in the dust core. Further, when an alloy powder having a Si content of more than 7.0% by mass is used, the saturation magnetic flux density of the obtained dust core is abruptly reduced, and the suitability as a magnetic core for motor use is lost.

合金粉末としては、平均粒径が5〜500μmであるものを用いることが好ましい。
平均粒径が5μmより小さい粉末は、後述する圧縮成形時における成形性が悪く、そのため圧粉磁心の生産性の低下を招くからである。また平均粒径が500μmより大きい粉末を用いると、得られた圧粉磁心における電気抵抗率は低下して渦電流損が増大して電気抵抗率が低下し、その結果、低鉄損を実現することができなくなる。
As the alloy powder, it is preferable to use an alloy powder having an average particle diameter of 5 to 500 μm.
This is because a powder having an average particle size of less than 5 μm has poor moldability at the time of compression molding, which will be described later, so that the productivity of the dust core is reduced. Moreover, when a powder having an average particle size larger than 500 μm is used, the electrical resistivity in the obtained powder magnetic core is lowered, the eddy current loss is increased and the electrical resistivity is lowered, and as a result, low iron loss is realized. I can't do that.

なお、このFe−Si系合金粉末は、鋳造インゴットの機械的粉砕や合金溶湯のアトマイズ法によって製造することができる。
次に、上記したFe−Si系合金粉末と絶縁バインダを混合して、合金粉末の表面を被覆して絶縁皮膜を成膜する。
この絶縁皮膜は、製造した圧粉磁心において、合金粉末間の絶縁状態を維持して、圧粉磁心の電気抵抗率を確保し、渦電流損の発生を抑制するという働きをする。
In addition, this Fe-Si type alloy powder can be manufactured by the mechanical grinding | pulverization of a casting ingot or the atomization method of a molten alloy.
Next, the above-described Fe—Si based alloy powder and an insulating binder are mixed, and the surface of the alloy powder is coated to form an insulating film.
This insulating film functions to maintain the insulating state between the alloy powders in the manufactured powder magnetic core, to ensure the electrical resistivity of the powder magnetic core, and to suppress the occurrence of eddy current loss.

用いる絶縁バインダは、後述する圧縮成形が温度400〜900℃で行われるので、この温度に対する耐熱性を備えたものであることが必要である。
例えば、水ガラス、リン酸、およびリン酸を含むリン酸塩のようなリン酸系、Al23粉末、SiO2粉末、BN粉末などを用いることができる。
また、フェノール樹脂、シリコーン樹脂、アミド樹脂、イミド樹脂のような有機系のものを用いることもできる。ただし、その場合は、圧縮成形時に熱分解することは許されないので、上記した温度域のうち、比較的低温域を採用したときに、有機系の絶縁バインダを使用することになる。
The insulating binder to be used is required to have heat resistance to this temperature because compression molding described later is performed at a temperature of 400 to 900 ° C.
For example, water glass, phosphoric acid, phosphoric acid such as phosphate containing phosphoric acid, Al 2 O 3 powder, SiO 2 powder, BN powder, and the like can be used.
In addition, organic materials such as phenol resin, silicone resin, amide resin, and imide resin can also be used. However, in that case, since thermal decomposition is not allowed during compression molding, an organic insulating binder is used when a relatively low temperature range is employed in the above temperature range.

形成する絶縁皮膜の厚みは10nm〜1μmであることが好ましい。
この厚みが10nmより薄い場合は、合金粉末の表面が絶縁皮膜で実質的には被覆されていないことがあり、そのため、合金粉末が相互に直接接触し、製造した圧粉磁心の渦電流損の発生を抑制できなくなる。また、厚みが1μmより厚い場合は、圧粉磁心における非磁性成分の体積割合が増加するので、飽和磁束密度の低下が無視できなくなる。
The thickness of the insulating film to be formed is preferably 10 nm to 1 μm.
When this thickness is less than 10 nm, the surface of the alloy powder may not be substantially covered with an insulating film, so that the alloy powder is in direct contact with each other, and the eddy current loss of the manufactured dust core is reduced. The occurrence cannot be suppressed. Further, when the thickness is thicker than 1 μm, the volume ratio of the nonmagnetic component in the powder magnetic core increases, so that the saturation magnetic flux density cannot be ignored.

この絶縁皮膜の厚みの調整に関しては、合金粉末と混合する絶縁バインダの混合量を調節して実現することができる。
このようにして表面に絶縁皮膜が形成されている合金粉末を、次に、圧縮成形して目的形状の圧粉磁心にする。
その場合、Fe−Si系合金は、高硬度であるため、その粉末を常温下で例えばプレス成形しても、緻密で高密度な成形体が得られないという問題がある。
The adjustment of the thickness of the insulating film can be realized by adjusting the amount of the insulating binder mixed with the alloy powder.
The alloy powder having the insulating film formed on the surface in this manner is then compression-molded to obtain a dust core having a desired shape.
In that case, since the Fe—Si-based alloy has high hardness, there is a problem that even if the powder is press-molded at room temperature, for example, a dense and high-density molded body cannot be obtained.

そのため、本発明では、合金粉末に対しては加圧と加熱を同時に作用させる圧縮成形が実施される。例えばホットプレス法、放電プラズマ焼結法が適用される。
その場合、圧力は200MPa以上、温度は400〜900℃にそれぞれ設定される。
ここで、圧力が200MPaより低い場合や、または温度が400℃より低い場合、そのような条件下で圧縮成形を行っても、相対密度が95%以上という高密度な圧粉磁心を製造することができない。
Therefore, in the present invention, compression molding is performed in which pressurization and heating are simultaneously applied to the alloy powder. For example, a hot press method or a discharge plasma sintering method is applied.
In that case, the pressure is set to 200 MPa or more, and the temperature is set to 400 to 900 ° C.
Here, when the pressure is lower than 200 MPa or the temperature is lower than 400 ° C., a high-density powder magnetic core having a relative density of 95% or more is manufactured even if compression molding is performed under such conditions. I can't.

高圧力で圧縮成形を行えば、得られた圧縮成形体は高密度化してその相対密度も高くなる。しかしながら、他方では絶縁皮膜の破壊が進行するので圧縮成形体の電気抵抗率は小さくなって渦電流損の増加が引き起こされる。このようなことから、圧力の上限は1500MPa程度に設定することが好ましい。
また、温度が900℃より高い条件下で圧縮成形を行うと、合金粉末の軟化が進んで高密度化に資することは事実であるが、しかし他方では、やはり絶縁皮膜の破壊が進んで、渦電流損の増加を招くようになる。
If compression molding is performed at a high pressure, the obtained compression molded body is densified and its relative density is also increased. However, on the other hand, since the breakdown of the insulating film proceeds, the electrical resistivity of the compression molded body is reduced, causing an increase in eddy current loss. For this reason, the upper limit of the pressure is preferably set to about 1500 MPa.
In addition, if compression molding is performed at a temperature higher than 900 ° C., it is true that the alloy powder is softened and contributes to higher density. Increases current loss.

上記した条件で圧縮成形して得られた圧粉磁心に対し、更に温度500℃以上で熱処理を行うと、圧縮成形時に圧粉磁心に蓄積された歪みが解放され、磁気特性がより一層向上した圧粉磁心になるので好適である。
なお、上記した圧縮成形は、粉末を常温下で一旦軽く圧縮して予備成形体にし、その後、この予備成形体に上記した条件を適用して実施してもよい。
When the powder magnetic core obtained by compression molding under the above-mentioned conditions is further heat-treated at a temperature of 500 ° C. or higher, the distortion accumulated in the powder magnetic core during compression molding is released and the magnetic properties are further improved. Since it becomes a dust core, it is suitable.
The above-described compression molding may be performed by lightly compressing the powder once at room temperature to form a preform, and then applying the above-described conditions to the preform.

組成がFe−3質量%Siから成る軟磁性粉末を水アトマイズ法で製造した。分級して、100メッシュ下で、平均粒径が60μmの粉末を用意した。
この粉末100質量部に対し、シリコーン樹脂(絶縁バインダ)0.5質量部を均一に混合して粉末表面を被覆する絶縁皮膜を形成した。絶縁皮膜の厚みを、オージェ分析法で測定したところ、平均値で0.1μmであった。
A soft magnetic powder having a composition of Fe-3 mass% Si was produced by a water atomization method. Classification was performed to prepare a powder having an average particle size of 60 μm under 100 mesh.
To 100 parts by mass of the powder, 0.5 part by mass of a silicone resin (insulating binder) was uniformly mixed to form an insulating film covering the powder surface. When the thickness of the insulating film was measured by an Auger analysis method, the average value was 0.1 μm.

この粉末を金型に充填したのちホットプレスして圧粉磁心にした。このとき、加熱温度と加圧力を変化させた。
得られた圧粉磁心につき、相対密度と電気抵抗率を測定した。その結果を図1と図2にそれぞれ示した。
なお、図1において、○印内の数字は相対密度(単位%)を表し、図2において、○印内の数字は電気抵抗率(単位:×10-8Ω・m)を表す。
The powder was filled into a mold and hot pressed to form a dust core. At this time, the heating temperature and the applied pressure were changed.
About the obtained powder magnetic core, the relative density and the electrical resistivity were measured. The results are shown in FIGS. 1 and 2, respectively.
In FIG. 1, the numbers in the circles represent the relative density (unit%), and in FIG. 2, the numbers in the circles represent the electrical resistivity (unit: × 10 −8 Ω · m).

図1から明らかなように、相対密度95%以上と高密度化するためには、圧力は200MPa以上、温度は400〜900℃の条件下で圧縮成形することが必要である。
また、図2から明らかなように、電気抵抗率200×10-8Ω・m以上にするためには、やはり、圧力200MPa以上、温度400〜900℃の条件下で圧縮成形すべきである。
As is apparent from FIG. 1, in order to increase the density to a relative density of 95% or more, it is necessary to perform compression molding under conditions of a pressure of 200 MPa or more and a temperature of 400 to 900 ° C.
Further, as is apparent from FIG. 2, in order to achieve an electric resistivity of 200 × 10 −8 Ω · m or higher, it should be compression molded under the conditions of a pressure of 200 MPa or higher and a temperature of 400 to 900 ° C.

実施例1で使用した粉末を金型に充填し、油圧プレス機を用い、室温下において加圧力500MPaで予備成形した。得られた予備成形体の相対密度は82%であった。
ついで、この予備成形体を軟鋼製の缶に詰めてそこにArガスを封入したのち、缶を鍛造プレスした。このとき、加熱温度と加圧力を変化させた。
圧縮成形後、缶から圧粉磁心を取り出し、その相対密度と電気抵抗率を測定した。その結果を図3と図4にそれぞれ示した。
The powder used in Example 1 was filled in a mold, and preformed at a pressure of 500 MPa at room temperature using a hydraulic press. The relative density of the obtained preform was 82%.
Next, the preform was packed into a can made of mild steel, Ar gas was sealed therein, and the can was forged and pressed. At this time, the heating temperature and the applied pressure were changed.
After compression molding, the dust core was taken out of the can and its relative density and electrical resistivity were measured. The results are shown in FIGS. 3 and 4, respectively.

この場合も、実施例1と同様に、圧力200MPa以上、温度400〜900℃の条件下の圧縮成形で、200×10-8Ω・m以上の電気抵抗率が得られている。 Also in this case, as in Example 1, an electric resistivity of 200 × 10 −8 Ω · m or more was obtained by compression molding under the conditions of a pressure of 200 MPa or more and a temperature of 400 to 900 ° C.

本発明の圧粉磁心は、高密度(高磁束密度)で低鉄損であり、また磁気特性が等方的であるため、この圧粉磁心を用いることにより、モータ磁気回路の3次元化を実現することができる。その場合、高効率、大出力密度/大トルク密度のモータを実現することができ、車両搭載モータ用の磁心として使用可能である。   The dust core of the present invention has a high density (high magnetic flux density), low iron loss, and isotropic magnetic characteristics. By using this dust core, the motor magnetic circuit can be made three-dimensional. Can be realized. In that case, a motor with high efficiency and large output density / large torque density can be realized, and can be used as a magnetic core for a vehicle-mounted motor.

実施例1において、加熱温度と加圧力を変化させたときに、製造された圧粉磁心の相対密度を示すグラフである。In Example 1, it is a graph which shows the relative density of the manufactured powder magnetic core when changing heating temperature and applied pressure. 実施例1において、加熱温度と加圧力を変化させたときに、製造された圧粉磁心の電気抵抗率を示すグラフである。In Example 1, it is a graph which shows the electrical resistivity of the manufactured powder magnetic core when changing heating temperature and applied pressure. 実施例2において、加熱温度と加圧力を変化させたときに、製造された圧粉磁心の相対密度を示すグラフである。In Example 2, it is a graph which shows the relative density of the dust core manufactured when changing heating temperature and applied pressure. 実施例2において、加熱温度と加圧力を変化させたときに、製造された圧粉磁心の電気抵抗率を示すグラフである。In Example 2, it is a graph which shows the electrical resistivity of the dust core manufactured when changing heating temperature and applied pressure.

Claims (5)

Si:1.0〜7.0質量%、残部が実質的にFeから成る組成を有し、かつ表面が絶縁皮膜で被覆されている軟磁性粉末の圧縮成形体であって、
相対密度が95%以上であり、かつ電気抵抗率が200×10-8Ω・m以上であることを特徴とする車両搭載モータ用圧粉磁心。
Si: 1.0 to 7.0% by mass, the balance is a compression molded body of soft magnetic powder having a composition substantially consisting of Fe and having a surface coated with an insulating film,
A dust core for a vehicle-mounted motor, having a relative density of 95% or more and an electric resistivity of 200 × 10 −8 Ω · m or more.
前記軟磁性粉末の平均粒径が5〜500μmである請求項1の車両搭載モータ用圧粉磁心。   The dust core for a vehicle-mounted motor according to claim 1, wherein the soft magnetic powder has an average particle diameter of 5 to 500 μm. 前記絶縁皮膜の厚みが10nm〜1μmである請求項1または2の車両搭載モータ用圧粉磁心。   The dust core for a vehicle-mounted motor according to claim 1 or 2, wherein the insulating film has a thickness of 10 nm to 1 µm. Si:1.0〜7.0質量%、残部が実質的にFeから成る軟磁性粉末と絶縁バインダとを混合して前記軟磁性粉末の表面を絶縁皮膜で被覆し、ついで得られた粉末を、圧力200MPa以上、温度400〜900℃の条件下で圧縮成形することを特徴とする車両搭載モータ用圧粉磁心の製造方法。   Si: 1.0 to 7.0% by mass, with the balance being substantially Fe, soft magnetic powder and an insulating binder are mixed to coat the surface of the soft magnetic powder with an insulating film. A method for producing a powder magnetic core for a motor mounted on a vehicle, comprising compression molding under conditions of a pressure of 200 MPa or more and a temperature of 400 to 900 ° C. 圧縮成形後に、温度500℃以上で熱処理を行う請求項4の車両搭載モータ用圧粉磁心の製造方法。   The method for producing a dust core for a vehicle-mounted motor according to claim 4, wherein the heat treatment is performed at a temperature of 500 ° C or higher after the compression molding.
JP2004128769A 2004-04-23 2004-04-23 Dust core for vehicle-mounted motor, and manufacturing method thereof Pending JP2005311196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128769A JP2005311196A (en) 2004-04-23 2004-04-23 Dust core for vehicle-mounted motor, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128769A JP2005311196A (en) 2004-04-23 2004-04-23 Dust core for vehicle-mounted motor, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005311196A true JP2005311196A (en) 2005-11-04

Family

ID=35439583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128769A Pending JP2005311196A (en) 2004-04-23 2004-04-23 Dust core for vehicle-mounted motor, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005311196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057675A1 (en) 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, powder magnetic core, and their production methods
JP2012023392A (en) * 2011-09-29 2012-02-02 Sumitomo Electric Ind Ltd Reactor
JP2014075596A (en) * 2013-11-25 2014-04-24 Sumitomo Electric Ind Ltd Reactor
JP2015062245A (en) * 2014-11-12 2015-04-02 住友電気工業株式会社 Soft magnetic composite material
US11348712B2 (en) 2017-09-29 2022-05-31 Seiko Epson Corporation Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057675A1 (en) 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, powder magnetic core, and their production methods
JP2012023392A (en) * 2011-09-29 2012-02-02 Sumitomo Electric Ind Ltd Reactor
JP2014075596A (en) * 2013-11-25 2014-04-24 Sumitomo Electric Ind Ltd Reactor
JP2015062245A (en) * 2014-11-12 2015-04-02 住友電気工業株式会社 Soft magnetic composite material
US11348712B2 (en) 2017-09-29 2022-05-31 Seiko Epson Corporation Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
KR101838825B1 (en) Dust core, coil component using same and process for producing dust core
JP4289665B2 (en) Reactor, reactor core and manufacturing method thereof
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
WO2008032707A1 (en) Powder magnetic core and iron-base powder for powder magnetic core
JP2008169439A (en) Magnetic powder, dust core, electric motor and reactor
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2009302420A (en) Dust core and manufacturing method thereof
WO2014157517A1 (en) Powder magnetic core for reactor
WO2006033295A1 (en) Method for producing green compact and green compact
JP4837700B2 (en) Powder magnetic core and method for producing the same
JP2007214425A (en) Powder magnetic core and inductor using it
CN111834075B (en) Alloy powder composition, molded body, method for producing same, and inductor
JP2002121601A (en) Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP5513922B2 (en) Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP4419829B2 (en) Method for producing molded body and molded body
JP2005311196A (en) Dust core for vehicle-mounted motor, and manufacturing method thereof
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2005142308A (en) Magnetic core formed of pressed powder
JP2007287848A (en) Magnetic core and its manufacturing method
JP2006089791A (en) Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density