JP2005305243A - CATALYST FOR PRODUCING alpha, beta-UNSATURATED ALDEHYDE AND/OR alpha, beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND USAGE THEREOF - Google Patents

CATALYST FOR PRODUCING alpha, beta-UNSATURATED ALDEHYDE AND/OR alpha, beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND USAGE THEREOF Download PDF

Info

Publication number
JP2005305243A
JP2005305243A JP2004123051A JP2004123051A JP2005305243A JP 2005305243 A JP2005305243 A JP 2005305243A JP 2004123051 A JP2004123051 A JP 2004123051A JP 2004123051 A JP2004123051 A JP 2004123051A JP 2005305243 A JP2005305243 A JP 2005305243A
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
unsaturated
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004123051A
Other languages
Japanese (ja)
Other versions
JP4507247B2 (en
Inventor
Takeshi Ooyanai
健 大谷内
Ko Ninomiya
航 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004123051A priority Critical patent/JP4507247B2/en
Publication of JP2005305243A publication Critical patent/JP2005305243A/en
Application granted granted Critical
Publication of JP4507247B2 publication Critical patent/JP4507247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing α, β-unsaturated aldehyde and/or α, β-unsaturated carboxylic acid having high productivity, to provide a production method of the catalyst, and to provide a production method of α, β-unsaturated aldehyde and/or α, β-unsaturated carboxylic acid using the catalyst. <P>SOLUTION: The catalyst for producing α, β-unsaturated aldehyde and/or α, β-unsaturated carboxylic acid used for liquid phase oxidation of olefin with molecular oxygen comprises at least palladium, activated carbon and hydrophobic material of contact angle for water ≥30°. In the production method of the catalyst having at least a reduction process, at least palladium in an oxidized state, activated carbon and hydrophobic material of contact angle for water ≥30° are used as the starting material. α, β-unsaturated aldehyde and/or α, β-unsaturated carboxylic acid are produced by oxidizing olefin in liquid phase with molecular oxygen under the presence of the catalyst for production of α, β-unsaturated aldehyde and/or α, β-unsaturated carboxylic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、α,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造用触媒、その製造方法及びその使用法、より詳しくは、オレフィンを分子状酸素で液相酸化してα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸を製造するための触媒およびその製造方法並びにその触媒を用いたα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸などの製造方法に関する。   The present invention relates to a catalyst for the production of α, β-unsaturated aldehydes and / or α, β-unsaturated carboxylic acids, its production method and its use, more specifically, liquid phase oxidation of olefins with molecular oxygen. Catalyst for producing α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, process for producing the same, and α, β-unsaturated aldehyde and / or α, β-unsaturated using the catalyst The present invention relates to a method for producing carboxylic acid and the like.

オレフィンを分子状酸素により液相酸化し、α,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸を製造するために、パラジウム含有触媒が、特許文献1、2で提案されている。これら特許文献には、パラジウムを活性炭に担持させて触媒として用いることが記載されている。しかしながら、活性炭担持パラジウム触媒に疎水性物質を含むものは記載されていない。
特開昭60−155148号公報 特開昭60−139341号公報
In order to produce α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin with molecular oxygen, palladium-containing catalysts are proposed in Patent Documents 1 and 2. . These patent documents describe that palladium is supported on activated carbon and used as a catalyst. However, the activated carbon-supported palladium catalyst containing a hydrophobic substance is not described.
JP 60-155148 A JP 60-139341 A

本発明者が特許文献1、2の実施例に記載された方法に準じて製造したパラジウム含有触媒を用いてプロピレンからアクロレイン及びアクリル酸を製造したところ、特許文献1、2に記載されている副生成物(アセトアルデヒド、アセトン、アクロレイン、酢酸、二酸化炭素)以外に多様なポリマーやオリゴマーが数多く副生することがわかり、これらの副生成物を含め実際のアクリル酸の収率は特許文献1、2の実施例に記載されたものより低くなることが判明した。このように、特許文献1や2に記載の方法で製造した触媒では、α、β−不飽和カルボン酸製造に関する性能は未だ十分ではなく、より生産性の高い触媒の開発が望まれていた。本発明の目的は、オレフィンからα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造においてα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸を高生産性で製造するための触媒およびその製造方法並びにその触媒を用いた効率的なα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造方法を提供することにある。   When the present inventor produced acrolein and acrylic acid from propylene using a palladium-containing catalyst produced according to the method described in Examples of Patent Documents 1 and 2, In addition to the products (acetaldehyde, acetone, acrolein, acetic acid, carbon dioxide), it can be seen that a large number of various polymers and oligomers are by-produced, and the actual yield of acrylic acid including these by-products is as follows. It was found to be lower than that described in the Examples. As described above, the catalysts produced by the methods described in Patent Documents 1 and 2 are not yet sufficient in performance for producing α, β-unsaturated carboxylic acid, and development of a catalyst with higher productivity has been desired. The object of the present invention is to produce α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid at high production in the production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid from olefin. It is an object of the present invention to provide an efficient α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid production method using the catalyst.

本発明者らは前記課題を達成すべく鋭意研究を重ねた結果、触媒に疎水性物質を含有せしめることにより上記課題を解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above problems, the present inventors have found that the above problems can be solved by adding a hydrophobic substance to the catalyst, and the present invention has been completed.

すなわち本発明の要旨は、(1)少なくともパラジウム、活性炭及び対水接触角が30度以上を持つ疎水性物質を含む、オレフィンの分子状酸素による液相酸化に用いるα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒。(2)活性炭に対して、疎水性物質が30質量%以下の範囲である、(1)記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒。(3)原料として、少なくとも酸化状態のパラジウム、活性炭及び対水接触角が30度以上を持つ疎水性物質を用い、少なくとも該パラジウムを還元する工程を有することを特徴とする(1)または(2)記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の製造方法。(4)少なくとも酸化状態のパラジウムを含む溶液と活性炭とを混合し、次いで該パラジウムを還元した後、疎水性物質を混合することを特徴とする(3)記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の製造方法。(5)(1)または(2)記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の存在下で、オレフィンを分子状酸素により液相酸化することを特徴とするα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造方法。   That is, the gist of the present invention is (1) an α, β-unsaturated aldehyde used for liquid phase oxidation of olefins with molecular oxygen, comprising at least palladium, activated carbon, and a hydrophobic substance having a contact angle with water of 30 ° or more. / Or a catalyst for producing an α, β-unsaturated carboxylic acid. (2) The catalyst for producing an α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid according to (1), wherein the hydrophobic substance is in a range of 30% by mass or less with respect to the activated carbon. (3) The raw material is at least oxidized palladium, activated carbon and a hydrophobic substance having a contact angle with water of 30 degrees or more, and has at least a step of reducing the palladium (1) or (2 ), A method for producing a catalyst for producing an α, β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid. (4) An α, β-unsaturated aldehyde according to (3), wherein a solution containing at least oxidized palladium and activated carbon are mixed, and then the palladium is reduced, and then a hydrophobic substance is mixed. / Or a method for producing a catalyst for producing an α, β-unsaturated carboxylic acid. (5) Liquid phase oxidation of olefin with molecular oxygen in the presence of the α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid production catalyst described in (1) or (2). A method for producing an α, β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid.

本発明によれば、生産性の高いα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒、その製造方法及び効率的なα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造方法を提供することができる。   According to the present invention, highly productive α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid production catalyst, its production method and efficient α, β-unsaturated aldehyde and / or α , Β-unsaturated carboxylic acid production method can be provided.

本発明の触媒は、オレフィンを分子状酸素で液相酸化してα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸を製造する(以下、単に液相酸化とも言う)ための触媒であって、少なくともパラジウム、活性炭及び対水接触角が30度以上を持つ疎水性物質を含むα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒である。   The catalyst of the present invention is for liquid phase oxidation of olefins with molecular oxygen to produce α, β-unsaturated aldehydes and / or α, β-unsaturated carboxylic acids (hereinafter also simply referred to as liquid phase oxidation). The catalyst is a catalyst for producing α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid containing at least palladium, activated carbon and a hydrophobic substance having a contact angle with water of 30 ° or more.

パラジウム、活性炭及び疎水性物質は必須で、これら一成分でも不足すると触媒性能が低下する。各成分の機能としては、パラジウムが触媒活性成分、活性炭が触媒担体、疎水性物質は反応ガスのオレフィンの活性点への吸着促進や、生成物のα,β−不飽和アルデヒドやα,β−不飽和カルボン酸の活性点からの脱離促進をすることにある。   Palladium, activated carbon, and a hydrophobic substance are essential, and if one of these components is insufficient, the catalyst performance decreases. As the function of each component, palladium is a catalytically active component, activated carbon is a catalyst carrier, and a hydrophobic substance promotes the adsorption of the reaction gas to the active site of the olefin, and the product α, β-unsaturated aldehyde or α, β- The purpose is to promote elimination of the unsaturated carboxylic acid from the active site.

パラジウムの使用量は、活性炭質量に対して通常0.1質量%以上であり、好ましくは0.5質量%以上、より好ましくは1質量%以上である。また、上限は通常40質量%以下であり、好ましくは30質量%以下、より好ましくは20質量%以下である。活性成分としてパラジウムは必須であるが、パラジウム以外に任意の金属を含んでいても良い。   The usage-amount of palladium is 0.1 mass% or more normally with respect to activated carbon mass, Preferably it is 0.5 mass% or more, More preferably, it is 1 mass% or more. Moreover, an upper limit is 40 mass% or less normally, Preferably it is 30 mass% or less, More preferably, it is 20 mass% or less. Palladium is essential as an active ingredient, but any metal other than palladium may be included.

活性炭は上述のとおり、触媒担体として機能するが、貴金属の表面積を向上させかつ高分散を実現するため、また酸点や塩基点の制御のためにも必要である。   As described above, activated carbon functions as a catalyst carrier, but it is necessary for improving the surface area of precious metals and realizing high dispersion, and also for controlling acid sites and base sites.

疎水性物質としては、十分な疎水性を示すためには対水接触角が30度以上、好ましくは50度以上、より好ましくは70度以上を持つことが必要である。接触角とは図1に示すように、固体表面と固体表面に接触した液滴との接触角を指す。対水接触角の場合、液滴は水である。接触角の測定は、市販の接触角測定器を用いて測定する。測定方法は、「軽金属、39巻、136頁、1989年」等に記載されている。   The hydrophobic substance needs to have a contact angle with water of 30 degrees or more, preferably 50 degrees or more, more preferably 70 degrees or more in order to exhibit sufficient hydrophobicity. As shown in FIG. 1, the contact angle refers to a contact angle between a solid surface and a liquid droplet contacting the solid surface. In the case of a water contact angle, the droplet is water. The contact angle is measured using a commercially available contact angle measuring device. The measuring method is described in “Light metal, 39, 136, 1989”.

疎水性物質の対水接触角が30度以上であれば、反応ガスのオレフィンの活性点への吸着促進や、生成物のα,β−不飽和アルデヒドやα,β−不飽和カルボン酸の活性点からの脱離が促進され、触媒機能が向上する。   If the water contact angle of the hydrophobic substance is 30 ° or more, the adsorption of the reaction gas to the active site of the olefin and the activity of the product α, β-unsaturated aldehyde or α, β-unsaturated carboxylic acid Desorption from the point is promoted, and the catalytic function is improved.

疎水性物質としては、対水接触角が30度以上を持つ物質であれは特に限定されず、フッ素樹脂、ポリオレフィン、塩化ビニル樹脂などが挙げられるが特にフッ素樹脂が好ましい。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン−フルオロアルキルビニルエーテル共重合体(PFA)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、エチレン−四フッ化エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)などが挙げられるが好ましくはPTFE、FEPである。それらの対水接触角は、順に、114度、109度、115度、105度、80度であり、いずれも30度以上である。   The hydrophobic substance is not particularly limited as long as it has a contact angle with water of 30 ° or more, and examples thereof include fluororesin, polyolefin, vinyl chloride resin, and fluororesin is particularly preferable. Examples of fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and ethylene-tetrafluoroethylene. A copolymer (ETFE), polyvinylidene fluoride (PVDF) and the like can be mentioned, and PTFE and FEP are preferred. Their water contact angles are, in order, 114 degrees, 109 degrees, 115 degrees, 105 degrees, and 80 degrees, all of which are 30 degrees or more.

疎水性物質の含有率は、前記活性炭に対して、通常30質量%以下、1質量%以上で充分であり、好ましくは5〜20質量%の範囲である。この範囲内で触媒活性の向上効果が特に良好である。   The content of the hydrophobic substance is usually 30% by mass or less and 1% by mass or more with respect to the activated carbon, and is preferably in the range of 5 to 20% by mass. Within this range, the effect of improving the catalytic activity is particularly good.

次に、本発明の触媒の製造方法について詳細に説明する。
本触媒の原料として、少なくとも酸化状態のパラジウム、活性炭、対水接触角が30度以上の疎水性物質を用いる。
Next, the manufacturing method of the catalyst of this invention is demonstrated in detail.
As the raw material of this catalyst, at least oxidized palladium, activated carbon, and a hydrophobic substance having a contact angle with water of 30 degrees or more are used.

酸化状態のパラジウムとしては酸化状態のパラジウムを含む化合物であれば特に限定されないが、例えば、塩化パラジウム、酸化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンジクロロパラジウム、ジアミノ亜硝酸パラジウム、パラジウムアセチルアセトナト等が挙げられる。中でも貴金属の塩化物、酢酸塩、硝酸塩が好ましい。   The oxidized palladium is not particularly limited as long as it is a compound containing palladium in the oxidized state. Nato and the like. Of these, noble metal chlorides, acetates and nitrates are preferred.

活性炭は、通常、炭化、整粒、賦活、洗浄、乾燥および粉砕のプロセスにより製造されるが、本発明に用いる活性炭はその製造プロセスには特に限定はない。活性炭の原料である炭素質物質にも特に制限はなく、椰子殻、石炭、木質および合成樹脂など種々の原料の活性炭を用いることができる。賦活方法にも特に制限はなく、水蒸気、炭酸ガス、酸素、リン酸、リン酸塩および塩化亜鉛などを用いて賦活することができる。賦活後の活性炭は、必要に応じて鉱酸、塩酸および水などにより洗浄され、乾燥された後使用に供される。製品活性炭に含有される不純物のうち、塩素は触媒性能に悪影響を及ぼす可能性があるため、好ましくない。従って、塩化亜鉛や塩酸を用いて製造された活性炭は、十分に洗浄し含有塩素をできる限り除去することが好ましい。   Activated carbon is usually produced by a process of carbonization, granulation, activation, washing, drying and pulverization, but the production process of the activated carbon used in the present invention is not particularly limited. There is no particular limitation on the carbonaceous material that is the raw material of the activated carbon, and various raw materials such as coconut shell, coal, wood, and synthetic resin can be used. There is no restriction | limiting in particular also in the activation method, It can activate using water vapor | steam, a carbon dioxide gas, oxygen, phosphoric acid, a phosphate, zinc chloride, etc. Activated activated carbon is washed with mineral acid, hydrochloric acid, water, etc., if necessary, and dried before use. Of the impurities contained in the product activated carbon, chlorine is not preferable because it may adversely affect the catalyst performance. Accordingly, it is preferable that the activated carbon produced using zinc chloride or hydrochloric acid is sufficiently washed to remove contained chlorine as much as possible.

活性炭の形状にも特に制限はなく、粉末状、球状、ペレット状および繊維状など種々の活性炭が使用できる。その中でも、細かいほど反応液中での分散性が高まり触媒活性が向上するため好ましいが、細かいほど固液分離しにくくなるため、ある程度粗い粒子が好ましく、平均粒径が5〜100μm程度の粉末状活性炭が良い。   There is no restriction | limiting in particular also in the shape of activated carbon, Various activated carbons, such as a powder form, spherical shape, a pellet form, and a fiber form, can be used. Among them, the finer is preferable because the dispersibility in the reaction liquid is increased and the catalytic activity is improved. However, the finer the particle, the harder the solid-liquid separation is. Activated carbon is good.

活性炭の比表面積としては、好ましくは100m/g以上、より好ましくは300m/g以上であり、好ましくは5000m/g以下、より好ましくは4000m/g以下である。活性炭の比表面積は小さいほど、有用成分がより表面に担持された触媒の製造が可能となり、大きいほど、パラジウムが多く担持された触媒の製造が可能となる。 The specific surface area of the activated carbon is preferably 100 m 2 / g or more, more preferably 300 m 2 / g or more, preferably 5000 m 2 / g or less, more preferably 4000 m 2 / g or less. The smaller the specific surface area of the activated carbon, the more the catalyst having useful components supported on the surface can be produced, and the larger the activated carbon, the more the catalyst carrying more palladium can be produced.

活性炭の細孔容積は窒素ガス吸着法で、好ましくは0.35〜0.8cc/g、より好ましくは0.4〜0.7cc/gある。また細孔径1nm以下の細孔容積の割合が全細孔容積の50%以上の担体が好ましい。この領域の細孔を有する担体を用いることにより、副生成物の生成が少なく目的生成物を良好な選択率で得ることができる。   The pore volume of the activated carbon is preferably from 0.35 to 0.8 cc / g, more preferably from 0.4 to 0.7 cc / g, as determined by the nitrogen gas adsorption method. A carrier having a pore volume ratio of 1 nm or less in pore diameter of 50% or more of the total pore volume is preferable. By using a carrier having pores in this region, the desired product can be obtained with good selectivity with little by-product formation.

対水接触角が30度以上の疎水性物質は、粉末あるいは分散液を用いることができる。分散液とは微粉が液体に分散されたもので、液体として水やイソプロピルアルコール等が用いられる。   As the hydrophobic substance having a contact angle with water of 30 degrees or more, a powder or a dispersion can be used. The dispersion is a dispersion of fine powder in a liquid, and water, isopropyl alcohol, or the like is used as the liquid.

疎水性物質の粒径としては、好ましくは10nm〜50μm、より好ましくは、100nm〜10μmである。この範囲内であると、担体と結合しやすく、また、活性点であるパラジウを阻害しにくいので好ましい。   The particle size of the hydrophobic substance is preferably 10 nm to 50 μm, more preferably 100 nm to 10 μm. Within this range, it is preferable because it is easy to bind to the carrier and it is difficult to inhibit parasite which is the active site.

本発明の触媒製造の際は、少なくとも酸化状態のパラジウムを含む溶液と活性炭を混合し還元を行う。還元は気相で行ってもよいが、液相中で行うことが好ましい。液相中で行う場合、貴金属化合物を溶媒に溶解後、還元剤を用いて貴金属化合物中の貴金属を還元する。   In the production of the catalyst of the present invention, reduction is performed by mixing at least a solution containing palladium in an oxidized state and activated carbon. The reduction may be performed in the gas phase, but is preferably performed in the liquid phase. When performing in a liquid phase, after dissolving a noble metal compound in a solvent, the noble metal in the noble metal compound is reduced using a reducing agent.

還元温度は、用いる貴金属化合物、還元剤等により異なるが、通常−5℃以上、好ましくは15℃以上で行う。また、通常150℃以下、好ましくは80℃以下で行う。還元時間は、通常0.1時間以上、好ましくは0.25時間以上、より好ましくは0.5時間以上である。また、通常4時間以下、好ましくは3時間以下、より好ましくは2時間以下である。   The reduction temperature varies depending on the precious metal compound, the reducing agent, etc. used, but is usually −5 ° C. or higher, preferably 15 ° C. or higher. Moreover, it is normally performed at 150 ° C. or lower, preferably 80 ° C. or lower. The reduction time is usually 0.1 hour or longer, preferably 0.25 hour or longer, more preferably 0.5 hour or longer. Moreover, it is 4 hours or less normally, Preferably it is 3 hours or less, More preferably, it is 2 hours or less.

液相中での還元の際に使用する溶媒としては、水が好ましいが、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;酢酸、n−吉草酸、iso−吉草酸等の有機酸;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素等の有機溶媒を単独又は複数組み合わせて用いることができる。また、これらの有機溶媒と水との混合溶媒を用いることが好ましい。特に、パラジウム化合物として塩化パラジウムを用いた場合、エタノールと水の混合溶媒、アセトンと水との混合溶媒、又は、酢酸と水との混合溶媒が好ましい。   The solvent used in the reduction in the liquid phase is preferably water, but alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, and t-butanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketones such as acetic acid, n-valeric acid, iso-valeric acid and the like, and organic solvents such as hydrocarbons such as heptane, hexane, cyclohexane and the like can be used alone or in combination. Moreover, it is preferable to use the mixed solvent of these organic solvents and water. In particular, when palladium chloride is used as the palladium compound, a mixed solvent of ethanol and water, a mixed solvent of acetone and water, or a mixed solvent of acetic acid and water is preferable.

還元剤としては、メタノール、エタノール、2−プロパノール、ヒドラジン、ホルマリン、ギ酸、ギ酸ナトリウム、シュウ酸、水素化ホウ素ナトリウム、水素、エチレン、プロピレン、1−ブテン、2−ブテンおよびイソブチレンからなる群より選ばれる1種以上であることが好ましく、より好ましくはエタノール、2−プロパノール、ヒドラジン、ホルマリン、水素化ホウ素ナトリウム、水素、エチレン、プロピレン、1−ブテン、2−ブテンおよびイソブチレンからなる群より選ばれる1種以上であり、最も好ましいのは、ヒドラジン、ホルマリン、水素およびプロピレンからなる群より選ばれる1種以上の化合物である。これらの還元剤に他の還元剤を併用しても何ら差し支えない。   The reducing agent is selected from the group consisting of methanol, ethanol, 2-propanol, hydrazine, formalin, formic acid, sodium formate, oxalic acid, sodium borohydride, hydrogen, ethylene, propylene, 1-butene, 2-butene and isobutylene. 1 or more selected from the group consisting of ethanol, 2-propanol, hydrazine, formalin, sodium borohydride, hydrogen, ethylene, propylene, 1-butene, 2-butene and isobutylene. One or more compounds, most preferably one or more compounds selected from the group consisting of hydrazine, formalin, hydrogen and propylene. These reducing agents may be used in combination with other reducing agents.

還元剤が気体の場合、溶液中への溶解度を上げるためにオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は通常0.1〜1.0MPa(ゲージ圧;以下、圧力の表記は全てゲージ圧表記とする)である。   When the reducing agent is a gas, it is preferably carried out in a pressurizing apparatus such as an autoclave in order to increase the solubility in the solution. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is usually 0.1 to 1.0 MPa (gauge pressure; hereinafter, all pressures are expressed as gauge pressures).

還元剤が液体または固体の場合は、パラジウム化合物の還元を行う装置に制限はなく、パラジウム化合物溶液中に還元剤を添加することで行うことができる。このときの還元剤の使用量は特に限定されないが、パラジウム原子1モルに対して通常1〜100モル程度である。   When the reducing agent is liquid or solid, the apparatus for reducing the palladium compound is not limited, and the reduction can be performed by adding the reducing agent to the palladium compound solution. Although the usage-amount of a reducing agent at this time is not specifically limited, It is about 1-100 mol normally with respect to 1 mol of palladium atoms.

疎水性物質は、まず、少なくとも酸化状態のパラジウムを含む溶液と活性炭を混合し、次いで還元を行った後に混合するのが好ましい。混合時の溶液は特に限定しないが、還元反応に使用した液をそのまま用いることもできる。混合時の温度としては5〜100℃で5〜120分程度行うのが良い。   It is preferable that the hydrophobic substance is first mixed with a solution containing at least oxidized palladium and activated carbon and then mixed after reduction. Although the solution at the time of mixing is not specifically limited, The liquid used for the reduction reaction can also be used as it is. The mixing temperature is preferably 5 to 100 ° C. for 5 to 120 minutes.

混合後、触媒を洗浄、ろ過した後、反応に使用する。洗浄には、水、温水、アセトンあるいは反応溶媒等が使用される。ろ過は窒素、二酸化炭素やアルゴン等の不活性ガス雰囲気で行うが好ましい。洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等の原料塩由来の不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によっては反応を阻害する恐れがあるため、不純物を十分除去できる程度に洗浄することが好ましい。   After mixing, the catalyst is washed, filtered, and used for the reaction. For washing, water, warm water, acetone, a reaction solvent, or the like is used. Filtration is preferably performed in an inert gas atmosphere such as nitrogen, carbon dioxide, or argon. By washing, for example, impurities derived from raw material salts such as chloride, acetate radical, nitrate radical, and sulfate radical are removed. The cleaning method and the number of times are not particularly limited. However, depending on the impurities, the reaction may be hindered. Therefore, it is preferable that the cleaning is performed to such an extent that the impurities can be sufficiently removed.

次にオレフィンを分子状酸素によって液相酸化してα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸を製造する方法について説明する。   Next, a method for producing an α, β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin with molecular oxygen will be described.

原料のオレフィンとしては、例えば、プロピレン、イソブチレン、1−ブテン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。原料のオレフィンは、不純物として飽和炭化水素および低級飽和アルデヒド等を少量含んでいてもよい。   Examples of the raw material olefin include propylene, isobutylene, 1-butene, and 2-butene. Among these, propylene and isobutylene are preferable. The raw material olefin may contain a small amount of saturated hydrocarbon, lower saturated aldehyde and the like as impurities.

液相酸化で製造されるα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸は、原料のオレフィンと同一炭素骨格を有するα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸である。本発明の触媒は、プロピレンからアクロレインやアクリル酸、イソブチレンからメタクロレインやメタクリル酸を製造する液相酸化に好適である。   The α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid produced by liquid phase oxidation is an α, β-unsaturated aldehyde and / or α, β- having the same carbon skeleton as the raw material olefin. Unsaturated carboxylic acid. The catalyst of the present invention is suitable for liquid phase oxidation for producing acrolein or acrylic acid from propylene and methacrolein or methacrylic acid from isobutylene.

反応に用いる分子状酸素源には、空気が経済的であるが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。   Air is economical as the molecular oxygen source used in the reaction, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is converted into nitrogen, carbon dioxide, water vapor. It is also possible to use a mixed gas diluted with the same.

液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。   The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.

液相酸化反応の反応溶媒としては、例えば、ターシャリーブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの化合物を用いることが好ましい。中でも、ターシャリーブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つの化合物がより好ましい。また、α、β−不飽和カルボン酸を選択率よく製造するためには、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して、通常2質量%以上、好ましくは5質量%以上である。また、通常70質量%以下、好ましくは50質量%以下である。有機溶媒と水の混合物は均一な状態であることが望ましいが、不均一な状態であっても差し支えない。   Examples of the reaction solvent for the liquid phase oxidation reaction include tertiary butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, It is preferable to use at least one compound selected from the group consisting of ethyl acetate and methyl propionate. Among these, at least one compound selected from the group consisting of tertiary butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid is more preferable. In addition, in order to produce an α, β-unsaturated carboxylic acid with high selectivity, it is preferable to coexist water in these organic solvents. The amount of water to coexist is not particularly limited, but is usually 2% by mass or more, preferably 5% by mass or more, based on the total mass of the organic solvent and water. Moreover, it is 70 mass% or less normally, Preferably it is 50 mass% or less. The mixture of the organic solvent and water is desirably in a uniform state, but may be in a non-uniform state.

反応の原料であるオレフィンの濃度は、反応器内に存在する溶媒に対して、通常0.1質量%以上、好ましくは0.5質量%以上である。また、通常20質量%以下、好ましくは10質量%以下である。   The concentration of the olefin as a raw material for the reaction is usually 0.1% by mass or more, preferably 0.5% by mass or more, with respect to the solvent present in the reactor. Moreover, it is 20 mass% or less normally, Preferably it is 10 mass% or less.

分子状酸素の使用量は、原料であるオレフィン1モルに対して、通常0.1モル以上、好ましくは0.3モル以上、より好ましくは0.5モル以上である。また、通常20モル以下、好ましくは15モル以下、より好ましくは10モル以下である。   The amount of molecular oxygen to be used is usually 0.1 mol or more, preferably 0.3 mol or more, more preferably 0.5 mol or more with respect to 1 mol of olefin as a raw material. Moreover, it is 20 mol or less normally, Preferably it is 15 mol or less, More preferably, it is 10 mol or less.

通常、本発明の触媒は反応液に懸濁させた状態で使用されるが、固定床で使用してもよい。使用量は、反応器内に存在する溶液に対して、通常0.1質量%以上であり、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。また、通常30質量%以下であり、20質量%以下がより好ましく、15質量%以下がさらに好ましい。   Usually, the catalyst of the present invention is used in a state suspended in a reaction solution, but may be used in a fixed bed. The amount used is usually 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more with respect to the solution present in the reactor. Moreover, it is 30 mass% or less normally, 20 mass% or less is more preferable, and 15 mass% or less is further more preferable.

液相酸化反応の反応温度および反応圧力は、用いる溶媒および反応原料によって適宜選択される。反応温度は一般的に30〜200℃であり、好ましくは50℃以上であり、好ましくは150℃以下である。また、反応圧力は一般的に大気圧(0MPa)〜10MPaであり、好ましくは0.5MPa以上であり、好ましくは5MPa以下である。   The reaction temperature and reaction pressure of the liquid phase oxidation reaction are appropriately selected depending on the solvent used and the reaction raw materials. The reaction temperature is generally 30 to 200 ° C, preferably 50 ° C or higher, and preferably 150 ° C or lower. The reaction pressure is generally atmospheric pressure (0 MPa) to 10 MPa, preferably 0.5 MPa or more, and preferably 5 MPa or less.

以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は「質量部」を意味する。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. In the following Examples and Comparative Examples, “part” means “part by mass”.

(原料および生成物の分析)
原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、イソブチレンの反応率、生成するメタクロレイン(MAL)、メタクリル酸(MAA)およびポリマー・オリゴマーの選択率、並びに、MAAの収率および生産性は以下のように定義される。
イソブチレンの反応率(%) =(B/A)×100
メタクロレイン(MAL)の選択率(%) =(C/B)×100
メタクリル酸(MAA)の選択率(%) =(D/B)×100
ポリマー・オリゴマーの選択率(%) =(E/B)×100
MALの収率(%) =(C/A)×100
MAAの収率(%) =(D/A)×100
MALの生産性(g/g−Pd/h) = F/(H×I)
MAAの生産性(g/g−Pd/h) = G/(H×I)
MAL+MAAの生産性(g/g−Pd/h) =(F+G)/(H×I)

ここで、
Aは供給したイソブチレンのモル数、
Bは反応したイソブチレンのモル数、
Cは生成したメタクロレインのモル数、
Dは生成したメタクリル酸のモル数、
Eは生成したポリマーおよびオリゴマーの総質量(単位:g)を供給したイソブチレンの分子量で除して算出したイソブチレン換算のポリマーおよびオリゴマーのモル数、
Fは生成したメタクロレインの質量(単位:g)、
Gは生成したメタクリル酸の質量(単位:g)、
Hは触媒に含まれるパラジウムの質量(単位:g)、
Iは反応時間(単位:時間)である。
(Analysis of raw materials and products)
Analysis of raw materials and products was performed using gas chromatography. The reaction rate of isobutylene, the methacrolein (MAL), the selectivity of methacrylic acid (MAA) and the polymer / oligomer, and the yield and productivity of MAA are defined as follows.
Reaction rate of isobutylene (%) = (B / A) × 100
Selectivity (%) of methacrolein (MAL) = (C / B) × 100
Methacrylic acid (MAA) selectivity (%) = (D / B) × 100
Selectivity of polymer / oligomer (%) = (E / B) × 100
MAL yield (%) = (C / A) × 100
MAA yield (%) = (D / A) × 100
MAL productivity (g / g-Pd / h) = F / (H × I)
MAA productivity (g / g−Pd / h) = G / (H × I)
Productivity of MAL + MAA (g / g−Pd / h) = (F + G) / (H × I)

here,
A is the number of moles of isobutylene supplied,
B is the number of moles of reacted isobutylene,
C is the number of moles of methacrolein produced,
D is the number of moles of methacrylic acid produced,
E is the number of moles of polymer and oligomer in terms of isobutylene calculated by dividing the total mass (unit: g) of the produced polymer and oligomer by the molecular weight of the supplied isobutylene,
F is the mass of the produced methacrolein (unit: g),
G is the mass of the generated methacrylic acid (unit: g),
H is the mass of palladium contained in the catalyst (unit: g),
I is the reaction time (unit: hours).

[実施例1]
(触媒調製)
酢酸パラジウム1.055部を88質量%n−吉草酸水溶液60部中で加熱溶解させた。この溶液に活性炭(比表面積780m/g)5.0部を添加し、オートクレーブに仕込み密閉した。撹拌を開始し、内液の温度を10℃以下に冷却後、内圧0.5MPaまでプロピレンガスを導入後、50℃で1時間保持し、還元を行った。1時間後、内液の温度を20℃以下まで低下させた後、内圧を開放した。その後、PTFE粉末(平均粒径5μm)0.25部加え、1時間攪拌した。その後吸引ろ過し、75質量%ターシャリーブタノールで数回洗浄して活性炭担持パラジウム触媒を得た。尚、調製時に触媒の有効成分の損失はほとんど認められなかった。得られた触媒は、活性炭に対してパラジウム担持率は10質量%、PTFE含有率は5質量%であった。
[Example 1]
(Catalyst preparation)
1.055 parts of palladium acetate was dissolved by heating in 60 parts of an 88% by mass n-valeric acid aqueous solution. To this solution, 5.0 parts of activated carbon (specific surface area of 780 m 2 / g) was added and charged in an autoclave and sealed. Stirring was started, the temperature of the internal liquid was cooled to 10 ° C. or lower, propylene gas was introduced to an internal pressure of 0.5 MPa, and then held at 50 ° C. for 1 hour for reduction. After 1 hour, the temperature of the internal liquid was lowered to 20 ° C. or lower, and then the internal pressure was released. Thereafter, 0.25 part of PTFE powder (average particle size 5 μm) was added and stirred for 1 hour. Thereafter, the mixture was suction filtered and washed several times with 75% by mass tertiary butanol to obtain an activated carbon-supported palladium catalyst. In addition, almost no loss of the active component of the catalyst was recognized at the time of preparation. The obtained catalyst had a palladium loading of 10% by mass and a PTFE content of 5% by mass with respect to the activated carbon.

(反応評価)
オートクレーブに上記の方法で得た活性炭担持パラジウム触媒全量と反応溶媒として75質量%ターシャリーブタノール水溶液75部を入れ、オートクレーブを密閉した。次いで、イソブチレンを2.0部導入し、攪拌(回転数100rpm)を開始し、90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入した。反応中に内圧が0.1MPa低下した時点(内圧4.7MPa)で、酸素を0.1MPa導入する操作を繰り返した。導入直後の圧力は4.8MPaである。反応は60分間行った。
反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液だけを回収した。回収した反応液と捕集したガスはガスクロマトグラフィーにより分析した。結果を表1に示す。MAL及び/またはMAAの生産性が高く、得られた触媒のMAL及び/またはMAAの生産性は高いことが分かった。
(Reaction evaluation)
Into the autoclave, the total amount of the palladium catalyst supported on the activated carbon obtained by the above method and 75 parts of a 75% by mass tertiary butanol aqueous solution as a reaction solvent were put, and the autoclave was sealed. Next, 2.0 parts of isobutylene was introduced, stirring (rotation speed: 100 rpm) was started, and the temperature was raised to 90 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa. When the internal pressure decreased by 0.1 MPa during the reaction (internal pressure 4.7 MPa), the operation of introducing 0.1 MPa of oxygen was repeated. The pressure immediately after introduction is 4.8 MPa. The reaction was performed for 60 minutes.
After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated by a membrane filter, and only the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography. The results are shown in Table 1. It was found that the productivity of MAL and / or MAA was high, and that the resulting catalyst had a high productivity of MAL and / or MAA.

[実施例2]
PTFEの使用量を0.5部とした以外は、実施例1と同様な操作を行い触媒を調製した。得られた触媒は、活性炭に対してパラジウム担持率が10質量%、PTFE含有率が10質量%であった。反応評価を実施例1と同様に行った。結果を表1に示す。実施例1同様、MAL及び/またはMAAの生産性が高く、得られた触媒のMAL及び/またはMAAの生産性は高いことが分かった。
[Example 2]
A catalyst was prepared in the same manner as in Example 1 except that the amount of PTFE used was 0.5 part. The obtained catalyst had a palladium loading ratio of 10% by mass and a PTFE content of 10% by mass with respect to the activated carbon. Reaction evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As in Example 1, the productivity of MAL and / or MAA was high, and the productivity of MAL and / or MAA of the obtained catalyst was found to be high.

[実施例3]
PTFEの使用量を0.75部とした以外は、実施例1と同様な操作を行い触媒を調製した。得られた触媒は、活性炭に対してパラジウム担持率が10質量%、PTFE含有率が15質量%であった。反応評価を実施例1と同様に行った。結果を表1に示す。実施例1同様、MAL及び/またはMAAの生産性が高く、得られた触媒のMAL及び/またはMAAの生産性は高いことが分かった。
[Example 3]
A catalyst was prepared in the same manner as in Example 1 except that the amount of PTFE used was changed to 0.75 part. The obtained catalyst had a palladium loading ratio of 10% by mass and a PTFE content of 15% by mass with respect to the activated carbon. Reaction evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As in Example 1, the productivity of MAL and / or MAA was high, and the productivity of MAL and / or MAA of the obtained catalyst was found to be high.

[実施例4]
PTFEの使用量を0.25部とする代わりにPVDFの使用量を0.5部とした以外は、実施例1と同様な操作を行い触媒を調製した。得られた触媒は、活性炭に対してパラジウム担持率が10質量%、PVDF含有率が10質量%であった。反応評価を実施例1と同様に行った。結果を表1に示す。実施例1同様、MAL及び/またはMAAの生産性が高く、得られた触媒のMAL及び/またはMAAの生産性は高いことが分かった。
[Example 4]
A catalyst was prepared in the same manner as in Example 1 except that the amount of PVDF used was changed to 0.5 parts instead of the amount of PTFE used was 0.25 parts. The obtained catalyst had a palladium loading ratio of 10% by mass and a PVDF content of 10% by mass with respect to the activated carbon. Reaction evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As in Example 1, the productivity of MAL and / or MAA was high, and the productivity of MAL and / or MAA of the obtained catalyst was found to be high.

[比較例1]
PTFE粉末を加えなかった以外は実施例1と同様な操作を行い触媒を調製した。得られた触媒は、活性炭に対してパラジウム担持率が10質量%であった。反応評価を実施例1と同様に行った。結果を表1に示す。MAL及び/またはMAAの生産性が低かった。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 1 except that PTFE powder was not added. The obtained catalyst had a palladium loading of 10% by mass with respect to the activated carbon. Reaction evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. The productivity of MAL and / or MAA was low.

Figure 2005305243
Figure 2005305243

本発明に用いる固体の対水接触角の定義を示す図である。It is a figure which shows the definition of the water contact angle of the solid used for this invention.

符号の説明Explanation of symbols

1 接触角
2 水
3 固体
4 空気

1 Contact angle 2 Water 3 Solid 4 Air

Claims (5)

少なくともパラジウム、活性炭及び対水接触角が30度以上を持つ疎水性物質を含む、オレフィンの分子状酸素による液相酸化に用いるα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒。   [Alpha], [beta] -unsaturated aldehyde and / or [alpha], [beta] -unsaturated carboxylic acid used for liquid phase oxidation of olefins with molecular oxygen including at least palladium, activated carbon and a hydrophobic substance having a contact angle with water of 30 degrees or more Catalyst for production. 活性炭に対して、疎水性物質が30質量%以下の範囲である、請求項1記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒。   The catalyst for producing an α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid according to claim 1, wherein the hydrophobic substance is in a range of 30% by mass or less based on the activated carbon. 原料として、少なくとも酸化状態のパラジウム、活性炭及び対水接触角が30度以上を持つ疎水性物質を用い、少なくとも該パラジウムを還元する工程を有することを特徴とする請求項1または2記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の製造方法。   3. The α, according to claim 1, comprising at least a step of reducing palladium by using at least oxidized palladium, activated carbon and a hydrophobic substance having a contact angle with water of 30 degrees or more as raw materials. A method for producing a catalyst for producing a β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid. 少なくとも酸化状態のパラジウムを含む溶液と活性炭とを混合し、次いで該パラジウムを還元した後、疎水性物質を混合することを特徴とする請求項3記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の製造方法。   The α, β-unsaturated aldehyde and / or α according to claim 3, wherein a solution containing at least oxidized palladium and activated carbon are mixed, and then the palladium is reduced, and then a hydrophobic substance is mixed. , Β-Unsaturated carboxylic acid production catalyst production method. 請求項1または2記載のα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸製造用触媒の存在下で、オレフィンを分子状酸素により液相酸化することを特徴とするα,β−不飽和アルデヒド及び/またはα,β−不飽和カルボン酸の製造方法。   An α, β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid production catalyst according to claim 1 or 2, wherein the olefin is subjected to liquid phase oxidation with molecular oxygen in the presence of the catalyst. A method for producing a β-unsaturated aldehyde and / or an α, β-unsaturated carboxylic acid.
JP2004123051A 2004-04-19 2004-04-19 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof Expired - Fee Related JP4507247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123051A JP4507247B2 (en) 2004-04-19 2004-04-19 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123051A JP4507247B2 (en) 2004-04-19 2004-04-19 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2005305243A true JP2005305243A (en) 2005-11-04
JP4507247B2 JP4507247B2 (en) 2010-07-21

Family

ID=35434620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123051A Expired - Fee Related JP4507247B2 (en) 2004-04-19 2004-04-19 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4507247B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137729A (en) * 2004-11-15 2006-06-01 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007186513A (en) * 2006-01-10 2007-07-26 Rohm & Haas Co Liquid-phase oxidation (ammoxidation) method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138886A (en) * 1978-04-20 1979-10-27 Mitsui Toatsu Chem Inc Catalyst composition for oxidation reaction
JPS55121842A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Chemical reduction process
JPS57105242A (en) * 1980-07-31 1982-06-30 Studiecentrum Kernenergi Manufacture of catalyst for isotope exchanging column
JPS57156043A (en) * 1981-03-23 1982-09-27 Hitachi Ltd Catalyst for exchange reaction of water-hydrogen isotope
JPS60139341A (en) * 1983-12-07 1985-07-24 サン リフアイニング アンド マ−ケテイング カンパニ− Oxidation to alpha, beta-unsaturated carboxylic acid of olefin by catalyst
JPS60155148A (en) * 1983-12-07 1985-08-15 サン リフアイニング アンド マ−ケテイング カンパニ− Increased selectivity for oxidation of olefin to alpha, beta-unsaturated carboxylic acid
JPS62269746A (en) * 1986-05-15 1987-11-24 Kao Corp Catalyst composition for oxidation reaction
JPS62269745A (en) * 1986-05-15 1987-11-24 Kao Corp Catalyst composition for oxidation reaction
JPH0356194A (en) * 1989-07-24 1991-03-11 Tanaka Kikinzoku Kogyo Kk Removal of organic substance in aqueous solution
JPH05148184A (en) * 1991-11-28 1993-06-15 Mitsui Toatsu Chem Inc Production of carboxylic acid ester

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138886A (en) * 1978-04-20 1979-10-27 Mitsui Toatsu Chem Inc Catalyst composition for oxidation reaction
JPS55121842A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Chemical reduction process
JPS57105242A (en) * 1980-07-31 1982-06-30 Studiecentrum Kernenergi Manufacture of catalyst for isotope exchanging column
JPS57156043A (en) * 1981-03-23 1982-09-27 Hitachi Ltd Catalyst for exchange reaction of water-hydrogen isotope
JPS60139341A (en) * 1983-12-07 1985-07-24 サン リフアイニング アンド マ−ケテイング カンパニ− Oxidation to alpha, beta-unsaturated carboxylic acid of olefin by catalyst
JPS60155148A (en) * 1983-12-07 1985-08-15 サン リフアイニング アンド マ−ケテイング カンパニ− Increased selectivity for oxidation of olefin to alpha, beta-unsaturated carboxylic acid
JPS62269746A (en) * 1986-05-15 1987-11-24 Kao Corp Catalyst composition for oxidation reaction
JPS62269745A (en) * 1986-05-15 1987-11-24 Kao Corp Catalyst composition for oxidation reaction
JPH0356194A (en) * 1989-07-24 1991-03-11 Tanaka Kikinzoku Kogyo Kk Removal of organic substance in aqueous solution
JPH05148184A (en) * 1991-11-28 1993-06-15 Mitsui Toatsu Chem Inc Production of carboxylic acid ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137729A (en) * 2004-11-15 2006-06-01 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007186513A (en) * 2006-01-10 2007-07-26 Rohm & Haas Co Liquid-phase oxidation (ammoxidation) method
JP4728970B2 (en) * 2006-01-10 2011-07-20 ローム アンド ハース カンパニー Liquid phase (ammo) oxidation method

Also Published As

Publication number Publication date
JP4507247B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
WO2004037410A1 (en) CARBON INTERSTICED METALLIC PALLADIUM, PALLADIUM CATALYST AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
KR101264031B1 (en) CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP3884695B2 (en) Catalyst for production of α, β-unsaturated carboxylic acid
JP2007090164A (en) NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP2006265227A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007185633A (en) PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
KR101227713B1 (en) Method for producing palladium-containing catalyst
JP4204491B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP4699038B2 (en) Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5906752B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5362348B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2007185623A (en) Method for producing alpha,beta-unsaturated carboxylic acid, catalyst to be used therein and method for manufacturing the catalyst
JP2005125306A (en) CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP5006175B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2008212818A (en) Method of manufacturing palladium-containing supported catalyst
JP5416886B2 (en) Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP2006000727A (en) Palladium-containing catalyst and its manufacturing method, and method for producing alpha, beta-unsaturated aldehyde and alpha, beta-unsaturated carboxylic acid
JP2009006236A (en) PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2009050749A (en) PALLADIUM-CONTAINING CATALYST, METHOD FOR PREPARING THE SAME, AND METHOD FOR PREPARING alpha-beta UNSATURATED CARBOXYLIC ACID
JP2006137729A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2005238226A (en) Method for producing noble metal-containing catalyst
JP2009254956A (en) PALLADIUM-SUPPORTING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4507247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees