JP2006241583A - METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER - Google Patents

METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER Download PDF

Info

Publication number
JP2006241583A
JP2006241583A JP2005156561A JP2005156561A JP2006241583A JP 2006241583 A JP2006241583 A JP 2006241583A JP 2005156561 A JP2005156561 A JP 2005156561A JP 2005156561 A JP2005156561 A JP 2005156561A JP 2006241583 A JP2006241583 A JP 2006241583A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
iron
metal powder
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005156561A
Other languages
Japanese (ja)
Other versions
JP4863648B2 (en
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005156561A priority Critical patent/JP4863648B2/en
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to KR1020077006053A priority patent/KR20070049670A/en
Priority to EP05782230A priority patent/EP1808242B1/en
Priority to CN201010258262XA priority patent/CN101927344B/en
Priority to US11/574,655 priority patent/US20080003126A1/en
Priority to CA002578861A priority patent/CA2578861A1/en
Priority to PCT/JP2005/016348 priority patent/WO2006028100A1/en
Publication of JP2006241583A publication Critical patent/JP2006241583A/en
Priority to US13/227,359 priority patent/US8409371B2/en
Application granted granted Critical
Publication of JP4863648B2 publication Critical patent/JP4863648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a soft magnetic metal powder coated with an Mg-containing oxide film and to provide a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with the Mg-containing oxide film. <P>SOLUTION: The soft magnetic metal powder coated with the Mg-containing oxide film is produced by mixing a soft magnetic metal powder heat-treated at 40 to 500°C in an oxidizing atmosphere with an Mg powder, and then heating or heating and tumbling a mixed powder at 150 to 1,100°C in an inert gas or in a vacuum atmosphere under a pressure of 1×10<SP>-12</SP>to 1×10<SP>-1</SP>MPa. The composite soft magnetic material is produced from the soft magnetic metal powder coated with the Mg-containing oxide film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、Mg含有酸化膜被覆軟磁性金属粉末の製造方法およびこの方法で作製したMg含有酸化膜被覆軟磁性金属粉末を用いて複合軟磁性材を製造する方法に関するものであり、この複合軟磁性材は、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサーコアなど各種電磁気回路部品の素材として使用される。
さらに、この発明は、Mg含有酸化膜被覆軟磁性金属粉末を製造するための原料粉末の関するものである。
The present invention relates to a method for producing a Mg-containing oxide film-coated soft magnetic metal powder and a method for producing a composite soft magnetic material using the Mg-containing oxide film-coated soft magnetic metal powder produced by this method. The magnetic material is used as a material for various electromagnetic circuit components such as a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, or a magnetic sensor core.
Furthermore, the present invention relates to a raw material powder for producing an Mg-containing oxide film-coated soft magnetic metal powder.

磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサーコアなど各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗が高く、保磁力が小さいことが要求されることは一般に知られていることである。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。
かかる軟磁性材からなる磁芯材の一例として軟磁性金属板の表面にMgOからなる絶縁層を塗布し積層した積層鋼板が知られている(特許文献1参照)。しかし、この積層鋼板は磁束密度および電気抵抗が共に良好であるものの、複雑な形状の電磁部品の作製が困難である。複雑な形状の電磁部品を作製するには軟磁性金属粉末の表面に化学メッキや塗布などの湿式法によりMgO絶縁被膜を被覆することにより複合軟磁性金属粉末を作製し、この複合軟磁性金属粉末をプレス成形し焼成して作製する方法、または軟磁性金属粉末をMgフェライト粉末とともに混合しプレス成形し焼成することによりMgOを絶縁層とする焼成複合軟磁性材を製造する方法などが考えられる。
Soft magnetic materials used in various electromagnetic circuit components such as magnetic cores, motor cores, generator cores, solenoid cores, ignition cores, reactors, transformers, choke coil cores or magnetic sensor cores are required to have low iron loss. It is generally known that high electrical resistance and low coercive force are required. Furthermore, in recent years, since the miniaturization and high response of the electromagnetic circuit have been demanded, higher magnetic flux density is also regarded as important.
As an example of such a magnetic core material made of a soft magnetic material, a laminated steel plate is known in which an insulating layer made of MgO is applied to the surface of a soft magnetic metal plate and laminated (see Patent Document 1). However, although this laminated steel sheet has good magnetic flux density and electrical resistance, it is difficult to produce electromagnetic parts having complicated shapes. To produce electromagnetic parts with complex shapes, a composite soft magnetic metal powder is prepared by coating the surface of the soft magnetic metal powder with a MgO insulating film by a wet method such as chemical plating or coating. A method of producing a fired composite soft magnetic material having MgO as an insulating layer by mixing a soft magnetic metal powder together with an Mg ferrite powder, press forming, and firing is conceivable.

そして、前記金属軟磁性磁粉末としては、鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末などが一般に知られている。
特開昭63−226011号公報
The metal soft magnetic powder includes iron powder, insulated iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy. Powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or An Fe-P iron-based soft magnetic alloy powder or the like is generally known.
JP 63-226011 A

前記軟磁性金属粉末にMgO絶縁被膜を化学メッキや塗布などの湿式法により複合軟磁性金属粉末を作製する方法は高コストでかつ量産が難しいことからこの方法で作製した複合軟磁性金属粉末は高価であり、この高価な複合軟磁性金属粉末を使用して作製した複合軟磁性材は高価なものとなると言う欠点がある。また、この方法により作製された複合軟磁性金属粉末はMgO絶縁被膜が軟磁性金属粉末よりも安定であるために、MgO絶縁被膜と軟磁性金属粉末表面との間に拡散反応が起り難く、そのために形成されたMgO絶縁被膜と軟磁性金属粉末表面との間の密着性が不足し、この湿式法で作製した複合軟磁性金属粉末をプレス成形すると、プレス成形時にMgO絶縁被膜が破れるなどして十分な絶縁効果が発揮できず、この湿式法で作製した複合軟磁性金属粉末を使用して作製した複合軟磁性材は十分な高抵抗が得られないという欠点があった。
一方、軟磁性金属粉末に絶縁性のあるMgフェライト粉末を添加し混合しプレスし焼成する方法は、製造コストが安いために安価な複合軟磁性材を提供することができるが、この方法であられた複合軟磁性材はMgOが金属軟磁性粒の三粒界点に集中した組織を有するようになり、MgOが粒界に均一に分散することが少ないために、得られた複合軟磁性材の比抵抗は低いという欠点があった。
The method of producing composite soft magnetic metal powder by wet method such as chemical plating or coating with MgO insulating coating on the soft magnetic metal powder is expensive and difficult to mass produce, so the composite soft magnetic metal powder produced by this method is expensive. Thus, the composite soft magnetic material produced using this expensive composite soft magnetic metal powder has a drawback that it is expensive. In addition, since the composite soft magnetic metal powder produced by this method has a MgO insulating film that is more stable than the soft magnetic metal powder, a diffusion reaction hardly occurs between the MgO insulating film and the surface of the soft magnetic metal powder. Adhesion between the MgO insulating film formed on the surface and the surface of the soft magnetic metal powder is insufficient. When the composite soft magnetic metal powder produced by this wet method is press-molded, the MgO insulating film is broken during press molding. The composite soft magnetic material produced using the composite soft magnetic metal powder produced by this wet method cannot exhibit a sufficient insulating effect, and has a drawback that a sufficiently high resistance cannot be obtained.
On the other hand, the method of adding an insulating Mg ferrite powder to a soft magnetic metal powder, mixing, pressing, and firing can provide an inexpensive composite soft magnetic material because the manufacturing cost is low. The composite soft magnetic material has a structure in which MgO is concentrated at the three grain boundary points of the metal soft magnetic grains, and MgO is less likely to be uniformly dispersed at the grain boundaries. The specific resistance was low.

そこで、本発明者らは、かかる課題を解決すべく研究を行った結果、
(イ)酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱し、さらに必要に応じて酸化雰囲気中、温度:50〜400℃で加熱すると、軟磁性金属粉末表面にMgを含む酸化絶縁被膜を有するMg含有酸化膜被覆軟磁性金属粉末が得られ、このMg含有酸化膜被覆軟磁性金属粉末は、従来のMgフェライト膜を形成したMg含有酸化膜被覆軟磁性金属粉末に比べて密着性が格段に優れたものとなり、このMg含有酸化膜被覆軟磁性金属粉末をプレス成形して圧粉体を作製しても絶縁被膜が破壊し剥離することが少なく、また、このMg含有酸化膜被覆軟磁性金属粉末の圧粉体を温度:400〜1300℃で焼成して得られた複合軟磁性材は粒界にMg含有酸化膜が均一に分散し、三粒界点にMg含有酸化膜が集中して分散することのない組織をが得られる、
(ロ)酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するには、前記混合粉末を転動させながら加熱することが好ましい、
(ハ)前記前記軟磁性金属粉末としては、通常知られている鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末を使用することができる、などの研究結果が得られたのである。
Then, as a result of conducting research to solve such a problem, the present inventors,
(A) The oxidized soft magnetic metal powder is used as a raw material powder, and the mixed powder obtained by adding and mixing the Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 × When heated in an inert gas atmosphere or vacuum atmosphere of 10 −1 MPa and further heated in an oxidizing atmosphere at a temperature of 50 to 400 ° C. as necessary, an oxide insulating film containing Mg is formed on the surface of the soft magnetic metal powder. An Mg-containing oxide film-coated soft magnetic metal powder is obtained, and this Mg-containing oxide film-coated soft magnetic metal powder has much higher adhesion than the conventional Mg-containing oxide film-coated soft magnetic metal powder on which an Mg ferrite film is formed. Even if the green powder is made by pressing the Mg-containing oxide film-coated soft magnetic metal powder, the insulating film is less likely to break and peel off. In the composite soft magnetic material obtained by firing the green compact at a temperature of 400 to 1300 ° C., the Mg-containing oxide film is uniformly dispersed at the grain boundaries, and the Mg-containing oxide film is concentrated at the three grain boundary points. To obtain an organization that does not disperse,
(B) An oxidized soft magnetic metal powder is used as a raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 × In order to heat in an inert gas atmosphere or a vacuum atmosphere of 10 −1 MPa, it is preferable to heat while rolling the mixed powder.
(C) As said soft magnetic metal powder, generally known iron powder, insulated iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr -Based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron Research results have been obtained, such as the use of a base soft magnetic alloy powder or an Fe-P iron-based soft magnetic alloy powder.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を、温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するMg含有酸化膜被覆複合軟磁性粉末の製造方法、
(2)酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を、温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動させながら加熱するMg含有酸化膜被覆複合軟磁性粉末の製造方法、
(3)前記(1)または(2)記載の軟磁性金属粉末の酸化処理は、酸化雰囲気中、温度:50〜500℃で加熱処理するMg含有酸化膜被覆複合軟磁性粉末の製造方法、
(4)前記軟磁性金属粉末は、鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末である前記(1)、(2)または(3)記載のMg含有酸化膜被覆軟磁性金属粉末の製造方法、
(5)前記(1)、(2)、(3)または(4)記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末を、さらに酸化雰囲気中、温度:50〜400℃で加熱するMg含有酸化膜被覆軟磁性金属粉末の製造方法、に特徴を有するものである。
The present invention was made based on the results of such research,
(1) An oxidized soft magnetic metal powder is used as a raw material powder, and a mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 A method for producing an Mg-containing oxide film-coated composite soft magnetic powder heated in an inert gas atmosphere or a vacuum atmosphere of × 10 -1 MPa,
(2) Oxidized soft magnetic metal powder is used as a raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 A method for producing a Mg-containing oxide film-coated composite soft magnetic powder that is heated while rolling in an inert gas atmosphere or a vacuum atmosphere of × 10 -1 MPa,
(3) The oxidation treatment of the soft magnetic metal powder according to (1) or (2) described above is a method for producing an Mg-containing oxide film-coated composite soft magnetic powder that is heat-treated in an oxidizing atmosphere at a temperature of 50 to 500 ° C.
(4) The soft magnetic metal powder is iron powder, insulated iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder. Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or Fe The method for producing an Mg-containing oxide film-coated soft magnetic metal powder according to (1), (2) or (3), which is a P-based iron-based soft magnetic alloy powder,
(5) The Mg-containing oxide film-coated soft magnetic metal powder produced by the method according to (1), (2), (3) or (4) is further heated in an oxidizing atmosphere at a temperature of 50 to 400 ° C. It is characterized by the method for producing the Mg-containing oxide film-coated soft magnetic metal powder.

この発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法で使用する原料粉末は、酸化処理した軟磁性金属粉末が使用され、この発明は、この酸化処理した軟磁性金属粉末をMg含有酸化膜被覆軟磁性金属粉末製造用原料粉末として使用するものである。したがって、この発明は、
(6)軟磁性金属粉末を酸化処理してなるMg含有酸化膜被覆軟磁性金属粉末製造用原料粉末、
(7)前記軟磁性金属粉末は、鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末である前記(6)記載のMg含有酸化膜被覆軟磁性金属粉末製造用原料粉末、に特徴を有するものである。
The raw material powder used in the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder of the present invention is an oxidized soft magnetic metal powder, and the present invention uses the oxidized soft magnetic metal powder as an Mg-containing oxide film. It is used as a raw material powder for producing a coated soft magnetic metal powder. Therefore, the present invention
(6) Mg-containing oxide film-coated raw magnetic powder for producing soft magnetic metal powder obtained by oxidizing soft magnetic metal powder,
(7) The soft magnetic metal powder is iron powder, insulated iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder. Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or Fe The raw material powder for producing an Mg-containing oxide film-coated soft magnetic metal powder according to (6), which is a -P-based iron-based soft magnetic alloy powder.

前記(1)、(2)、(3)、(4)または(5)記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末を使用して通常の方法により比抵抗および機械的強度に優れた複合軟磁性材を製造することができる。したがって、この発明は、
(8)前記(1)、(2)、(3)、(4)または(5)記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末をプレス成形後、温度:400〜1300℃で焼成する比抵抗および機械的強度に優れた複合軟磁性材の製造方法、
(9)前記(1)、(2)、(3)、(4)または(5)記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末に、有機絶縁材料、無機絶縁材料、または有機絶縁材料と無機絶縁材料の混合材料を混合したのち圧粉成形し、500〜1000℃で焼成する比抵抗および機械的強度に優れた複合軟磁性材の製造方法、に特徴を有するものである。
Using the Mg-containing oxide film-coated soft magnetic metal powder produced by the method described in (1), (2), (3), (4) or (5), the specific resistance and mechanical strength are increased by a usual method. An excellent composite soft magnetic material can be produced. Therefore, the present invention
(8) After press-molding the Mg-containing oxide film-coated soft magnetic metal powder produced by the method described in (1), (2), (3), (4) or (5), the temperature is 400 to 1300 ° C. A method for producing a composite soft magnetic material excellent in specific resistance and mechanical strength to be fired
(9) The Mg-containing oxide film-coated soft magnetic metal powder produced by the method described in (1), (2), (3), (4) or (5) above is added to an organic insulating material, an inorganic insulating material, or an organic material. It is characterized by a method for producing a composite soft magnetic material excellent in specific resistance and mechanical strength, in which a mixed material of an insulating material and an inorganic insulating material is mixed and then compacted and fired at 500 to 1000 ° C.

この発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法において、酸化処理した軟磁性金属粉末にMg粉末を添加し混合して混合粉末を作製するには、酸化処理した軟磁性金属粉末にMg粉末を0.05〜2質量%添加して混合粉末を作製することが好ましい。酸化処理した軟磁性金属粉末に対するMg粉末の添加量が0.05質量未満では形成されるMg被膜の量が不十分であり、したがって、十分な厚さのMg含有酸化膜が得られないからであり、一方、2質量%を越えて添加すると、Mg被膜の厚さが厚くなり過ぎてMg含有酸化膜の厚さが厚くなりすぎ、このMg含有酸化膜被覆軟磁性金属粉末を焼成して得られた複合軟磁性材の磁束密度が低下するようになるので好ましくいないからである。
軟磁性金属粉末の酸化処理は、Mgの被覆性を向上させる効果があり、酸化雰囲気中、温度:50〜500℃または蒸留水または純水中、温度:50〜100℃に保持することにより行う。この場合、いずれも50℃未満では効率的でなく、一方、酸化雰囲気中で500℃を越えて保持すると焼成が起るために好ましくないからである。酸化雰囲気は乾燥した酸化雰囲気であることが一層好ましい。
軟磁性金属粉末を酸化処理する際の時間に対する温度変化を示すパーン図を図1に例示する。通常は図1(a)に示されるパターンのように酸化雰囲気中で加熱することにより酸化処理が行われるが、図1(b)に示されるように低い温度に昇温し保持したのち、高い温度に昇温し保持するパターンで行われても良く、また図1(c)に示されるように高い温度に昇温し保持したのち、低い温度に降温し保持するパターンで行われても良く、図1(d)に示されるパターンのように昇温と降温を伴い、実質的に保持がないパターンで行われても良い。また、蒸留水または純水中においては、図1(a)〜(d)の温度を上限100℃、下限50℃として同様のパターンで行うことができる。この発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法において軟磁性金属粉末を酸化処理する際の時間に対する温度変化を示すパーンは図1に限定されるものではなく、50〜500℃の範囲内において自由に変えることができる。
In the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder of the present invention, Mg powder is added to the oxidized soft magnetic metal powder and mixed to produce a mixed powder. It is preferable to prepare a mixed powder by adding 0.05 to 2 mass% of the powder. If the amount of Mg powder added to the oxidized soft magnetic metal powder is less than 0.05 mass, the amount of Mg coating formed is insufficient, and therefore a sufficiently thick Mg-containing oxide film cannot be obtained. On the other hand, if added over 2 mass%, the thickness of the Mg coating becomes too thick and the thickness of the Mg-containing oxide film becomes too thick. This is because the magnetic flux density of the obtained composite soft magnetic material is lowered, which is not preferable.
The oxidation treatment of the soft magnetic metal powder has the effect of improving the coverage of Mg, and is performed by maintaining the temperature: 50 to 500 ° C. or distilled water or pure water at a temperature of 50 to 100 ° C. in an oxidizing atmosphere. . In this case, it is not efficient when the temperature is less than 50 ° C., and on the other hand, if the temperature exceeds 500 ° C. in an oxidizing atmosphere, firing is not preferable. More preferably, the oxidizing atmosphere is a dry oxidizing atmosphere.
FIG. 1 illustrates a Pann diagram showing a temperature change with time when the soft magnetic metal powder is oxidized. Usually, the oxidation treatment is performed by heating in an oxidizing atmosphere as shown in the pattern shown in FIG. 1 (a). However, the temperature is raised to a low temperature and maintained as shown in FIG. It may be performed in a pattern in which the temperature is raised and held, or may be carried out in a pattern in which the temperature is raised and held at a high temperature and then lowered and held as shown in FIG. As in the pattern shown in FIG. 1 (d), it may be performed in a pattern that is accompanied by a temperature rise and a temperature fall and has substantially no holding. Moreover, in distilled water or pure water, it can carry out by the same pattern by setting the temperature of Fig.1 (a)-(d) to the upper limit of 100 degreeC and the minimum of 50 degreeC. In the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder of the present invention, the panning showing the temperature change with respect to time when the soft magnetic metal powder is oxidized is not limited to FIG. It can be freely changed within.

酸化処理した軟磁性金属粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱または転動しながら加熱する。ここで加熱雰囲気を圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気としたのは圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気であって高真空と言える雰囲気を含むからである。
また、加熱温度を150〜1100℃にした理由は、温度:150℃未満では圧力を1×10−12MPa未満にする必要があり、工業的に困難でありまた効果的でなく、一方、温度:1100℃を越えるとMgのロスが多いために好ましくなく、さらに圧力が1×10−1MPaを越えると、Mg被膜の被覆効率が低下し、また形成されるMg被膜の厚さが不均一となるので好ましくないことによるものである。軟磁性金属粉末とMg粉末の混合粉末の加熱温度の一層好ましい範囲は300〜900℃であり、雰囲気圧力の一層好ましいは範囲は1×10−10〜1×10−2MPaである。
酸化処理した軟磁性金属粉末を加熱または転動しながら加熱する際の時間に対する温度変化を示すパーン図を図2に例示する。通常は図2(a)のパターンのように一定温度に保持する加熱することにより行われるが、図2(b)に示されるように変化させても良く、また図2(c)のパターンのように低い温度に昇温し保持したのち、高い温度に昇温し保持するパターンで行われても良く、また図1(d)に示されるように高い温度に昇温し保持したのち、低い温度に降温し保持するパターンで行われても良い。さらに図1(e)に示されるパターンのように図1(a)のパターンを複数回繰り返しても良い。さらに、図1(f)に示されるパターンのように高温に保持したのち途中で低温に保持し、再び高温に保持するパターンであっても良い。
この発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法において、酸化処理した軟磁性金属粉末を加熱または転動しながら加熱する際の時間に対する温度変化を示すパーンは図2に限定されるものではなく、150〜1100℃の範囲内において自由に変えることができる。
Inert gas atmosphere or vacuum of mixed powder obtained by adding and mixing Mg powder to oxidized soft magnetic metal powder, temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 × 10 −1 MPa Heat in an atmosphere while heating or rolling. Here, the heating atmosphere is an inert gas atmosphere having a pressure of 1 × 10 −12 to 1 × 10 −1 MPa or a vacuum atmosphere, and an inert gas atmosphere having a pressure of 1 × 10 −12 to 1 × 10 −1 MPa. This is because it includes an atmosphere that can be said to be a high vacuum.
The reason why the heating temperature is set to 150 to 1100 ° C. is that if the temperature is lower than 150 ° C., the pressure needs to be lower than 1 × 10 −12 MPa, which is industrially difficult and not effective. When the temperature exceeds 1100 ° C., it is not preferable because there is a lot of Mg loss. When the pressure exceeds 1 × 10 −1 MPa, the coating efficiency of the Mg coating decreases, and the thickness of the formed Mg coating is not uniform. This is because it is not preferable. A more preferable range of the heating temperature of the mixed powder of the soft magnetic metal powder and the Mg powder is 300 to 900 ° C., and a more preferable range of the atmospheric pressure is 1 × 10 −10 to 1 × 10 −2 MPa.
FIG. 2 illustrates a Pann diagram showing a temperature change with time when the oxidized soft magnetic metal powder is heated or rolled while being heated. Usually, it is performed by heating at a constant temperature as in the pattern of FIG. 2 (a), but it may be changed as shown in FIG. 2 (b), and the pattern of FIG. In this pattern, the temperature may be raised to a low temperature and held, and then raised to a high temperature and held. Alternatively, as shown in FIG. It may be performed in a pattern in which the temperature is lowered and held. Furthermore, the pattern shown in FIG. 1A may be repeated a plurality of times like the pattern shown in FIG. Further, as shown in the pattern shown in FIG. 1 (f), the pattern may be held at a high temperature and then held at a low temperature and then held at a high temperature again.
In the manufacturing method of the Mg-containing oxide film-coated soft magnetic metal powder of the present invention, the Pann showing the temperature change with respect to time when heating the oxidized soft magnetic metal powder while heating or rolling is limited to FIG. Instead, it can be freely changed within a range of 150 to 1100 ° C.

かかる条件で酸化処理された軟磁性金属粉末とMg粉末の混合粉末を転動しながら加熱すると、軟磁性金属粉末の表面にMgを含む酸化膜が形成されてMg含有酸化膜被覆軟磁性金属粉末が形成されるが、Mgの酸化が不十分である場合がある。このような事態を避けるために、転動して得られた前記Mg含有酸化膜被覆軟磁性金属粉末を酸化雰囲気中、温度:50〜400℃で加熱処理することが一層好ましく、その温度は50℃以上が好ましいが、400℃を越えて加熱すると焼結が始まるので好ましくない。したがって、その温度は50〜400℃に定めた。   When a mixed powder of soft magnetic metal powder and Mg powder oxidized under such conditions is heated while rolling, an oxide film containing Mg is formed on the surface of the soft magnetic metal powder, and the Mg-containing oxide film-coated soft magnetic metal powder May be formed, but oxidation of Mg may be insufficient. In order to avoid such a situation, the Mg-containing oxide film-coated soft magnetic metal powder obtained by rolling is more preferably heat-treated in an oxidizing atmosphere at a temperature of 50 to 400 ° C., and the temperature is 50 It is not preferable because the sintering starts when heated above 400 ° C. Therefore, the temperature was set to 50 to 400 ° C.

この発明のMg含有酸化膜被覆軟磁性金属粉末の製造方法において使用する原料粉末としての軟磁性金属粉末は、従来から一般に知られている鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であり、一層具体的には、
鉄粉末は純鉄粉末であり、
絶縁処理鉄粉末は、リン酸塩被覆鉄粉末、またはシリカのゾルゲル溶液(シリケート)もしくはアルミナのゾルゲル溶液などの湿式溶液を添加し混合して鉄粉末表面に被覆したのち乾燥して焼成した酸化ケイ素もしくは酸化アルミニウム被覆鉄粉末であり、
Fe−Al系鉄基軟磁性合金粉末はAl:0.1〜20を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15%Alからなる組成を有するアルパーム粉末)であり、
Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85%を含有し、必要に応じてMo:5%以下、Cu:5%以下、Cr:2%以下、Mn:0.5%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49%Ni粉末)であり、
Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20%を含有し、必要に応じてAl:5%以下、Ni:5%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、
Fe−Si系鉄基軟磁性合金粉末は、Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であり、
Fe−Si−Al系鉄基軟磁性合金粉末は、Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末でり、
Fe−Co−V系鉄基軟磁性合金粉末は、Co:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末であり、
Fe−Co系鉄基軟磁性合金粉末は、Co:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末であり、
Fe−P系鉄基軟磁性合金粉末は、P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末(以上、%は質量%を示す)であることが好ましい。
The soft magnetic metal powder as the raw material powder used in the method for producing the Mg-containing oxide film-coated soft magnetic metal powder of the present invention includes conventionally known iron powder, insulated iron powder, Fe-Al based iron-based soft powder. Magnetic alloy powder, Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or Fe-P-based iron-based soft magnetic alloy powder, more specifically,
Iron powder is pure iron powder,
Insulated iron powder is composed of phosphate coated iron powder, or a wet solution such as silica sol-gel solution (silicate) or alumina sol-gel solution. Or aluminum oxide coated iron powder,
The Fe—Al-based iron-based soft magnetic alloy powder contains Al: 0.1-20, and the balance is Fe—Al-based iron-based soft magnetic alloy powder composed of Fe and inevitable impurities (for example, Fe-15% Al). Alpalm powder having a composition),
Fe-Ni-based iron-based soft magnetic alloy powder contains 35% to 85% of Ni: Mo: 5% or less, Cu: 5% or less, Cr: 2% or less, Mn: 0.5% or less as required A nickel-based soft magnetic alloy powder (for example, Fe-49% Ni powder) containing one or more of the above, the balance being Fe and inevitable impurities,
Fe-Cr-based iron-based soft magnetic alloy powder contains Cr: 1 to 20%, optionally contains one or two of Al: 5% or less and Ni: 5% or less, with the balance being Fe-Cr iron-based soft magnetic alloy powder composed of Fe and inevitable impurities,
The Fe—Si-based iron-based soft magnetic alloy powder is a Fe—Si-based iron-based soft magnetic alloy powder containing Si: 0.1 to 10%, the balance being Fe and inevitable impurities,
The Fe—Si—Al-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10%, Al: 0.1 to 20%, and the balance is Fe—Si—Al-based iron composed of Fe and inevitable impurities. Base soft magnetic alloy powder,
The Fe—Co—V iron-based soft magnetic alloy powder contains Co: 0.1 to 52%, V: 0.1 to 3%, and the balance is Fe—Co—V iron containing Fe and inevitable impurities. Base soft magnetic alloy powder,
The Fe—Co-based iron-based soft magnetic alloy powder is an Fe—Co-based iron-based soft magnetic alloy powder containing Co: 0.1 to 52%, the balance being Fe and inevitable impurities,
The Fe-P-based iron-based soft magnetic alloy powder contains P: 0.5 to 1%, and the balance is Fe-P-based iron-based soft magnetic alloy powder consisting of Fe and unavoidable impurities (above,% indicates mass%). Preferably).

そして、これら軟磁性金属粉末は平均粒径:5〜500μmの範囲内にある軟磁性金属粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性金属粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性金属粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。   And as for these soft magnetic metal powder, it is preferable to use the soft magnetic metal powder which exists in the range of average particle diameter: 5-500 micrometers. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic metal powder is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic metal powder increases and the magnetic permeability at high frequency decreases.

この発明の方法で作製したMg含有酸化膜被覆軟磁性金属粉末を使用して複合軟磁性材の製造するには、この発明の方法で作製したMg含有酸化膜被覆軟磁性金属粉末を通常の方法で圧粉成形し焼結することにより作製することができるが、平均粒径:0.5μm以下の酸化ケイ素,酸化アルミニウムのうち1種または2種を0.05〜1質量%含有し、残部をこの発明の方法で作製したMg含有酸化膜被覆軟磁性金属粉末からなるように配合し混合して混合粉末を作製し、この混合粉末を通常の方法で圧粉成形し、焼結することにより作製することができる。
この発明の方法により作製されたMg含有酸化膜被覆軟磁性金属粉末は、その表面にMg含有酸化膜が形成され、このMg含有酸化膜は酸化ケイ素や酸化アルミニウムと反応して複合酸化物が形成され、軟磁性粉末の粒界に高抵抗を有する複合酸化物が介在した高比抵抗を有する複合軟磁性材が得られるとともに酸化ケイ素や酸化アルミニウムを介して焼結されるために機械的強度の優れた複合軟磁性材を製造することができる。この場合、酸化ケイ素や酸化アルミニウムが主体となって焼結されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない複合軟磁性材を製造することができる、前記焼成は、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:400〜1300℃で行われることが好ましい。
また、この発明のMg含有酸化膜被覆鉄粉末にシリカのゾルゲル(シリケート)溶液やアルミナのゾルゲル溶液などの湿式溶液を添加し混合したのち乾燥し、この乾燥した混合物を圧縮成形後、不活性ガス雰囲気または酸化性ガス雰囲気中、温度:400〜1300℃で焼成することにより複合軟磁性材を製造することができる。
In order to produce a composite soft magnetic material using the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention, the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention is used in the usual manner. Can be produced by compacting and sintering with an average particle size: 0.05 to 1% by mass of one or two of silicon oxide and aluminum oxide having a particle size of 0.5 μm or less, and the balance By mixing and mixing so as to consist of the Mg-containing oxide film-coated soft magnetic metal powder prepared by the method of the present invention, a mixed powder is prepared, and this mixed powder is compacted and sintered by a conventional method. Can be produced.
The Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention has an Mg-containing oxide film formed on its surface, and this Mg-containing oxide film reacts with silicon oxide or aluminum oxide to form a composite oxide. A composite soft magnetic material having a high specific resistance in which a composite oxide having a high resistance is interposed at the grain boundary of the soft magnetic powder, and is sintered through silicon oxide or aluminum oxide. An excellent composite soft magnetic material can be produced. In this case, the coercive force can be kept small from being sintered mainly with silicon oxide or aluminum oxide, and thus a composite soft magnetic material with little hysteresis loss can be produced. It is preferably performed at a temperature of 400 to 1300 ° C. in an active gas atmosphere or an oxidizing gas atmosphere.
In addition, a wet solution such as a silica sol-gel (silicate) solution or an alumina sol-gel solution is added to the Mg-containing oxide film-coated iron powder of the present invention, and the mixture is dried, and the dried mixture is compression-molded and then inert gas. A composite soft magnetic material can be produced by firing at a temperature of 400 to 1300 ° C. in an atmosphere or an oxidizing gas atmosphere.

さらに、この発明の方法により作製したMg含有酸化膜被覆軟磁性金属粉末に有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して比抵抗および強度のさらに向上した複合軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂、PPS樹脂等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。
また、この発明の方法により作製したMg含有酸化膜被覆軟磁性金属粉末に、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を配合し混合したのち圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で燒結することにより複合軟磁性材を作製することができる。このようにして作製した複合軟磁性材は、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%を含有し、残部がこの発明の方法により作製したMg含有酸化膜被覆軟磁性金属粉末からなる組成を有する。この場合、この発明の方法により作製したMg含有酸化膜被覆軟磁性金属粉末の表面に形成されているMg含有酸化膜と、酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上とが反応した皮膜が形成される。
また、この複合軟磁性材は、酸化硼素のゾル溶液または粉末、酸化バナジウムのゾル溶液または粉末、酸化ビスマスのゾル溶液または粉末、酸化アンチモンのゾル溶液または粉末および酸化モリブデンのゾル溶液または粉末の内の1種または2種以上をB、V、Bi、Sb、MoO換算で0.05〜1質量%、残部が前記この発明のMg含有酸化膜被覆鉄粉末からなる組成となるように配合し、混合し、得られた混合酸化物を圧粉し、成形したのち、温度:500〜1000℃で燒結することにより得ることができる。
Further, specific resistance and strength are further improved by mixing organic insulating material, inorganic insulating material, or mixed material of organic insulating material and inorganic insulating material into Mg-containing oxide film-coated soft magnetic metal powder prepared by the method of the present invention. The composite soft magnetic material can be produced. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, PPS resin, or the like can be used. As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used.
In addition, one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide is added to B 2 O 3 , V in the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention. 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , 0.05 to 1% by mass in terms of MoO 3 are mixed and mixed, and then compacted, and the resulting compact is obtained at a temperature of 500 to 1000 ° C. A composite soft magnetic material can be produced by sintering with. The composite soft magnetic material produced in this way is composed of one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide, B 2 O 3 , V 2 O 5 , Bi 2 O 3. , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, with the balance being composed of Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention. In this case, the Mg-containing oxide film formed on the surface of the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention and one of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide. A film in which the seeds or two or more kinds are reacted is formed.
Further, this composite soft magnetic material is composed of a boron oxide sol solution or powder, a vanadium oxide sol solution or powder, a bismuth oxide sol solution or powder, an antimony oxide sol solution or powder, and a molybdenum oxide sol solution or powder. 1 to 2 or more of B 2 O 3 , V 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , MoO 3 in terms of 0.05 to 1% by mass, and the balance being the Mg-containing oxide film of the present invention It mix | blends so that it may become a composition which consists of a covering iron powder, it mixes, the obtained mixed oxide is compacted and shape | molded, Then, it can obtain by sintering at temperature: 500-1000 degreeC.

この発明のMg含有酸化膜被覆軟磁性金属粉末を用いて作製した複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は,高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。 The composite soft magnetic material produced using the Mg-containing oxide film-coated soft magnetic metal powder of the present invention has high density, high strength, high specific resistance and high magnetic flux density. This composite soft magnetic material has high magnetic flux density. Since it has the characteristics of high-frequency and low iron loss, it can be used as a material for various electromagnetic circuit components utilizing this characteristic.

この発明の方法で作製したMg含有酸化膜被覆軟磁性金属粉末を用いた高抵抗を有する複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサコアなどがある。そして、これら電磁気回路部品を組み込んだ電気機器には,電動機,発電機,ソレノイド,インジェクタ,電磁駆動弁,インバータ,コンバータ,変圧器,継電器,磁気センサシステム等があり,電気機器の高効率高性能化や小型軽量化を行うことができる.
前述のように、この発明の方法で作製したMg含有酸化膜被覆軟磁性金属粉末を使用して複合軟磁性材を製造すると、比抵抗および機械的強度の優れた複合軟磁性材を低コストで得ることができ、電気・電子産業上優れた効果をもたらすものである。
The composite soft magnetic material having high resistance using the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention has the characteristics of high magnetic flux density and high frequency and low iron loss. It can be used as a material for circuit components. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, and a magnetic sensor core. Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. Can be made smaller and lighter.
As described above, when a composite soft magnetic material is produced using the Mg-containing oxide film-coated soft magnetic metal powder produced by the method of the present invention, a composite soft magnetic material having excellent specific resistance and mechanical strength can be produced at low cost. It can be obtained and has excellent effects in the electrical and electronic industries.

軟磁性金属粉末のとして、いずれも平均粒径:70μmを有する、
純鉄粉末(以下、この純鉄粉末を軟磁性粉末Aという)、
Al:10質量%、残部:FeからなるアトマイズFe−Al系鉄基軟磁性合金粉末(以下、このFe−Al系鉄基軟磁性合金粉末を軟磁性粉末Bという)、
Ni:49質量%、残部:FeからなるアトマイズFe−Ni系鉄基軟磁性合金粉末(以下、このFe−Ni系鉄基軟磁性合金粉末を軟磁性粉末Cという)、
Cr:10質量%、残部:FeからなるアトマイズFe−Cr系鉄基軟磁性合金粉末(以下、このFe−Cr系鉄基軟磁性合金粉末を軟磁性粉末Dという)、
Si:3質量%、残部:FeからなるアトマイズFe−Si系鉄基軟磁性合金粉末(以下、このアトマイズFe−Si系鉄基軟磁性合金粉末を軟磁性粉末Eという)、
Si:3質量%、Al:3質量を含有し、残部:FeからなるアトマイズFe−Si−Al系鉄基軟磁性合金粉末(以下、このFe−Si−Al系鉄基軟磁性合金粉末を軟磁性粉末Fという)、
Co:30%、V:2%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末(以下、このFe−Co−V系鉄基軟磁性合金粉末を軟磁性粉末Gという)、
P:0.6%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末(以下、このFe−P系鉄基軟磁性合金粉末を軟磁性粉末Hという)、
絶縁処理鉄粉末として、市販のリン酸塩被覆鉄粉末(以下、このリン酸塩被覆鉄粉末を軟磁性粉末Iという)、
Co:30%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末(以下、このFe−Co系鉄基軟磁性合金粉末を軟磁性粉末Jという)を用意した。
さらに、平均粒径:30μmのMg粉末および平均粒径:3μmのMgフェライト粉末を用意した。
As the soft magnetic metal powder, all have an average particle size: 70 μm,
Pure iron powder (hereinafter, this pure iron powder is referred to as soft magnetic powder A),
Atomized Fe—Al-based iron-based soft magnetic alloy powder consisting of Al: 10% by mass, balance: Fe (hereinafter, this Fe—Al-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder B),
Atomized Fe—Ni-based iron-based soft magnetic alloy powder consisting of Ni: 49% by mass, balance: Fe (hereinafter, this Fe—Ni-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder C),
Atomized Fe—Cr-based iron-based soft magnetic alloy powder composed of Cr: 10% by mass, balance: Fe (hereinafter, this Fe—Cr-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder D),
Atomized Fe-Si-based iron-based soft magnetic alloy powder composed of Si: 3% by mass, balance: Fe (hereinafter, this atomized Fe-Si-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder E),
Atomized Fe-Si-Al-based iron-based soft magnetic alloy powder containing Si: 3% by mass, Al: 3% and the balance: Fe (hereinafter, this Fe-Si-Al-based iron-based soft magnetic alloy powder is softened) Called magnetic powder F),
Fe: Co-V-based iron-based soft magnetic alloy powder containing Co: 30%, V: 2%, the balance being Fe and inevitable impurities (hereinafter referred to as this Fe-Co-V-based iron-based soft magnetic alloy powder) Soft magnetic powder G),
P: Fe-P-based iron-based soft magnetic alloy powder containing 0.6% and the balance being Fe and inevitable impurities (hereinafter, this Fe-P-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder H),
As insulation-treated iron powder, commercially available phosphate-coated iron powder (hereinafter, this phosphate-coated iron powder is referred to as soft magnetic powder I),
Co: Fe-Co-based iron-based soft magnetic alloy powder containing 30% and the balance being Fe and inevitable impurities (hereinafter, this Fe-Co-based iron-based soft magnetic alloy powder is referred to as soft magnetic powder J) was prepared. .
Further, Mg powder having an average particle size of 30 μm and Mg ferrite powder having an average particle size of 3 μm were prepared.

実施例1
表1に示される条件の酸化処理を施した軟磁性粉末A(純鉄粉末)に対して、Mg粉末を表1に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表1に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表1に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法1〜7および比較法1〜3を実施した。この本発明法1〜7および比較法1〜3で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表1に示した。
Example 1
With respect to soft magnetic powder A (pure iron powder) subjected to oxidation treatment under the conditions shown in Table 1, Mg powder is blended so as to have a blending ratio shown in Table 1, and this blended powder is mixed with argon gas or vacuum. The Mg-containing oxide film-coated soft magnetic metal powder was produced by rolling while maintaining the pressure and temperature shown in Table 1 in the atmosphere.
The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 1 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 1 to 7 and comparative methods 1 to 3 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained in the present invention methods 1 to 7 and comparative methods 1 to 3 were measured, and the results are shown in Table 1. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.

従来例1
実施例で用意した軟磁性粉末Aに対してMgフェライト粉末を表1に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表1に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法1を実施した。この従来法1で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表1に示した。
Conventional Example 1
An Mg ferrite powder was blended with the soft magnetic powder A prepared in the example so as to have a blending ratio shown in Table 1, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 1 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 1 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 1 were measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of the ring-like fired body The material was wound, the magnetic flux density was measured with a BH tracer, and the results are shown in Table 1.

Figure 2006241583
Figure 2006241583

表1に示される結果から、本発明法1〜7で作製した複合軟磁性材は従来法1で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法1〜3で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 1, the composite soft magnetic materials produced by the inventive methods 1 to 7 are superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 1. I understand that. However, it can be seen that the composite soft magnetic materials produced by Comparative Methods 1 to 3 are not preferable because the properties of relative density and magnetic flux density are inferior.

実施例2
表2に示される条件の酸化処理を施した軟磁性粉末B(Fe−Al系鉄基軟磁性合金粉末)に対して、Mg粉末を表2に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表2に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 2
With respect to the soft magnetic powder B (Fe—Al-based iron-based soft magnetic alloy powder) subjected to the oxidation treatment under the conditions shown in Table 2, the Mg powder is blended so as to have the blending ratio shown in Table 2, The blended powder was rolled in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 2 to prepare a Mg-containing oxide film-coated soft magnetic metal powder.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表2に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法8〜14および比較法4〜6を実施した。この本発明法8〜14および比較法4〜6で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表2に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 2 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material composed of a sintered product was produced, and the present invention methods 8 to 14 and comparative methods 4 to 6 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained in the present invention methods 8 to 14 and comparative methods 4 to 6 were measured, and the results are shown in Table 2. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 2.

従来例2
実施例で用意した軟磁性粉末Bに対してMgフェライト粉末を表2に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表2に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法2を実施した。この従来法2で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表2に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表2に示した。
Conventional example 2
Mg ferrite powder was blended with the soft magnetic powder B prepared in the examples so as to have a blending ratio shown in Table 2, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 2 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 2 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 2 were measured, and the results are shown in Table 2. Further, the composite soft magnetic material made of the ring-like fired body The material was wound, the magnetic flux density was measured with a BH tracer, and the results are shown in Table 2.

Figure 2006241583
Figure 2006241583

表2に示される結果から、本発明法8〜14で作製した複合軟磁性材は従来法2で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法4〜6で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 2, the composite soft magnetic material produced by the inventive methods 8 to 14 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 2. I understand that. However, it can be seen that the composite soft magnetic material produced by Comparative Methods 4 to 6 is not preferable because the characteristics of relative density and magnetic flux density are inferior.

実施例3
表3に示される条件の酸化処理を施した軟磁性粉末C(Fe−Ni系鉄基軟磁性合金粉末)に対して、Mg粉末を表3に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表3に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 3
With respect to soft magnetic powder C (Fe—Ni-based iron-based soft magnetic alloy powder) subjected to oxidation treatment under the conditions shown in Table 3, Mg powder was blended so as to have a blending ratio shown in Table 3, The mixed powder was rolled in an argon gas or a vacuum atmosphere while maintaining the pressure and temperature shown in Table 3 to prepare a Mg-containing oxide film-coated soft magnetic metal powder.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表3に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法15〜21および比較法7〜9を実施した。この本発明法15〜21および比較法7〜9で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表3に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表3に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was formed, and the obtained green compact was baked for 30 minutes at a temperature shown in Table 3 in a nitrogen atmosphere. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 15 to 21 and comparative methods 7 to 9 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained by the present invention methods 15 to 21 and comparative methods 7 to 9 were measured, and the results are shown in Table 3. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 3.

従来例3
実施例で用意した軟磁性粉末Cに対してMgフェライト粉末を表3に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表3に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法3を実施した。この従来法3で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表3に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表3に示した。
Conventional example 3
An Mg ferrite powder was blended with the soft magnetic powder C prepared in the examples so as to have a blending ratio shown in Table 3, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 3 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 3 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 3 were measured, and the results are shown in Table 3. Furthermore, the composite soft magnetic material made of the ring-like fired body The material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 3.

Figure 2006241583
Figure 2006241583

表3に示される結果から、本発明法15〜21で作製した複合軟磁性材は従来法3で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法7〜9で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 3, the composite soft magnetic material produced by the inventive methods 15 to 21 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 3. I understand that. However, it can be seen that the composite soft magnetic materials produced by Comparative Methods 7 to 9 are not preferable because the properties of relative density and magnetic flux density are inferior.

実施例4
表4に示される条件の酸化処理を施した軟磁性粉末D(Fe−Cr系鉄基軟磁性合金粉末)に対して、Mg粉末を表4に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表4に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 4
With respect to the soft magnetic powder D (Fe—Cr-based iron-based soft magnetic alloy powder) subjected to the oxidation treatment under the conditions shown in Table 4, the Mg powder was blended so as to have the blending ratio shown in Table 4, The blended powder was rolled in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 4 to prepare a Mg-containing oxide film-coated soft magnetic metal powder.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表4に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法22〜28および比較法10〜12を実施した。この本発明法22〜28および比較法10〜12で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表4に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表4に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 4 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 22 to 28 and comparative methods 10 to 12 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained in the present invention methods 22 to 28 and comparative methods 10 to 12 were measured, and the results are shown in Table 4. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 4.

従来例4
実施例で用意した軟磁性粉末Dに対してMgフェライト粉末を表4に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表4に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法4を実施した。この従来法4で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表4に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表4に示した。
Conventional example 4
An Mg ferrite powder was blended with the soft magnetic powder D prepared in the example so as to have a blending ratio shown in Table 4, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature shown in Table 4 for 30 minutes to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 4 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 4 were measured, and the results are shown in Table 4. Further, the composite soft magnetic material made of the ring-like fired body The material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 4.

Figure 2006241583
Figure 2006241583

表4に示される結果から、本発明法22〜28で作製した複合軟磁性材は従来法4で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法10〜12で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 4, the composite soft magnetic material produced by the inventive methods 22 to 28 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 4. I understand that. However, it can be seen that the composite soft magnetic material produced by Comparative Methods 10 to 12 is not preferable because the characteristics of relative density and magnetic flux density are inferior.

実施例5
表5に示される条件で酸化処理した軟磁性粉末E(Fe−Si系鉄基軟磁性合金粉末)に対して、Mg粉末を表5に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表5に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 5
With respect to the soft magnetic powder E (Fe—Si-based iron-based soft magnetic alloy powder) oxidized under the conditions shown in Table 5, Mg powder was blended so as to have the blending ratio shown in Table 5, and this blended powder Was rolled in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 5 to produce a Mg-containing oxide film-coated soft magnetic metal powder.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表5に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法29〜35および比較法13〜15を実施した。この本発明法29〜35および比較法13〜15で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表5に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表5に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 5 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 29 to 35 and comparative methods 13 to 15 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained by the present invention methods 29 to 35 and comparative methods 13 to 15 were measured, and the results are shown in Table 5. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 5.

従来例5
実施例で用意した軟磁性粉末Eに対してMgフェライト粉末を表5に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表5に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法5を実施した。この従来法5で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表5に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表5に示した。
Conventional Example 5
An Mg ferrite powder was blended with the soft magnetic powder E prepared in the examples so as to have a blending ratio shown in Table 5, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 5 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 5 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 5 were measured, and the results are shown in Table 5. Further, the composite soft magnetic material made of the ring-like fired body The material was wound, the magnetic flux density was measured with a BH tracer, and the results are shown in Table 5.

Figure 2006241583
Figure 2006241583

表5に示される結果から、本発明法29〜35で作製した複合軟磁性材は従来法5で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法13〜15で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 5, the composite soft magnetic material produced by the inventive methods 29-35 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 5. I understand that. However, it can be seen that the composite soft magnetic materials produced by Comparative Methods 13 to 15 are not preferable because the properties of relative density and magnetic flux density are inferior.

実施例6
表6に示される条件の酸化処理を施した軟磁性粉末F(Fe−Si−Al系鉄基軟磁性合金粉末)に対して、Mg粉末を表6に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表6に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表6に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法36〜42および比較法16〜18を実施した。この本発明法36〜42および比較法16〜18で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表6に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表6に示した。
Example 6
With respect to soft magnetic powder F (Fe—Si—Al-based iron-based soft magnetic alloy powder) subjected to the oxidation treatment under the conditions shown in Table 6, Mg powder was blended so as to have the blending ratio shown in Table 6. Then, this blended powder was rolled in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 6 to prepare a Mg-containing oxide film-coated soft magnetic metal powder.
The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 6 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 36 to 42 and comparative methods 16 to 18 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained by the present invention methods 36 to 42 and comparative methods 16 to 18 were measured, and the results are shown in Table 6. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 6.

従来例6
実施例で用意した軟磁性粉末Fに対してMgフェライト粉末を表6に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表6に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法6を実施した。この従来法6で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表6に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表6に示した。
Conventional Example 6
Mg ferrite powder was blended with the soft magnetic powder F prepared in the examples so as to have a blending ratio shown in Table 6, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature shown in Table 6 for 30 minutes to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 6 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 6 were measured, and the results are shown in Table 6. Further, the composite soft magnetic material made of the ring-like fired body The material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 6.

Figure 2006241583
Figure 2006241583

表6に示される結果から、本発明法36〜42で作製した複合軟磁性材は従来法6で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法16〜18で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 6, the composite soft magnetic material produced by the inventive methods 36 to 42 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 6. I understand that. However, it can be seen that the composite soft magnetic materials produced by Comparative Methods 16 to 18 are not preferable because the properties of relative density and magnetic flux density are inferior.

実施例7
表7に示される条件の酸化処理を施した軟磁性粉末G(Fe−Co−V系鉄基軟磁性合金粉末)に対して、Mg粉末を表7に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表7に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 7
For the soft magnetic powder G (Fe-Co-V iron-based soft magnetic alloy powder) subjected to the oxidation treatment under the conditions shown in Table 7, the Mg powder is blended so as to have the blending ratio shown in Table 7. Then, this blended powder was rolled in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 7 to prepare a Mg-containing oxide film-coated soft magnetic metal powder.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表7に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法43〜49および比較法19〜21を実施した。この本発明法43〜49および比較法19〜21で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表7に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表7に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 7 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 43 to 49 and comparative methods 19 to 21 were carried out. The relative density, specific resistance, and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained in the present invention methods 43 to 49 and comparative methods 19 to 21 were measured, and the results are shown in Table 7. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 7.

従来例7
実施例で用意した軟磁性粉末Gに対してMgフェライト粉末を表7に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表7に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法7を実施した。この従来法7で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表7に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表7に示した。
Conventional Example 7
Mg ferrite powder was blended with the soft magnetic powder G prepared in the examples so as to have a blending ratio shown in Table 7, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 7 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 7 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 7 were measured, and the results are shown in Table 7. Further, the composite soft magnetic material made of the ring-like fired body The material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 7.

Figure 2006241583
Figure 2006241583

表7に示される結果から、本発明法43〜49で作製した複合軟磁性材は従来法7で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法19〜21で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 7, the composite soft magnetic materials produced by the inventive methods 43 to 49 are superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic materials produced by the conventional method 7. I understand that. However, it can be seen that the composite soft magnetic material produced by Comparative Methods 19 to 21 is not preferable because the characteristics of relative density and magnetic flux density are inferior.

実施例8
表8に示される条件の酸化処理を施した軟磁性粉末H(Fe−P系鉄基軟磁性合金粉末)に対して、Mg粉末を表8に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表8に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 8
With respect to soft magnetic powder H (Fe—P-based iron-based soft magnetic alloy powder) subjected to oxidation treatment under the conditions shown in Table 8, Mg powder was blended so as to have the blending ratio shown in Table 8, An Mg-containing oxide film-coated soft magnetic metal powder was produced by rolling the blended powder in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 8.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表8に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法50〜56および比較法35〜39を実施した。この本発明法50〜56および比較法35〜39で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表8に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表8に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 8 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 50 to 56 and comparative methods 35 to 39 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained by the present invention methods 50 to 56 and comparative methods 35 to 39 were measured, and the results are shown in Table 8, A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 8.

従来例8
実施例で用意した軟磁性粉末Hに対してMgフェライト粉末を表8に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表8に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法8を実施した。この従来法8で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表8に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表8に示した。
Conventional Example 8
An Mg ferrite powder was blended with the soft magnetic powder H prepared in the examples so as to have a blending ratio shown in Table 8, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired for 30 minutes at a temperature shown in Table 8 in a nitrogen atmosphere to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 8 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 8 were measured, and the results are shown in Table 8. Further, the composite soft magnetic material made of the ring-like fired body was used. The material was wound, the magnetic flux density was measured with a BH tracer, and the results are shown in Table 8.

Figure 2006241583
Figure 2006241583

表8に示される結果から、本発明法50〜56で作製した複合軟磁性材は従来法8で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法22〜24で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 8, the composite soft magnetic material produced by the inventive method 50-56 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 8. I understand that. However, it can be seen that the composite soft magnetic materials produced by Comparative Methods 22 to 24 are not preferable because the properties of relative density and magnetic flux density are inferior.

実施例9
表9に示される条件の酸化処理を施した軟磁性粉末I(リン酸塩被覆鉄粉末)に対して、Mg粉末を表9に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表9に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 9
With respect to soft magnetic powder I (phosphate coated iron powder) subjected to the oxidation treatment shown in Table 9, Mg powder was blended so as to have the blending ratio shown in Table 9, and this blended powder was mixed with argon. An Mg-containing oxide film-coated soft magnetic metal powder was produced by rolling while maintaining the pressure and temperature shown in Table 9 in a gas or vacuum atmosphere.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表9に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法57〜63および比較法25〜27を実施した。この本発明法57〜63および比較法25〜27で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表9に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表9に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was molded, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 9 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 57 to 63 and comparative methods 25 to 27 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained in the present invention methods 57 to 63 and comparative methods 25 to 27 were measured, and the results are shown in Table 9. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 9.

従来例9
実施例で用意した軟磁性粉末Iに対してMgフェライト粉末を表9に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表9に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法9を実施した。この従来法9で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表9に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表9に示した。
Conventional Example 9
An Mg ferrite powder was blended with the soft magnetic powder I prepared in the examples so as to have a blending ratio shown in Table 9, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature shown in Table 9 for 30 minutes to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 9 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 9 were measured, and the results are shown in Table 9. Further, the composite soft magnetic material made of the ring-like fired body The material was wound and the magnetic flux density was measured with a BH tracer. The results are shown in Table 9.

Figure 2006241583
Figure 2006241583

表9に示される結果から、本発明法57〜63で作製した複合軟磁性材は従来法9で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法25〜27で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 9, the composite soft magnetic material produced by the inventive method 57 to 63 is superior in both bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 9. I understand that. However, it can be seen that the composite soft magnetic material produced by the comparative methods 25 to 27 is not preferable because the characteristics of relative density and magnetic flux density are inferior.

実施例10
表10に示される条件の酸化処理を施した軟磁性粉末J(Fe−Co系鉄基軟磁性合金粉末)に対して、Mg粉末を表10に示される配合割合となるように配合し、この配合粉末をアルゴンガスまたは真空雰囲気中、表10に示される圧力および温度に保持しながら転動することによりMg含有酸化膜被覆軟磁性金属粉末を作製した。
Example 10
For the soft magnetic powder J (Fe—Co based iron-based soft magnetic alloy powder) subjected to the oxidation treatment under the conditions shown in Table 10, the Mg powder was blended so as to have the blending ratio shown in Table 10, An Mg-containing oxide film-coated soft magnetic metal powder was produced by rolling the blended powder in an argon gas or vacuum atmosphere while maintaining the pressure and temperature shown in Table 10.

得られたMg含有酸化膜被覆軟磁性金属粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表10に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、本発明法64〜70および比較法28〜30を実施した。この本発明法64〜70および比較法28〜30で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表10に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表10に示した。   The obtained Mg-containing oxide film-coated soft magnetic metal powder was put into a mold and press-molded to obtain a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and outer diameter: 35 mm, inner diameter. A ring-shaped green compact having a size of 25 mm and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature shown in Table 10 for 30 minutes to obtain a plate and a ring. A composite soft magnetic material made of a sintered product was produced, and the present invention methods 64-70 and comparative methods 28-30 were carried out. The relative density, specific resistance and bending strength of the composite soft magnetic material comprising the plate-like fired bodies obtained by the present invention method 64-70 and comparative method 28-30 were measured, and the results are shown in Table 10. A composite soft magnetic material made of a ring-shaped fired body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 10.

従来例10
実施例で用意した軟磁性粉末Jに対してMgフェライト粉末を表10に示される配合割合となるように配合し、この配合粉末を大気中で転動しながら撹拌し、混合粉末を作製した。得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、表10に示される温度で30分保持の焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、従来法10を実施した。この従来法10で得られた板状焼成体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表10に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表10に示した。
Conventional Example 10
An Mg ferrite powder was blended with the soft magnetic powder J prepared in the example so as to have a blending ratio shown in Table 10, and the blended powder was stirred while rolling in the atmosphere to prepare a mixed powder. The obtained mixed powder is put into a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm. A ring-shaped green compact having the following dimensions is molded, and the obtained green compact is fired in a nitrogen atmosphere at a temperature shown in Table 10 for 30 minutes to obtain a composite soft material composed of a plate-shaped and ring-shaped fired body. A magnetic material was prepared and the conventional method 10 was performed. The relative density, specific resistance, and bending strength of the composite soft magnetic material made of the plate-like fired body obtained by the conventional method 10 were measured, and the results are shown in Table 10. Further, the composite soft magnetic material made of the ring-like fired body was used. The material was wound, the magnetic flux density was measured with a BH tracer, and the results are shown in Table 10.

Figure 2006241583
Figure 2006241583

表10に示される結果から、本発明法64〜70で作製した複合軟磁性材は従来法10で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。しかし、比較法28〜30で作製した複合軟磁性材は相対密度、磁束密度の特性が劣るので好ましくないことが分かる。   From the results shown in Table 10, the composite soft magnetic material produced by the method of the present invention 64-70 is superior in bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced by the conventional method 10. I understand that. However, it can be seen that the composite soft magnetic material produced by the comparative methods 28 to 30 is not preferable because the characteristics of relative density and magnetic flux density are inferior.

軟磁性金属粉末を酸化処理する際の時間に対する温度変化を示すパーン図である。It is a Pann figure which shows the temperature change with respect to time at the time of oxidizing a soft magnetic metal powder. 酸化処理した軟磁性金属粉末を加熱または転動しながら加熱する際の時間に対する温度変化を示すパーン図である。It is a Pann figure which shows the temperature change with respect to time at the time of heating, heating or rolling the oxidized soft magnetic metal powder.

Claims (13)

酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を、温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱することを特徴とするMg含有酸化膜被覆軟磁性金属粉末の製造方法。 An oxidized soft magnetic metal powder is used as a raw material powder, and a mixed powder obtained by adding and mixing Mg powder to the raw material powder is mixed at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −. A method for producing a Mg-containing oxide film-coated soft magnetic metal powder, characterized by heating in an inert gas atmosphere or a vacuum atmosphere of 1 MPa. 酸化処理した軟磁性金属粉末を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を、温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動させながら加熱することを特徴とするMg含有酸化膜被覆軟磁性金属粉末の製造方法。 An oxidized soft magnetic metal powder is used as a raw material powder, and a mixed powder obtained by adding and mixing Mg powder to the raw material powder is mixed at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −. A method for producing an Mg-containing oxide film-coated soft magnetic metal powder, which is heated while rolling in an inert gas atmosphere or a vacuum atmosphere of 1 MPa. 請求項1または2記載の軟磁性金属粉末の酸化処理は、軟磁性金属粉末を酸化雰囲気中、温度:50〜500℃で加熱処理することを特徴とするMg含有酸化膜被覆軟磁性金属粉末の製造方法。 The oxidation treatment of the soft magnetic metal powder according to claim 1 or 2, wherein the soft magnetic metal powder is heat-treated in an oxidizing atmosphere at a temperature of 50 to 500 ° C. Production method. 前記軟磁性金属粉末は、鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることを特徴とする請求項1、2または3記載のMg含有酸化膜被覆軟磁性金属粉末の製造方法。 The soft magnetic metal powder includes iron powder, insulated iron powder, Fe—Al iron-based soft magnetic alloy powder, Fe—Ni iron-based soft magnetic alloy powder, Fe—Cr iron-based soft magnetic alloy powder, Fe— Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or Fe-P-based 4. The method for producing a Mg-containing oxide film-coated soft magnetic metal powder according to claim 1, 2, or 3, wherein the powder is an iron-based soft magnetic alloy powder. 請求項1、2、3または4記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末を、さらに酸化雰囲気中、温度:50〜400℃で加熱することを特徴とするMg含有酸化膜被覆軟磁性金属粉末の製造方法。 An Mg-containing oxide film coating characterized by further heating the Mg-containing oxide film-coated soft magnetic metal powder produced by the method according to claim 1, in an oxidizing atmosphere at a temperature of 50 to 400 ° C. Method for producing soft magnetic metal powder. 軟磁性金属粉末を酸化処理してなることを特徴とするMg含有酸化膜被覆軟磁性金属粉末製造用原料粉末。 A raw material powder for producing an Mg-containing oxide film-coated soft magnetic metal powder, characterized by oxidizing a soft magnetic metal powder. 前記軟磁性金属粉末は、鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることを特徴とする請求項6記載のMg含有酸化膜被覆軟磁性金属粉末製造用原料粉末。 The soft magnetic metal powder includes iron powder, insulated iron powder, Fe—Al iron-based soft magnetic alloy powder, Fe—Ni iron-based soft magnetic alloy powder, Fe—Cr iron-based soft magnetic alloy powder, Fe— Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy powder, Fe-Co-based iron-based soft magnetic alloy powder, Fe-Co-V-based iron-based soft magnetic alloy powder or Fe-P-based The raw material powder for producing an Mg-containing oxide film-coated soft magnetic metal powder according to claim 6, which is an iron-based soft magnetic alloy powder. 請求項1、2、3、4または5記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末をプレス成形後、温度:400〜1300℃で焼成することを特徴とする比抵抗および機械的強度に優れた複合軟磁性材の製造方法。 A specific resistance and mechanical property, characterized in that the Mg-containing oxide film-coated soft magnetic metal powder produced by the method according to claim 1, 2 is calcined at a temperature of 400 to 1300 ° C. after press molding. A method for producing a composite soft magnetic material having excellent strength. 請求項1、2、3、4または5記載の方法で製造したMg含有酸化膜被覆軟磁性金属粉末に、有機絶縁材料、無機絶縁材料、または有機絶縁材料と無機絶縁材料の混合材料を混合したのち圧粉成形し、500〜1000℃で焼成することを特徴とする比抵抗および機械的強度に優れた複合軟磁性材の製造方法。 An organic insulating material, an inorganic insulating material, or a mixed material of an organic insulating material and an inorganic insulating material is mixed with the Mg-containing oxide film-coated soft magnetic metal powder produced by the method according to claim 1, 2, 3, 4, or 5. A method for producing a composite soft magnetic material excellent in specific resistance and mechanical strength, which is then compacted and fired at 500 to 1000 ° C. 請求項8または9記載の方法で製造した比抵抗および機械的強度に優れた複合軟磁性材。 A composite soft magnetic material excellent in specific resistance and mechanical strength produced by the method according to claim 8. 請求項10記載の複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising the composite soft magnetic material according to claim 10. 前記電磁気回路部品は、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサーコアであることを特徴とする請求項11記載の電磁気回路部品。 The electromagnetic circuit component according to claim 11, wherein the electromagnetic circuit component is a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, or a magnetic sensor core. 請求項11または12記載の電磁気回路部品を組み込んだ電気機器。 An electric device incorporating the electromagnetic circuit component according to claim 11.
JP2005156561A 2004-09-06 2005-05-30 Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder Active JP4863648B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005156561A JP4863648B2 (en) 2004-09-06 2005-05-30 Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
EP05782230A EP1808242B1 (en) 2004-09-06 2005-09-06 METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
CN201010258262XA CN101927344B (en) 2004-09-06 2005-09-06 Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using the powder
US11/574,655 US20080003126A1 (en) 2004-09-06 2005-09-06 Method for Producing Soft Magnetic Metal Powder Coated With Mg-Containing Oxide Film and Method for Producing Composite Soft Magnetic Material Using Said Powder
KR1020077006053A KR20070049670A (en) 2004-09-06 2005-09-06 Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using said powder
CA002578861A CA2578861A1 (en) 2004-09-06 2005-09-06 Method for producing soft magnetic metal powder coated with mg-containing oxide film and method for producing composite soft magnetic material using said powder
PCT/JP2005/016348 WO2006028100A1 (en) 2004-09-06 2005-09-06 METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
US13/227,359 US8409371B2 (en) 2004-09-06 2011-09-07 Method for producing soft magnetic metal powder coated with Mg-containing oxide film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004257841 2004-09-06
JP2004257841 2004-09-06
JP2005025326 2005-02-01
JP2005025326 2005-02-01
JP2005156561A JP4863648B2 (en) 2004-09-06 2005-05-30 Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder

Publications (2)

Publication Number Publication Date
JP2006241583A true JP2006241583A (en) 2006-09-14
JP4863648B2 JP4863648B2 (en) 2012-01-25

Family

ID=37048273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156561A Active JP4863648B2 (en) 2004-09-06 2005-05-30 Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder

Country Status (1)

Country Link
JP (1) JP4863648B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099732A (en) * 2007-10-16 2009-05-07 Fuji Electric Device Technology Co Ltd Soft magnetic metal particle with insulating oxide coating
JP2009236400A (en) * 2008-03-27 2009-10-15 Mitsubishi Materials Corp Vacuum heating furnace and heat treatment method for powder material
JP2009242908A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp METHOD FOR PRODUCING Mg-CONTAINING OXIDE FILM-COATED SOFT MAGNETIC MEAL POWDER
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP2012212853A (en) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd Dust core and production method therefor
US9437358B2 (en) 2013-07-19 2016-09-06 Samsung Electronics Co., Ltd. Soft magnetic exchange-coupled composite structure, and high-frequency device component, antenna module, and magnetoresistive device including the soft magnetic exchange-coupled composite structure
US9631264B2 (en) 2013-12-26 2017-04-25 Tdk Corporation Soft magnetic powder core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306600A (en) * 1993-04-27 1994-11-01 Nisshin Steel Co Ltd Powder coating device with cooling mechanism
JPH08167519A (en) * 1994-12-13 1996-06-25 Kobe Steel Ltd High frequency dust core
JPH093502A (en) * 1995-06-14 1997-01-07 Hitachi Ltd Surface oxidation method of powder and surface oxidation device for powder
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003142310A (en) * 2001-11-02 2003-05-16 Daido Steel Co Ltd Dust core having high electrical resistance and manufacturing method therefor
JP2003217919A (en) * 2002-01-17 2003-07-31 Nec Tokin Corp Dust core and high-frequency reactor using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306600A (en) * 1993-04-27 1994-11-01 Nisshin Steel Co Ltd Powder coating device with cooling mechanism
JPH08167519A (en) * 1994-12-13 1996-06-25 Kobe Steel Ltd High frequency dust core
JPH093502A (en) * 1995-06-14 1997-01-07 Hitachi Ltd Surface oxidation method of powder and surface oxidation device for powder
JP2001254168A (en) * 2000-03-10 2001-09-18 Kinya Adachi Surface rust prevention and performance improving treatment of magnetic material
JP2003142310A (en) * 2001-11-02 2003-05-16 Daido Steel Co Ltd Dust core having high electrical resistance and manufacturing method therefor
JP2003217919A (en) * 2002-01-17 2003-07-31 Nec Tokin Corp Dust core and high-frequency reactor using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099732A (en) * 2007-10-16 2009-05-07 Fuji Electric Device Technology Co Ltd Soft magnetic metal particle with insulating oxide coating
JP2009236400A (en) * 2008-03-27 2009-10-15 Mitsubishi Materials Corp Vacuum heating furnace and heat treatment method for powder material
JP2009242908A (en) * 2008-03-31 2009-10-22 Mitsubishi Materials Corp METHOD FOR PRODUCING Mg-CONTAINING OXIDE FILM-COATED SOFT MAGNETIC MEAL POWDER
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP2012212853A (en) * 2011-03-24 2012-11-01 Alps Green Devices Co Ltd Dust core and production method therefor
US9437358B2 (en) 2013-07-19 2016-09-06 Samsung Electronics Co., Ltd. Soft magnetic exchange-coupled composite structure, and high-frequency device component, antenna module, and magnetoresistive device including the soft magnetic exchange-coupled composite structure
US9631264B2 (en) 2013-12-26 2017-04-25 Tdk Corporation Soft magnetic powder core

Also Published As

Publication number Publication date
JP4863648B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US8409371B2 (en) Method for producing soft magnetic metal powder coated with Mg-containing oxide film
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP5145923B2 (en) Composite magnetic material
JP3580253B2 (en) Composite magnetic material
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2007220876A (en) Soft magnetic alloy consolidation object, and its manufacturing method
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP4479998B2 (en) Method for producing composite soft magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2008088537A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM HAVING LOW RETENTION FORCE AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL HAVING LOW RETENTION FORCE FROM THE POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4863648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250