JP2007287848A - Magnetic core and its manufacturing method - Google Patents

Magnetic core and its manufacturing method Download PDF

Info

Publication number
JP2007287848A
JP2007287848A JP2006112078A JP2006112078A JP2007287848A JP 2007287848 A JP2007287848 A JP 2007287848A JP 2006112078 A JP2006112078 A JP 2006112078A JP 2006112078 A JP2006112078 A JP 2006112078A JP 2007287848 A JP2007287848 A JP 2007287848A
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic core
steel sheet
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006112078A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006112078A priority Critical patent/JP2007287848A/en
Publication of JP2007287848A publication Critical patent/JP2007287848A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core capable of obtaining an excellent magnetic characteristic such as permeability without performing annealing to remove a distortion generated between grains in press molding, and obtaining a mechanical strength. <P>SOLUTION: An electromagnetic steel plate previously molded in response to the shape of the inner wall of a mold is arranged inside the mold. Mixed powder obtained by mixing magnetic powder with a lubricant is put on the electromagnetic steel plate. Then the plate and the powder are integrally molded by warm pressing. Consequently, the magnetic core is obtained, where the surface part is formed with the electromagnetic steel plate and the inner part is formed with the press powder body of the magnetic powder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は磁気特性を落とさず、機械特性改善を図った各種電気機器の磁心に関し、詳しくはトランスやモータ用などの圧粉磁心において、加工時および使用時に物理的な劣化破壊を抑制する技術に関する。   The present invention relates to magnetic cores of various electric devices that have improved mechanical characteristics without deteriorating magnetic characteristics, and more particularly, to a technique for suppressing physical degradation and destruction during processing and use in a dust core for transformers and motors. .

近年、電気・電子機器の小型化が進んでおり、それにつれて小型で高効率の圧粉磁心が要求されている。圧粉磁心用の強磁性粉末としては、フェライト粉末や強磁性金属粉末が用いられている。強磁性金属粉末は、フェライト粉末に比較して飽和磁束密度が大きいために磁心を小型化できる利点があるが、電気抵抗が小さいために渦電流損失が大きくなる欠点がある。この渦電流損失をできるだけ小さくするために、強磁性金属粉末粒子表面に、樹脂、無機物等の絶縁材で絶縁膜を形成させている。   In recent years, miniaturization of electric / electronic devices has progressed, and accordingly, a compact and highly efficient powder magnetic core is required. Ferrite powder and ferromagnetic metal powder are used as the ferromagnetic powder for the dust core. The ferromagnetic metal powder has an advantage that the magnetic core can be downsized because the saturation magnetic flux density is higher than that of the ferrite powder, but has a disadvantage that the eddy current loss is increased because the electric resistance is small. In order to minimize this eddy current loss, an insulating film is formed on the surface of the ferromagnetic metal powder particles with an insulating material such as a resin or an inorganic material.

圧粉磁心は、圧縮成形時に粒子間の歪が生じ、そのため焼鈍が必要となり、透磁率やコア損失が劣化し、さらに耐熱性や経年変化に悪影響を及ぼし、かつ、大型製品の製造が困難であるという欠点を有する(特許文献1参照)。
特許文献2に示されるような結着剤にシリコーン樹脂を利用する磁心についても、耐熱性が低く、特に200℃を超える環境下では磁心の形状安定性が低下し、所要の機械的特性や磁気特性が得られないという欠点がある。
また、複合材の分野において、特許文献3に示されるような、成形しておいた粉末成形体を心材の外側に圧入等して両者を一体的に結合させるものがあるが、粉末成形体の強度が低いために、圧入する際に粉末成形体に割れが生じ実施するのは困難であった。
The dust core is distorted between particles during compression molding, so annealing is required, the magnetic permeability and core loss are degraded, the heat resistance and aging are adversely affected, and the manufacture of large products is difficult. There is a disadvantage that there is (see Patent Document 1).
A magnetic core that uses a silicone resin as a binder as disclosed in Patent Document 2 also has low heat resistance, especially in an environment exceeding 200 ° C., the shape stability of the magnetic core decreases, and the required mechanical properties and magnetic properties are reduced. There is a drawback that characteristics cannot be obtained.
Also, in the field of composite materials, there is one in which a molded powder molded body as shown in Patent Document 3 is pressed into the outside of the core material to integrally couple them. Due to the low strength, cracking occurred in the powder compact during press fitting, making it difficult to carry out.

圧粉磁心は、鋳造または焼結した磁心とは異なり、鉄系磁性粉末の加圧成形体からなり、各粒子の結合は、主に塑性変形に伴う機械的結合であって冶金的に結合したものではない。
このような粉末間の結着力が弱い圧粉磁心の場合、激しく振動する部品用の回路基板などに組み込むと、振動によって割れ・欠けなどが発生して回路基板の機能が消失する問題もある(特許文献4参照)。
さらに、渦電流の影響については、上記圧粉磁心を高周波領域で使用する場合には絶縁性が不十分となり、固有抵抗値が低下して渦電流損が増大する。この渦電流損の増大は発熱をもたらし、軟磁性粉末をバインドしている樹脂が劣化することから、圧粉磁心の十分な寿命を確保できないという欠点があった。
Unlike a cast or sintered magnetic core, a dust core is made of a pressure-formed body of iron-based magnetic powder, and the bonding of each particle is mainly a mechanical bond accompanying plastic deformation and is metallurgically bonded. It is not a thing.
In the case of such a powder magnetic core having a weak binding force between powders, when incorporated in a circuit board for a component that vibrates violently, there is a problem that the function of the circuit board is lost due to the occurrence of cracks or chips due to vibration ( (See Patent Document 4).
Further, regarding the influence of eddy current, when the above-described powder magnetic core is used in a high frequency region, the insulation is insufficient, the specific resistance value is lowered, and the eddy current loss is increased. This increase in eddy current loss causes heat generation, and the resin binding the soft magnetic powder deteriorates, so that there is a disadvantage that a sufficient life of the dust core cannot be secured.

圧粉磁心の製造法についても、例えば、シリコーン樹脂が熱分解して減量することで、強磁性粒子間のバインダーが少なくなるために機械的強度が低下するという問題点がある(特許文献2参照)。
また、ガスアトマイズ粉末や、水とガスの両方を用いて噴霧したアトマイズ粉末を原料として圧粉磁心を作製すると、圧粉磁心の強度が弱く、後のコイル巻線加工などの際に割れや欠けを生じやすいという問題点があった。
特開2005−64422号公報 特開2000−49008号公報 特開2004−197157号公報 特開2005−116820号公報
The dust core manufacturing method also has a problem that, for example, the silicone resin is thermally decomposed and reduced in weight, so that the binder between the ferromagnetic particles is reduced and the mechanical strength is reduced (see Patent Document 2). ).
In addition, when a dust core is made from gas atomized powder or atomized powder sprayed with both water and gas, the strength of the dust core is weak, and cracks and chipping occur during subsequent coil winding processing. There was a problem that it was likely to occur.
JP-A-2005-64422 JP 2000-49008 A JP 2004-197157 A JP-A-2005-116820

本発明の目的は、上述のような問題を解決し、優れた機械的特性(強度、耐衝撃性、寸法安定性など)を有する圧粉磁心を提供することにある。   An object of the present invention is to solve the above-described problems and provide a dust core having excellent mechanical properties (strength, impact resistance, dimensional stability, etc.).

そのような課題を解決する本発明の具体的な手段は以下の通りである。
(1)金型の内側にあらかじめ金型内壁の形状に合わせて成形された電磁鋼板を配置し、該電磁鋼板上に磁性粉末と潤滑剤の混合粉末を投入し、これらを温間で一体にプレス成形することを特徴とする磁心の製造方法。
(2)前記磁性粉末が、鉄系磁性粉末であることを特徴とする(1)に記載の磁心の製造方法。
(3)前記潤滑剤が、脂肪酸系潤滑剤であることを特徴とする(1)または(2)のいずれかに記載の磁心の製造方法。
(4)前記金型の内側に、事前に脂肪酸系潤滑剤を塗布しておくことを特徴とする(1)〜(3)のいずれかに記載の磁心の製造方法。
(5)前記温間でプレス成形する際の温度が、150℃以上、200℃以下であることを特徴とする(1)〜(4)のいずれかに記載の磁心の製造方法。
(6)前記金型と前記磁性粉末をあらかじめ150℃以上、200℃以下に加熱しておくことを特徴とする(1)〜(5)のいずれかに記載の磁心の製造方法。
(7)表面部が電磁鋼板で形成され、その内部が電磁鋼板と一体に温間でプレス成形された磁性粉末の圧粉体により形成されていることを特徴とする磁心。
(8)前記磁心が歯部を有する磁性コアであり、歯部先端断面における電磁鋼板の占有断面積の割合が10%以上、50%以下であることを特徴とする(7)に記載の磁心。
Specific means of the present invention for solving such problems are as follows.
(1) An electromagnetic steel sheet that has been molded according to the shape of the inner wall of the mold in advance is placed inside the mold, and a mixed powder of magnetic powder and lubricant is put on the electromagnetic steel sheet, and these are integrated together warmly. A method for manufacturing a magnetic core, comprising press molding.
(2) The method for manufacturing a magnetic core according to (1), wherein the magnetic powder is an iron-based magnetic powder.
(3) The method for producing a magnetic core according to (1) or (2), wherein the lubricant is a fatty acid-based lubricant.
(4) The method for producing a magnetic core according to any one of (1) to (3), wherein a fatty acid lubricant is applied in advance to the inside of the mold.
(5) The method for producing a magnetic core according to any one of (1) to (4), wherein a temperature at the time of press forming in the warm is 150 ° C. or higher and 200 ° C. or lower.
(6) The method for manufacturing a magnetic core according to any one of (1) to (5), wherein the mold and the magnetic powder are heated to 150 ° C. or higher and 200 ° C. or lower in advance.
(7) A magnetic core characterized in that the surface portion is formed of a magnetic steel sheet, and the inside thereof is formed of a green compact of magnetic powder press-molded warm together with the magnetic steel sheet.
(8) The magnetic core according to (7), wherein the magnetic core is a magnetic core having a tooth portion, and a ratio of an occupied cross-sectional area of the electromagnetic steel sheet in the tooth tip end cross section is 10% or more and 50% or less. .

本発明によれば、磁心の表面部を電磁鋼板で形成し、その内部を電磁鋼板と一体成形された磁性粉末の圧粉体により形成したので、透磁率等の磁気的特性に優れ、機械特性の向上した、特に、圧環強度が向上した磁心を得ることができる。   According to the present invention, the surface portion of the magnetic core is formed of a magnetic steel sheet, and the inside thereof is formed of a green compact of magnetic powder integrally formed with the magnetic steel sheet, so that it has excellent magnetic properties such as magnetic permeability and mechanical properties. In particular, a magnetic core with improved crushing strength can be obtained.

すでに述べたように、これまでモータ、トランス、インダクタコア等の効率向上、形状の小型化等を図るために、コアでの鉄損低減が図られている。本発明者らは、電磁鋼板の磁気特性をなるべく劣化させずに機械特性を強化する手法を効果的に実現するため鋭意研究を行った。その結果、圧粉磁心の外周表層に電磁鋼板を配置して磁心を構成したところ、従来の圧粉磁心のステータより圧環強度をはじめとする機械強度の向上が確認され、機械加工時の欠け・割れの発生がない磁心が得られることを知見として得た。   As described above, in order to improve the efficiency of motors, transformers, inductor cores, etc., reduce the size of the shape, etc., iron loss at the core has been reduced. The inventors of the present invention have conducted intensive research in order to effectively realize a technique for enhancing the mechanical characteristics without degrading the magnetic characteristics of the electrical steel sheet as much as possible. As a result, when a magnetic core was constructed by arranging magnetic steel sheets on the outer peripheral layer of the dust core, it was confirmed that the mechanical strength was improved, including the crushing strength, compared to the conventional dust core stator. It was found as a knowledge that a magnetic core without cracks can be obtained.

ここで、圧環強度とは、磁心を径方向に立てた状態にして上方から圧力を加えたときに、磁心が破壊したときの荷重である。また、以下のように、本発明ではコアの強度を圧環強度で評価した。そのとき用いる円環は、外径が28mm、内径が20mm、高さが5mmのリング形状をなす成形体である。   Here, the crushing strength is a load when the magnetic core breaks when pressure is applied from above with the magnetic core standing in the radial direction. Further, as described below, in the present invention, the strength of the core was evaluated by the crushing strength. The ring used at that time is a molded body having a ring shape with an outer diameter of 28 mm, an inner diameter of 20 mm, and a height of 5 mm.

次に、実施形態を挙げ、上記の知見に基づく本発明をより詳細に説明する。
本発明では、磁性粉末として比抵抗が0.7μΩm以上である鉄系磁性粉末を用いることが望ましい。磁性粉末の比抵抗は形状に依存しない固有値であり、同形状の圧粉磁心であれば比抵抗が大きいほど、渦電流損失を小さくすることができ、比抵抗ρが0.7 μΩm未満では、渦電流損失の十分な低減が図れないためである。
Next, the present invention based on the above findings will be described in more detail with reference to embodiments.
In the present invention, it is desirable to use an iron-based magnetic powder having a specific resistance of 0.7 μΩm or more as the magnetic powder. The specific resistance of magnetic powder is an eigenvalue that does not depend on the shape. If the powder core has the same shape, the larger the specific resistance, the smaller the eddy current loss. When the specific resistance ρ is less than 0.7 μΩm, This is because the loss cannot be sufficiently reduced.

鉄系磁性粉末は、鉄を主成分とする強磁性の金属粉末である。鉄系磁性粉末としては、純鉄からなる鉄粉末であると好適である。その場合には、高い磁束密度が得やすく、保磁力低下によるヒステリシス損失の低減を図れるからである。その純鉄の純度は、純度99%以上、さらには99.5%以上や99.8%以上であると好適である。このような鉄粉として、例えばヘガネス社製のASC100.29を用いることができる。この鉄粉は、Fe以外の成分がC:0.001、Mn:0.02、O:0.08(単位:質量%)以下と、他の市販鉄粉に比べて不純物が極めて少なく、圧縮性に優れた鉄粉である。   The iron-based magnetic powder is a ferromagnetic metal powder mainly composed of iron. The iron-based magnetic powder is preferably an iron powder made of pure iron. In this case, a high magnetic flux density can be easily obtained, and hysteresis loss can be reduced due to a decrease in coercive force. The purity of the pure iron is preferably 99% or more, more preferably 99.5% or more, or 99.8% or more. As such iron powder, for example, ASC100.29 manufactured by Höganäs can be used. This iron powder has components other than Fe of C: 0.001, Mn: 0.02, O: 0.08 (unit: mass%) or less, and has extremely few impurities compared to other commercially available iron powders, and has excellent compressibility. It is.

鉄系磁性粉末は、磁心材料として適した複数の粉末からなる混合粉末でも良いし、合金粉末でも良い。鉄系磁性粉末は、造粒粉でも、粗粒粉でも良い。酸化鉄の種類は問わないが、例えば、α-Fe23、γ-Fe23 、Fe34、FeO 等がある。酸化皮膜が鉄系磁性粉末の各粒子の全体を被覆し、その膜厚が厚い程、比抵抗は大きくなる。しかし、その酸化皮膜は鉄に比べて磁性が低いため、その量が多すぎると、各磁場中で得られる磁束密度も小さくなってしまう。 The iron-based magnetic powder may be a mixed powder composed of a plurality of powders suitable as a magnetic core material, or may be an alloy powder. The iron-based magnetic powder may be a granulated powder or a coarse powder. There is no limitation on the type of iron oxide, but examples include α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 , and FeO 2 . The specific resistance increases as the oxide film covers the entire particles of the iron-based magnetic powder and the film thickness increases. However, since the oxide film has a lower magnetism than iron, if the amount is too large, the magnetic flux density obtained in each magnetic field is also reduced.

本発明においては、電磁鋼板を積層し、かしめやボルト締めあるいは溶接などで固定する工程は必要なく、上記のような磁性粉末を金型内の電磁鋼板の上に充填し、磁性粉末と電磁鋼板を同時に成形することにより、圧粉された磁性粉末の外面を電磁鋼板で覆った磁心を製造する。
すなわち、図1に示すように、充填工程において下金型1の内側に電磁鋼板2をあらかじめ配置しておき、その後に、鉄系磁性粉末と潤滑剤を混合した粉末3を投入する(aの状態)。ついで、成形工程において、上金型2によって温間で加圧して、磁性粉末と電磁鋼板を同時に一体にプレス成形する(bの状態)。
In the present invention, there is no need to laminate the magnetic steel sheets and fix them by caulking, bolting or welding, and the magnetic powder as described above is filled on the magnetic steel sheets in the mold, and the magnetic powder and the magnetic steel sheets are filled. Are formed simultaneously to produce a magnetic core in which the outer surface of the compacted magnetic powder is covered with a magnetic steel sheet.
That is, as shown in FIG. 1, the electromagnetic steel sheet 2 is previously arranged inside the lower mold 1 in the filling step, and thereafter, a powder 3 in which iron-based magnetic powder and a lubricant are mixed is charged (of a Status). Next, in the forming step, the upper mold 2 is warmly pressed, and the magnetic powder and the electromagnetic steel sheet are press-molded at the same time (state b).

金型内に配置される電磁鋼板は、あらかじめ金型の内部形状に合わせて形成されたものを用いるのがよい。その場合、金型の内部形状により近い形状が望ましいが、プレス成形時に粉末の圧縮と同時に電磁鋼板の成形も可能であり、成形可能な範囲でより作りやすい形状のものであってもよい。また、金型内に配置される電磁鋼板は、一体のものでも、分割されたものでもよい。たとえば、磁心の内側と外側の側面となる部分と下面となる部分をそれぞれ別々に形成し、それらを個々に金型内に配置することもできるし、それらを接合して一体のものとして金型内に配置することもできる。また、それらをプレスにより一体のものとして成形したものでもよい。
上面部分は、図1のように、電磁鋼板を充填された粉末3上にセットして成形してもよいし、成形後、電磁鋼板を成形体の上面に接合してもよい。
As the electrical steel sheet disposed in the mold, it is preferable to use one that is formed in advance according to the internal shape of the mold. In that case, a shape closer to the internal shape of the mold is desirable. However, it is possible to form the electromagnetic steel sheet simultaneously with the compression of the powder during press molding, and the shape may be more easily formed within the formable range. In addition, the electromagnetic steel sheet disposed in the mold may be integrated or divided. For example, the inner and outer side surfaces and the lower surface of the magnetic core can be formed separately and placed individually in the mold, or they can be joined together to form a mold It can also be placed inside. Moreover, what was shape | molded as an integral thing with a press may be used.
As shown in FIG. 1, the upper surface portion may be set and molded on the powder 3 filled with the electromagnetic steel sheet, or after the molding, the electromagnetic steel sheet may be joined to the upper surface of the molded body.

成形に用いる金型は、例えば、ハイス鋼(高速度工具鋼)または超硬合金製のものが使用できるが、金型内面にTiNコート処理を施して、金型の加工面を硬化したものを用いるのがよい。   For example, high-speed steel (high-speed tool steel) or cemented carbide can be used as the mold for molding. However, the mold inner surface is subjected to TiN coating treatment and the processed surface of the mold is hardened. It is good to use.

粉末に混合される潤滑剤は、脂肪酸系潤滑剤であることがよい。好ましくは、ステアリン酸亜鉛、ステアリン酸アルミニウム、二硫化モリブデン等でもよい。
さらに、脂肪酸系潤滑剤を電磁鋼板の内面に塗布し、磁性粉末を充填して温間で加工すると電磁鋼板の内面と磁性粉末の間の潤滑性が向上し、金型から加圧成形対の貫き圧力の低減が図れる。
The lubricant mixed with the powder is preferably a fatty acid-based lubricant. Preferably, zinc stearate, aluminum stearate, molybdenum disulfide, or the like may be used.
Furthermore, when a fatty acid-based lubricant is applied to the inner surface of the magnetic steel sheet, filled with magnetic powder and processed warm, the lubricity between the inner surface of the magnetic steel sheet and the magnetic powder is improved, so that The penetration pressure can be reduced.

成形工程では、温間で加圧し、磁性粉末(あるいは、磁性粉末と電磁鋼板)を金型に合った形に成形する。成形工程における「温間」とは、鉄系磁性粉末、脂肪酸系潤滑剤、成形圧力等を考慮した適切な加熱条件の下で成形することを意味する。鉄系磁性粉末と高級脂肪酸系潤滑剤との反応を促進するために、成形温度を100℃以上とし、高級脂肪酸系潤滑剤の変質を防止するために、成形温度を200℃以下とすると好ましい。
さらに、充填工程が、加熱された鉄系磁性粉末を加熱された成形用金型内に充填する工程であると好適である。鉄系磁性粉末と成形用金型の両方が加熱されていると、後続する成形工程において鉄系磁性粉末と脂肪酸系潤滑材とが安定して反応し、両者の間に均一な潤滑皮膜が形成されやすい。そこで例えば両者を150℃以上、200℃以下に加熱しておくと好ましい。
In the forming step, pressure is applied warmly, and magnetic powder (or magnetic powder and electromagnetic steel sheet) is formed into a shape suitable for the mold. “Warm” in the molding process means molding under an appropriate heating condition in consideration of iron-based magnetic powder, fatty acid-based lubricant, molding pressure and the like. In order to promote the reaction between the iron-based magnetic powder and the higher fatty acid-based lubricant, the molding temperature is preferably set to 100 ° C. or higher, and in order to prevent deterioration of the higher fatty acid-based lubricant, the molding temperature is preferably set to 200 ° C. or lower.
Further, it is preferable that the filling step is a step of filling the heated iron-based magnetic powder into the heated molding die. If both the iron-based magnetic powder and the molding die are heated, the iron-based magnetic powder and the fatty acid-based lubricant react stably in the subsequent molding process, and a uniform lubricating film is formed between them. Easy to be. Therefore, for example, it is preferable to heat both to 150 ° C. or more and 200 ° C. or less.

成形工程における「加圧」の程度は、圧粉磁心の要求特性、鉄系磁性粉末、酸化皮膜および脂肪酸系潤滑剤の種類、成形用金型の材質や内面性状等に応じて適宜決定される。
ただし、本発明の製造方法の場合、従来の成形圧力を超越した成形圧力下で成形可能である。例えば、その成形圧力を700MPa以上とすることができる。
The degree of “pressing” in the molding process is appropriately determined according to the required characteristics of the powder magnetic core, the type of iron-based magnetic powder, oxide film and fatty acid-based lubricant, the material of the molding die, the inner surface properties, etc. .
However, in the case of the production method of the present invention, the molding can be performed under a molding pressure exceeding the conventional molding pressure. For example, the molding pressure can be 700 MPa or more.

以上のように、本発明では、成形された圧粉磁心は電磁鋼板で覆われているから、外部からの衝撃に起因する圧粉部分の割れ・欠けが防止できる。特に、従来問題となったスプリングバックによる表面の割れは、一体物の電磁鋼板が圧粉された粉末表面に強固に接着しているため、本発明では生じない。また、振動による力の分散も鋼板により促されるので、わずかな空孔起因による割れも防ぐことができる。このように電磁鋼板を用いることで、圧粉磁心の問題であった脆さが解消できる。また電磁鋼板は透磁率が高く、鉄損も低い材料であり、圧粉磁心の磁気特性が劣化するものでもない。   As described above, in the present invention, since the molded dust core is covered with the magnetic steel sheet, it is possible to prevent the dust portion from being cracked or chipped due to an external impact. In particular, the surface cracking due to the springback, which has been a problem in the past, does not occur in the present invention because the electromagnetic steel sheet as a single piece is firmly adhered to the powder surface that has been compacted. Moreover, since the dispersion of force due to vibration is also promoted by the steel plate, cracks due to slight holes can be prevented. By using an electromagnetic steel sheet in this way, the brittleness that was a problem of the dust core can be eliminated. The electromagnetic steel sheet is a material having high permeability and low iron loss, and does not deteriorate the magnetic properties of the dust core.

本発明は、形状的には、圧粉された磁性粉末の外側を電磁鋼板で囲んだことを特徴とするが、磁性粉末に対する電磁鋼板全体の体積割合は、磁性コアの場合、歯部の先端断面における電磁鋼板の占有する断面積の割合で、10%以上で50%以下が好ましい。
ここで、電磁鋼板の占有断面積の割合とは、図3に示すように、歯部先端の断面において、(電磁鋼板断面積)/(全断面積)で示す。
図4は、電磁鋼板の占有断面積の割合に対する圧環強度と鉄損の変化を示す。図4より、前記占有断面積が増していくと、圧環強度及び高周波鉄損(W1/10k)とも増していくが、断面積が50 %を超えると、鉄損の増加率は圧環強度より増してくる。したがって、電磁鋼板の割合は強度の増加が著しい10%以上で、かつ50%以下と規定した。
以下、実施例により本発明をさらに説明する。
The present invention is characterized in that the outside of the compacted magnetic powder is surrounded by a magnetic steel sheet, but the volume ratio of the whole magnetic steel sheet to the magnetic powder is the tip of the tooth in the case of a magnetic core. The ratio of the cross-sectional area occupied by the magnetic steel sheet in the cross section is preferably 10% or more and 50% or less.
Here, as shown in FIG. 3, the ratio of the occupied cross-sectional area of the electromagnetic steel sheet is represented by (electromagnetic steel sheet cross-sectional area) / (total cross-sectional area) in the cross-section at the tooth tip.
FIG. 4 shows changes in crushing strength and iron loss with respect to the ratio of the occupied cross-sectional area of the electrical steel sheet. From FIG. 4, as the occupied sectional area increases, the crushing strength and high-frequency iron loss (W1 / 10k) also increase. However, when the cross-sectional area exceeds 50%, the increase rate of the iron loss increases from the crushing strength. Come. Therefore, the ratio of the electrical steel sheet is specified to be not less than 10% and not more than 50% with a remarkable increase in strength.
Hereinafter, the present invention will be further described by examples.

ハイス鋼金型(金型形状は図示せず)の内壁の内側にそって、金型形状に合致する形状にあらかじめ成形された電磁鋼板を、図2に示すように配置し、その中にヘガネス社製磁性粉末ASC100.29と脂肪酸系潤滑剤(ステアリン酸亜鉛)を混合したものを充填した。その際、事前に金型と磁性粉末を加熱温度150℃に加熱したものを使用した。ついで、プレス成形する際の温度を200℃として加圧成形して、磁性コアを作成した。その際、金型の内側に配置される電磁鋼板の量を種々調整して、電磁鋼板の割合が10%から50%の磁性コアを得た。
また、比較例として、上記粉末を用いて圧粉磁心のみで形成したコア(磁性粉末磁心)も作成した。
A magnetic steel sheet pre-formed into a shape that matches the mold shape is placed along the inner wall of the high-speed steel mold (the mold shape is not shown), as shown in FIG. A mixture of magnetic powder ASC 100.29 manufactured by the company and a fatty acid lubricant (zinc stearate) was filled. At that time, a mold and magnetic powder heated in advance to a heating temperature of 150 ° C. were used. Subsequently, the temperature at the time of press-molding was set to 200 ° C. and pressure-molded to prepare a magnetic core. At that time, the amount of the electromagnetic steel sheet disposed inside the mold was variously adjusted to obtain a magnetic core having a ratio of the electromagnetic steel sheet of 10% to 50%.
In addition, as a comparative example, a core (magnetic powder core) formed using only the dust core using the above powder was also prepared.

得られた磁性コア中にロータを入れ、外部から入力した電流と電圧により電力計を用いて鉄損を測定した。周波数は50Hzと2kHz、ヨークの磁束密度は1.0Tとした。
また、コアと同様に、外径が28mm、内径が20mm、高さが5mmのリング形状の円環をそれぞれ作成し、圧環強度を調べた。
表1に、得られた磁気特性と圧環強度を示す。

Figure 2007287848
The rotor was put into the obtained magnetic core, and the iron loss was measured using a wattmeter based on the current and voltage input from the outside. The frequencies were 50 Hz and 2 kHz, and the magnetic flux density of the yoke was 1.0T.
Similarly to the core, ring-shaped rings each having an outer diameter of 28 mm, an inner diameter of 20 mm, and a height of 5 mm were prepared, and the crushing strength was examined.
Table 1 shows the obtained magnetic properties and crushing strength.
Figure 2007287848

本発明では、電磁鋼板の割合を10%から50%に増やすことにより、比較例の磁心より圧環強度を2倍以上に強化できた。また、鉄損はW10/50の商用周波域では電磁鋼板の特性が表れ、本発明の磁心が比較例の磁性粉末磁心より低い鉄損が得られた。一方、2kHzの周波数での鉄損W10/2kは、本発明の磁心が比較例の磁性粉末磁心よりやや高くなった。
したがって、高周波で鉄損は微増するが、磁束密度を含め低周波鉄損は向上しており、かつ強度も高くなり、所望の特性を持つ磁心が作製できた。
In the present invention, by increasing the proportion of the electrical steel sheet from 10% to 50%, the crushing strength can be strengthened more than twice as compared with the magnetic core of the comparative example. Moreover, the iron loss showed the characteristics of the magnetic steel sheet in the commercial frequency range of W10 / 50, and the iron loss of the magnetic core of the present invention was lower than that of the magnetic powder magnetic core of the comparative example. On the other hand, the iron loss W10 / 2k at a frequency of 2 kHz was slightly higher in the magnetic core of the present invention than in the magnetic powder magnetic core of the comparative example.
Therefore, although the iron loss slightly increased at high frequencies, the low frequency iron loss including the magnetic flux density was improved, the strength was increased, and a magnetic core having desired characteristics could be produced.

実施例1と同様にハイス鋼金型の内側に種々断面積割合になるように電磁鋼板をそれぞれ配置して、その中に三菱マテリアル社製磁性粉末MBS478(鉄系磁性粉末)と脂肪酸系潤滑剤(二硫化モリブデン)を混合したものを充填して成形した。その際に使用した金型は、内面にTiNコート処理を施した超硬合金製金型を使用した。また、電磁鋼板の内面には、事前に脂肪酸系潤滑剤(二硫化モリブデン)を塗布しておいた。さらに、プレス成形する際の温度を100℃として加圧成形した。その際、事前に金型と磁性粉末を加熱温度200℃で熱したものを使用した。また、比較例として、上記粉末を用いて圧粉磁心のみで形成したコア(磁性粉末磁心)も作成した。
得られた磁性コアの鉄損及び圧環強度を実施例1と同様に測定した。
表2に、得られた磁気特性と圧環強度を示す。

Figure 2007287848
In the same manner as in Example 1, magnetic steel sheets were respectively arranged so as to have various cross-sectional area ratios inside the high-speed steel mold, and magnetic powder MBS478 (iron-based magnetic powder) manufactured by Mitsubishi Materials Corporation and fatty acid-based lubricant were contained therein. A mixture of (molybdenum disulfide) was filled and molded. The mold used at that time was a cemented carbide mold whose inner surface was TiN coated. In addition, a fatty acid lubricant (molybdenum disulfide) was applied in advance to the inner surface of the electromagnetic steel sheet. Furthermore, press molding was performed at a temperature of 100 ° C. during press molding. At that time, a mold and magnetic powder previously heated at a heating temperature of 200 ° C. were used. In addition, as a comparative example, a core (magnetic powder core) formed using only the dust core using the above powder was also prepared.
The core loss and crushing strength of the obtained magnetic core were measured in the same manner as in Example 1.
Table 2 shows the obtained magnetic characteristics and crushing strength.
Figure 2007287848

電磁鋼板の割合を20%から50%に増やすことにより、圧環強度を2倍以上に強化できた。また、鉄損はW10/50の商用周波域では電磁鋼板の特性が表れ、本発明の磁心が磁性粉末磁心より低い鉄損が得られた。一方、2kHzと高い周波数での鉄損W10/2kは、本発明の磁心が比較例の磁性粉末磁心よりやや高くなった。
したがって、高周波で鉄損は微増するが、磁束密度を含め低周波鉄損は向上しており、かつ強度も高くなり、所望の特性を持つ磁心が作製できた。
By increasing the proportion of the electrical steel sheet from 20% to 50%, the crushing strength could be increased more than twice. Moreover, the iron loss showed the characteristics of the magnetic steel sheet in the commercial frequency range of W10 / 50, and the iron loss of the magnetic core of the present invention was lower than that of the magnetic powder magnetic core. On the other hand, the iron loss W10 / 2k at a high frequency of 2 kHz was slightly higher in the magnetic core of the present invention than in the magnetic powder magnetic core of the comparative example.
Therefore, although the iron loss slightly increased at high frequencies, the low frequency iron loss including the magnetic flux density was improved, the strength was increased, and a magnetic core having desired characteristics could be produced.

以上の通り、本発明の好適な実施形態を説明したが、本発明はこれらの場合に限られるものではなく、当業者によって種々の追加、あるいは変形が可能であることはいうまでもない。
たとえば、上記の説明ではステータ用材料としてヘガネス社製、または三菱マテリアル製の磁性粉末の適用を示したが、本発明はこの場合に限らない.たとえば、磁性を帯びた粉末であれば全て適用することが出来る。
As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these cases, and it goes without saying that various additions or modifications can be made by those skilled in the art.
For example, in the above description, the application of magnetic powder made by Hoganas or Mitsubishi Materials was used as the stator material, but the present invention is not limited to this case. For example, any magnetic powder can be applied.

本発明の磁心の製造方法の概念図である。It is a conceptual diagram of the manufacturing method of the magnetic core of this invention. 本発明の磁心の製造の一例を示す図である。It is a figure which shows an example of manufacture of the magnetic core of this invention. 本発明の磁心の構成を示す図である。It is a figure which shows the structure of the magnetic core of this invention. 磁心に占める電磁鋼板の体積と圧環強度及び鉄損の関係を示す図である。It is a figure which shows the relationship between the volume of the magnetic steel sheet which occupies for a magnetic core, the crushing strength, and an iron loss.

符号の説明Explanation of symbols

1 下金型
2 電磁鋼板
3 鉄系磁性粉末と潤滑剤を混合した粉末
4 上金型
DESCRIPTION OF SYMBOLS 1 Lower die 2 Magnetic steel plate 3 Powder which mixed iron type magnetic powder and lubricant 4 Upper die

Claims (8)

金型の内側にあらかじめ金型内壁の形状に合わせて成形された電磁鋼板を配置し、該電磁鋼板上に磁性粉末と潤滑剤の混合粉末を投入し、これらを温間で一体にプレス成形することを特徴とする磁心の製造方法。   A magnetic steel sheet that has been molded according to the shape of the inner wall of the mold in advance is placed inside the mold, and a mixed powder of magnetic powder and lubricant is placed on the electromagnetic steel sheet, and these are press-molded together warmly. A method of manufacturing a magnetic core characterized by the above. 前記磁性粉末が、鉄系磁性粉末であることを特徴とする請求項1に記載の磁心の製造方法。   The method of manufacturing a magnetic core according to claim 1, wherein the magnetic powder is an iron-based magnetic powder. 前記潤滑剤が、脂肪酸系潤滑剤であることを特徴とする請求項1または2に記載の磁心の製造方法。   The method for manufacturing a magnetic core according to claim 1, wherein the lubricant is a fatty acid-based lubricant. 前記金型の内壁に、事前に脂肪酸系潤滑剤を塗布しておくことを特徴とする請求項1〜3のいずれか1項に記載の磁心の製造方法。   The method of manufacturing a magnetic core according to any one of claims 1 to 3, wherein a fatty acid-based lubricant is applied in advance to the inner wall of the mold. 前記温間でプレス成形する際の温度が、150℃以上、200℃以下であることを特徴とする請求項1〜4のいずれか1項に記載の磁心の製造方法。   The method for manufacturing a magnetic core according to any one of claims 1 to 4, wherein a temperature at which the hot pressing is performed is 150 ° C or higher and 200 ° C or lower. 前記金型と前記磁性粉末をあらかじめ150℃以上、200℃以下に加熱しておくことを特徴とする請求項1から5のいずれか1項に記載の磁心の製造方法。   The method for manufacturing a magnetic core according to any one of claims 1 to 5, wherein the mold and the magnetic powder are previously heated to 150 ° C or higher and 200 ° C or lower. 表面部が電磁鋼板で形成され、その内部が電磁鋼板と一体に温間でプレス成形された磁性粉末の圧粉体により形成されていることを特徴とする磁心。   A magnetic core characterized in that a surface portion is formed of a magnetic steel sheet, and the inside thereof is formed of a green compact of a magnetic powder press-molded warm together with the magnetic steel sheet. 前記磁心が歯部を有する磁性コアであり、歯部先端断面における電磁鋼板の占有断面積の割合が10%以上、50%以下であることを特徴とする請求項7に記載の磁心。   The magnetic core according to claim 7, wherein the magnetic core is a magnetic core having a tooth portion, and a ratio of an occupied cross-sectional area of the magnetic steel sheet in a tooth tip end cross section is 10% or more and 50% or less.
JP2006112078A 2006-04-14 2006-04-14 Magnetic core and its manufacturing method Withdrawn JP2007287848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112078A JP2007287848A (en) 2006-04-14 2006-04-14 Magnetic core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112078A JP2007287848A (en) 2006-04-14 2006-04-14 Magnetic core and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007287848A true JP2007287848A (en) 2007-11-01

Family

ID=38759350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112078A Withdrawn JP2007287848A (en) 2006-04-14 2006-04-14 Magnetic core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007287848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
CN104036907A (en) * 2014-06-05 2014-09-10 浙江大学 Method for preparing soft magnetic metal composite via warm compaction
KR101961596B1 (en) * 2018-09-06 2019-03-25 군산대학교산학협력단 Method for manufacturing sputter target and sputter gun for accomodating the sputter target
CN111822717A (en) * 2020-07-07 2020-10-27 鞍钢股份有限公司 Powder high-speed steel-spring steel composite sheet and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
CN104036907A (en) * 2014-06-05 2014-09-10 浙江大学 Method for preparing soft magnetic metal composite via warm compaction
KR101961596B1 (en) * 2018-09-06 2019-03-25 군산대학교산학협력단 Method for manufacturing sputter target and sputter gun for accomodating the sputter target
CN111822717A (en) * 2020-07-07 2020-10-27 鞍钢股份有限公司 Powder high-speed steel-spring steel composite sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5626672B1 (en) Dust core manufacturing method, dust core and coil component
EP1077454B1 (en) Composite magnetic material
JP5482097B2 (en) Soft magnetic material, dust core and method for manufacturing the same
JP4609339B2 (en) Powder for powder magnetic core and method for producing powder magnetic core
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP5522173B2 (en) Composite magnetic body and method for producing the same
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2016129230A (en) Manufacturing method of powder magnetic core
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2007214425A (en) Powder magnetic core and inductor using it
JP2021136838A (en) Magnetic wedge, rotary electric machine, and manufacturing method of magnetic wedge
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2007287848A (en) Magnetic core and its manufacturing method
JP2006241583A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
WO2014097556A1 (en) Iron powder for dust cores
JP2005142308A (en) Magnetic core formed of pressed powder
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP5845022B2 (en) Magnetic circuit parts
JP6111524B2 (en) Manufacturing method of dust core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707