JP2005305470A - Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method - Google Patents

Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method Download PDF

Info

Publication number
JP2005305470A
JP2005305470A JP2004122719A JP2004122719A JP2005305470A JP 2005305470 A JP2005305470 A JP 2005305470A JP 2004122719 A JP2004122719 A JP 2004122719A JP 2004122719 A JP2004122719 A JP 2004122719A JP 2005305470 A JP2005305470 A JP 2005305470A
Authority
JP
Japan
Prior art keywords
laser
ultraviolet
laser beam
processing
ultrashort pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122719A
Other languages
Japanese (ja)
Inventor
Masafumi Okuno
雅史 奥野
Akira Watabe
明 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI PHYSICS KENKYUSHO KK
Cyber Laser Inc
Original Assignee
HIKARI PHYSICS KENKYUSHO KK
Cyber Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI PHYSICS KENKYUSHO KK, Cyber Laser Inc filed Critical HIKARI PHYSICS KENKYUSHO KK
Priority to JP2004122719A priority Critical patent/JP2005305470A/en
Publication of JP2005305470A publication Critical patent/JP2005305470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus and method that make unique precision microfabrication possible at high speed by efficiently applying a ultra short pulsed laser beam to a workpiece. <P>SOLUTION: The laser beam machining apparatus works by possessing a machining head which is equipped with an optical system for guiding and converging the ultra short pulsed laser beam from a femtosecond laser oscillator 15 onto a machining point 30 of the workpiece 31 and also possessing a ultraviolet light source 22 which is for emitting the light near the machining point. The laser beam machining method includes an energy absorbing process in which two processes occur synchronously, namely, a ultraviolet electron exciting/absorbing process which excites to a higher level the valence band electron of an object to be irradiated with the ultraviolet ray and an absorbing process for a multi-photon which emits the ultra short pulsed laser beam to the object. Accordingly, the high precision and high-speed microfabrication by laser is implemented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超短パルスレーザ加工装置および超短パルスレーザ加工方法に関する。更に詳しくは、超短パルス発振出力光と紫外線を用いて加工能力、加工能率を向上する装置並びに方法に関するものである。   The present invention relates to an ultrashort pulse laser processing apparatus and an ultrashort pulse laser processing method. More specifically, the present invention relates to an apparatus and method for improving processing capability and processing efficiency using ultrashort pulse oscillation output light and ultraviolet rays.

従来、レーザ光線を集光して加工対象物に照射し、照射点を蒸発除去し、半導体や金属、セラミックス、樹脂、ガラスなどに穴あけ、切断、トリミングなどの除去加工を施すことが行われている。レーザ光の波長は紫外線領域から赤外線領域まで各種のレーザから発振されたビームが使用されている。加工物に対して使用するレーザ光線の吸収率が大きい材料に対して有効な加工が行われ、光吸収率の低い加工対象材料に対しては表面に吸収性の塗布を施し、照射レーザ光線の吸収を大きくし、照射レーザエネルギーによる吸収増大を図り加工能率の向上を図ることが周知である。これらの表面処理を施す加工法は表面処理工程を設ける必要があり、さらに材料を異物で汚染する欠点がある。   Conventionally, a laser beam is focused and irradiated on a workpiece, the irradiated point is removed by evaporation, and removal processing such as drilling, cutting, and trimming is performed on semiconductors, metals, ceramics, resins, and glass. Yes. As the wavelength of the laser light, beams oscillated from various lasers from the ultraviolet region to the infrared region are used. Effective processing is performed on materials with a high laser beam absorptivity to be used on the workpiece. Absorbent coating is applied to the surface of workpieces with low light absorptivity, and the irradiated laser beam It is well known to increase the absorption and increase the processing efficiency by increasing the absorption due to the irradiation laser energy. These processing methods for performing surface treatment need to be provided with a surface treatment step, and further have a drawback of contaminating the material with foreign substances.

一方、使用するレーザ光線の波長に対する光吸収率の小さな反射率の高い物体や透明物体に対しては、その物体に対して吸収率の高い波長、例えば、紫外線レーザ光線を照射し、それと同時に別の波長のレーザ光線を同時に照射することで加工性能を向上する試みがなされている。特開2003−94191、特開2001−347388、特開平5−104276などには赤外線領域の波長1064nm、可視光領域の波長532nm、および紫外線領域の波長355nm、266nmなどの複数の波長のレーザ光を同時もしくは若干時間をずらして照射し、熱的な作用と共に紫外線による化学的な作用による加工も可能である。   On the other hand, a highly reflective object or a transparent object having a small light absorptance with respect to the wavelength of the laser beam to be used is irradiated with a wavelength having a high absorptivity, for example, an ultraviolet laser beam, and at the same time, the object is separated. Attempts have been made to improve the processing performance by simultaneously irradiating laser beams having the above wavelengths. In Japanese Patent Laid-Open Nos. 2003-94191, 2001-347388, and 5-104276, laser beams having a plurality of wavelengths such as a wavelength of 1064 nm in the infrared region, a wavelength of 532 nm in the visible light region, and wavelengths of 355 nm and 266 nm in the ultraviolet region are provided. Irradiation can be performed simultaneously or with a slight shift in time, and processing by chemical action using ultraviolet rays as well as thermal action is possible.

これにより、レーザ加工装置は波長1064nmの単一波長のレーザ加工装置では加工が難しかったガラス、セラミックス等の加工に有効である。また、特開2002−1564や特開2002−316282には、溶接用のレーザ光線の照射点近傍に複数波長のレーザ光線を照射して溶接点や周囲に発生するクラックの発生防止技術が紹介されている。   As a result, the laser processing apparatus is effective for processing glass, ceramics, etc., which are difficult to process with a single wavelength laser processing apparatus having a wavelength of 1064 nm. Further, Japanese Patent Application Laid-Open No. 2002-1564 and Japanese Patent Application Laid-Open No. 2002-316282 introduce a technique for preventing the generation of cracks generated at or near a welding point by irradiating a laser beam having a plurality of wavelengths near the irradiation point of a laser beam for welding. ing.

このように、紫外線レーザと他の波長のレーザの作用を併用する加工方法は従来から試みられている。これらの技術による加工法は加工変質層の発生が避けられず、材料によってはクラックなどの発生が生じる欠点がある。紫外レーザ光だけを用いるアブレーション加工の機構は図1に示すような機構に基づくと考えられている。すなわち、価電子帯4のレベルにある電子5を、紫外線領域のDUVあるいはVUVの大きな光子エネルギー(短波長紫外線7)で、一気に真空レベル1まで上げることにより、原子間の電子結合を切断し、加工する。   As described above, a processing method using both the action of an ultraviolet laser and a laser having another wavelength has been tried. The processing methods using these techniques have the disadvantage that the generation of a work-affected layer is unavoidable, and cracks and the like occur depending on the material. It is considered that the ablation processing mechanism using only the ultraviolet laser beam is based on the mechanism shown in FIG. That is, the electron 5 at the level of the valence band 4 is raised to the vacuum level 1 at once with the photon energy (short wavelength ultraviolet light 7) of DUV or VUV in the ultraviolet region, thereby breaking the electronic bond between atoms. Process.

一方、超短パルス発振装置から発生された10フェムト秒から10ピコ秒の超短パルスレーザによるレーザ誘起絶縁破壊によるレーザ加工法が、例えば、米国特許第RE37585号に述べられている。同文献には、アブレーションの閾値がパルス幅の平方根の値に比例しないところより超短パルスのビームを照射することで透明体なども加工処理する技術が述べられている。この加工法の機構は図2に示すような多光子吸収によるアブレーション加工と考えられている。この過程では、バンドギャップ3ないしは価電子帯から真空レベルまでのエネルギー差よりも、小さなエネルギーの量子を持った複数光子8−1、8−2、8−3、8−4等による多光子吸収過程により、価電子帯のレベルにある電子5を一気に真空レベル1まで上げることにより、原子間の電子結合を切断し、加工する。   On the other hand, a laser processing method using laser-induced breakdown with an ultrashort pulse laser of 10 femtoseconds to 10 picoseconds generated from an ultrashort pulse oscillator is described in, for example, US Pat. No. RE37585. This document describes a technique for processing a transparent body or the like by irradiating an ultrashort pulse beam where the ablation threshold is not proportional to the square root value of the pulse width. The mechanism of this processing method is considered to be ablation processing by multiphoton absorption as shown in FIG. In this process, multiphoton absorption by a plurality of photons 8-1, 8-2, 8-3, 8-4, etc. having a quantum smaller than the energy difference from the band gap 3 or the valence band to the vacuum level. According to the process, the electrons 5 at the valence band level are raised to the vacuum level 1 at once, thereby breaking and processing the electronic bonds between the atoms.

この際、多光子吸収の起こる確率は、1光子吸収に比べはるかに小さいため、光子エネルギー密度(光子の数密度)を指数関数的に増加させなければならない。原理的には、2光子吸収よりも3光子吸収など、関与光子数が増えるにしたがって多光子吸収の発生確率は指数関数的に減少する。したがって、光子吸収過程の増加にともない加工に要する光子エネルギー密度、したがって、レーザ出力パワーのピーク値がますます大きな値が必要となる。このため、超短パルスのレーザ発振出力エネルギーが十分超短パルスで発振して高出力を確保しなければならないから、大掛かりな装置構成が必要となり、価格的にも高いものとなる。したがって、加工コストが高くなり実用面からは工業的に利用することが困難な加工方法である。
特開2003−94191号公報 特開2001−347388号公報 特開平5−104276号公報 特開2002−1564号公報 特開2002−316282号公報 米国再発行特許第37585号公報
At this time, since the probability of multiphoton absorption is much smaller than that of one-photon absorption, the photon energy density (number density of photons) must be increased exponentially. In principle, the occurrence probability of multiphoton absorption decreases exponentially as the number of participating photons increases, such as three-photon absorption rather than two-photon absorption. Therefore, as the photon absorption process increases, the photon energy density required for processing, and hence the peak value of the laser output power, is increasingly increased. For this reason, since the laser oscillation output energy of the ultrashort pulse must oscillate with the ultrashort pulse sufficiently to ensure a high output, a large-scale device configuration is required and the price is high. Therefore, the processing cost is high, and it is a processing method that is difficult to use industrially from a practical aspect.
JP 2003-94191 A JP 2001-347388 A JP-A-5-104276 JP 2002-1564 A JP 2002-316282 A US Reissue Patent No. 37585

解決しようとする課題は、超短パルスレーザ照射によるレーザ加工能力を向上することである。   The problem to be solved is to improve the laser processing capability by ultrashort pulse laser irradiation.

本発明は、レーザ発振器から発振された超短パルスレーザ光を加工物の加工点に導光し集光させる光学系を備えた加工ヘッドと、前記加工点の近傍に照射するための紫外線光源とを有するレーザ加工装置、並びに、紫外線光を照射する物体の価電子帯電子をより高いレベルに励起する紫外線電子励起吸収過程と、超短パルスレーザ光を物体に照射する多光子の吸収過程とを同期的に生起したエネルギー吸収過程を含んだ方法を用いて高精度、高速な微細レーザ加工方法を提供する。   The present invention includes a processing head including an optical system that guides and collects an ultrashort pulse laser beam oscillated from a laser oscillator to a processing point of a workpiece, and an ultraviolet light source for irradiating near the processing point. A laser processing apparatus, an ultraviolet electron excitation absorption process for exciting valence band electrons of an object irradiated with ultraviolet light to a higher level, and an absorption process of multiphotons for irradiating an object with ultrashort pulse laser light. A high-precision and high-speed fine laser processing method is provided using a method including an energy absorption process that occurs synchronously.

本発明の好ましい1つの実施形態によれば、レーザ加工装置の前記超短パルスレーザ光レーザ発振器はモードロック発振固体レーザである。また、本発明の好ましい他の実施形態によれば、レーザ加工装置の前記超短パルスレーザ光はチャープパルス増幅とパルス圧縮のモードロックパルス出力光である。本発明にかかるレーザ加工装置においては、前記紫外線光源がレーザ発振器から放出された紫外線レーザまたは非コヒーレント光紫外線であってもよく、前記加工物は半導体、セラミックス、ガラス、透明結晶のいずれかであることができる。さらに、前記超短パルスレーザ光と紫外線光の照射タイミングにおいて、少なくとも紫外線光照射による加工物表面における影響が現れている期間に超短パルスレーザを照射するものであることが好ましく、前記超短パルスレーザ光を導光する光学素子は、集光点において超短パルスのパルス幅が導光路の波長分散を補償してパルス幅の拡大を小さく保つような光学素子であることが好ましい。   According to one preferred embodiment of the present invention, the ultrashort pulse laser beam laser oscillator of the laser processing apparatus is a mode-locked oscillation solid-state laser. According to another preferred embodiment of the present invention, the ultrashort pulse laser light of the laser processing apparatus is chirped pulse amplification and pulse compression mode-locked pulse output light. In the laser processing apparatus according to the present invention, the ultraviolet light source may be an ultraviolet laser or non-coherent ultraviolet light emitted from a laser oscillator, and the workpiece is any of a semiconductor, ceramics, glass, and transparent crystal. be able to. Furthermore, it is preferable that the ultrashort pulse laser is irradiated with the ultrashort pulse laser in the irradiation timing of the ultrashort pulse laser light and the ultraviolet light at least during a period when the influence of the ultraviolet light irradiation on the workpiece surface appears. The optical element that guides the laser light is preferably an optical element in which the pulse width of the ultrashort pulse compensates for the wavelength dispersion of the light guide and keeps the expansion of the pulse width small at the focal point.

本発明の他の好ましい実施形態によれば、レーザ加工方法において、前記紫外線電子励起吸収過程の励起レベルは、伝導帯または禁止帯のトラップである。また、前記多光子の吸収過程の多光子を吸収するレベルの電子は、伝導帯または禁止帯のトラップレベルへ紫外線照射により励起された電子であることが好ましい。   According to another preferred embodiment of the present invention, in the laser processing method, the excitation level of the ultraviolet electron excitation absorption process is a conduction band or forbidden band trap. The level of electrons that absorb multiphotons in the multiphoton absorption process is preferably an electron that has been excited by ultraviolet irradiation to a trap level in a conduction band or a forbidden band.

本発明の効果として、従来の加工方法に較べ、紫外線とフェムト秒の超短パルスを併用した加工は、熱の発生しないフェムト秒レーザの特長を生かし、さらに、難加工材料、たとえば、半導体ウエハや、超伝導材料、セラミックスなどを従来よりも加工能率を高めた加工が実現できる。従来のレーザ加工法の大部分は、熱作用による加工に頼るため、加工部分に熱歪を考慮して、大きな切り代が必要であったが本発明の加工方法では、熱変質層の発生が防止できることが挙げられる。   As an effect of the present invention, compared with conventional processing methods, processing using ultraviolet and femtosecond ultrashort pulses makes use of the features of femtosecond lasers that do not generate heat, and furthermore, difficult-to-process materials such as semiconductor wafers and It is possible to realize processing with higher processing efficiency than conventional materials such as superconducting materials and ceramics. Since most of the conventional laser processing methods rely on processing by thermal action, a large cutting allowance was necessary in consideration of thermal strain in the processing portion. However, in the processing method of the present invention, a thermally deteriorated layer is generated. It can be prevented.

このことは、例えば、半導体ウエハからチップをダイシング工程により切り出す際に無駄な熱影響層の発生が無く、ダイシングの面積を最小限に抑えてもチップ上の半導体装置の性能を確保できることにつながる。このことによりコストの低減が可能になる。したがって、紫外線レーザとフェムト秒レーザを併用した加工方法は、半導体装置のチップサイズが小さくなるとき微細な加工を熱影響層なく実施できるので、半導体やMEMSなどの加工技術として不可欠となる。   For example, when a chip is cut out from a semiconductor wafer by a dicing process, a wasteful heat-affected layer is not generated, and the performance of the semiconductor device on the chip can be ensured even if the dicing area is minimized. This makes it possible to reduce costs. Therefore, a processing method using both an ultraviolet laser and a femtosecond laser is indispensable as a processing technology for semiconductors, MEMS, and the like because fine processing can be performed without a heat-affected layer when the chip size of a semiconductor device is reduced.

紫外線レーザおよびフェムト秒レーザを併用する加工方法は、熱の発生の無いフェムト秒レーザの加工特長と加工性能の向上が図れ、難加工材料、たとえば、半導体ウエハや、超伝導材料、セラミックスなど従来技術では微細加工の適用が容易でない加工分野に高速加工を実現できる革新的な技術となる。以上の理由により、紫外線レーザとフェムト秒レーザを組み合わせた超精密レーザ加工機は次世代の技術を担う加工機として極めて重要になる。   The processing method that uses both UV laser and femtosecond laser improves the processing characteristics and processing performance of femtosecond lasers that do not generate heat. Conventional technologies such as difficult-to-process materials such as semiconductor wafers, superconducting materials, and ceramics Then, it becomes an innovative technology that can realize high-speed processing in the processing field where the application of fine processing is not easy. For the above reasons, an ultra-precise laser processing machine combining an ultraviolet laser and a femtosecond laser becomes extremely important as a processing machine responsible for the next generation technology.

本発明の請求項1並びに請求項8に記載の発明の1つの好ましい実施形態によれば、レーザ発振器から発振された超短パルスレーザ光を加工物の加工点に導光し集光させる光学系を備えた加工ヘッドと前記加工点の近傍に照射するための紫外線光源とを有して加工を行うレーザ加工装置と紫外線光を照射する物体の価電子帯電子をより高いレベルに励起する紫外線電子励起吸収過程と、超短パルスレーザ光を物体に照射する多光子の吸収過程とを同期的に生成したエネルギー吸収過程を含んだ方法を用いて高精度、高速な微細レーザ加工を実現するものである。以下図3〜8を用いて説明する。
本発明の原理的な方法の例を図3〜6に、具体的な実施例の説明図を図7、8に示す。
According to one preferred embodiment of the invention described in claim 1 and claim 8 of the present invention, an optical system for guiding and condensing an ultrashort pulse laser beam oscillated from a laser oscillator to a processing point of a workpiece. A laser processing apparatus that performs processing with an ultraviolet light source for irradiating in the vicinity of the processing point, and an ultraviolet electron that excites valence band electrons of an object irradiated with ultraviolet light to a higher level High-precision and high-speed fine laser processing is realized using a method that includes an energy absorption process that synchronously generates an excitation absorption process and an absorption process of multiphotons that irradiate an object with ultrashort pulse laser light. is there. This will be described below with reference to FIGS.
Examples of the principle method of the present invention are shown in FIGS. 3 to 6, and explanatory diagrams of specific examples are shown in FIGS.

図3は、本発明による加工方法の第1の例における、第1段階の紫外線励起過程を、半導体に対する加工を例にとって示すものである。価電子帯4の電子5を紫外線領域にある光子吸収9による励起過程10により電子を伝導帯に励起する。このことによりセラミックなどの絶縁物は伝導性を有する金属的な性質を有する状態になるが加工は進行しないで組織の軟化が起こる。この加工物の表面に同時的に超短パルスのレーザビームを照射することで図4に示す伝導帯2にある励起電子5が超短パルスによる多光子吸収過程で真空準位1まで励起され物質の結合が破壊されて加工が行われる。   FIG. 3 shows the first stage ultraviolet excitation process in the first example of the processing method according to the present invention, taking as an example processing for a semiconductor. The electrons 5 in the valence band 4 are excited to the conduction band by the excitation process 10 by the photon absorption 9 in the ultraviolet region. As a result, an insulator such as a ceramic has a conductive metallic property, but the processing does not proceed and the tissue is softened. By simultaneously irradiating the surface of this workpiece with an ultrashort pulse laser beam, excited electrons 5 in the conduction band 2 shown in FIG. 4 are excited to the vacuum level 1 in the multiphoton absorption process by the ultrashort pulse. The bond is broken and processing is performed.

この加工機構による加工点とその近傍は紫外線照射により組織が柔化し変質を受けるので超短パルスが照射されても衝撃によるクラック発生が防止される、さらに熱的加工によらないアブレーション加工であるため、加工点の周囲にはクラックなどの損傷の発生がなく精密な加工が行われる。   The processing point and its vicinity by this processing mechanism are softened and deteriorated by irradiation with ultraviolet rays, so cracking due to impact is prevented even when irradiated with ultrashort pulses, and it is ablation processing not due to thermal processing In the vicinity of the processing point, there is no occurrence of damage such as cracks, and precise processing is performed.

図4のように、紫外線光10で多光子吸収10−1、10−2をアシストしてやれば、フェムト秒レーザの多光子吸収の光子数が紫外線で励起した分だけ少なくなり、それによりフェムト秒レーザのレーザ強度を下げることができる。逆に、同じ強度であれば、加工速度を上げることが可能となり、スループットをあげることができる。   As shown in FIG. 4, if the multiphoton absorption 10-1 and 10-2 are assisted by the ultraviolet light 10, the number of photons of the multiphoton absorption of the femtosecond laser is reduced by the amount excited by the ultraviolet light, thereby the femtosecond laser. The laser intensity can be reduced. On the contrary, if the strength is the same, the processing speed can be increased and the throughput can be increased.

図5は、紫外線照射後に超短パルスを照射する場合である第2の実施例の説明図である。第1段階で紫外線照射を実施し、価電子帯から伝導帯に励起する。この方法では、一旦、紫外線照射により軟化させてから超短パルスのフェムト秒レーザ照射を実施する、紫外線照射後ある程度の時間、伝導帯に励起された電子が伝電導帯に滞留している間に超短パルスによる多光子吸収を実施させるため超短パルス照射を行う。そうすると、図4の実施方法と同様に超短パルスのフェムト秒レーザによる多光子吸収の多光子の数が少なくて済み、フェムト秒レーザ照射のパワー強度を下げることができ、スループットをあげることができる。   FIG. 5 is an explanatory diagram of a second embodiment in which an ultrashort pulse is irradiated after ultraviolet irradiation. In the first stage, ultraviolet irradiation is performed to excite the valence band to the conduction band. In this method, after being softened by ultraviolet irradiation, femtosecond laser irradiation with an ultrashort pulse is performed. While electrons excited in the conduction band stay in the conduction band for a certain period of time after ultraviolet irradiation. Ultra short pulse irradiation is performed to perform multiphoton absorption by ultra short pulses. Then, as in the implementation method of FIG. 4, the number of multiphotons absorbed by the ultrashort pulse femtosecond laser can be reduced, the power intensity of femtosecond laser irradiation can be reduced, and the throughput can be increased. .

図6に示した第3の実施例は、禁止帯にできたトラップ準位12に励起9の後トラップされた電子が多光子吸収13−1、13−2により、真空準位まで超短パルスのフェムト秒レーザを吸収し、加工が行われる場合を示した。図5、6の場合と同様、材料は軟化する状態で加工が進行する可能性がある。   In the third embodiment shown in FIG. 6, the electrons trapped after the excitation 9 in the trap level 12 formed in the forbidden band are subjected to ultrashort pulses to the vacuum level by the multiphoton absorption 13-1 and 13-2. The case where the femtosecond laser is absorbed and processed is shown. As in the case of FIGS. 5 and 6, there is a possibility that the processing proceeds while the material is softened.

図7に本発明を実施する装置の構成例を示す。超短パルスレーザであるフェムト秒レーザ15から発振された水平方向のレーザビーム16はコリメート光学系を構成するレンズ17、18により拡大された直径の平行ビーム20に変換され、フェムト秒ミラー19により反射され、垂直方向に偏向されダイクロイックミラー27を通過して、集光レンズ29に入射し、被加工物31に照射される。紫外線レーザ発振器22から水平方向に放出されたレーザビーム23はコリメート光学系レンズ24、25により拡大された直径のビーム26に変換されダイクロイックミラー27で反射されて前記フェムト秒レーザビーム21と同軸上に伝播するビーム28となり集光レンズ29で被加工物31の集光点30に照射される。   FIG. 7 shows a configuration example of an apparatus for carrying out the present invention. A horizontal laser beam 16 oscillated from a femtosecond laser 15 which is an ultrashort pulse laser is converted into a parallel beam 20 having a diameter enlarged by lenses 17 and 18 constituting a collimating optical system, and reflected by a femtosecond mirror 19. Then, it is deflected in the vertical direction, passes through the dichroic mirror 27, enters the condenser lens 29, and is irradiated onto the workpiece 31. A laser beam 23 emitted in the horizontal direction from the ultraviolet laser oscillator 22 is converted into a beam 26 having a diameter enlarged by collimating optical system lenses 24 and 25, reflected by a dichroic mirror 27, and coaxially with the femtosecond laser beam 21. A converging lens 29 irradiates the condensing point 30 of the workpiece 31 with the converging lens 29.

被加工物31はx、y、z駆動ステージ32に設置され加工点の設定などに用いられる。フェムト秒レーザビーム16と紫外線レーザ22は同期的に発振ビームを放出され、被加工物表面に達する時点では、同時にビームが到着するようなタイミングであるか、もしくは紫外線レーザビームの照射による励起状態の影響が存続している間にフェムト秒レーザが照射されるようなタイミングとなるように制御する。フェムト秒レーザの発振波長は特に限定しなくてもよいことは本発明の主旨が紫外線による被加工物表面が励起状態である電子状態から多光子吸収に伴う物質のアブレーションによる加工であることから明らかである。   The workpiece 31 is installed on an x, y, z drive stage 32 and used for setting a processing point. The femtosecond laser beam 16 and the ultraviolet laser 22 are synchronously emitted with an oscillation beam, and when they reach the surface of the workpiece, the timing is such that the beams arrive at the same time, or the excited state by the irradiation of the ultraviolet laser beam. Control is performed so that the femtosecond laser is irradiated while the influence continues. The fact that the oscillation wavelength of the femtosecond laser is not particularly limited is apparent from the fact that the gist of the present invention is processing by ablation of a substance accompanying absorption of multiphotons from an electronic state in which the surface of the workpiece is excited by ultraviolet rays. It is.

紫外線レーザは、被加工物表面を励起して価電子帯に多数の電子を増加させるためであるから、レーザ光のようなコヒーレントな品質を有する光源である必要はなく、励起に十分なパワーを有する光源であればよい。この紫外線光源の波長は、絶縁体のバンドギャップに相当するエネルギーを有する波長より短いならばよい。コリメート光学系17、18、フェムト秒ミラー19、ダイクロイックミラー27は超短パルス16の等価や反射に伴う波長分散に伴ってのパルス幅の広がりが集光点30において起きないように波長分散特性を選定する必要がある。例えば、レンズやダイクロイックミラーの分散が正の分散を示すなら、フェムト秒反射ミラーの分散特性を負の分散特性に設定し、光路全体をゼロ分散に設計する。   Since the ultraviolet laser excites the workpiece surface to increase the number of electrons in the valence band, it does not have to be a light source having a coherent quality like laser light, and has sufficient power for excitation. Any light source may be used. The wavelength of the ultraviolet light source may be shorter than the wavelength having energy corresponding to the band gap of the insulator. The collimating optical systems 17 and 18, the femtosecond mirror 19, and the dichroic mirror 27 have chromatic dispersion characteristics so that the pulse width is not broadened at the condensing point 30 due to the equivalent of the ultrashort pulse 16 or chromatic dispersion caused by reflection. It is necessary to select. For example, if the dispersion of the lens or dichroic mirror shows positive dispersion, the dispersion characteristic of the femtosecond reflection mirror is set to a negative dispersion characteristic, and the entire optical path is designed to be zero dispersion.

図8は本発明の別な実施例を示す装置の構成例である。図7と同一機能の部品は同一番号を付した。この構成では紫外線光源22を超短パルスのフェムト秒レーザビームと同軸でない配置で、斜め方向からの照射として構成である。紫外線ビーム23はミラー41で反射されて集光レンズ42で被加工物の加工点30に照準して照射する配置を用いる。紫外線ビームは加工点の表面を励起することで本発明の効果が得られるので、超短パルスビームと同軸で照射することは必ずしも必要はない。   FIG. 8 is a structural example of an apparatus showing another embodiment of the present invention. Parts having the same functions as those in FIG. In this configuration, the ultraviolet light source 22 is arranged so as not to be coaxial with the ultrashort pulse femtosecond laser beam, and is irradiated from an oblique direction. An arrangement is used in which the ultraviolet beam 23 is reflected by a mirror 41 and irradiated with a condenser lens 42 while aiming at a processing point 30 of the workpiece. Since the effect of the present invention can be obtained by exciting the surface of the processing point with the ultraviolet beam, it is not always necessary to irradiate it with the ultrashort pulse beam.

本発明の活用例として、超短パルスレーザと紫外線光の照射で熱影響の無い精密加工が高速で実現できるので、従来フェムト秒レーザだけの照射による加工では、低速であることで加工コストが高価すぎて実用にならなかった応用分野でも、本発明により高速化が図れるので、ナノテクノロジ、マイクロマシン、半導体、超伝導セラミックス、機能セラミック、結晶性材料、誘電体、その他硬脆材料などの精密微細加工に適用できるようになる。各種レーザ加工、レーザ医用、情報処理、計測、バイオ科学、理化学、ディスプレイなどの分野に適用でき、高信頼レーザシステムとして工業分野への実用化を促進する上での効用が大きい。   As an application example of the present invention, precision processing without thermal influence can be realized at high speed by irradiation with an ultrashort pulse laser and ultraviolet light. Therefore, processing by irradiation with only a femtosecond laser has a low processing cost due to low speed. Even in application fields that have become too practical, high speeds can be achieved by the present invention, so precision microfabrication of nanotechnology, micromachines, semiconductors, superconducting ceramics, functional ceramics, crystalline materials, dielectrics, and other hard and brittle materials Can be applied to. It can be applied to various fields such as laser processing, laser medical use, information processing, measurement, bioscience, physics and chemistry, display, etc., and has a great effect in promoting practical application to the industrial field as a highly reliable laser system.

従来の紫外線によるアブレーション加工機構のエネルギー図。Energy diagram of conventional ablation mechanism using ultraviolet rays. 従来の多光子吸収アブレーション加工(フェムト秒加工)過程の機構のエネルギー図。The energy diagram of the mechanism of the conventional multiphoton absorption ablation processing (femtosecond processing). 紫外線照射によるセラミック等の軟化現象発生時のエネルギー図。The energy diagram at the time of softening phenomenon of ceramics etc. by ultraviolet irradiation. 紫外線と超短パルスレーザ集光ビームの同時吸収による紫外線励起と多光子吸収の本発明のエネルギー図。The energy diagram of the present invention for ultraviolet excitation and multiphoton absorption by simultaneous absorption of ultraviolet and ultrashort pulse laser focused beam. 予め照射した紫外線による励起状態の加工物に超短パルスレーザ集光ビーム照射し、多光子吸収による加工を施す本発明のエネルギー図。The energy diagram of this invention which irradiates the ultra-short pulse laser focused beam to the workpiece in the excitation state by the ultraviolet rays irradiated previously, and performs the process by multiphoton absorption. 予め照射した紫外線による禁止帯レベルの不純物レベルにトラップされた励起状態の加工物に超短パルスレーザ集光ビーム照射し、多光子吸収による加工を施す本発明のエネルギー図。FIG. 3 is an energy diagram of the present invention in which an ultra-short pulse laser focused beam is irradiated to a workpiece in an excited state trapped in a forbidden band level impurity level irradiated with ultraviolet rays in advance and processed by multiphoton absorption. 超短パルスレーザビームと紫外線を被加工物に同軸配置で照射する本発明の加工装置。The processing apparatus of the present invention for irradiating a workpiece with an ultrashort pulse laser beam and ultraviolet rays in a coaxial arrangement. 超短パルスレーザビームと紫外線を被加工物に非同軸配置で照射する本発明の加工装置。The processing apparatus of the present invention for irradiating a workpiece with an ultrashort pulse laser beam and ultraviolet rays in a non-coaxial arrangement.

符号の説明Explanation of symbols

1 ・・・・・ 真空準位
2 ・・・・・ 伝導帯
3 ・・・・・ バンドギャップ
4 ・・・・・ 価電子帯
5 ・・・・・ 電子
6 ・・・・・ 紫外線励起パス
8−1、8−2、8−3、8−4 ・・ 多光子吸収によるアブレーション、
9 ・・・・・ 光子(紫外線)
10−1、10−2 ・・・・・・・・ 超短パルスによる伝導帯の真空準位への電子励起(多光子吸収)
11−1、11−2 ・・・・・・・・ 超短パルスによる伝導帯の真空準位への電子励起
12 ・・・・・ 禁止帯レベルの不純物レベルにトラップされた電子
13−1、13−2 ・・・・・・・・ 超短パルスによる伝導帯の真空準位への電子励起
15 ・・・・・ 超短パルス(フェムト秒)レーザ発振器
16 ・・・・・ レーザービーム
17、18 ・・ コリメート光学系
19 ・・・・・ フェムト秒ミラー
22 ・・・・・ 紫外線レーザ発振器
24、25 ・・ コリメート光学系、
27 ・・・・・ ダイクロイックミラー
29 ・・・・・ 集光レンズ
30 ・・・・・ 集光点(加工点)
31 ・・・・・ 被加工物
32 ・・・・・ x、y、z軸駆動ステージ
DESCRIPTION OF SYMBOLS 1 ... Vacuum level 2 ... Conduction band 3 ... Band gap 4 ... Valence band 5 ... Electron 6 ... Ultraviolet excitation path 8-1, 8-2, 8-3, 8-4 .. Ablation by multiphoton absorption,
9 ・ ・ ・ ・ ・ Photon (UV)
10-1, 10-2 ... Electron excitation to the vacuum level of the conduction band by ultrashort pulses (multiphoton absorption)
11-1, 11-2... Electron excitation to the vacuum level of the conduction band by ultrashort pulses 12... Electron 13-1 trapped in the impurity level of the forbidden band level, 13-2... Electron excitation of the conduction band to the vacuum level by an ultrashort pulse 15... Ultrashort (femtosecond) laser oscillator 16. 18 .. Collimating optical system 19... Femtosecond mirror 22... Ultraviolet laser oscillators 24 and 25.
27 ... Dichroic mirror 29 ... Condensing lens 30 ... Condensing point (processing point)
31 ... Workpiece 32 ... x, y, z axis drive stage

Claims (10)

レーザ発振器から発振された超短パルスレーザ光を加工物の加工点に導光し集光させる光学系を備えた加工ヘッドと、前記加工点の近傍に照射するための紫外線光源とを有するレーザ加工装置。   Laser processing including a processing head having an optical system for guiding and condensing ultrashort pulse laser light oscillated from a laser oscillator to a processing point of a workpiece, and an ultraviolet light source for irradiating the vicinity of the processing point apparatus. 前記超短パルスレーザ光レーザ発振器はモードロック発振固体レーザである請求項1に記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein the ultrashort pulse laser beam laser oscillator is a mode-lock oscillation solid-state laser. 前記超短パルスレーザ光はチャープパルス増幅とパルス圧縮のモードロックパルス出力光である請求項1に記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein the ultrashort pulse laser light is chirped pulse amplification and pulse compression mode-locked pulse output light. 前記紫外線光源がレーザ発振器から放出された紫外線レーザまたは非コヒーレント光紫外線である請求項1ないし3のいずれかに記載のレーザ加工装置。   4. The laser processing apparatus according to claim 1, wherein the ultraviolet light source is an ultraviolet laser emitted from a laser oscillator or an incoherent ultraviolet ray. 前記加工物は半導体、セラミックス、ガラス、透明結晶のいずれかである請求項1ないし4のいずれかに記載のレーザ加工装置。   The laser processing apparatus according to claim 1, wherein the workpiece is any one of a semiconductor, ceramics, glass, and transparent crystal. 前記超短パルスレーザ光と紫外線光の照射タイミングにおいて、少なくとも紫外線光照射による加工物表面における影響が現れている期間に超短パルスレーザを照射する請求項1ないし5のいずれかに記載のレーザ加工装置。   6. The laser processing according to claim 1, wherein, at the irradiation timing of the ultrashort pulse laser beam and the ultraviolet light, the ultrashort pulse laser is irradiated at least during a period in which the influence of the ultraviolet light irradiation on the surface of the workpiece appears. apparatus. 前記超短パルスレーザ光を導光する光学素子は、集光点において超短パルスのパルス幅が導光路の波長分散を補償してパルス幅の拡大を小さく保つような光学素子を用いた請求項1ないし6のいずれかに記載のレーザ加工装置。   The optical element that guides the ultrashort pulse laser beam uses an optical element that keeps the expansion of the pulse width small by compensating the wavelength dispersion of the light guide through the pulse width of the ultrashort pulse at the condensing point. The laser processing apparatus according to any one of 1 to 6. 紫外線光を照射する物体の価電子帯電子をより高いレベルに励起する紫外線電子励起吸収過程と、超短パルスレーザ光を物体に照射する多光子の吸収過程とを同期的に生起したエネルギー吸収過程を含むレーザ加工方法。   Energy absorption process in which the ultraviolet electron excitation absorption process that excites the valence band electrons of the object irradiated with ultraviolet light to a higher level and the absorption process of multiphotons that irradiate the object with ultrashort pulse laser light occur synchronously A laser processing method including: 前記紫外線電子励起吸収過程の励起レベルは、伝導帯または禁止帯のトラップである請求項8に記載のレーザ加工方法。   The laser processing method according to claim 8, wherein an excitation level in the ultraviolet electron excitation absorption process is a conduction band or a forbidden band trap. 前記多光子の吸収過程の多光子を吸収するレベルの電子は、伝導帯または禁止帯のトラップレベルへ紫外線照射により励起された電子である請求項8または9に記載のレーザ加工方法。   10. The laser processing method according to claim 8, wherein the electrons of a level that absorbs the multiphotons in the absorption process of the multiphotons are electrons excited by ultraviolet irradiation to a trap level in a conduction band or a forbidden band.
JP2004122719A 2004-04-19 2004-04-19 Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method Pending JP2005305470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122719A JP2005305470A (en) 2004-04-19 2004-04-19 Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122719A JP2005305470A (en) 2004-04-19 2004-04-19 Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method

Publications (1)

Publication Number Publication Date
JP2005305470A true JP2005305470A (en) 2005-11-04

Family

ID=35434827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122719A Pending JP2005305470A (en) 2004-04-19 2004-04-19 Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method

Country Status (1)

Country Link
JP (1) JP2005305470A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100176A1 (en) * 2006-03-02 2007-09-07 Korea Research Institute Of Standards And Science Laser processing method and processing apparatus based on conventional laser-induced material changes
JP2008084858A (en) * 2006-09-28 2008-04-10 Poong San System Co Ltd Processing method of exhaust hole of display panel
JP2008084847A (en) * 2006-09-28 2008-04-10 Poong San System Co Ltd Exhaust hole processing device for display panel
KR101064352B1 (en) 2008-11-27 2011-09-14 한국표준과학연구원 Control of laser processing rate and processed depth profile based on photo-induced absoprtion process
JP2018114544A (en) * 2017-01-19 2018-07-26 ファナック株式会社 Laser processing method
KR20180104564A (en) * 2017-03-13 2018-09-21 가부시기가이샤 디스코 Laser machining method and laser machining apparatus
WO2019146653A1 (en) * 2018-01-29 2019-08-01 浜松ホトニクス株式会社 Processing device
CN112719628A (en) * 2020-12-18 2021-04-30 浙江泰仑电力集团有限责任公司 Complex-color laser foreign matter removing device and method based on foreign matter transparency
JP2022031952A (en) * 2017-04-12 2022-02-22 太陽誘電株式会社 Multilayer ceramic capacitor, method of manufacturing the same, and mounting substrate
CN114101942A (en) * 2021-11-29 2022-03-01 武汉锐科光纤激光技术股份有限公司 Method, device and apparatus for controlling cutting of material, storage medium and electronic apparatus
US11945173B2 (en) 2019-12-27 2024-04-02 Laser Systems Inc. Resin member machining method, resin member machining apparatus, and resin component manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795526B1 (en) * 2006-03-02 2008-01-16 한국표준과학연구원 Laser Processing Method and Processing Apparatus based on conventional laser-induced material changes
JP2009528170A (en) * 2006-03-02 2009-08-06 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Laser processing method and processing device through induction of material state transition
US20100032416A1 (en) * 2006-03-02 2010-02-11 Korea Research Institute Of Standards And Science Laser Processing Method and Processing Apparatus Based on Conventional Laser-Induced Material Changes
WO2007100176A1 (en) * 2006-03-02 2007-09-07 Korea Research Institute Of Standards And Science Laser processing method and processing apparatus based on conventional laser-induced material changes
JP2008084858A (en) * 2006-09-28 2008-04-10 Poong San System Co Ltd Processing method of exhaust hole of display panel
JP2008084847A (en) * 2006-09-28 2008-04-10 Poong San System Co Ltd Exhaust hole processing device for display panel
KR101064352B1 (en) 2008-11-27 2011-09-14 한국표준과학연구원 Control of laser processing rate and processed depth profile based on photo-induced absoprtion process
JP2018114544A (en) * 2017-01-19 2018-07-26 ファナック株式会社 Laser processing method
KR20180104564A (en) * 2017-03-13 2018-09-21 가부시기가이샤 디스코 Laser machining method and laser machining apparatus
KR102403533B1 (en) 2017-03-13 2022-05-27 가부시기가이샤 디스코 Laser machining method and laser machining apparatus
JP2022031952A (en) * 2017-04-12 2022-02-22 太陽誘電株式会社 Multilayer ceramic capacitor, method of manufacturing the same, and mounting substrate
JP2019130538A (en) * 2018-01-29 2019-08-08 浜松ホトニクス株式会社 Machining apparatus
KR20200112878A (en) * 2018-01-29 2020-10-05 하마마츠 포토닉스 가부시키가이샤 Processing device
CN111655420A (en) * 2018-01-29 2020-09-11 浜松光子学株式会社 Processing device
WO2019146653A1 (en) * 2018-01-29 2019-08-01 浜松ホトニクス株式会社 Processing device
JP7188886B2 (en) 2018-01-29 2022-12-13 浜松ホトニクス株式会社 processing equipment
TWI801490B (en) * 2018-01-29 2023-05-11 日商濱松赫德尼古斯股份有限公司 Processing device
KR102629438B1 (en) * 2018-01-29 2024-01-25 하마마츠 포토닉스 가부시키가이샤 processing equipment
US11945173B2 (en) 2019-12-27 2024-04-02 Laser Systems Inc. Resin member machining method, resin member machining apparatus, and resin component manufacturing method
CN112719628A (en) * 2020-12-18 2021-04-30 浙江泰仑电力集团有限责任公司 Complex-color laser foreign matter removing device and method based on foreign matter transparency
CN112719628B (en) * 2020-12-18 2023-08-29 浙江泰仑电力集团有限责任公司 Device and method for removing multi-color laser foreign matters based on transparency of foreign matters
CN114101942A (en) * 2021-11-29 2022-03-01 武汉锐科光纤激光技术股份有限公司 Method, device and apparatus for controlling cutting of material, storage medium and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5449665B2 (en) Laser processing method
JP4418282B2 (en) Laser processing method
JP4490883B2 (en) Laser processing apparatus and laser processing method
JP5054496B2 (en) Processing object cutting method
JP4478184B2 (en) Laser cleaving method and laser processing apparatus
JP5312761B2 (en) Cutting method
JP5105984B2 (en) Beam irradiation apparatus and laser annealing method
JP2014104484A (en) Laser processing apparatus
JP2008078236A (en) Laser machining method
JP7174352B2 (en) Optical processing device, optical processing method, and optical processing product production method
JP5322418B2 (en) Laser processing method and laser processing apparatus
JP4035981B2 (en) Circuit formation method using ultrashort pulse laser
JP2005305470A (en) Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method
KR20110139007A (en) Substrate dicing method by nano void array formation using femtosecond pulse lasers
KR101232008B1 (en) The depth of the modified cutting device through a combination of characteristics
JP4607537B2 (en) Laser processing method
JP2009023194A (en) Substrate partition method and laser irradiation apparatus
JP6103529B2 (en) Semiconductor material processing method and laser processing apparatus
JP6744624B2 (en) Method and apparatus for cutting tubular brittle member
KR101164418B1 (en) Substrate Dicing Method by Nonlinear Focal Shift using Femtosecond Pulse Lasers
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
JP3873098B2 (en) Laser processing method and apparatus
JP2006312185A (en) Working method and working apparatus using laser beams
WO2019156183A1 (en) Processing device, processing method, and transparent substrate
JP2005123329A (en) Method for dividing plate type substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117