WO2019156183A1 - Processing device, processing method, and transparent substrate - Google Patents
Processing device, processing method, and transparent substrate Download PDFInfo
- Publication number
- WO2019156183A1 WO2019156183A1 PCT/JP2019/004479 JP2019004479W WO2019156183A1 WO 2019156183 A1 WO2019156183 A1 WO 2019156183A1 JP 2019004479 W JP2019004479 W JP 2019004479W WO 2019156183 A1 WO2019156183 A1 WO 2019156183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- workpiece
- laser light
- laser beam
- electron density
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
Definitions
- the present invention relates to a technique for processing a workpiece using a laser.
- Patent Document 1 in order to cleave a workpiece, the workpiece is modified with a first laser beam, the second laser beam is irradiated to the modified portion, and thermal stress is applied to the workpiece.
- a technique for cleaving a workpiece by generating it is described.
- Patent Document 2 describes a technique for processing a workpiece using a first laser and a second laser.
- the amount of processing removal per irradiation of the first laser and the second laser is small, and it is necessary to irradiate 100 to 5000 times of the first laser in order to form a deep hole. Described in the examples. For this reason, processing time is long and processing efficiency is low.
- plasma is generated at each irradiation, and the holes on the surface of the workpiece are gradually enlarged by a plurality of irradiations. For this reason, the ratio of the depth of the hole to the diameter of the hole is small, and microfabrication is difficult. For this reason, highly efficient fine processing is difficult.
- the present invention has been made in view of the above problems.
- One of the main objects of the present invention is to provide a technology capable of highly efficient microfabrication without assuming material modification.
- a first laser, a second laser, and a condensing unit The first laser has a configuration of irradiating the workpiece with a first laser beam having a wavelength that transmits the workpiece through the condensing unit,
- the second laser has a configuration that irradiates the workpiece with a second laser beam having a wavelength that transmits the workpiece,
- the condensing unit has a configuration in which a high electron density region in which free electrons are excited is generated in the workpiece by condensing the first laser beam, Irradiation of the workpiece with the second laser light is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser light to immediately after the disappearance of the high electron density region.
- a processing device characterized in that the processing device is passed through a position.
- Item 3 The processing apparatus according to Item 1 or 2, wherein irradiation of the workpiece with the second laser light is performed so as to pass through an irradiation region of the first laser light.
- the light intensity of the first laser beam emitted from the first laser has a critical value for evaporating the workpiece and a critical value for modifying the workpiece in at least a part of the machining portion of the workpiece.
- the processing apparatus according to any one of items 1 to 4, wherein the processing apparatus is set to a value lower than both of the values.
- a processing method (1) Condensing a first laser beam having a wavelength that passes through the workpiece and irradiating the workpiece, thereby generating a high electron density region in which free electrons are excited in the workpiece. A step to do; (2) The high electron density at a timing from before the disappearance of the high electron density region generated by irradiation of the first laser light to the second laser light having a wavelength that transmits the workpiece, immediately after the disappearance. And a step of performing a process of removing a part of the workpiece by irradiating the workpiece so as to pass through a position of a region.
- a processing depth in the workpiece is controlled by controlling an irradiation time of the second laser beam. 10. The processing method according to 10.
- Fine processing by irradiating the second laser beam at a predetermined timing with respect to the position of the high electron density region generated by the irradiation of the first laser beam, without assuming the modification of the material, Fine processing can be performed with high efficiency.
- FIG. 1 is an explanatory diagram showing a schematic configuration of a processing apparatus according to the first embodiment of the present invention.
- FIG. 2 is an explanatory diagram for explaining a processing method using the apparatus of FIG.
- the figure (a) shows the state in the middle of processing, and the figure (b) shows the state of the workpiece after processing.
- FIG. 3 is a photograph showing a processing result in Experimental Example 1 of the first embodiment.
- FIG. 4 is a graph for explaining the irradiation timing of the laser light in Experimental Example 1.
- the horizontal axis represents time, and the vertical axis represents light intensity.
- FIG. 5 is a photograph showing a processing result in Comparative Example 1 of the first embodiment.
- FIG. 6 is a graph for explaining the irradiation timing of laser light in Experimental Example 2.
- FIG. 7 is a photograph showing an observation result of the high electron density region in Experimental Example 3.
- FIG. 8 is a photograph showing the processing results in Experimental Example 4.
- FIG. 9 is a photograph showing the processing results in Comparative Example 3.
- FIG. 9A shows the result of Comparative Example 3
- FIG. 9B shows the result of Experimental Example 4 for control.
- FIG. 10 is an explanatory diagram showing a schematic configuration of a processing apparatus according to the second embodiment of the present invention.
- the processing apparatus includes a first laser 10, a second laser 20, and an optical system 30 (see FIG. 1).
- the processing apparatus according to the present embodiment performs removal processing of the workpiece 100.
- the glass substrate is assumed as the workpiece 100, the present invention is not limited to this.
- the first laser 10 is configured to irradiate the workpiece 100 with the first laser light 11 having a wavelength that passes through the workpiece 100 via the optical system 30.
- a so-called short pulse laser is used as the first laser beam 11 of the present embodiment.
- a short pulse laser means a laser having a pulse width of less than 1 microsecond.
- the short pulse laser in this specification may be a laser with a pulse width on the order of picoseconds (10 ⁇ 12 s) or femtoseconds (10 ⁇ 15 s).
- the light intensity of the laser beam from the first laser 10 (the light intensity at the processing location of the workpiece 100) is a critical value for evaporating the workpiece and the workpiece at least at a part of the processing location of the workpiece 100. Is set to a value lower than both of the critical values for reforming. The significance of this critical value will be described later.
- the transparency of the first laser beam 11 with respect to the workpiece is 50% or more, more preferably 80% or more. This transparency is determined by the wavelength of the laser beam and the material of the workpiece. In addition, transparency is synonymous with the transmittance
- the second laser 20 has a configuration in which a workpiece is irradiated with a second laser beam 21 having a wavelength that passes through the workpiece 100.
- Irradiation of the workpiece 100 with the second laser beam 21 is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser beam 11 to immediately after the disappearance of the second electron beam region. This is performed so that the laser beam 21 passes. This irradiation timing will be described later.
- the wavelength of the second laser light 21 is set to the wavelength of the laser light absorbed in at least one of the high electron density region generated by the irradiation of the first laser and the region heated by the relaxation of free electrons. ing.
- the irradiation of the workpiece 100 with the second laser light 21 is performed so as to be coaxial with the first laser light 11 via the optical system 30 (more specifically, a dichroic mirror 32 described later). Thereby, in this embodiment, irradiation with the second laser light 21 is performed so as to pass through the irradiation region of the workpiece 100 with the first laser light 11.
- the second laser light 21 is a CW laser or a long pulse laser having a pulse width longer than that of the first laser light 11.
- the second laser 20 of the present embodiment has a higher output than the first laser 10.
- the transparency of the second laser light 21 with respect to the workpiece 100 is 50% or more, more preferably 80% or more.
- the optical system 30 includes a condensing unit 31 and a dichroic mirror 32.
- the first laser beam 11 from the first laser 10 is incident on the condenser 31 via the dichroic mirror 32.
- the condensing unit 31 condenses the first laser light 11 to generate a high electron density region in which free electrons are excited inside the workpiece 100 (that is, a region to be processed). Moreover, as the condensing part 31 of this example, the lens which can condense a laser beam is used.
- the second laser light 21 from the second laser 20 enters the dichroic mirror 32 and then enters the condensing unit 31 coaxially with the first laser light 11. Note that the first laser beam 11 and the second laser beam 21 do not have to be completely coaxial, and the irradiation regions of these laser beams need only overlap.
- the dichroic mirror 32 in the above example is used when the wavelengths of the first laser beam 11 and the second laser beam 21 are different.
- a polarization beam splitter can be used instead of the dichroic mirror 32.
- the first laser beam 11 passes through the dichroic mirror 32 and the second laser beam 21 is reflected by the dichroic mirror 32.
- the first laser beam 11 is reflected by the dichroic mirror 32 and the second laser beam is reflected.
- the workpiece 100 is irradiated with the first laser beam 11 from the first laser 10.
- the irradiated first laser beam 11 is condensed by the condensing unit 31 and enters the workpiece 100.
- a high electron density region 110 in which free electrons are excited can be generated in the workpiece 100 (FIG. 2A).
- the light intensity increases in the Rayleigh length region, and free electrons are excited.
- the first laser 10 is a short pulse laser, the region with high light intensity can be extended beyond the Rayleigh length. This phenomenon is known as filamentation.
- the first laser 10 as a short pulse laser, filamentation can be easily generated, and the length of the high electron density region can be increased (that is, deepened).
- the generated high electron density region usually disappears in a very short time (eg, nanosecond order or less).
- the pulse width of the short pulse laser that generates filamentation is preferably 1 fs to 1 ⁇ s, more preferably 1 fs to 100 ps, and even more preferably 10 fs to 10 ps.
- the light intensity of the laser light from the first laser 10 (light intensity when passing through the processing portion in the workpiece 100) is expressed as “at least a part of the processing portion of the workpiece 100”.
- the threshold value is set to a value lower than both the critical value for evaporating the workpiece and the critical value for modifying the workpiece.
- the pulse energy, pulse width, and the like of the first laser 10 are set so that the work piece is not evaporated or modified in the whole or most part of the work piece 100.
- the beam area (spot area) at the material position is set. For this reason, in this embodiment, a low-power laser can be used as the first laser 10, and there is an advantage that the cost of the apparatus can be kept low.
- the majority of the processing points refer to 60% or more of the depth of the hole by processing.
- the light intensity of the first laser 10 is preferably a value at which the depth of the high electron density region formed by irradiation is 70% or more of the depth of the hole by processing, more preferably 80% or more. % Or more is more preferable.
- the judgment as to whether the workpiece is not evaporated or modified in the whole or most of the processing portion of the workpiece 100 is not less than 1 second after the first laser beam irradiation and the second laser beam irradiation. This is possible by observing the machining location of the previous workpiece.
- the second laser light 21 is irradiated from the second laser 20 toward the workpiece 100.
- the irradiated second laser beam 21 is incident on the workpiece 100 coaxially with the first laser beam 11 via the condensing unit 31 (see FIG. 2A).
- irradiation of the workpiece 100 with the second laser light 21 is performed at a timing from before the disappearance of the high electron density region 110 generated by the irradiation of the first laser light to immediately after the disappearance. This is performed so that the light 21 passes through the position of the high electron density region 110.
- the irradiation timing of the first laser beam 11 and the second laser beam 21 for example, the following may be considered, but the present invention is not limited to these.
- the second laser beam 21 is irradiated first, and the first laser beam is irradiated so as to overlap the irradiation time.
- the irradiation of the first laser beam and the second laser beam is started simultaneously. First irradiation with the first laser light is performed, and irradiation with the second laser light is started until the high electron density region disappears or immediately after the disappearance.
- the irradiation timing of the second laser light 21 is high.
- a certain period or point in time during which the electron density region 110 exists is included. That is, the “timing” of the timing from before the disappearance of the high electron density region 110 to immediately after the disappearance is at least a certain period or time point from the generation of the high electron density region 110 to immediately after the disappearance.
- a period before and after the period from generation of the electron density region 110 to immediately after disappearance may be included.
- Irradiation of the workpiece 100 with the second laser light 21 is not limited to the period from before the disappearance of the high electron density region 110 generated by the irradiation of the first laser light to immediately after the disappearance.
- the second laser beam 21 may be performed so as to pass through the position of the high electron density region 110 at a timing including a part from before the disappearance of the high electron density region 110 generated by the above.
- the second laser 20 when a long pulse laser or a CW laser is used as the second laser 20, it is possible to turn on / off only the first laser beam 11 during the irradiation timing of the second laser beam 21. In the present embodiment, it is only necessary that the second laser beam 21 starts to be irradiated on the processing portion of the workpiece 100 at a timing until immediately after the disappearance of the high electron density region 110 generated by the irradiation of the first laser beam.
- the thermal influence means a state in which the work piece 100 has a high absorption rate for the first laser light.
- “immediately after the disappearance of the high electron density region” means, for example, within 10 ms, more preferably within 1 ms, further preferably within 100 ⁇ s, and even more preferably 10 ⁇ s after the disappearance of the high electron density region. The period within.
- “immediately after the disappearance of the high electron density region” is a period in which the temperature of the workpiece 100 is about 2000 ° C. or more after the disappearance of the high electron density region, for example, in the case of glass. is there.
- the irradiation of the second laser beam 21 is started after the irradiation of the first laser beam 11 is finished, the closer the irradiation timing of the both, and the shorter the rise time of the second laser beam, the more the relaxation occurs due to free electrons. It is considered that the processing using the thermal effect can be performed reliably.
- the specific irradiation timing of the laser light pulse can be experimentally determined according to the characteristics of the pulse waveform, the restrictions of the apparatus, and the like.
- the second laser light 21 that is originally transparent to the workpiece 100 that is, has a low absorption rate
- Absorbed and the workpiece 100 partially evaporates. Therefore, in this embodiment, removal processing in the high electron density region 110 can be performed.
- a state in which a hole (removal portion) 120 is formed in the workpiece 100 is shown in FIG.
- the high electron density region 110 formed in a fine shape using the first laser 10 which is a short pulse laser can be processed with the high power second laser 20.
- fine processing can be performed with high efficiency.
- the high electron density region 110 since free electrons are excited, it is considered that absorption occurs regardless of the wavelength of the second laser light 21. If the absorption efficiency is low at a specific wavelength, it is preferable not to use that wavelength. In addition, a wavelength with poor absorption efficiency can be determined by experiment.
- the absorptance of the workpiece 100 changes due to thermal effects due to the relaxation. Therefore, by setting the wavelength of the second laser beam 21 to a wavelength at which the absorption rate to the workpiece 100 increases, only the portion that has been thermally affected (that is, the portion where the high electron density region existed) is provided. Absorption can occur, and that part can be removed.
- the first laser 10 used in the present embodiment may be one that locally removes or modifies the workpiece 100, for example. Even in this case, according to the present embodiment, since the high electron density region 110 including the non-modified portion can be processed by the second laser 20, the processing efficiency can be improved.
- the modified portion that has not been removed by the second laser remains as a defect.
- a problem In particular, when a large (or deep) modified portion is formed by the first laser in order to improve the processing efficiency, this problem is expected to become apparent.
- the present embodiment since it is not premised on the modification of the workpiece, there is an advantage that a portion remaining on the workpiece as a defect can be reduced or ideally eliminated.
- a value obtained by dividing the depth of the processed hole by the maximum diameter on the incident side of the second laser light (hereinafter referred to as an aspect ratio) can be made larger than that of the prior art.
- the beam energy (spot area) of the first laser pulse energy, the pulse width, and the material position is set so that the work piece is not evaporated or modified in the whole or most part of the work piece.
- the length of the high electron density region can be lengthened (that is, deepened), so that the removal processing in the high electron density region can be performed at least once by irradiation with the second laser.
- the processing efficiency of laser irradiation for removal processing corresponding to the second laser of the present embodiment is lower than the processing efficiency of the present embodiment, multiple irradiations are necessary.
- plasma is generated each time irradiation is performed, and the holes on the surface of the workpiece are gradually enlarged, and the aspect ratio is reduced.
- the maximum diameter of the hole is 25 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less, and an aspect ratio of 3.4 or more is possible.
- the aspect ratio can be 5 or more, 10 or more, or 15 or more.
- laser irradiation is performed several hundred to several thousand times.
- a hole having a depth of 300 ⁇ m can be processed.
- plasma is generated around the opening at every shot, the opening is exposed to 5000 times of plasma generation.
- the opening diameter is in principle 30 ⁇ m or more or 50 ⁇ m or more, and fine processing cannot be performed.
- the plasma causes damage around the hole.
- a high density electron region is formed in the whole or most of the depth to be removed in one shot, and the high density electron region is removed by the second laser.
- the depth removed at the perimeter is orders of magnitude greater.
- the number of shots can be significantly reduced, and the phenomenon that the maximum diameter of the opening is widened by plasma can be significantly suppressed.
- the transparent substrate after the hole processing by the laser according to the present embodiment has a hole aspect ratio of 3.4 or more without being subjected to the annealing process and the etching process, and is the maximum of the laser light incident side of the hole.
- the diameter is 25 ⁇ m or less, and the surface of the hole has a trace of melting by the laser.
- the material of the transparent substrate is, for example, transparent glass, plastic, or ceramics.
- the thickness of the transparent substrate is, for example, in the range of 0.05 to 20 mm.
- the transparency of the transparent substrate with respect to the wavelength of the laser beam is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
- the state where the annealing process and the etching process have not been performed are an annealing process for removing distortion remaining in the workpiece, a trace of melting of the hole surface by the laser, This refers to a state where the etching process for removing traces of sublimation is not performed.
- the melting trace is a trace of melting due to the heat of the laser remaining on the processed surface of the workpiece, and is different from a trace of sublimation due to the heat of the laser.
- the trace of melting has a high surface smoothness, which is a so-called fire-making surface.
- traces due to sublimation have low smoothness.
- a transparent substrate as an intermediate workpiece is used as an embodiment in order to distinguish it from conventional laser processing.
- the residual stress around the hole in the transparent substrate of the present embodiment does not need to be irradiated with a plurality of laser beams from the laser corresponding to the second laser.
- the residual stress is about half that of the conventional laser processing method.
- the transparent substrate is a brittle material such as glass, the residual stress on the tension side around the hole should be low in order not to damage the substrate.
- the aspect ratio of the hole of this embodiment is 3.4 or more, preferably 5 or more, more preferably 10 or more, and further preferably 15 or more. Further, the maximum diameter of the laser light incident side of the hole of this embodiment is 25 ⁇ m or less, preferably 20 ⁇ m, and more preferably 15 ⁇ m or less.
- Example 1 The workpiece was processed using the above-described apparatus under the following conditions.
- glass AGC Co., Ltd., non-alkali glass AN100
- the processing time is the sum of the second laser light irradiation time t 1 before the first laser light irradiation and the second laser light irradiation time t 2 after the first laser light irradiation.
- t 1 0.1 ms
- t 2 0.1 ms.
- Example 2 The workpiece was processed using the above-described apparatus under the following conditions. Here, synthetic quartz (pure SiO 2 ) was used as the workpiece.
- Example 3 Next, as Experimental Example 3, the observation results of the high density electron region are shown in FIGS.
- the experimental conditions in Experimental Example 3 are the same as in Experimental Example 1.
- 7A to 7C schematically show the boundary between the lower workpiece region (glass) and the upper air region.
- an elongated filamentation (high electron density region) F can be observed inside the workpiece 100.
- symbol S has shown the shock wave produced by laser beam irradiation.
- the filamentation F has already disappeared 1 ms after the irradiation with the first laser beam (FIG. 7C). Then, the hole formed by the second laser light being absorbed by the filamentation F can be observed.
- FIGS. 8A to 8D show the relationship between the irradiation time of the second laser beam and the processing result of the workpiece.
- the experimental conditions in Experimental Example 4 are the same as in Experimental Example 1.
- the irradiation time of the second laser light in this experimental example 4 is set as follows.
- the processing depth can be controlled by controlling the irradiation time of the second laser light.
- the number of pulses of the first laser light is 1 (see FIG. 4). That is, in this embodiment, the processing depth can be increased by extending the irradiation time of the second laser light even after the disappearance of the high electron density region (filamentation) caused by the irradiation of the first laser light. it can.
- the reason for this is considered that when the second laser beam is absorbed in the high electron density region, the absorption wavelength of the workpiece changes due to the thermal effect thereof, and the absorption of the second laser beam is sustained. .
- the maximum diameter of the surface hole was 19.0 ⁇ m
- the depth of the hole was 128.8 ⁇ m
- the aspect ratio was 6.8.
- the maximum diameter of the surface hole was 19.2 ⁇ m
- the depth of the hole was 164.8 ⁇ m
- the aspect ratio was 8.6.
- the maximum diameter of the surface hole was 19.6 ⁇ m
- the depth of the hole was 207.4 ⁇ m
- the aspect ratio was 10.6.
- the maximum diameter of the hole on the surface was 18.8 ⁇ m
- the depth of the hole was 322.4 ⁇ m
- the aspect ratio was 17.1.
- Comparative Example 3 For comparison with Experimental Example 4, the workpiece was processed under the same conditions as Comparative Example 1 using only a short pulse laser. However, the processing time is extended by increasing the number of pulses.
- Comparative Example 3 The result of Comparative Example 3 is shown in FIG. As can be seen from the results of 500 ms and 1000 ms, the processing depth is saturated. This saturation is assumed to have occurred between 200 ms and 500 ms. One possible cause of such saturation is that the workpiece is transparent to the laser beam, so that the laser beam leaks to the side. 9A, the maximum diameter of the surface hole was 32.8 ⁇ m, the hole depth was 181.6 ⁇ m, and the aspect ratio was 5.5.
- FIG. 9 (b) is attached for reference and is the same photo as FIG. 8 (d).
- a spatial phase modulator (hereinafter abbreviated as “SLM”) 33 is disposed on the optical path of the first laser light 11, and an SLM 34 is disposed on the optical path of the second laser light 21.
- the mirror 35 a is configured to send the first laser light 11 to the SLM 33, and the mirror 35 b is configured to send the first laser light 11 phase-modulated by the SLM 33 toward the workpiece 100.
- the mirror 36 a is configured to send the second laser light 21 to the SLM 34, and the mirror 36 b is configured to send the second laser light 21 phase-modulated by the SLM 34 toward the workpiece 100.
- the beam shape is changed to a desired shape (that is, an arbitrary shape).
- a desired shape that is, an arbitrary shape.
- the maximum is 1000 holes / second.
- 100 holes can be formed in 1 ms, so that 100,000 holes / second can be achieved. This is a level that is difficult to reach with the prior art.
- the first laser beam 11 and the second laser beam 21 are irradiated from the same surface of the workpiece 100.
- the second laser beam 21 can also be incident on the workpiece 100 from the side opposite to the first laser beam 11 (for example, from the lower surface side of the workpiece in FIG. 1). In this way, the risk of the laser light 21 being absorbed by the vaporized gas or the workpiece in the plasma state is reduced, so an improvement in machining efficiency can be expected.
- a semiconductor element such as a silicon semiconductor or a semiconductor substrate can be used as the workpiece.
- a semiconductor element such as a silicon semiconductor or a semiconductor substrate
- the hole whose upper surface is opened is formed, but a hole (cavity) whose periphery is closed can also be formed.
- the processing location can be selected by controlling the position where the high electron density region is formed. By using a laser with a wavelength that is transparent to the workpiece, it is possible to process any location within the workpiece. When forming the cavity, it is considered that the evaporated workpiece adheres to the inner surface of the cavity.
- groove processing can also be performed by appropriately shifting (that is, scanning) the irradiation position of the first laser.
- the means for changing the laser irradiation position is not limited to moving the workpiece side, and may be a means for changing the optical axis of the laser beam.
- a mechanism for scanning laser light using an f ⁇ lens can be used.
- the first laser beam is preferably a burst shot.
- the burst shot is an irradiation form in which a plurality of pulses are irradiated within a short time.
- the number of pulses constituting the burst shot is preferably about 2 to 10, but may be 10 or more.
- the pulse energies of the plurality of pulses may be the same or different.
- the time from the first pulse to the last pulse constituting the burst shot is preferably within 1 ns.
- Non-Patent Document 1 describes that plasma is generated after several ns to several tens of ns by pulse laser irradiation and takes several thousand ns until it disappears.
- the subsequent pulse laser is irradiated during the generation of the plasma, most of the energy is absorbed by the plasma, so that the intended effect cannot be exhibited. Therefore, when the first laser irradiation is a burst shot in this embodiment, the plurality of pulse groups are preferably performed within a time of 1 ns.
- Modification 2 In the first embodiment and the second embodiment, irradiation of the workpiece with the first laser and the second laser is performed from one side.
- the present invention is not limited to this example. You may irradiate 1 laser and 2nd laser, and process a through-hole.
- the hole may be processed by irradiating the first laser beam from the surface of the workpiece and irradiating the second laser beam from the back surface facing the surface.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Laser Beam Processing (AREA)
Abstract
[Problem] A technique is provided allowing fine processing at high efficiency without requiring reforming of a material. [Solution] A first laser 10 irradiates a processing object 100 with a first laser light 11 having a wavelength that passes through the processing object 100, via a light-focusing unit 31. A second laser 20 irradiates the processing object 100 with a second laser light having a wavelength that passes through the processing object 100. By focusing the first laser light 11, the light-focusing unit 31 generates a high-electron-density region in which free electrons are excited within the processing object 100. Irradiation of the processing object 100 with the light of the second laser 20 is performed so as to pass through the position of the high-electron-density region during the period from before the disappearance of the high-electron-density region generated by the radiation of the first laser light 11, until immediately after the disappearance.
Description
本発明は、レーザを用いて被加工物を加工する技術に関するものである。
The present invention relates to a technique for processing a workpiece using a laser.
従来から、被加工物に吸収される波長をもつ高パワーの連続波レーザを用いて被加工物を除去加工する技術が知られている。この技術によれば、高能率で被加工物を加工できる。しかしながら、この技術には、微細加工は難しいという問題があった。
Conventionally, a technique for removing a workpiece using a high-power continuous wave laser having a wavelength absorbed by the workpiece is known. According to this technique, a workpiece can be processed with high efficiency. However, this technique has a problem that microfabrication is difficult.
一方、超短パルスレーザを被加工物に照射して被加工物を除去加工する技術も知られている。この技術によれば、微細加工を行うことができる。しかしながら、加工効率が低いという問題があった。
On the other hand, a technique for removing a workpiece by irradiating the workpiece with an ultrashort pulse laser is also known. According to this technique, fine processing can be performed. However, there is a problem that the processing efficiency is low.
また、特許文献1には、被加工物の割断のために、第1レーザ光で被加工物を改質し、第2レーザ光を改質部分に照射して、被加工物に熱応力を生じさせることによって、被加工物を割断する技術が記載されている。
Further, in Patent Document 1, in order to cleave a workpiece, the workpiece is modified with a first laser beam, the second laser beam is irradiated to the modified portion, and thermal stress is applied to the workpiece. A technique for cleaving a workpiece by generating it is described.
しかしながら、この技術では、割断に必要な深さまで被加工物を改質するために、高出力の第1レーザ光で被加工物を照射する必要があり、レーザ装置が高コストとなってしまう。また、改質しにくい材料、例えば純粋なSiO2ガラスの場合は、加工効率が悪いという問題もある。さらに、この技術では、熱応力を利用した割断のための非加工物の改質を目的としてレーザ光を照射するが、被加工物を部分的に除去する目的でレーザ光を照射しない。
However, in this technique, in order to modify the workpiece to a depth necessary for cleaving, it is necessary to irradiate the workpiece with a high-power first laser beam, which increases the cost of the laser apparatus. Further, in the case of a material that is difficult to modify, for example, pure SiO 2 glass, there is a problem that processing efficiency is poor. Further, in this technique, laser light is irradiated for the purpose of modifying a non-workpiece for cutting using thermal stress, but laser light is not irradiated for the purpose of partially removing the work piece.
さらに、特許文献2には、第1レーザと第2レーザを利用して、被加工物を加工する技術が記載されている。
Further, Patent Document 2 describes a technique for processing a workpiece using a first laser and a second laser.
しかしながら、この技術では、第1レーザおよび第2レーザの照射1回あたりの加工除去量が少なく、深い穴を形成するためには100~5000回の第1レーザの照射が必要となることが、実施例に記述されている。このため、加工時間が長く、加工効率が低い。また、照射のたびにプラズマが発生し、複数回の照射により徐々に被加工物の表面の穴が拡大する。このため、穴の径に対する穴の深さの比は小さくなり、微細加工が難しい。このため高効率の微細加工が難しい。
However, with this technique, the amount of processing removal per irradiation of the first laser and the second laser is small, and it is necessary to irradiate 100 to 5000 times of the first laser in order to form a deep hole. Described in the examples. For this reason, processing time is long and processing efficiency is low. In addition, plasma is generated at each irradiation, and the holes on the surface of the workpiece are gradually enlarged by a plurality of irradiations. For this reason, the ratio of the depth of the hole to the diameter of the hole is small, and microfabrication is difficult. For this reason, highly efficient fine processing is difficult.
本発明は、上記の課題に鑑みてなされたものである。本発明の主な目的の一つは、材料の改質を前提とせずに、高効率の微細加工が可能な技術を提供することである。
The present invention has been made in view of the above problems. One of the main objects of the present invention is to provide a technology capable of highly efficient microfabrication without assuming material modification.
上記の課題を解決する手段は、以下の項目のように記載できる。
The means for solving the above problems can be described as follows.
(項目1)
第1レーザと、第2レーザと、集光部を備えており、
前記第1レーザは、被加工物を透過する波長の第1レーザ光を、前記集光部を介して前記被加工物に照射する構成を有し、
前記第2レーザは、前記被加工物を透過する波長の第2レーザ光を、前記被加工物に照射する構成を有し、
前記集光部は、前記第1レーザ光を集光することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成する構成を有し、
前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように行われることを特徴とする
加工装置。 (Item 1)
A first laser, a second laser, and a condensing unit;
The first laser has a configuration of irradiating the workpiece with a first laser beam having a wavelength that transmits the workpiece through the condensing unit,
The second laser has a configuration that irradiates the workpiece with a second laser beam having a wavelength that transmits the workpiece,
The condensing unit has a configuration in which a high electron density region in which free electrons are excited is generated in the workpiece by condensing the first laser beam,
Irradiation of the workpiece with the second laser light is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser light to immediately after the disappearance of the high electron density region. A processing device characterized in that the processing device is passed through a position.
第1レーザと、第2レーザと、集光部を備えており、
前記第1レーザは、被加工物を透過する波長の第1レーザ光を、前記集光部を介して前記被加工物に照射する構成を有し、
前記第2レーザは、前記被加工物を透過する波長の第2レーザ光を、前記被加工物に照射する構成を有し、
前記集光部は、前記第1レーザ光を集光することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成する構成を有し、
前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように行われることを特徴とする
加工装置。 (Item 1)
A first laser, a second laser, and a condensing unit;
The first laser has a configuration of irradiating the workpiece with a first laser beam having a wavelength that transmits the workpiece through the condensing unit,
The second laser has a configuration that irradiates the workpiece with a second laser beam having a wavelength that transmits the workpiece,
The condensing unit has a configuration in which a high electron density region in which free electrons are excited is generated in the workpiece by condensing the first laser beam,
Irradiation of the workpiece with the second laser light is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser light to immediately after the disappearance of the high electron density region. A processing device characterized in that the processing device is passed through a position.
(項目2)
前記第2レーザ光の波長は、前記高電子密度領域、及び、前記自由電子の緩和により加熱された領域のうち、少なくとも一方において吸収される波長に設定されている
項目1に記載の加工装置。 (Item 2)
The processing apparatus according to item 1, wherein the wavelength of the second laser light is set to a wavelength that is absorbed in at least one of the high electron density region and a region heated by relaxation of the free electrons.
前記第2レーザ光の波長は、前記高電子密度領域、及び、前記自由電子の緩和により加熱された領域のうち、少なくとも一方において吸収される波長に設定されている
項目1に記載の加工装置。 (Item 2)
The processing apparatus according to item 1, wherein the wavelength of the second laser light is set to a wavelength that is absorbed in at least one of the high electron density region and a region heated by relaxation of the free electrons.
(項目3)
前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光による照射領域を通過するように行われることを特徴とする
項目1又は2に記載の加工装置。 (Item 3)
Item 3. The processing apparatus according to Item 1 or 2, wherein irradiation of the workpiece with the second laser light is performed so as to pass through an irradiation region of the first laser light.
前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光による照射領域を通過するように行われることを特徴とする
項目1又は2に記載の加工装置。 (Item 3)
Item 3. The processing apparatus according to Item 1 or 2, wherein irradiation of the workpiece with the second laser light is performed so as to pass through an irradiation region of the first laser light.
(項目4)
前記第1レーザは、短パルスレーザであり、前記第2レーザは、CWレーザ、又は、前記第1レーザよりも長いパルス幅を持つ長パルスレーザであることを特徴とする
項目1乃至3のいずれか1項に記載の加工装置。 (Item 4)
Any one of Items 1 to 3, wherein the first laser is a short pulse laser, and the second laser is a CW laser or a long pulse laser having a longer pulse width than the first laser. The processing apparatus according to claim 1.
前記第1レーザは、短パルスレーザであり、前記第2レーザは、CWレーザ、又は、前記第1レーザよりも長いパルス幅を持つ長パルスレーザであることを特徴とする
項目1乃至3のいずれか1項に記載の加工装置。 (Item 4)
Any one of Items 1 to 3, wherein the first laser is a short pulse laser, and the second laser is a CW laser or a long pulse laser having a longer pulse width than the first laser. The processing apparatus according to claim 1.
(項目5)
前記第1レーザから照射される前記第1レーザ光の光強度は、前記被加工物の加工個所の少なくとも一部において、前記被加工物を蒸発させる臨界値及び前記被加工物を改質させる臨界値の両方よりも低い値に設定されている
項目1乃至4のいずれか1項に記載の加工装置。 (Item 5)
The light intensity of the first laser beam emitted from the first laser has a critical value for evaporating the workpiece and a critical value for modifying the workpiece in at least a part of the machining portion of the workpiece. The processing apparatus according to any one of items 1 to 4, wherein the processing apparatus is set to a value lower than both of the values.
前記第1レーザから照射される前記第1レーザ光の光強度は、前記被加工物の加工個所の少なくとも一部において、前記被加工物を蒸発させる臨界値及び前記被加工物を改質させる臨界値の両方よりも低い値に設定されている
項目1乃至4のいずれか1項に記載の加工装置。 (Item 5)
The light intensity of the first laser beam emitted from the first laser has a critical value for evaporating the workpiece and a critical value for modifying the workpiece in at least a part of the machining portion of the workpiece. The processing apparatus according to any one of items 1 to 4, wherein the processing apparatus is set to a value lower than both of the values.
(項目6)
前記第2レーザは、前記第1レーザよりも高出力であることを特徴とする
項目1乃至5のいずれか1項に記載の加工装置。 (Item 6)
The processing apparatus according to claim 1, wherein the second laser has a higher output than the first laser.
前記第2レーザは、前記第1レーザよりも高出力であることを特徴とする
項目1乃至5のいずれか1項に記載の加工装置。 (Item 6)
The processing apparatus according to claim 1, wherein the second laser has a higher output than the first laser.
(項目7)
前記被加工物は、ガラス基板又は半導体基板であることを特徴とする
項目1乃至6のいずれか1項に記載の加工装置。 (Item 7)
The processing apparatus according to any one of items 1 to 6, wherein the workpiece is a glass substrate or a semiconductor substrate.
前記被加工物は、ガラス基板又は半導体基板であることを特徴とする
項目1乃至6のいずれか1項に記載の加工装置。 (Item 7)
The processing apparatus according to any one of items 1 to 6, wherein the workpiece is a glass substrate or a semiconductor substrate.
(項目8)
前記第2レーザ光は、前記被加工物に関して前記第1レーザ光と反対側から、前記被加工物に入射されることを特徴とする
項目1乃至7のいずれか1項に記載の加工装置。 (Item 8)
The processing apparatus according to any one of items 1 to 7, wherein the second laser light is incident on the workpiece from a side opposite to the first laser light with respect to the workpiece.
前記第2レーザ光は、前記被加工物に関して前記第1レーザ光と反対側から、前記被加工物に入射されることを特徴とする
項目1乃至7のいずれか1項に記載の加工装置。 (Item 8)
The processing apparatus according to any one of items 1 to 7, wherein the second laser light is incident on the workpiece from a side opposite to the first laser light with respect to the workpiece.
(項目9)
前記第1レーザ光及び前記第2レーザ光の、前記被加工物に対する透明度は、それぞれ50%以上であることを特徴とする
項目1乃至8のいずれ1項に記載の加工装置。 (Item 9)
Item 9. The processing apparatus according to any one of Items 1 to 8, wherein transparency of the first laser beam and the second laser beam with respect to the workpiece is 50% or more.
前記第1レーザ光及び前記第2レーザ光の、前記被加工物に対する透明度は、それぞれ50%以上であることを特徴とする
項目1乃至8のいずれ1項に記載の加工装置。 (Item 9)
Item 9. The processing apparatus according to any one of Items 1 to 8, wherein transparency of the first laser beam and the second laser beam with respect to the workpiece is 50% or more.
(項目10)
加工方法であって、
(1)被加工物を透過する波長の第1レーザ光を集光して、前記被加工物に照射することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成するステップと;
(2)前記被加工物を透過する波長の第2レーザ光を、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように前記被加工物に照射することにより、前記被加工物の一部を除去する加工を行うステップとを備えることを特徴とする、加工方法。 (Item 10)
A processing method,
(1) Condensing a first laser beam having a wavelength that passes through the workpiece and irradiating the workpiece, thereby generating a high electron density region in which free electrons are excited in the workpiece. A step to do;
(2) The high electron density at a timing from before the disappearance of the high electron density region generated by irradiation of the first laser light to the second laser light having a wavelength that transmits the workpiece, immediately after the disappearance. And a step of performing a process of removing a part of the workpiece by irradiating the workpiece so as to pass through a position of a region.
加工方法であって、
(1)被加工物を透過する波長の第1レーザ光を集光して、前記被加工物に照射することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成するステップと;
(2)前記被加工物を透過する波長の第2レーザ光を、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように前記被加工物に照射することにより、前記被加工物の一部を除去する加工を行うステップとを備えることを特徴とする、加工方法。 (Item 10)
A processing method,
(1) Condensing a first laser beam having a wavelength that passes through the workpiece and irradiating the workpiece, thereby generating a high electron density region in which free electrons are excited in the workpiece. A step to do;
(2) The high electron density at a timing from before the disappearance of the high electron density region generated by irradiation of the first laser light to the second laser light having a wavelength that transmits the workpiece, immediately after the disappearance. And a step of performing a process of removing a part of the workpiece by irradiating the workpiece so as to pass through a position of a region.
(項目11)
前記被加工物の一部を除去する加工を行うステップ(2)において、前記第2レーザ光の照射時間を制御することにより、前記被加工物における加工深さを制御することを特徴とする
項目10に記載の加工方法。 (Item 11)
In the step (2) of performing a process of removing a part of the workpiece, a processing depth in the workpiece is controlled by controlling an irradiation time of the second laser beam. 10. The processing method according to 10.
前記被加工物の一部を除去する加工を行うステップ(2)において、前記第2レーザ光の照射時間を制御することにより、前記被加工物における加工深さを制御することを特徴とする
項目10に記載の加工方法。 (Item 11)
In the step (2) of performing a process of removing a part of the workpiece, a processing depth in the workpiece is controlled by controlling an irradiation time of the second laser beam. 10. The processing method according to 10.
(項目12)
レーザによる穴加工後の透明な基板であって、
アニール工程及びエッチング工程を経ない状態で、
前記レーザによる穴の深さを該レーザの光の入射側の最大径で割り算した値は3.4以上であり、
前記穴の前記レーザの光の入射側の最大径は25μm以下であり、
前記穴の表面には、前記レーザによる溶融の痕跡がある
透明な基板。 (Item 12)
A transparent substrate after drilling with a laser,
Without going through the annealing process and etching process,
A value obtained by dividing the depth of the hole by the laser by the maximum diameter on the incident side of the laser beam is 3.4 or more,
The maximum diameter of the laser light incident side of the hole is 25 μm or less,
There is a trace of melting by the laser on the surface of the hole.
レーザによる穴加工後の透明な基板であって、
アニール工程及びエッチング工程を経ない状態で、
前記レーザによる穴の深さを該レーザの光の入射側の最大径で割り算した値は3.4以上であり、
前記穴の前記レーザの光の入射側の最大径は25μm以下であり、
前記穴の表面には、前記レーザによる溶融の痕跡がある
透明な基板。 (Item 12)
A transparent substrate after drilling with a laser,
Without going through the annealing process and etching process,
A value obtained by dividing the depth of the hole by the laser by the maximum diameter on the incident side of the laser beam is 3.4 or more,
The maximum diameter of the laser light incident side of the hole is 25 μm or less,
There is a trace of melting by the laser on the surface of the hole.
本発明によれば、第1レーザ光の照射によって生成された高電子密度領域の位置に対して、所定のタイミングで第2レーザ光を照射することにより、材料の改質を前提とせずに、高効率で微細加工を行うことができる。
According to the present invention, by irradiating the second laser beam at a predetermined timing with respect to the position of the high electron density region generated by the irradiation of the first laser beam, without assuming the modification of the material, Fine processing can be performed with high efficiency.
以下、本発明の第1実施形態に係る加工装置を、添付の図面を参照しながら説明する。
Hereinafter, a processing apparatus according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
(第1実施形態の構成)
本実施形態の加工装置は、第1レーザ10と、第2レーザ20と、光学系30とから構成されている(図1参照)。本実施形態の加工装置は、被加工物100の除去加工を行う。ここで、被加工物100としては、ガラス基板を想定するが、本発明はこれに限定されない。 (Configuration of the first embodiment)
The processing apparatus according to this embodiment includes afirst laser 10, a second laser 20, and an optical system 30 (see FIG. 1). The processing apparatus according to the present embodiment performs removal processing of the workpiece 100. Here, although the glass substrate is assumed as the workpiece 100, the present invention is not limited to this.
本実施形態の加工装置は、第1レーザ10と、第2レーザ20と、光学系30とから構成されている(図1参照)。本実施形態の加工装置は、被加工物100の除去加工を行う。ここで、被加工物100としては、ガラス基板を想定するが、本発明はこれに限定されない。 (Configuration of the first embodiment)
The processing apparatus according to this embodiment includes a
(第1レーザ)
第1レーザ10は、被加工物100を透過する波長の第1レーザ光11を、光学系30を介して被加工物100に照射する構成を有する。 (First laser)
Thefirst laser 10 is configured to irradiate the workpiece 100 with the first laser light 11 having a wavelength that passes through the workpiece 100 via the optical system 30.
第1レーザ10は、被加工物100を透過する波長の第1レーザ光11を、光学系30を介して被加工物100に照射する構成を有する。 (First laser)
The
本実施形態の第1レーザ光11として、いわゆる短パルスレーザが用いられている。短パルスレーザとは、この明細書では、1マイクロ秒未満のパルス幅を持つレーザをいうものとする。この明細書における短パルスレーザは、ピコ秒(10-12s)又はフェムト秒(10-15s)のオーダのパルス幅を持つレーザであってもよい。
A so-called short pulse laser is used as the first laser beam 11 of the present embodiment. In this specification, a short pulse laser means a laser having a pulse width of less than 1 microsecond. The short pulse laser in this specification may be a laser with a pulse width on the order of picoseconds (10 −12 s) or femtoseconds (10 −15 s).
第1レーザ10からのレーザ光の光強度(被加工物100の加工個所における光強度)は、被加工物100の加工個所の少なくとも一部において、被加工物を蒸発させる臨界値及び被加工物を改質させる臨界値の両方よりも低い値に設定されている。この臨界値の意義については後述する。
The light intensity of the laser beam from the first laser 10 (the light intensity at the processing location of the workpiece 100) is a critical value for evaporating the workpiece and the workpiece at least at a part of the processing location of the workpiece 100. Is set to a value lower than both of the critical values for reforming. The significance of this critical value will be described later.
第1レーザ光11の、被加工物に対する透明度は、50%以上、より好ましくは80%以上である。この透明度は、レーザ光の波長と被加工物の材質により決定される。なお、透明度とは、対象とするレーザ光に対する透過率と同義であり、以下同様である。
The transparency of the first laser beam 11 with respect to the workpiece is 50% or more, more preferably 80% or more. This transparency is determined by the wavelength of the laser beam and the material of the workpiece. In addition, transparency is synonymous with the transmittance | permeability with respect to the laser beam made into object, and it is the same below.
(第2レーザ)
第2レーザ20は、被加工物100を透過する波長の第2レーザ光21を、被加工物に照射する構成を有する。 (Second laser)
Thesecond laser 20 has a configuration in which a workpiece is irradiated with a second laser beam 21 having a wavelength that passes through the workpiece 100.
第2レーザ20は、被加工物100を透過する波長の第2レーザ光21を、被加工物に照射する構成を有する。 (Second laser)
The
第2レーザ光21の、被加工物100への照射は、第1レーザ光11の照射により生成した高電子密度領域の消失前から消失直後までの間のタイミングで、高電子密度領域を第2レーザ光21が通過するように行われる。この照射タイミングについては後述する。
Irradiation of the workpiece 100 with the second laser beam 21 is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser beam 11 to immediately after the disappearance of the second electron beam region. This is performed so that the laser beam 21 passes. This irradiation timing will be described later.
第2レーザ光21の波長は、第1レーザの照射により生成された高電子密度領域、及び、自由電子の緩和により加熱された領域のうち、少なくとも一方において吸収されるレーザ光の波長に設定されている。
The wavelength of the second laser light 21 is set to the wavelength of the laser light absorbed in at least one of the high electron density region generated by the irradiation of the first laser and the region heated by the relaxation of free electrons. ing.
第2レーザ光21の、被加工物100への照射は、光学系30(より具体的には後述のダイクロイックミラー32)を介して、第1レーザ光11と同軸となるように行われる。これにより、この実施形態では、第1レーザ光11による被加工物100での照射領域を通過するように、第2レーザ光21による照射が行われる。
The irradiation of the workpiece 100 with the second laser light 21 is performed so as to be coaxial with the first laser light 11 via the optical system 30 (more specifically, a dichroic mirror 32 described later). Thereby, in this embodiment, irradiation with the second laser light 21 is performed so as to pass through the irradiation region of the workpiece 100 with the first laser light 11.
第2レーザ光21は、CWレーザ、又は、第1レーザ光11よりも長いパルス幅を持つ長パルスレーザとされている。また、本実施形態の第2レーザ20は、第1レーザ10よりも高出力とする。
The second laser light 21 is a CW laser or a long pulse laser having a pulse width longer than that of the first laser light 11. In addition, the second laser 20 of the present embodiment has a higher output than the first laser 10.
第2レーザ光21の、被加工物100に対する透明度は、50%以上、より好ましくは80%以上である。
The transparency of the second laser light 21 with respect to the workpiece 100 is 50% or more, more preferably 80% or more.
(光学系)
光学系30は、集光部31と、ダイクロイックミラー32とを備えている。 (Optical system)
Theoptical system 30 includes a condensing unit 31 and a dichroic mirror 32.
光学系30は、集光部31と、ダイクロイックミラー32とを備えている。 (Optical system)
The
第1レーザ10からの第1レーザ光11は、ダイクロイックミラー32を介して集光部31に入射する。
The first laser beam 11 from the first laser 10 is incident on the condenser 31 via the dichroic mirror 32.
集光部31は、第1レーザ光11を集光することによって、被加工物100の内部(すなわち加工対象となる領域)に、自由電子が励起された高電子密度領域を生成する。また、本例の集光部31としては、レーザ光を集光可能なレンズが用いられている。
The condensing unit 31 condenses the first laser light 11 to generate a high electron density region in which free electrons are excited inside the workpiece 100 (that is, a region to be processed). Moreover, as the condensing part 31 of this example, the lens which can condense a laser beam is used.
第2レーザ20からの第2レーザ光21は、ダイクロイックミラー32に入射した後、第1レーザ光11と同軸で集光部31に入射する。なお、第1レーザ光11と第2レーザ光21とが完全に同軸である必要はなく、これらのレーザ光の照射領域が重なっていればよい。
The second laser light 21 from the second laser 20 enters the dichroic mirror 32 and then enters the condensing unit 31 coaxially with the first laser light 11. Note that the first laser beam 11 and the second laser beam 21 do not have to be completely coaxial, and the irradiation regions of these laser beams need only overlap.
なお、上述の例におけるダイクロイックミラー32は、第1レーザ光11と第2レーザ光21の波長が異なる場合に使用される。第1レーザ光11と第2レーザ光21の波長が同じ場合には、偏光ビームスプリッタをダイクロイックミラー32の代りに用いることができる。
Note that the dichroic mirror 32 in the above example is used when the wavelengths of the first laser beam 11 and the second laser beam 21 are different. When the wavelengths of the first laser beam 11 and the second laser beam 21 are the same, a polarization beam splitter can be used instead of the dichroic mirror 32.
図1において、第1レーザ光11がダイクロイックミラー32を透過し、第2レーザ光21がダイクロイックミラー32に反射されているが、第1レーザ光11がダイクロイックミラー32に反射され、第2レーザ光21がダイクロイックミラーを透過するように構成してもよい。
In FIG. 1, the first laser beam 11 passes through the dichroic mirror 32 and the second laser beam 21 is reflected by the dichroic mirror 32. However, the first laser beam 11 is reflected by the dichroic mirror 32 and the second laser beam is reflected. You may comprise so that 21 may permeate | transmit a dichroic mirror.
(第1実施形態の加工方法)
次に、本実施形態に係る加工装置を用いて被加工物100を加工する方法について、図2をさらに参照しながら説明する。 (Processing method of the first embodiment)
Next, a method for processing theworkpiece 100 using the processing apparatus according to the present embodiment will be described with further reference to FIG.
次に、本実施形態に係る加工装置を用いて被加工物100を加工する方法について、図2をさらに参照しながら説明する。 (Processing method of the first embodiment)
Next, a method for processing the
(第1レーザ光の照射)
第1レーザ10からの第1レーザ光11を被加工物100に照射する。照射された第1レーザ光11は、集光部31により集光されて、被加工物100に入射する。本実施形態では、第1レーザ光11を被加工物100に照射することによって、被加工物100内に、自由電子が励起された高電子密度領域110を生成することができる(図2(a)参照)。レンズで光を集光すると,レイリー長の領域において光強度が高くなり、自由電子が励起される。特に、第1レーザ10を短パルスレーザとした場合には、光強度の高い領域をレイリー長よりも延ばすことができる。この現象はフィラメンテーションとして知られている。すなわち、本実施形態では、第1レーザ10を短パルスレーザとすることにより、フィラメンテーションを生じやすくし、高電子密度領域の長さを長くする(つまり深くする)ことができる。生成した高電子密度領域は、通常、ごく短時間(例えばナノ秒オーダ又はそれ以下)で消失する。フィラメンテーションを発生させる短パルスレーザのパルス幅は、1fs~1μsが好ましく、1fs~100psがより好ましく、10fs~10psがさらに好ましい。 (Irradiation of the first laser beam)
Theworkpiece 100 is irradiated with the first laser beam 11 from the first laser 10. The irradiated first laser beam 11 is condensed by the condensing unit 31 and enters the workpiece 100. In the present embodiment, by irradiating the workpiece 100 with the first laser beam 11, a high electron density region 110 in which free electrons are excited can be generated in the workpiece 100 (FIG. 2A). )reference). When light is collected by the lens, the light intensity increases in the Rayleigh length region, and free electrons are excited. In particular, when the first laser 10 is a short pulse laser, the region with high light intensity can be extended beyond the Rayleigh length. This phenomenon is known as filamentation. That is, in the present embodiment, by using the first laser 10 as a short pulse laser, filamentation can be easily generated, and the length of the high electron density region can be increased (that is, deepened). The generated high electron density region usually disappears in a very short time (eg, nanosecond order or less). The pulse width of the short pulse laser that generates filamentation is preferably 1 fs to 1 μs, more preferably 1 fs to 100 ps, and even more preferably 10 fs to 10 ps.
第1レーザ10からの第1レーザ光11を被加工物100に照射する。照射された第1レーザ光11は、集光部31により集光されて、被加工物100に入射する。本実施形態では、第1レーザ光11を被加工物100に照射することによって、被加工物100内に、自由電子が励起された高電子密度領域110を生成することができる(図2(a)参照)。レンズで光を集光すると,レイリー長の領域において光強度が高くなり、自由電子が励起される。特に、第1レーザ10を短パルスレーザとした場合には、光強度の高い領域をレイリー長よりも延ばすことができる。この現象はフィラメンテーションとして知られている。すなわち、本実施形態では、第1レーザ10を短パルスレーザとすることにより、フィラメンテーションを生じやすくし、高電子密度領域の長さを長くする(つまり深くする)ことができる。生成した高電子密度領域は、通常、ごく短時間(例えばナノ秒オーダ又はそれ以下)で消失する。フィラメンテーションを発生させる短パルスレーザのパルス幅は、1fs~1μsが好ましく、1fs~100psがより好ましく、10fs~10psがさらに好ましい。 (Irradiation of the first laser beam)
The
加工効率をいっそう向上する観点から、被加工物100における加工を予定する領域よりも深く自由電子が励起された高電子密度領域を形成することが好ましい。
From the viewpoint of further improving the processing efficiency, it is preferable to form a high electron density region in which free electrons are excited deeper than the region of the workpiece 100 to be processed.
ここで、本実施形態では、第1レーザ10からのレーザ光の光強度(被加工物100中の加工個所を通過するときの光強度)を、「被加工物100の加工個所の少なくとも一部において、被加工物を蒸発させる臨界値及び被加工物を改質させる臨界値の両方よりも低い値」に設定している。より具体的には、本実施形態では、被加工物100の加工個所の全体あるいは大部分において、被加工物の蒸発も改質も生じないように、第1レーザ10のパルスエネルギ、パルス幅、材料位置におけるビーム面積(スポット面積)を設定している。このため、本実施形態では、第1レーザ10として低出力のものを用いることができ、装置のコストを低く抑えることができるという利点がある。ここで、加工個所の大部分とは、加工による穴の深さの60%以上をいう。第1レーザ10の光強度としては、照射により形成される高電子密度領域の深さが加工による穴の深さの70%以上となる値が好ましく、80%以上となる値がより好ましく、90%以上がさらに好ましい。被加工物100の加工個所の全体あるいは大部分において、被加工物の蒸発も改質も生じていないかの判断は、第1レーザ光の照射1秒以上後であって第2レーザ光の照射前の被加工物の加工個所を観察することによって可能である。
Here, in the present embodiment, the light intensity of the laser light from the first laser 10 (light intensity when passing through the processing portion in the workpiece 100) is expressed as “at least a part of the processing portion of the workpiece 100”. In this case, the threshold value is set to a value lower than both the critical value for evaporating the workpiece and the critical value for modifying the workpiece. More specifically, in the present embodiment, the pulse energy, pulse width, and the like of the first laser 10 are set so that the work piece is not evaporated or modified in the whole or most part of the work piece 100. The beam area (spot area) at the material position is set. For this reason, in this embodiment, a low-power laser can be used as the first laser 10, and there is an advantage that the cost of the apparatus can be kept low. Here, the majority of the processing points refer to 60% or more of the depth of the hole by processing. The light intensity of the first laser 10 is preferably a value at which the depth of the high electron density region formed by irradiation is 70% or more of the depth of the hole by processing, more preferably 80% or more. % Or more is more preferable. The judgment as to whether the workpiece is not evaporated or modified in the whole or most of the processing portion of the workpiece 100 is not less than 1 second after the first laser beam irradiation and the second laser beam irradiation. This is possible by observing the machining location of the previous workpiece.
(第2レーザ光の照射)
一方、本実施形態では、第2レーザ20から被加工物100に向けて、第2レーザ光21を照射する。照射された第2レーザ光21は、集光部31を介して、第1レーザ光11と同軸で、被加工物100に入射する(図2(a)参照)。 (Irradiation of second laser beam)
On the other hand, in the present embodiment, thesecond laser light 21 is irradiated from the second laser 20 toward the workpiece 100. The irradiated second laser beam 21 is incident on the workpiece 100 coaxially with the first laser beam 11 via the condensing unit 31 (see FIG. 2A).
一方、本実施形態では、第2レーザ20から被加工物100に向けて、第2レーザ光21を照射する。照射された第2レーザ光21は、集光部31を介して、第1レーザ光11と同軸で、被加工物100に入射する(図2(a)参照)。 (Irradiation of second laser beam)
On the other hand, in the present embodiment, the
ここで、この第2レーザ光21の、被加工物100への照射は、第1レーザ光の照射により生成した高電子密度領域110の消失前から消失直後までの間のタイミングで、第2レーザ光21が高電子密度領域110の位置を通過するように行われる。
本実施形態において、第1レーザ光11と第2レーザ光21の照射タイミングとしては、例えば下記のものが考えられるが、本発明はこれらに限定されない。
・第2レーザ光21を先に照射し、その照射時間と重なるように第1レーザ光を照射する。
・第1レーザ光と第2レーザ光とを同時に照射開始する。
・第1レーザ光を先に照射し、高電子密度領域が消失するまで、又は消失直後までのタイミングで第2レーザ光を照射開始する。 Here, irradiation of theworkpiece 100 with the second laser light 21 is performed at a timing from before the disappearance of the high electron density region 110 generated by the irradiation of the first laser light to immediately after the disappearance. This is performed so that the light 21 passes through the position of the high electron density region 110.
In the present embodiment, as the irradiation timing of thefirst laser beam 11 and the second laser beam 21, for example, the following may be considered, but the present invention is not limited to these.
Thesecond laser beam 21 is irradiated first, and the first laser beam is irradiated so as to overlap the irradiation time.
The irradiation of the first laser beam and the second laser beam is started simultaneously.
First irradiation with the first laser light is performed, and irradiation with the second laser light is started until the high electron density region disappears or immediately after the disappearance.
本実施形態において、第1レーザ光11と第2レーザ光21の照射タイミングとしては、例えば下記のものが考えられるが、本発明はこれらに限定されない。
・第2レーザ光21を先に照射し、その照射時間と重なるように第1レーザ光を照射する。
・第1レーザ光と第2レーザ光とを同時に照射開始する。
・第1レーザ光を先に照射し、高電子密度領域が消失するまで、又は消失直後までのタイミングで第2レーザ光を照射開始する。 Here, irradiation of the
In the present embodiment, as the irradiation timing of the
The
The irradiation of the first laser beam and the second laser beam is started simultaneously.
First irradiation with the first laser light is performed, and irradiation with the second laser light is started until the high electron density region disappears or immediately after the disappearance.
上記の例から、第1レーザ光11による高電子密度領域の消失直後のタイミングを含まない場合、すなわち、高電子密度領域の消失前の場合には、第2レーザ光21の照射タイミングは、高電子密度領域110が存在している間の内の、一定期間又は時点を含むことになる。すなわち、高電子密度領域110の消失前から消失直後までの間のタイミングの「タイミング」は、高電子密度領域110の生成から消失直後までの間の少なくとも一部の一定期間又は時点であり、高電子密度領域110の生成から消失直後までの間の期間の前後の期間を含んでもよい。
From the above example, when the timing immediately after the disappearance of the high electron density region by the first laser light 11 is not included, that is, before the disappearance of the high electron density region, the irradiation timing of the second laser light 21 is high. A certain period or point in time during which the electron density region 110 exists is included. That is, the “timing” of the timing from before the disappearance of the high electron density region 110 to immediately after the disappearance is at least a certain period or time point from the generation of the high electron density region 110 to immediately after the disappearance. A period before and after the period from generation of the electron density region 110 to immediately after disappearance may be included.
この第2レーザ光21の被加工物100への照射は、第1レーザ光の照射により生成した高電子密度領域110の消失前から消失直後までの間に限定されず、第1レーザ光の照射により生成した高電子密度領域110の消失前から消失までの間の一部を含むタイミングで、第2レーザ光21が高電子密度領域110の位置を通過するように行われてもよい。
Irradiation of the workpiece 100 with the second laser light 21 is not limited to the period from before the disappearance of the high electron density region 110 generated by the irradiation of the first laser light to immediately after the disappearance. The second laser beam 21 may be performed so as to pass through the position of the high electron density region 110 at a timing including a part from before the disappearance of the high electron density region 110 generated by the above.
本実施形態において、第2レーザ20として長パルスレーザ又はCWレーザを用いた場合には、第2レーザ光21の照射タイミング中において第1レーザ光11のみをオンオフすることは可能である。本実施形態では、第1レーザ光の照射により発生した高電子密度領域110の消失直後までの間のタイミングで第2レーザ光21が被加工物100の加工個所に照射開始されていればよい。
In the present embodiment, when a long pulse laser or a CW laser is used as the second laser 20, it is possible to turn on / off only the first laser beam 11 during the irradiation timing of the second laser beam 21. In the present embodiment, it is only necessary that the second laser beam 21 starts to be irradiated on the processing portion of the workpiece 100 at a timing until immediately after the disappearance of the high electron density region 110 generated by the irradiation of the first laser beam.
ここで、この明細書において、高電子密度領域の消失直後とは、高電子密度領域の消失以降であり、高電子密度領域において生成した自由電子の緩和により生じた熱的影響が消滅するまでの期間をいう。ここで、熱的影響とは、被加工物100の第1レーザ光に対する吸収率が高くなっている状態をいう。被加工物100の材質にもよるが、高電子密度領域の消失直後とは、高電子密度領域が消失した後、例えば10ms以内、より好ましくは1ms以内、さらに好ましくは100μs以内、さらに好ましくは10μs以内の期間をいう。被加工物100の材質にもよるが、高電子密度領域の消失直後とは、高電子密度領域が消失した後、例えばガラスの場合、被加工物100の温度が2000℃程度以上となる期間である。第1レーザ光11の照射終了後に第2レーザ光21の照射を開始する場合には、両者の照射タイミングが近いほど、また、第2レーザ光の立ち上がり時間が短いほど、自由電子の緩和により生じた熱的影響を利用した加工を確実に行うことができると考えられる。レーザ光パルスの具体的な照射タイミングは、そのパルス波形の特性や装置の制約などに応じて実験的に決定できる。
Here, in this specification, “immediately after the disappearance of the high electron density region” is after the disappearance of the high electron density region, and until the thermal effect caused by the relaxation of free electrons generated in the high electron density region disappears. A period. Here, the thermal influence means a state in which the work piece 100 has a high absorption rate for the first laser light. Although it depends on the material of the workpiece 100, “immediately after the disappearance of the high electron density region” means, for example, within 10 ms, more preferably within 1 ms, further preferably within 100 μs, and even more preferably 10 μs after the disappearance of the high electron density region. The period within. Although it depends on the material of the workpiece 100, “immediately after the disappearance of the high electron density region” is a period in which the temperature of the workpiece 100 is about 2000 ° C. or more after the disappearance of the high electron density region, for example, in the case of glass. is there. When the irradiation of the second laser beam 21 is started after the irradiation of the first laser beam 11 is finished, the closer the irradiation timing of the both, and the shorter the rise time of the second laser beam, the more the relaxation occurs due to free electrons. It is considered that the processing using the thermal effect can be performed reliably. The specific irradiation timing of the laser light pulse can be experimentally determined according to the characteristics of the pulse waveform, the restrictions of the apparatus, and the like.
高電子密度領域110に対して第2レーザ光21を照射することにより、本来は被加工物100に対して透明である(つまり吸収率が低い)第2レーザ光21が高電子密度領域110において吸収され、被加工物100が部分的に蒸発する。したがって、本実施形態では、高電子密度領域110における除去加工を行うことができる。被加工物100に穴(除去部分)120を形成した状態を図2(b)に示す。
By irradiating the second laser light 21 to the high electron density region 110, the second laser light 21 that is originally transparent to the workpiece 100 (that is, has a low absorption rate) is emitted from the high electron density region 110. Absorbed and the workpiece 100 partially evaporates. Therefore, in this embodiment, removal processing in the high electron density region 110 can be performed. A state in which a hole (removal portion) 120 is formed in the workpiece 100 is shown in FIG.
ここで、本実施形態は、短パルスレーザである第1レーザ10を用いて微細形状に形成された高電子密度領域110に対して、高パワーの第2レーザ20で加工を行うことができるので、微細加工を高能率で行うことができるという利点がある。
Here, in the present embodiment, the high electron density region 110 formed in a fine shape using the first laser 10 which is a short pulse laser can be processed with the high power second laser 20. There is an advantage that fine processing can be performed with high efficiency.
また、本実施形態では、第2レーザ20として、長パルスレーザ又はCWレーザを用いることができるので、高パワーとすることが容易であり、この点においても装置コストを低く抑えることができる。
Further, in this embodiment, since a long pulse laser or a CW laser can be used as the second laser 20, it is easy to achieve high power, and in this respect as well, the apparatus cost can be kept low.
ここで、高電子密度領域110では、自由電子が励起されているので、第2レーザ光21の波長にかかわらず吸収を生じると考えられる。仮に、もし特定の波長において吸収効率が悪い場合は、その波長を用いないことが好ましい。また、吸収効率の悪い波長は、実験により決定できる。
Here, in the high electron density region 110, since free electrons are excited, it is considered that absorption occurs regardless of the wavelength of the second laser light 21. If the absorption efficiency is low at a specific wavelength, it is preferable not to use that wavelength. In addition, a wavelength with poor absorption efficiency can be determined by experiment.
なお、高電子密度領域110が発生した位置では、励起された自由電子が緩和されたときにも、緩和による熱的影響により、被加工物100の吸収率が変化する。そのため、被加工物100への吸収率が上昇する波長に第2レーザ光21の波長を設定することにより、熱的影響を生じた部分(すなわち高電子密度領域が存在していた部分)のみに吸収を生じさせて、その部分を除去することができる。
Note that, at the position where the high electron density region 110 is generated, even when the excited free electrons are relaxed, the absorptance of the workpiece 100 changes due to thermal effects due to the relaxation. Therefore, by setting the wavelength of the second laser beam 21 to a wavelength at which the absorption rate to the workpiece 100 increases, only the portion that has been thermally affected (that is, the portion where the high electron density region existed) is provided. Absorption can occur, and that part can be removed.
また、本実施形態において用いる第1レーザ10としては、例えば局所的に被加工物100の除去あるいは改質を生じるものであってもよい。この場合においても、本実施形態によれば、非改質の部分を含めた高電子密度領域110を第2レーザ20で加工できるので、加工効率の向上を図ることができる。
Further, the first laser 10 used in the present embodiment may be one that locally removes or modifies the workpiece 100, for example. Even in this case, according to the present embodiment, since the high electron density region 110 including the non-modified portion can be processed by the second laser 20, the processing efficiency can be improved.
さらに、従来のように、第1レーザによる被加工物の改質を前提として、第2レーザにより被加工物を加工する場合は、第2レーザで除去されなかった改質部分が欠陥として残るという問題がある。特に、加工効率向上のために第1レーザで大きな(あるいは深い)改質部分を形成する場合には、この問題が顕在化すると予想される。これに対して、本実施形態では、被加工物の改質を前提としないので、欠陥として被加工物に残る部分を小さく、あるいは理想的には皆無にできるという利点がある。
Further, when the workpiece is processed by the second laser on the premise that the workpiece is modified by the first laser as in the prior art, the modified portion that has not been removed by the second laser remains as a defect. There's a problem. In particular, when a large (or deep) modified portion is formed by the first laser in order to improve the processing efficiency, this problem is expected to become apparent. On the other hand, in the present embodiment, since it is not premised on the modification of the workpiece, there is an advantage that a portion remaining on the workpiece as a defect can be reduced or ideally eliminated.
本実施形態においては、加工された穴の深さを第2レーザの光の入射側の最大径で除した値(以下、アスペクト比という)を従来技術よりも大きく出来る。その理由を説明する。本実施形態では、被加工物の加工個所の全体あるいは大部分において、被加工物の蒸発も改質も生じないように、第1レーザのパルスエネルギ、パルス幅、材料位置におけるビーム面積(スポット面積)を設定し、高電子密度領域の長さを長くする(つまり深くする)ことができるため、第2レーザの照射は、最低1回で高電子密度領域における除去加工が可能となる。一方、従来技術では、本実施形態の第2レーザに相当する除去加工のためのレーザの照射の加工効率が本実施形態の加工効率よりも低いので、複数回の照射が必要である。このため、従来技術では、照射の度にプラズマが発生し、徐々に被加工物の表面の穴が拡大し、アスペクト比が小さくなる。上述の理由から、本実施形態では、例えば、穴の最大径が25μm以下、20μm以下、または15μm以下で、アスペクト比3.4以上が可能である。本実施形態によると、アスペクト比は、5以上でも、10以上でも、15以上でも可能である。
In the present embodiment, a value obtained by dividing the depth of the processed hole by the maximum diameter on the incident side of the second laser light (hereinafter referred to as an aspect ratio) can be made larger than that of the prior art. The reason will be explained. In the present embodiment, the beam energy (spot area) of the first laser pulse energy, the pulse width, and the material position is set so that the work piece is not evaporated or modified in the whole or most part of the work piece. ) And the length of the high electron density region can be lengthened (that is, deepened), so that the removal processing in the high electron density region can be performed at least once by irradiation with the second laser. On the other hand, in the prior art, since the processing efficiency of laser irradiation for removal processing corresponding to the second laser of the present embodiment is lower than the processing efficiency of the present embodiment, multiple irradiations are necessary. For this reason, in the prior art, plasma is generated each time irradiation is performed, and the holes on the surface of the workpiece are gradually enlarged, and the aspect ratio is reduced. For the above reason, in this embodiment, for example, the maximum diameter of the hole is 25 μm or less, 20 μm or less, or 15 μm or less, and an aspect ratio of 3.4 or more is possible. According to this embodiment, the aspect ratio can be 5 or more, 10 or more, or 15 or more.
具体的には、従来のレーザ照射による加工では、1ショットあたりで除去する深さが小さいため、数100~数1000回のレーザ照射がなされる。例えば無アルカリガラスを5000ショット(100kHzで50ms)という低い繰返しで複数ショットを照射すると、深さ300μmの穴を加工することができる。しかし、ショットの度に開口周辺にプラズマが発生するため、開口部は5000回のプラズマ発生にさらされる。このためプラズマにより開口周辺の物質が繰り返し除去されてしまうことを一つの要因として、原理的に30μm以上や50μm以上の開口径となり、微細加工ができない。また、プラズマによって穴の周辺にダメージが発生する。
Specifically, in conventional processing by laser irradiation, since the depth to be removed per shot is small, laser irradiation is performed several hundred to several thousand times. For example, when a non-alkali glass is irradiated with a plurality of shots as low as 5000 shots (50 ms at 100 kHz), a hole having a depth of 300 μm can be processed. However, since plasma is generated around the opening at every shot, the opening is exposed to 5000 times of plasma generation. For this reason, due to the fact that the material around the opening is repeatedly removed by the plasma, the opening diameter is in principle 30 μm or more or 50 μm or more, and fine processing cannot be performed. In addition, the plasma causes damage around the hole.
一方、本実施形態においては、1ショットで除去対象の深さの全体または大部分に高密度電子領域を形成し、第2レーザで高密度電子領域を除去するため、従来方法に比べて1ショットあたりで除去される深さが桁違いに大きい。以上のように、本実施形態では、ショット数を大幅に低減することができ、プラズマによって開口の最大径が広がる現象を大幅に抑制できる。
On the other hand, in this embodiment, a high density electron region is formed in the whole or most of the depth to be removed in one shot, and the high density electron region is removed by the second laser. The depth removed at the perimeter is orders of magnitude greater. As described above, in the present embodiment, the number of shots can be significantly reduced, and the phenomenon that the maximum diameter of the opening is widened by plasma can be significantly suppressed.
(ガラス基板)
次に、本発明の透明な基板の実施形態について説明する。本実施形態のレーザによる穴加工後の透明な基板は、アニール工程及びエッチング工程を経ない状態で、穴のアスペクト比は3.4以上であり、前記穴の前記レーザの光の入射側の最大径は25μm以下であり、前記穴の表面には前記レーザによる溶融の痕跡がある。 (Glass substrate)
Next, an embodiment of the transparent substrate of the present invention will be described. The transparent substrate after the hole processing by the laser according to the present embodiment has a hole aspect ratio of 3.4 or more without being subjected to the annealing process and the etching process, and is the maximum of the laser light incident side of the hole. The diameter is 25 μm or less, and the surface of the hole has a trace of melting by the laser.
次に、本発明の透明な基板の実施形態について説明する。本実施形態のレーザによる穴加工後の透明な基板は、アニール工程及びエッチング工程を経ない状態で、穴のアスペクト比は3.4以上であり、前記穴の前記レーザの光の入射側の最大径は25μm以下であり、前記穴の表面には前記レーザによる溶融の痕跡がある。 (Glass substrate)
Next, an embodiment of the transparent substrate of the present invention will be described. The transparent substrate after the hole processing by the laser according to the present embodiment has a hole aspect ratio of 3.4 or more without being subjected to the annealing process and the etching process, and is the maximum of the laser light incident side of the hole. The diameter is 25 μm or less, and the surface of the hole has a trace of melting by the laser.
透明な基板の材質は、例えば、透明なガラス、プラスチック、セラミックスである。透明な基板の板厚は、例えば、0.05~20mmの範囲である。透明な基板の前記レーザの光の波長に対する透明度は、60%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましい。
The material of the transparent substrate is, for example, transparent glass, plastic, or ceramics. The thickness of the transparent substrate is, for example, in the range of 0.05 to 20 mm. The transparency of the transparent substrate with respect to the wavelength of the laser beam is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
アニール工程及びエッチング工程を経ていない状態とは、レーザによる穴加工後の被加工物に対して、被加工物内部に残存する歪を除くためのアニール工程と、レーザによる穴表面の溶融の痕跡や昇華の痕跡を除去するエッチング工程とを経ない状態をいう。
The state where the annealing process and the etching process have not been performed are an annealing process for removing distortion remaining in the workpiece, a trace of melting of the hole surface by the laser, This refers to a state where the etching process for removing traces of sublimation is not performed.
溶融の痕跡とは、被加工物の加工表面に残るレーザの熱による溶融の痕跡であり、レーザの熱による昇華の痕跡とは異なる。溶融の痕跡は、表面の平滑度が高く、いわゆる火づくり面となる。一方、昇華による痕跡は、平滑度が低い。
The melting trace is a trace of melting due to the heat of the laser remaining on the processed surface of the workpiece, and is different from a trace of sublimation due to the heat of the laser. The trace of melting has a high surface smoothness, which is a so-called fire-making surface. On the other hand, traces due to sublimation have low smoothness.
従来のレーザによる加工であって、加工効率が低い場合、アニール工程やエッチング工程を経ると、アスペクト比を比較的大きくし、レーザによる穴周りの溶融の痕跡を消失できる可能性はある。
In the case of conventional laser processing and low processing efficiency, there is a possibility that after annealing and etching, the aspect ratio is relatively large and the trace of melting around the hole by the laser can be eliminated.
このため、従来のレーザによる加工と区別するために、中間加工物としての透明な基板を実施形態とした。
For this reason, a transparent substrate as an intermediate workpiece is used as an embodiment in order to distinguish it from conventional laser processing.
本実施形態の透明な基板の穴周りの残留応力は、第2レーザに相当するレーザからのレーザ光を複数照射する必要がないため、アニール工程を経ないにも関わらず、条件によって引張側の残留応力が従来のレーザによる加工方法の半分程度となる。透明基板がガラス等の脆性材料の場合、基板を損傷させないために、穴周りの引張側の残留応力は低い方がよい。
The residual stress around the hole in the transparent substrate of the present embodiment does not need to be irradiated with a plurality of laser beams from the laser corresponding to the second laser. The residual stress is about half that of the conventional laser processing method. When the transparent substrate is a brittle material such as glass, the residual stress on the tension side around the hole should be low in order not to damage the substrate.
本実施形態の穴のアスペクト比は3.4以上であり、5以上が好ましく、10以上がより好ましく、15以上がさらに好ましい。また、本実施形態の穴のレーザの光の入射側の最大径は25μm以下であり、20μmが好ましく、15μm以下がより好ましい。
The aspect ratio of the hole of this embodiment is 3.4 or more, preferably 5 or more, more preferably 10 or more, and further preferably 15 or more. Further, the maximum diameter of the laser light incident side of the hole of this embodiment is 25 μm or less, preferably 20 μm, and more preferably 15 μm or less.
(実験例及び比較例)
(実験例1)
下記条件において、前記した装置を用いた被加工物の加工を行った。ここでは、被加工物として、ガラス(AGC株式会社製、無アルカリガラスAN100)を用いた。 (Experimental example and comparative example)
(Experimental example 1)
The workpiece was processed using the above-described apparatus under the following conditions. Here, glass (AGC Co., Ltd., non-alkali glass AN100) was used as the workpiece.
(実験例1)
下記条件において、前記した装置を用いた被加工物の加工を行った。ここでは、被加工物として、ガラス(AGC株式会社製、無アルカリガラスAN100)を用いた。 (Experimental example and comparative example)
(Experimental example 1)
The workpiece was processed using the above-described apparatus under the following conditions. Here, glass (AGC Co., Ltd., non-alkali glass AN100) was used as the workpiece.
(実験条件)
第1レーザ
波長:780nm
パルス幅:210fs
パルスエネルギ:64μJ
スポット径(集光後のビーム径):7.2μm
パルス数:1
第2レーザ
波長:1070nm
パルス幅:連続
出力:80W
スポット径:12μm
照射時間:0.2ms
実験例1の加工結果を表す写真を図3に示す。実験例1では、深さ136μmの穴を形成するのに要した時間(加工時間)は約0.2msであった。また、穴の被加工物表面の最大径は、13.6μmで、穴の深さ方向の中央での穴の径は9.4μmで、アスペクト比10であった。この例における第1レーザ光11と第2レーザ光21の照射タイミングを図4に示す。なお、照射タイミングの説明図において符号11は第1レーザ光のパルス波形を示し、符号21は第2レーザ光のパルス波形を示す。またここで、加工時間は第1レーザ光照射前の第2レーザ光照射時間t1と、第1レーザ光照射後の第2レーザ光照射時間t2との和である。本例では、t1=0.1msであり、t2=0.1msである。 (Experimental conditions)
First laser wavelength: 780 nm
Pulse width: 210 fs
Pulse energy: 64μJ
Spot diameter (beam diameter after focusing): 7.2 μm
Number of pulses: 1
Second laser wavelength: 1070 nm
Pulse width: Continuous output: 80W
Spot diameter: 12 μm
Irradiation time: 0.2ms
A photograph showing the processing result of Experimental Example 1 is shown in FIG. In Experimental Example 1, the time (processing time) required to form a hole having a depth of 136 μm was about 0.2 ms. Further, the maximum diameter of the hole workpiece surface was 13.6 μm, the hole diameter at the center in the depth direction of the hole was 9.4 μm, and the aspect ratio was 10. FIG. 4 shows the irradiation timing of thefirst laser beam 11 and the second laser beam 21 in this example. In the explanatory diagram of the irradiation timing, reference numeral 11 indicates the pulse waveform of the first laser beam, and reference numeral 21 indicates the pulse waveform of the second laser beam. Here, the processing time is the sum of the second laser light irradiation time t 1 before the first laser light irradiation and the second laser light irradiation time t 2 after the first laser light irradiation. In this example, t 1 = 0.1 ms and t 2 = 0.1 ms.
第1レーザ
波長:780nm
パルス幅:210fs
パルスエネルギ:64μJ
スポット径(集光後のビーム径):7.2μm
パルス数:1
第2レーザ
波長:1070nm
パルス幅:連続
出力:80W
スポット径:12μm
照射時間:0.2ms
実験例1の加工結果を表す写真を図3に示す。実験例1では、深さ136μmの穴を形成するのに要した時間(加工時間)は約0.2msであった。また、穴の被加工物表面の最大径は、13.6μmで、穴の深さ方向の中央での穴の径は9.4μmで、アスペクト比10であった。この例における第1レーザ光11と第2レーザ光21の照射タイミングを図4に示す。なお、照射タイミングの説明図において符号11は第1レーザ光のパルス波形を示し、符号21は第2レーザ光のパルス波形を示す。またここで、加工時間は第1レーザ光照射前の第2レーザ光照射時間t1と、第1レーザ光照射後の第2レーザ光照射時間t2との和である。本例では、t1=0.1msであり、t2=0.1msである。 (Experimental conditions)
First laser wavelength: 780 nm
Pulse width: 210 fs
Pulse energy: 64μJ
Spot diameter (beam diameter after focusing): 7.2 μm
Number of pulses: 1
Second laser wavelength: 1070 nm
Pulse width: Continuous output: 80W
Spot diameter: 12 μm
Irradiation time: 0.2ms
A photograph showing the processing result of Experimental Example 1 is shown in FIG. In Experimental Example 1, the time (processing time) required to form a hole having a depth of 136 μm was about 0.2 ms. Further, the maximum diameter of the hole workpiece surface was 13.6 μm, the hole diameter at the center in the depth direction of the hole was 9.4 μm, and the aspect ratio was 10. FIG. 4 shows the irradiation timing of the
(比較例1)
比較のため、実験例1と同様の被加工物に対して、短パルスレーザのみを用いて、下記条件において被加工物の加工を行った。 (Comparative Example 1)
For comparison, the workpiece was processed under the following conditions using only a short pulse laser for the workpiece similar to Experimental Example 1.
比較のため、実験例1と同様の被加工物に対して、短パルスレーザのみを用いて、下記条件において被加工物の加工を行った。 (Comparative Example 1)
For comparison, the workpiece was processed under the following conditions using only a short pulse laser for the workpiece similar to Experimental Example 1.
(実験条件)
波長:780nm
パルス幅:210fs
パルスエネルギ:64μJ
スポット径(集光後のビーム径):7.2μm
繰り返し周波数:1kHz
パルス数:200
比較例1の加工結果を表す写真を図5に示す。比較例1では、深さ117μmの穴を形成するのに要した時間は約200msであった。また、穴の被加工物表面の最大径は、32.2μmで、穴の深さ方向の中央での径は8.8μmで、アスペクト比3.6であった。 (Experimental conditions)
Wavelength: 780nm
Pulse width: 210 fs
Pulse energy: 64μJ
Spot diameter (beam diameter after focusing): 7.2 μm
Repeat frequency: 1kHz
Number of pulses: 200
A photograph showing the processing result of Comparative Example 1 is shown in FIG. In Comparative Example 1, the time required to form the 117 μm deep hole was about 200 ms. The maximum diameter of the hole workpiece surface was 32.2 μm, the diameter at the center in the depth direction of the hole was 8.8 μm, and the aspect ratio was 3.6.
波長:780nm
パルス幅:210fs
パルスエネルギ:64μJ
スポット径(集光後のビーム径):7.2μm
繰り返し周波数:1kHz
パルス数:200
比較例1の加工結果を表す写真を図5に示す。比較例1では、深さ117μmの穴を形成するのに要した時間は約200msであった。また、穴の被加工物表面の最大径は、32.2μmで、穴の深さ方向の中央での径は8.8μmで、アスペクト比3.6であった。 (Experimental conditions)
Wavelength: 780nm
Pulse width: 210 fs
Pulse energy: 64μJ
Spot diameter (beam diameter after focusing): 7.2 μm
Repeat frequency: 1kHz
Number of pulses: 200
A photograph showing the processing result of Comparative Example 1 is shown in FIG. In Comparative Example 1, the time required to form the 117 μm deep hole was about 200 ms. The maximum diameter of the hole workpiece surface was 32.2 μm, the diameter at the center in the depth direction of the hole was 8.8 μm, and the aspect ratio was 3.6.
したがって、実験例1の装置によれば、1000倍以上の加工効率を実現できることがわかる。さらに、実験例1の装置によれば、穴近辺のクラックを抑制した精密な加工が実現できることがわかる(図3参照)。
Therefore, it can be seen that the processing efficiency of 1000 times or more can be realized by the apparatus of Experimental Example 1. Furthermore, according to the apparatus of Experimental Example 1, it can be seen that precise machining can be realized while suppressing cracks near the hole (see FIG. 3).
(実験例2)
下記条件において、前記した装置を用いた被加工物の加工を行った。ここでは、被加工物として、合成石英(純粋なSiO2)を用いた。 (Experimental example 2)
The workpiece was processed using the above-described apparatus under the following conditions. Here, synthetic quartz (pure SiO 2 ) was used as the workpiece.
下記条件において、前記した装置を用いた被加工物の加工を行った。ここでは、被加工物として、合成石英(純粋なSiO2)を用いた。 (Experimental example 2)
The workpiece was processed using the above-described apparatus under the following conditions. Here, synthetic quartz (pure SiO 2 ) was used as the workpiece.
(実験条件)
第1レーザ
波長:780nm
パルス幅:210fs
パルスエネルギ:52μJ
スポット径(集光後のビーム径):3.6μm
繰り返し周波数:1kHz
パルス数:20
第2レーザ
波長:1070nm
パルス幅:連続
出力:100W
スポット径:6μm
照射時間:20ms
実験例2では、深さ65μmの穴を形成するのに要した時間は約20msであった。また、穴の被加工物表面の最大径は、19μmで、穴の深さ方向の中央での径は11μmで、アスペクト比は3.4であった。第1レーザ光と第2レーザ光の照射タイミングを図6に示す。図6の例では、t1=0.1msであり、t2=19.9msである。 (Experimental conditions)
First laser wavelength: 780 nm
Pulse width: 210 fs
Pulse energy: 52μJ
Spot diameter (beam diameter after focusing): 3.6 μm
Repeat frequency: 1kHz
Number of pulses: 20
Second laser wavelength: 1070 nm
Pulse width: Continuous output: 100W
Spot diameter: 6 μm
Irradiation time: 20 ms
In Experimental Example 2, the time required to form the hole having a depth of 65 μm was about 20 ms. Moreover, the maximum diameter of the surface of the workpiece in the hole was 19 μm, the diameter at the center in the depth direction of the hole was 11 μm, and the aspect ratio was 3.4. The irradiation timing of the first laser beam and the second laser beam is shown in FIG. In the example of FIG. 6, t 1 = 0.1 ms and t 2 = 19.9 ms.
第1レーザ
波長:780nm
パルス幅:210fs
パルスエネルギ:52μJ
スポット径(集光後のビーム径):3.6μm
繰り返し周波数:1kHz
パルス数:20
第2レーザ
波長:1070nm
パルス幅:連続
出力:100W
スポット径:6μm
照射時間:20ms
実験例2では、深さ65μmの穴を形成するのに要した時間は約20msであった。また、穴の被加工物表面の最大径は、19μmで、穴の深さ方向の中央での径は11μmで、アスペクト比は3.4であった。第1レーザ光と第2レーザ光の照射タイミングを図6に示す。図6の例では、t1=0.1msであり、t2=19.9msである。 (Experimental conditions)
First laser wavelength: 780 nm
Pulse width: 210 fs
Pulse energy: 52μJ
Spot diameter (beam diameter after focusing): 3.6 μm
Repeat frequency: 1kHz
Number of pulses: 20
Second laser wavelength: 1070 nm
Pulse width: Continuous output: 100W
Spot diameter: 6 μm
Irradiation time: 20 ms
In Experimental Example 2, the time required to form the hole having a depth of 65 μm was about 20 ms. Moreover, the maximum diameter of the surface of the workpiece in the hole was 19 μm, the diameter at the center in the depth direction of the hole was 11 μm, and the aspect ratio was 3.4. The irradiation timing of the first laser beam and the second laser beam is shown in FIG. In the example of FIG. 6, t 1 = 0.1 ms and t 2 = 19.9 ms.
(比較例2)
比較のため、実験例2と同様の被加工物に対して、短パルスレーザのみを用いて、下記条件において被加工物の加工を行った。 (Comparative Example 2)
For comparison, the workpiece was processed under the following conditions using only a short pulse laser for the workpiece similar to Experimental Example 2.
比較のため、実験例2と同様の被加工物に対して、短パルスレーザのみを用いて、下記条件において被加工物の加工を行った。 (Comparative Example 2)
For comparison, the workpiece was processed under the following conditions using only a short pulse laser for the workpiece similar to Experimental Example 2.
(実験条件)
波長:780nm
パルス幅:210fs
パルスエネルギ:52μJ
スポット径(集光後のビーム径):3.6μm
繰り返し周波数:1kHz
パルス数:50
比較例2では、深さ65μmの穴を形成するのに要した時間は約50msであった。 (Experimental conditions)
Wavelength: 780nm
Pulse width: 210 fs
Pulse energy: 52μJ
Spot diameter (beam diameter after focusing): 3.6 μm
Repeat frequency: 1kHz
Number of pulses: 50
In Comparative Example 2, the time required to form the hole having a depth of 65 μm was about 50 ms.
波長:780nm
パルス幅:210fs
パルスエネルギ:52μJ
スポット径(集光後のビーム径):3.6μm
繰り返し周波数:1kHz
パルス数:50
比較例2では、深さ65μmの穴を形成するのに要した時間は約50msであった。 (Experimental conditions)
Wavelength: 780nm
Pulse width: 210 fs
Pulse energy: 52μJ
Spot diameter (beam diameter after focusing): 3.6 μm
Repeat frequency: 1kHz
Number of pulses: 50
In Comparative Example 2, the time required to form the hole having a depth of 65 μm was about 50 ms.
したがって、実験例2の装置によれば、約2.5倍の加工効率を実現できることがわかる。
Therefore, it can be seen that the processing efficiency of about 2.5 times can be realized by the apparatus of Experimental Example 2.
(実験例3)
次に、実験例3として、高密度電子領域の観察結果を図7(a)~(c)に示す。実験例3における実験条件は実験例1と同様である。図7(a)~(c)における破線は、下方の被加工物領域(ガラス)と上方の空気領域との境界を模式的に示している。 (Experimental example 3)
Next, as Experimental Example 3, the observation results of the high density electron region are shown in FIGS. The experimental conditions in Experimental Example 3 are the same as in Experimental Example 1. 7A to 7C schematically show the boundary between the lower workpiece region (glass) and the upper air region.
次に、実験例3として、高密度電子領域の観察結果を図7(a)~(c)に示す。実験例3における実験条件は実験例1と同様である。図7(a)~(c)における破線は、下方の被加工物領域(ガラス)と上方の空気領域との境界を模式的に示している。 (Experimental example 3)
Next, as Experimental Example 3, the observation results of the high density electron region are shown in FIGS. The experimental conditions in Experimental Example 3 are the same as in Experimental Example 1. 7A to 7C schematically show the boundary between the lower workpiece region (glass) and the upper air region.
第1レーザ光を照射してから400ps後(図7(a))においては、被加工物100の内部に、細長いフィラメンテーション(高電子密度領域)Fを観察することができる。また、この図において符号Sは、レーザ光照射により生じた衝撃波を示している。
After 400 ps after irradiation with the first laser beam (FIG. 7A), an elongated filamentation (high electron density region) F can be observed inside the workpiece 100. Moreover, in this figure, the code | symbol S has shown the shock wave produced by laser beam irradiation.
第1レーザ光を照射してから2.5ns後(図7(b))においても、被加工物100の内部におけるフィラメンテーションFを観察することができる。
Even after 2.5 ns after irradiation with the first laser beam (FIG. 7B), the filamentation F inside the workpiece 100 can be observed.
第1レーザ光を照射してから1ms後(図7(c))においては、フィラメンテーションFはすでに消滅している。そして、第2レーザ光がフィラメンテーションFに吸収されることにより形成された穴を観察することができる。
The filamentation F has already disappeared 1 ms after the irradiation with the first laser beam (FIG. 7C). Then, the hole formed by the second laser light being absorbed by the filamentation F can be observed.
(実験例4)
次に、実験例4として、第2レーザ光の照射時間と被加工物への加工結果との関係を図8(a)~(d)に示す。実験例4における実験条件は実験例1と同様である。この実験例4における第2レーザ光の照射時間は下記のように設定されている。
図8(a):t1=0.1ms、t2=0.1ms 合計0.2ms
図8(b):t1=0.1ms、t2=0.2ms 合計0.3ms
図8(c):t1=0.1ms、t2=0.3ms 合計0.4ms
図8(d):t1=0.1ms、t2=0.4ms 合計0.5ms
したがって、本実施形態の加工方法によれば、第2レーザ光の照射時間を制御することにより、加工深さを制御することができる。ここで、第1レーザ光のパルス数は1である(図4参照)。すなわち、本実施形態では、第1レーザ光の照射により生じた高電子密度領域(フィラメンテーション)の消滅後においても、第2レーザ光の照射時間を延ばすことにより、加工深さを深くすることができる。その理由としては、高電子密度領域に第2レーザ光が吸収されると、それによる熱的影響により被加工物の吸収波長が変化し、第2レーザ光の吸収が持続されるためと考えられる。 (Experimental example 4)
Next, as Experimental Example 4, FIGS. 8A to 8D show the relationship between the irradiation time of the second laser beam and the processing result of the workpiece. The experimental conditions in Experimental Example 4 are the same as in Experimental Example 1. The irradiation time of the second laser light in this experimental example 4 is set as follows.
FIG. 8A: t 1 = 0.1 ms, t 2 = 0.1 ms, total 0.2 ms
FIG. 8B: t 1 = 0.1 ms, t 2 = 0.2 ms, total 0.3 ms
FIG. 8C: t 1 = 0.1 ms, t 2 = 0.3 ms, total 0.4 ms
FIG. 8D: t 1 = 0.1 ms, t 2 = 0.4 ms, total 0.5 ms
Therefore, according to the processing method of this embodiment, the processing depth can be controlled by controlling the irradiation time of the second laser light. Here, the number of pulses of the first laser light is 1 (see FIG. 4). That is, in this embodiment, the processing depth can be increased by extending the irradiation time of the second laser light even after the disappearance of the high electron density region (filamentation) caused by the irradiation of the first laser light. it can. The reason for this is considered that when the second laser beam is absorbed in the high electron density region, the absorption wavelength of the workpiece changes due to the thermal effect thereof, and the absorption of the second laser beam is sustained. .
次に、実験例4として、第2レーザ光の照射時間と被加工物への加工結果との関係を図8(a)~(d)に示す。実験例4における実験条件は実験例1と同様である。この実験例4における第2レーザ光の照射時間は下記のように設定されている。
図8(a):t1=0.1ms、t2=0.1ms 合計0.2ms
図8(b):t1=0.1ms、t2=0.2ms 合計0.3ms
図8(c):t1=0.1ms、t2=0.3ms 合計0.4ms
図8(d):t1=0.1ms、t2=0.4ms 合計0.5ms
したがって、本実施形態の加工方法によれば、第2レーザ光の照射時間を制御することにより、加工深さを制御することができる。ここで、第1レーザ光のパルス数は1である(図4参照)。すなわち、本実施形態では、第1レーザ光の照射により生じた高電子密度領域(フィラメンテーション)の消滅後においても、第2レーザ光の照射時間を延ばすことにより、加工深さを深くすることができる。その理由としては、高電子密度領域に第2レーザ光が吸収されると、それによる熱的影響により被加工物の吸収波長が変化し、第2レーザ光の吸収が持続されるためと考えられる。 (Experimental example 4)
Next, as Experimental Example 4, FIGS. 8A to 8D show the relationship between the irradiation time of the second laser beam and the processing result of the workpiece. The experimental conditions in Experimental Example 4 are the same as in Experimental Example 1. The irradiation time of the second laser light in this experimental example 4 is set as follows.
FIG. 8A: t 1 = 0.1 ms, t 2 = 0.1 ms, total 0.2 ms
FIG. 8B: t 1 = 0.1 ms, t 2 = 0.2 ms, total 0.3 ms
FIG. 8C: t 1 = 0.1 ms, t 2 = 0.3 ms, total 0.4 ms
FIG. 8D: t 1 = 0.1 ms, t 2 = 0.4 ms, total 0.5 ms
Therefore, according to the processing method of this embodiment, the processing depth can be controlled by controlling the irradiation time of the second laser light. Here, the number of pulses of the first laser light is 1 (see FIG. 4). That is, in this embodiment, the processing depth can be increased by extending the irradiation time of the second laser light even after the disappearance of the high electron density region (filamentation) caused by the irradiation of the first laser light. it can. The reason for this is considered that when the second laser beam is absorbed in the high electron density region, the absorption wavelength of the workpiece changes due to the thermal effect thereof, and the absorption of the second laser beam is sustained. .
図8(a)において、表面の穴の最大径は19.0μm、穴の深さは128.8μm、アスペクト比6.8であった。
8A, the maximum diameter of the surface hole was 19.0 μm, the depth of the hole was 128.8 μm, and the aspect ratio was 6.8.
図8(b)において、表面の穴の最大径は19.2μm、穴の深さは164.8μm、アスペクト比8.6であった。
In FIG. 8B, the maximum diameter of the surface hole was 19.2 μm, the depth of the hole was 164.8 μm, and the aspect ratio was 8.6.
図8(c)において、表面の穴の最大径は19.6μm、穴の深さは207.4μm、アスペクト比10.6であった。
8 (c), the maximum diameter of the surface hole was 19.6 μm, the depth of the hole was 207.4 μm, and the aspect ratio was 10.6.
図8(d)において、表面の穴の最大径は18.8μm、穴の深さは322.4μm、アスペクト比17.1であった。
In FIG. 8 (d), the maximum diameter of the hole on the surface was 18.8 μm, the depth of the hole was 322.4 μm, and the aspect ratio was 17.1.
(比較例3)
実験例4との比較のため、短パルスレーザのみを用いて、比較例1と同じ条件において被加工物の加工を行った。ただし、パルス数を増加させることにより加工時間を延長させている。 (Comparative Example 3)
For comparison with Experimental Example 4, the workpiece was processed under the same conditions as Comparative Example 1 using only a short pulse laser. However, the processing time is extended by increasing the number of pulses.
実験例4との比較のため、短パルスレーザのみを用いて、比較例1と同じ条件において被加工物の加工を行った。ただし、パルス数を増加させることにより加工時間を延長させている。 (Comparative Example 3)
For comparison with Experimental Example 4, the workpiece was processed under the same conditions as Comparative Example 1 using only a short pulse laser. However, the processing time is extended by increasing the number of pulses.
比較例3の結果を図9(a)に示す。500msと1000msの結果から分かるように、加工深さの飽和を生じている。この飽和は、200msと500msとの間に生じたと推測される。このような飽和を生じる一つの原因としては、被加工物がレーザ光に対して透明であるため、レーザ光が側方に漏れ出てしまうことが考えられる。図9(a)の1000msにおいて、表面の穴の最大径は32.8μm、穴の深さは181.6μm、アスペクト比は5.5となった。
The result of Comparative Example 3 is shown in FIG. As can be seen from the results of 500 ms and 1000 ms, the processing depth is saturated. This saturation is assumed to have occurred between 200 ms and 500 ms. One possible cause of such saturation is that the workpiece is transparent to the laser beam, so that the laser beam leaks to the side. 9A, the maximum diameter of the surface hole was 32.8 μm, the hole depth was 181.6 μm, and the aspect ratio was 5.5.
図9(b)は参照のために付したものであり、図8(d)と同じ写真である。
9 (b) is attached for reference and is the same photo as FIG. 8 (d).
これらから分かるように、短パルスレーザのみを用いた加工では、比較的早期に飽和を生じるのに対して、本実施形態の加工方法によれば、第2レーザ光の照射時間の制御により、かなり深い領域まで加工することができる。しかも、本実施形態によれば、微細でかつ深い加工を短時間で(図9(b)の例では0.5msで)行うことができるという利点がある。
As can be seen from these, in the processing using only the short-pulse laser, saturation occurs relatively early, whereas according to the processing method of the present embodiment, the irradiation time of the second laser light is considerably controlled. It is possible to process deep regions. Moreover, according to the present embodiment, there is an advantage that fine and deep processing can be performed in a short time (in the example of FIG. 9B, in 0.5 ms).
(第2実施形態)
次に、図10をさらに参照して、本発明の第2実施形態に係る加工装置について説明する。なお、この第2実施形態の説明においては、前記した第1実施形態の装置と基本的に共通する要素については、同一符号を用いることにより、記載の煩雑を避ける。 (Second Embodiment)
Next, with reference further to FIG. 10, the processing apparatus which concerns on 2nd Embodiment of this invention is demonstrated. In the description of the second embodiment, the same reference numerals are used for elements that are basically the same as those of the apparatus of the first embodiment described above, thereby avoiding complicated description.
次に、図10をさらに参照して、本発明の第2実施形態に係る加工装置について説明する。なお、この第2実施形態の説明においては、前記した第1実施形態の装置と基本的に共通する要素については、同一符号を用いることにより、記載の煩雑を避ける。 (Second Embodiment)
Next, with reference further to FIG. 10, the processing apparatus which concerns on 2nd Embodiment of this invention is demonstrated. In the description of the second embodiment, the same reference numerals are used for elements that are basically the same as those of the apparatus of the first embodiment described above, thereby avoiding complicated description.
この第2実施形態においては、第1レーザ光11の光路上に空間位相変調器(以降「SLM」と略称する)33が配置され、第2レーザ光21の光路上にSLM34が配置されている。ミラー35aは、第1レーザ光11をSLM33に送る構成となっており、ミラー35bは、SLM33で位相変調された第1レーザ光11を被加工物100に向けて送る構成となっている。同様に、ミラー36aは、第2レーザ光21をSLM34に送る構成となっており、ミラー36bは、SLM34で位相変調された第2レーザ光21を被加工物100に向けて送る構成となっている。
In the second embodiment, a spatial phase modulator (hereinafter abbreviated as “SLM”) 33 is disposed on the optical path of the first laser light 11, and an SLM 34 is disposed on the optical path of the second laser light 21. . The mirror 35 a is configured to send the first laser light 11 to the SLM 33, and the mirror 35 b is configured to send the first laser light 11 phase-modulated by the SLM 33 toward the workpiece 100. Similarly, the mirror 36 a is configured to send the second laser light 21 to the SLM 34, and the mirror 36 b is configured to send the second laser light 21 phase-modulated by the SLM 34 toward the workpiece 100. Yes.
本実施形態において、第1レーザ光11及び第2レーザ光21を、SLM33及び34においてそれぞれ反射させた後に、集光部31を通過させると、望ましい形状(すなわち任意の形状)にビーム形状を変化させることができる。つまり、ビーム形状を変化させることにより、複数の別の位置に同時にビームを照射することが可能になる。例えば、100個の異なる位置に同時にレーザを照射することが可能になる(位置の数には特に制約はなく、10個や1000個も理論上は可能である)。
In the present embodiment, when the first laser beam 11 and the second laser beam 21 are reflected by the SLMs 33 and 34 respectively and then passed through the light collecting unit 31, the beam shape is changed to a desired shape (that is, an arbitrary shape). Can be made. That is, by changing the beam shape, it is possible to simultaneously irradiate a plurality of different positions with the beam. For example, it is possible to simultaneously irradiate 100 different positions with a laser (the number of positions is not particularly limited, and 10 or 1000 is theoretically possible).
前記した第1実施形態において、一つの穴を形成するのに1ms程度かかる(つまり1ms程度の待ち時間が存在する)とすると、最大でも1000穴/秒になる。一方、既存の技術では、一つの穴を形成するのに100回程度の短パルスレーザの照射が一般に必要になる。市販のレーザには、100kHz発振のものがあるため、既存の技術でも1000穴/秒は達成可能となる。
In the first embodiment described above, if it takes about 1 ms to form one hole (that is, a waiting time of about 1 ms exists), the maximum is 1000 holes / second. On the other hand, with existing technology, it is generally necessary to irradiate a short pulse laser about 100 times to form one hole. Since some commercially available lasers oscillate at 100 kHz, 1000 holes / second can be achieved even with existing technology.
これに対して、SLMを用いた第2実施形態では、1ms間に100個の穴を形成することができるため、10万穴/秒を達成することが可能となる。これは従来の技術では到達困難なレベルである。
On the other hand, in the second embodiment using the SLM, 100 holes can be formed in 1 ms, so that 100,000 holes / second can be achieved. This is a level that is difficult to reach with the prior art.
なお、本発明の内容は、前記実施形態に限定されるものではない。本発明は、特許請求の範囲に記載された範囲内において、具体的な構成に対して種々の変更を加えうるものである。
Note that the content of the present invention is not limited to the above embodiment. In the present invention, various modifications can be made to the specific configuration within the scope of the claims.
例えば、前記した実施形態では、被加工物100における同一の面から第1レーザ光11と第2レーザ光21とを照射した。しかしながら、第2レーザ光21を、第1レーザ光と11反対側から(例えば図1において被加工物の下面側から)被加工物100に入射することもできる。このようにすると、蒸発する気体又はプラズマ状態の被加工物によりレーザ光21が吸収される恐れが低減するので、加工能率の向上を期待できる。
For example, in the above-described embodiment, the first laser beam 11 and the second laser beam 21 are irradiated from the same surface of the workpiece 100. However, the second laser beam 21 can also be incident on the workpiece 100 from the side opposite to the first laser beam 11 (for example, from the lower surface side of the workpiece in FIG. 1). In this way, the risk of the laser light 21 being absorbed by the vaporized gas or the workpiece in the plasma state is reduced, so an improvement in machining efficiency can be expected.
さらに、被加工物としては、シリコン半導体などの半導体素子又は半導体基板を用いることもできる。この場合、第1レーザ光及び第2レーザ光としては、当該半導体に吸収されにくい(つまり透過しやすい)波長を用いることが、加工効率を向上させるためには好ましい。
Furthermore, a semiconductor element such as a silicon semiconductor or a semiconductor substrate can be used as the workpiece. In this case, as the first laser beam and the second laser beam, it is preferable to use a wavelength that is not easily absorbed (that is, easily transmitted) by the semiconductor in order to improve processing efficiency.
また、前記した実施形態では、上面が開口した穴を形成したが、周囲が閉鎖された穴(空洞)を形成することもできる。加工個所の選択は、高電子密度領域が形成される位置の制御により行うことができる。被加工物に対して透明な波長のレーザを用いることにより、被加工物内部における任意の個所の加工が可能になる。空洞を形成する場合は、蒸発した被加工物が空洞内面に付着すると考えられる。
In the above-described embodiment, the hole whose upper surface is opened is formed, but a hole (cavity) whose periphery is closed can also be formed. The processing location can be selected by controlling the position where the high electron density region is formed. By using a laser with a wavelength that is transparent to the workpiece, it is possible to process any location within the workpiece. When forming the cavity, it is considered that the evaporated workpiece adheres to the inner surface of the cavity.
さらに、第1レーザの照射位置を適宜にずらしていく(つまり走査していく)ことにより、溝加工を行うこともできる。
Furthermore, groove processing can also be performed by appropriately shifting (that is, scanning) the irradiation position of the first laser.
また、レーザ照射位置を変更する手段としては、被加工物側を移動させるものに限らず、レーザ光の光軸を変更するものであってもよい。例えばfθレンズを用いてレーザ光を走査する機構を用いることができる。
(変形例1)
第1実施形態におけるにおける変形例として、第1レーザ光はバーストショットが好ましい。バーストショットとは、短時間内に複数のパルスを照射する照射形態である。バーストショットを構成する複数のパルスは、そのパルス数は2~10程度にすることが好ましいが10以上でもよい。また、複数のパルスのパルスエネルギは、同じでも、それぞれ異なってもよい。さらに、バーストショットを構成する最初のパルスから最後のパルスまでの時間は1ns以内が好ましい。 Further, the means for changing the laser irradiation position is not limited to moving the workpiece side, and may be a means for changing the optical axis of the laser beam. For example, a mechanism for scanning laser light using an fθ lens can be used.
(Modification 1)
As a modification in the first embodiment, the first laser beam is preferably a burst shot. The burst shot is an irradiation form in which a plurality of pulses are irradiated within a short time. The number of pulses constituting the burst shot is preferably about 2 to 10, but may be 10 or more. Further, the pulse energies of the plurality of pulses may be the same or different. Furthermore, the time from the first pulse to the last pulse constituting the burst shot is preferably within 1 ns.
(変形例1)
第1実施形態におけるにおける変形例として、第1レーザ光はバーストショットが好ましい。バーストショットとは、短時間内に複数のパルスを照射する照射形態である。バーストショットを構成する複数のパルスは、そのパルス数は2~10程度にすることが好ましいが10以上でもよい。また、複数のパルスのパルスエネルギは、同じでも、それぞれ異なってもよい。さらに、バーストショットを構成する最初のパルスから最後のパルスまでの時間は1ns以内が好ましい。 Further, the means for changing the laser irradiation position is not limited to moving the workpiece side, and may be a means for changing the optical axis of the laser beam. For example, a mechanism for scanning laser light using an fθ lens can be used.
(Modification 1)
As a modification in the first embodiment, the first laser beam is preferably a burst shot. The burst shot is an irradiation form in which a plurality of pulses are irradiated within a short time. The number of pulses constituting the burst shot is preferably about 2 to 10, but may be 10 or more. Further, the pulse energies of the plurality of pulses may be the same or different. Furthermore, the time from the first pulse to the last pulse constituting the burst shot is preferably within 1 ns.
バーストショットを1ns以内で行う理由としては、プラズマの発生までの時間にパルス照射を終える必要があるためである。非特許文献1にはプラズマはパルスレーザ照射によって数ns~数10ns後より発生し、消失するまで数1000nsかかることが記述されている。プラズマの発生中に後続のパルスレーザを照射すると、ほとんどがプラズマにエネルギーを吸収されてしまうため意図する効果を発揮できない。このため、本実施形態で第1のレーザの照射をバーストショットにする場合、複数のパルス群は1ns以内の時間に行われることが好ましい。
(変形例2)
第1実施形態と第2実施形態では、被加工物に対する第1レーザと第2レーザの照射は片側からであったが、その例に限らず、例えば、片側に加えて、反対側においても第1レーザと第2レーザを照射し、貫通穴の加工を行ってもよい。 また、その他の変形例として、被加工物の表面から第1レーザ光を照射し、その表面に対向する裏面から第2レーザ光を照射して、穴の加工を行ってもよい。 The reason why the burst shot is performed within 1 ns is that it is necessary to finish the pulse irradiation during the time until the plasma is generated. Non-Patent Document 1 describes that plasma is generated after several ns to several tens of ns by pulse laser irradiation and takes several thousand ns until it disappears. When the subsequent pulse laser is irradiated during the generation of the plasma, most of the energy is absorbed by the plasma, so that the intended effect cannot be exhibited. Therefore, when the first laser irradiation is a burst shot in this embodiment, the plurality of pulse groups are preferably performed within a time of 1 ns.
(Modification 2)
In the first embodiment and the second embodiment, irradiation of the workpiece with the first laser and the second laser is performed from one side. However, the present invention is not limited to this example. You may irradiate 1 laser and 2nd laser, and process a through-hole. As another modification, the hole may be processed by irradiating the first laser beam from the surface of the workpiece and irradiating the second laser beam from the back surface facing the surface.
(変形例2)
第1実施形態と第2実施形態では、被加工物に対する第1レーザと第2レーザの照射は片側からであったが、その例に限らず、例えば、片側に加えて、反対側においても第1レーザと第2レーザを照射し、貫通穴の加工を行ってもよい。 また、その他の変形例として、被加工物の表面から第1レーザ光を照射し、その表面に対向する裏面から第2レーザ光を照射して、穴の加工を行ってもよい。 The reason why the burst shot is performed within 1 ns is that it is necessary to finish the pulse irradiation during the time until the plasma is generated. Non-Patent Document 1 describes that plasma is generated after several ns to several tens of ns by pulse laser irradiation and takes several thousand ns until it disappears. When the subsequent pulse laser is irradiated during the generation of the plasma, most of the energy is absorbed by the plasma, so that the intended effect cannot be exhibited. Therefore, when the first laser irradiation is a burst shot in this embodiment, the plurality of pulse groups are preferably performed within a time of 1 ns.
(Modification 2)
In the first embodiment and the second embodiment, irradiation of the workpiece with the first laser and the second laser is performed from one side. However, the present invention is not limited to this example. You may irradiate 1 laser and 2nd laser, and process a through-hole. As another modification, the hole may be processed by irradiating the first laser beam from the surface of the workpiece and irradiating the second laser beam from the back surface facing the surface.
本国際特許出願は、2018年2月9日に出願した日本国特許出願第2018-021548号、2018年3月22日に出願した日本国特許出願第2018-053992号、2018年8月2日に出願した日本国特許出願第2018-145613号に基づきその優先権を主張するものであり、日本国特許出願第2018-021548号、2018-053992号、2018-145613号の全内容を参照によりここに援用する。
This international patent application is Japanese Patent Application No. 2018-021548 filed on Feb. 9, 2018, Japanese Patent Application No. 2018-053992 filed on Mar. 22, 2018, August 2, 2018 The priority is claimed based on Japanese Patent Application No. 2018-145613 filed in Japan, and the entire contents of Japanese Patent Application Nos. 2018-021548, 2018-053992, and 2018-145613 are referred to here. Incorporated into.
10 第1レーザ
11 第1レーザ光
20 第2レーザ
21 第2レーザ光
30 光学系
31 集光部
32 ダイクロイックミラー
100 被加工物
110 高電子密度領域
120 穴 DESCRIPTION OFSYMBOLS 10 1st laser 11 1st laser beam 20 2nd laser 21 2nd laser beam 30 Optical system 31 Condensing part 32 Dichroic mirror 100 Work piece 110 High electron density area | region 120 Hole
11 第1レーザ光
20 第2レーザ
21 第2レーザ光
30 光学系
31 集光部
32 ダイクロイックミラー
100 被加工物
110 高電子密度領域
120 穴 DESCRIPTION OF
Claims (19)
- 第1レーザと、第2レーザと、集光部とを備え、
前記第1レーザは、被加工物を透過する波長の第1レーザ光を、前記集光部を介して前記被加工物に照射する構成を有し、
前記第2レーザは、前記被加工物を透過する波長の第2レーザ光を、前記被加工物に照射する構成を有し、
前記集光部は、前記第1レーザ光を集光することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成する構成を有し、
前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように行われることを特徴とする
加工装置。 A first laser, a second laser, and a condensing unit;
The first laser has a configuration of irradiating the workpiece with a first laser beam having a wavelength that transmits the workpiece through the condensing unit,
The second laser has a configuration that irradiates the workpiece with a second laser beam having a wavelength that transmits the workpiece,
The condensing unit has a configuration in which a high electron density region in which free electrons are excited is generated in the workpiece by condensing the first laser beam,
Irradiation of the workpiece with the second laser light is performed at a timing from before the disappearance of the high electron density region generated by the irradiation of the first laser light to immediately after the disappearance of the high electron density region. A processing device characterized in that the processing device is passed through a position. - 前記第2レーザ光の波長は、前記高電子密度領域、及び、前記自由電子の緩和により加熱された領域のうち、少なくとも一方において吸収される波長に設定されている
請求項1に記載の加工装置。 The processing apparatus according to claim 1, wherein the wavelength of the second laser light is set to a wavelength that is absorbed in at least one of the high electron density region and a region heated by relaxation of the free electrons. . - 前記第2レーザ光の、前記被加工物への照射は、前記第1レーザ光による照射領域を通過するように行われることを特徴とする
請求項1又は2に記載の加工装置。 The processing apparatus according to claim 1, wherein the workpiece is irradiated with the second laser light so as to pass through an irradiation region of the first laser light. - 前記第1レーザは、短パルスレーザであり、前記第2レーザは、CWレーザ、又は、前記第1レーザよりも長いパルス幅を持つ長パルスレーザであることを特徴とする
請求項1乃至3のいずれか1項に記載の加工装置。 The first laser is a short pulse laser, and the second laser is a CW laser or a long pulse laser having a longer pulse width than the first laser. The processing apparatus of any one of Claims. - 前記第1レーザから照射される前記第1レーザ光の光強度は、前記被加工物の加工個所の少なくとも一部において、前記被加工物を蒸発させる臨界値及び前記被加工物を改質させる臨界値の両方よりも低い値に設定されている
請求項1乃至4のいずれか1項に記載の加工装置。 The light intensity of the first laser beam emitted from the first laser has a critical value for evaporating the workpiece and a critical value for modifying the workpiece in at least a part of the machining portion of the workpiece. The processing apparatus according to claim 1, wherein the processing apparatus is set to a value lower than both of the values. - 前記第2レーザは、前記第1レーザよりも高出力であることを特徴とする
請求項1乃至5のいずれか1項に記載の加工装置。 The processing apparatus according to claim 1, wherein the second laser has a higher output than the first laser. - 前記被加工物は、ガラス基板又は半導体基板であることを特徴とする
請求項1乃至6のいずれか1項に記載の加工装置。 The processing apparatus according to claim 1, wherein the workpiece is a glass substrate or a semiconductor substrate. - 前記第2レーザ光は、前記被加工物に関して前記第1レーザ光と反対側から、前記被加工物に入射されることを特徴とする
請求項1乃至7のいずれか1項に記載の加工装置。 The processing apparatus according to claim 1, wherein the second laser light is incident on the workpiece from a side opposite to the first laser light with respect to the workpiece. . - 前記第1レーザ光及び前記第2レーザ光の、前記被加工物に対する透明度は、それぞれ50%以上であることを特徴とする
請求項1乃至8のいずれ1項に記載の加工装置。 9. The processing apparatus according to claim 1, wherein transparency of the first laser beam and the second laser beam with respect to the workpiece is 50% or more, respectively. - 加工方法であって、
(1)被加工物を透過する波長の第1レーザ光を集光して、前記被加工物に照射することによって、前記被加工物内に、自由電子が励起された高電子密度領域を生成するステップと;
(2)前記被加工物を透過する波長の第2レーザ光を、前記第1レーザ光の照射により生成した前記高電子密度領域の消失前から消失直後までの間のタイミングで、前記高電子密度領域の位置を通過するように前記被加工物に照射することにより、前記被加工物の一部を除去する加工を行うステップとを備えることを特徴とする、加工方法。 A processing method,
(1) Condensing a first laser beam having a wavelength that passes through the workpiece and irradiating the workpiece, thereby generating a high electron density region in which free electrons are excited in the workpiece. A step to do;
(2) The high electron density at a timing from before the disappearance of the high electron density region generated by irradiation of the first laser light to the second laser light having a wavelength that transmits the workpiece, immediately after the disappearance. And a step of performing a process of removing a part of the workpiece by irradiating the workpiece so as to pass through a position of a region. - 前記被加工物の一部を除去する加工を行うステップ(2)において、前記第2レーザ光の照射時間を制御することにより、前記被加工物における加工深さを制御することを特徴とする
請求項10に記載の加工方法。 In the step (2) of performing a process for removing a part of the workpiece, a processing depth in the workpiece is controlled by controlling an irradiation time of the second laser light. Item 11. The processing method according to Item 10. - 前記被加工物の一部を除去する加工を行うステップ(2)において、前記第2レーザ光を、前記第1レーザ光の照射による前記高電子密度領域の生成から消失直後までの間の少なくとも一部の一定期間又は時点を含むタイミングで、前記高電子密度領域の位置を通過するように前記被加工物に照射することを特徴とする、
請求項10又は11に記載の加工方法。 In the step (2) of performing a process of removing a part of the workpiece, the second laser beam is at least one of the period from generation of the high electron density region by irradiation of the first laser beam to immediately after disappearance. Irradiating the workpiece so as to pass through the position of the high electron density region at a timing including a certain period or time of the part,
The processing method according to claim 10 or 11. - 前記自由電子が励起された高電子密度領域を生成するステップ(1)において、前記高電子密度領域を前記被加工物における加工を予定する深さ以上の深さに形成することを特徴とする
請求項10乃至12のいずれか1項に記載の加工方法。 In the step (1) of generating the high electron density region in which the free electrons are excited, the high electron density region is formed to a depth equal to or greater than a depth at which processing is to be performed on the workpiece. Item 13. The processing method according to any one of Items 10 to 12. - 前記第1レーザ光の強度は、前記被加工物の加工個所の深さ方向の60%以上において、前記被加工物を蒸発させる臨界値及び前記被加工物を改質させる臨界値の両方よりも低い値に設定されている
請求項10乃至13のいずれか1項に記載の加工方法。 The intensity of the first laser beam is higher than both of a critical value for evaporating the workpiece and a critical value for modifying the workpiece at 60% or more in the depth direction of the processing portion of the workpiece. The processing method according to claim 10, wherein the processing method is set to a low value. - 前記第1レーザ光は、フィラメンテーションを生成する
請求項10乃至14のいずれか1項に記載の加工方法。 The processing method according to claim 10, wherein the first laser light generates filamentation. - 前記第1レーザ光はバーストショットであって、該バーストショットを構成する最初のパルスから最後のパルスまでの時間が1ns以内であることを特徴とする
請求項10乃至15のいずれか1項に記載の加工方法。 The said 1st laser beam is a burst shot, Comprising: The time from the 1st pulse which comprises this burst shot to the last pulse is less than 1 ns, The any one of Claims 10 thru | or 15 characterized by the above-mentioned. Processing method. - 前記第2レーザ光の波長は、前記高電子密度領域、及び、前記自由電子の緩和により加熱された領域のうち、少なくとも一方において吸収される波長に設定されている
請求項10乃至16のいずれか1項に記載の加工方法。 17. The wavelength of the second laser light is set to a wavelength that is absorbed in at least one of the high electron density region and a region heated by relaxation of the free electrons. The processing method according to item 1. - 前記第1レーザ光は、短パルスレーザであり、前記第2レーザ光は、CWレーザ、又は、前記第1レーザ光よりも長いパルス幅を持つ長パルスレーザである
請求項10乃至17のいずれか1項に記載の加工方法。 The first laser light is a short pulse laser, and the second laser light is a CW laser or a long pulse laser having a pulse width longer than that of the first laser light. The processing method according to item 1. - レーザによる穴加工後の透明な基板であって、
アニール工程及びエッチング工程を経ない状態で、
前記レーザによる穴の深さを該レーザの光の入射側の最大径で除した値は3.4以上であり、
前記穴の前記レーザの光の入射側の最大径は25μm以下であり、
前記穴の表面には、前記レーザによる溶融の痕跡がある
透明な基板。
A transparent substrate after drilling with a laser,
Without going through the annealing process and etching process,
The value obtained by dividing the depth of the hole by the laser by the maximum diameter on the incident side of the laser beam is 3.4 or more,
The maximum diameter of the laser light incident side of the hole is 25 μm or less,
There is a trace of melting by the laser on the surface of the hole.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-021548 | 2018-02-09 | ||
JP2018021548 | 2018-02-09 | ||
JP2018053992 | 2018-03-22 | ||
JP2018-053992 | 2018-03-22 | ||
JP2018145613 | 2018-08-02 | ||
JP2018-145613 | 2018-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019156183A1 true WO2019156183A1 (en) | 2019-08-15 |
Family
ID=67548324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/004479 WO2019156183A1 (en) | 2018-02-09 | 2019-02-07 | Processing device, processing method, and transparent substrate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019156183A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070039A (en) * | 2019-10-30 | 2021-05-06 | 株式会社ディスコ | Laser beam machining apparatus |
JP2021134103A (en) * | 2020-02-25 | 2021-09-13 | Agc株式会社 | Processing method for base material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205383A (en) * | 2001-12-28 | 2003-07-22 | Nidek Co Ltd | Laser machining device |
JP2006035710A (en) * | 2004-07-28 | 2006-02-09 | Cyber Laser Kk | Glass processing method using laser and device |
JP2014033218A (en) * | 2013-09-25 | 2014-02-20 | Laser System:Kk | Laser cutting method and laser processing apparatus |
JP2014534939A (en) * | 2011-09-21 | 2014-12-25 | レイディアンス,インコーポレイテッド | System and process for cutting material |
-
2019
- 2019-02-07 WO PCT/JP2019/004479 patent/WO2019156183A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205383A (en) * | 2001-12-28 | 2003-07-22 | Nidek Co Ltd | Laser machining device |
JP2006035710A (en) * | 2004-07-28 | 2006-02-09 | Cyber Laser Kk | Glass processing method using laser and device |
JP2014534939A (en) * | 2011-09-21 | 2014-12-25 | レイディアンス,インコーポレイテッド | System and process for cutting material |
JP2014033218A (en) * | 2013-09-25 | 2014-02-20 | Laser System:Kk | Laser cutting method and laser processing apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070039A (en) * | 2019-10-30 | 2021-05-06 | 株式会社ディスコ | Laser beam machining apparatus |
JP2021134103A (en) * | 2020-02-25 | 2021-09-13 | Agc株式会社 | Processing method for base material |
JP7302824B2 (en) | 2020-02-25 | 2023-07-04 | Agc株式会社 | Base material processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4741795B2 (en) | Method and apparatus for increasing material removal rate in laser processing | |
JP5432285B2 (en) | Method of laser processing glass into a shape with chamfered edges | |
JP6499300B2 (en) | Laser processing method for cleaving or cutting a substrate by forming a spike-like damaged structure | |
Shah et al. | Femtosecond laser deep hole drilling of silicate glasses in air | |
JP4478184B2 (en) | Laser cleaving method and laser processing apparatus | |
WO2010116917A1 (en) | Laser machining device and laser machining method | |
JP6625703B2 (en) | Laser-induced gas plasma processing | |
JP2017511777A (en) | Edge chamfering method | |
JP2005179154A (en) | Method and apparatus for fracturing brittle material | |
US20110108532A1 (en) | Laser processing method | |
KR101744869B1 (en) | Method of working material with high-energy radiation | |
JP7436377B2 (en) | Enhanced laser drilling and machining using gated CW and short pulse lasers | |
JP2009032858A (en) | Beam irradiation apparatus and laser annealing method | |
JP2018523291A (en) | Method for scribing semiconductor workpiece | |
KR101181719B1 (en) | Substrate Dicing Method by Nano Void Array Formation using Femtosecond Pulse Lasers | |
US20190359515A1 (en) | Method of forming hole in glass substrate by using pulsed laser, and method of producing glass substrate provided with hole | |
WO2019156183A1 (en) | Processing device, processing method, and transparent substrate | |
JP2009056467A (en) | Apparatus and method for laser beam machining | |
JP2005305470A (en) | Ultraviolet ray-assisted ultra short pulsed laser beam machining apparatus and method | |
JP6744624B2 (en) | Method and apparatus for cutting tubular brittle member | |
US20160001397A1 (en) | Laser processing apparatus | |
JP6952092B2 (en) | Scrivener method for semiconductor processing objects | |
JP6950895B2 (en) | Laser processing method, work piece manufacturing method, and laser processing equipment | |
JP2003053579A (en) | Device and method for laser beam machining | |
JP6787617B2 (en) | Method and device for dividing tubular brittle members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19751191 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19751191 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |