JP5340705B2 - Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride - Google Patents

Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride Download PDF

Info

Publication number
JP5340705B2
JP5340705B2 JP2008302730A JP2008302730A JP5340705B2 JP 5340705 B2 JP5340705 B2 JP 5340705B2 JP 2008302730 A JP2008302730 A JP 2008302730A JP 2008302730 A JP2008302730 A JP 2008302730A JP 5340705 B2 JP5340705 B2 JP 5340705B2
Authority
JP
Japan
Prior art keywords
unsaturated carboxylic
noble metal
carboxylic acid
catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008302730A
Other languages
Japanese (ja)
Other versions
JP2009183938A (en
Inventor
桂子 前原
嘉之 姫野
俊樹 松井
誠一 河藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008302730A priority Critical patent/JP5340705B2/en
Publication of JP2009183938A publication Critical patent/JP2009183938A/en
Application granted granted Critical
Publication of JP5340705B2 publication Critical patent/JP5340705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noble metal-containing catalyst to be used for producing &alpha;,&beta;-unsaturated carboxylic acid and &alpha;,&beta;-unsaturated carboxylic anhydride from olefin with high selectivity and with high productivity and a method for producing &alpha;,&beta;-unsaturated carboxylic acid and &alpha;,&beta;-unsaturated carboxylic anhydride with high selectivity and with high productivity. <P>SOLUTION: The method for manufacturing the noble metal-containing catalyst comprises the steps of: drying a raw material solution containing a noble metal component, an inorganic solvent and organic matter to obtain a catalyst precursor; and reducing the catalyst precursor. Olefin is oxidized in a liquid phase by molecular oxygen in the presence of the noble metal-containing catalyst to produce &alpha;,&beta;-unsaturated carboxylic acid and &alpha;,&beta;-unsaturated carboxylic anhydride. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明はオレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を製造するための貴金属含有触媒及びその製造方法、並びにそれを用いたα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造方法に関する。   The present invention relates to a noble metal-containing catalyst for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride from an olefin, a method for producing the same, and an α, β-unsaturated carboxylic acid using the same. And a process for producing an α, β-unsaturated carboxylic acid anhydride.

オレフィンを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するための貴金属含有触媒として、例えば、特許文献1にパラジウム含有触媒が記載されている。また、貴金属含有触媒の製造方法として、特許文献2に酢酸パラジウムを酢酸に溶解させて熱分解温度以上で焼成する方法、特許文献3に酢酸パラジウムに20質量%酢酸を溶媒に使用して加熱後、シリカ担体を入れ、還元剤としてアリルアルコールを加える手法が記載されている。
国際公開第2005/118134号パンフレット 特開2006−167709号公報 特開2005−218952号公報
As a noble metal-containing catalyst for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin with molecular oxygen, for example, Patent Document 1 discloses a palladium-containing catalyst. As a method for producing a noble metal-containing catalyst, Patent Document 2 discloses a method in which palladium acetate is dissolved in acetic acid and calcined at a temperature equal to or higher than the thermal decomposition temperature. Patent Document 3 discloses a method using 20% by mass acetic acid in palladium acetate as a solvent. A method of adding a silica carrier and adding allyl alcohol as a reducing agent is described.
International Publication No. 2005/118134 Pamphlet JP 2006-167709 A JP 2005-218952 A

しかしながら、特許文献1〜3に記載された貴金属含有触媒をα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造の液相酸化反応に転用しても、目的生成物の選択性及び生産性が十分とは限らず、更なる触媒性能の向上が望まれる。   However, even if the noble metal-containing catalyst described in Patent Documents 1 to 3 is used in the liquid phase oxidation reaction for the production of α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride, the target product The selectivity and productivity are not always sufficient, and further improvement in catalyst performance is desired.

そこで、本発明は、オレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造可能な貴金属含有触媒の製造方法、並びにα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造する方法を提供することを目的とする。 Therefore, the present invention provides a method for producing a noble metal-containing catalyst capable of producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride from olefin with high selectivity and high productivity, and α, β. An object of the present invention is to provide a method for producing an unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride with high selectivity and high productivity.

本発明は、オレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を製造するための貴金属含有触媒の製造方法であって、プロピオン酸、1,4−ジオキサン、メチルイソブチルケトン、3−メトキシ−1−ブタノール、エチレングリコール及びグリセリンからなる群より選ばれる少なくとも1つの有機物、貴金属成分並びに無機溶媒を含む原料溶液を担体に浸漬又は含浸して、その原料溶液を乾燥して、触媒前駆体を得る工程と、その触媒前駆体を加熱処理する工程と、前記触媒前駆体を還元する工程とを有する貴金属含有触媒の製造方法である。 The present invention relates to a method for producing a noble metal-containing catalyst for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride from an olefin, which comprises propionic acid, 1,4-dioxane, methyl isobutyl ketone, 3-methoxy-1-butanol, at least one organic substance selected from the group consisting of ethylene glycol and glycerine, a raw material solution containing a precious metal component and inorganic solvent was immersed or impregnated in a carrier, drying the raw material solution Thus, there is provided a method for producing a noble metal-containing catalyst comprising a step of obtaining a catalyst precursor, a step of heat-treating the catalyst precursor, and a step of reducing the catalyst precursor.

また、本発明は、前記の貴金属含有触媒の存在下で、オレフィンを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造方法である。   The present invention also provides a process for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride, wherein an olefin is oxidized in the liquid phase with molecular oxygen in the presence of the noble metal-containing catalyst. It is.

本発明によれば、オレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造可能な貴金属含有触媒の製造方法、並びにα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造する方法を提供することができる。 According to the present invention, the olefin alpha, beta-unsaturated carboxylic acids and alpha, beta-method of manufacturing a touch noble metal-containing manufacturable medium an unsaturated carboxylic acid anhydride with high selectivity and high productivity, as well as alpha, It is possible to provide a method for producing a β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride with high selectivity and high productivity.

本発明の貴金属含有触媒は、オレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造するための貴金属含有触媒(以下、単に「触媒」と称することもある)である。   The noble metal-containing catalyst of the present invention is a noble metal-containing catalyst for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride from olefin with high selectivity and high productivity (hereinafter simply referred to as “ Sometimes referred to as "catalyst").

本発明の貴金属含有触媒の貴金属としては、パラジウム、白金、ロジウム、ルテニウム、イリジウム、金、銀、オスミウムを挙げることができる。なかでも、パラジウム、白金、ロジウム、ルテニウム、イリジウム、金が好ましく、特にパラジウムが好ましい。貴金属は、1種を用いることもでき、2種以上を併用することもできる。   Examples of the noble metal of the noble metal-containing catalyst of the present invention include palladium, platinum, rhodium, ruthenium, iridium, gold, silver, and osmium. Of these, palladium, platinum, rhodium, ruthenium, iridium and gold are preferable, and palladium is particularly preferable. 1 type can also be used for a noble metal and it can also use 2 or more types together.

本発明の貴金属含有触媒は、特に限定されないが、貴金属以外の金属を含むことが好ましい。貴金属以外の金属としては、例えば、アンチモン、テルル、タリウム、鉛、ビスマス等が挙げられる。貴金属以外の金属は、2種以上含むこともできる。高い触媒活性を発現させる観点から、貴金属含有触媒に含まれる金属のうち、50質量%以上が貴金属であることが好ましい。   The noble metal-containing catalyst of the present invention is not particularly limited, but preferably contains a metal other than the noble metal. Examples of the metal other than the noble metal include antimony, tellurium, thallium, lead, bismuth and the like. Two or more metals other than the noble metals can be included. From the viewpoint of developing high catalytic activity, it is preferable that 50% by mass or more of the metal contained in the noble metal-containing catalyst is a noble metal.

本発明の貴金属含有触媒は、非担持型でもよいが、貴金属が担体に担持されている担持型とすることが好ましい。担体としては無機酸化物を用いることができ、例えば、シリカ、アルミナ、マグネシア、カルシア、チタニア及びジルコニア等を挙げることができる。なかでも、シリカ、チタニア、ジルコニアを用いることが好ましい。担体は、1種を用いることもでき、2種以上を併用することもできる。担体の好ましい比表面積は、担体の種類等により異なるので一概に言えないが、シリカの場合、50〜1500m2/gが好ましく、100〜1000m2/gがより好ましい。なお、担体の比表面積は、小さい場合は有用成分がより表面に担持され、大きい場合は有用成分が内部及び表面ともに担持されて有用成分の担持率が高くなる。 The noble metal-containing catalyst of the present invention may be an unsupported type, but is preferably a supported type in which a noble metal is supported on a carrier. As the carrier, an inorganic oxide can be used, and examples thereof include silica, alumina, magnesia, calcia, titania and zirconia. Of these, silica, titania and zirconia are preferably used. One type of carrier can be used, or two or more types can be used in combination. The preferred specific surface area of the support varies depending on the type of the support and the like, and thus cannot be generally stated. In the case of silica, 50 to 1500 m 2 / g is preferable, and 100 to 1000 m 2 / g is more preferable. When the specific surface area of the carrier is small, the useful component is more supported on the surface, and when the specific surface area is large, the useful component is supported on both the inside and the surface, and the support rate of the useful component is increased.

担体に対する貴金属の担持率は、担持前の担体質量に対して0.1〜40質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%がさらに好ましい。   The loading ratio of the noble metal to the carrier is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, and further preferably 1 to 20% by mass with respect to the mass of the carrier before loading.

本発明の貴金属含有触媒を製造するにあたっては、まず、貴金属成分、無機溶媒及び有機物を含む原料溶液を調製する。   In producing the noble metal-containing catalyst of the present invention, first, a raw material solution containing a noble metal component, an inorganic solvent and an organic substance is prepared.

使用する貴金属成分は特に限定されないが、例えば、金属状態の貴金属、貴金属酸化物、貴金属塩が用いられる。なかでも、塩化物、硝酸塩及び硫酸塩等の貴金属塩が好ましい。   Although the noble metal component to be used is not particularly limited, for example, a noble metal in a metal state, a noble metal oxide, or a noble metal salt is used. Of these, noble metal salts such as chlorides, nitrates and sulfates are preferred.

使用する無機溶媒としては、水及び無機酸類を使用することができる。無機酸類としては、硝酸、塩酸及び硫酸等が挙げられる。   As the inorganic solvent to be used, water and inorganic acids can be used. Examples of inorganic acids include nitric acid, hydrochloric acid and sulfuric acid.

使用する有機物は特に限定されないが、好ましくは沸点300℃以下の有機溶媒が用いられ、さらに好ましくは沸点200℃以下の有機溶媒である。具体的には、アルコール類、ケトン類、エーテル類、有機酸類、有機酸エステル類、炭化水素類等が使用できる。アルコール類としては、例えば、メタノール、2−ブタノール、ターシャリーブタノール、2−エトキシエタノール、3−メトキシ−1−ブタノール、エチレングリコール、プロピレングリコール、グリセリン等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。エーテル類としては、ジメチルエーテル、1,4−ジオキサン、酸化エチレン等が挙げられる。有機酸類としては、例えば、酢酸、プロピオン酸、n−酪酸、イソ酪酸、n−吉草酸、イソ吉草酸等が挙げられる。有機酸エステル類としては、例えば、酢酸エチル、プロピオン酸メチル等が挙げられる。炭化水素類としては、例えば、ヘキサン、シクロヘキサン、トルエン等が挙げられる。なかでも、アルコール類、ケトン類、エーテル類、有機酸類を用いることが好ましく、酢酸、プロピオン酸、2−ブタノール、ジオキサン、メチルイソブチルケトン、2−エトキシエタノール、3−メトキシ−1−ブタノール、エチレングリコール及びグリセリンが特に好ましい。有機物は、1種を用いることもでき、2種以上を併用することもできる。   Although the organic substance to be used is not particularly limited, an organic solvent having a boiling point of 300 ° C. or lower is preferably used, and an organic solvent having a boiling point of 200 ° C. or lower is more preferable. Specifically, alcohols, ketones, ethers, organic acids, organic acid esters, hydrocarbons and the like can be used. Examples of alcohols include methanol, 2-butanol, tertiary butanol, 2-ethoxyethanol, 3-methoxy-1-butanol, ethylene glycol, propylene glycol, and glycerin. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of ethers include dimethyl ether, 1,4-dioxane, ethylene oxide and the like. Examples of organic acids include acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, isovaleric acid and the like. Examples of the organic acid esters include ethyl acetate and methyl propionate. Examples of hydrocarbons include hexane, cyclohexane, and toluene. Of these, alcohols, ketones, ethers, and organic acids are preferably used. Acetic acid, propionic acid, 2-butanol, dioxane, methyl isobutyl ketone, 2-ethoxyethanol, 3-methoxy-1-butanol, ethylene glycol And glycerin is particularly preferred. One type of organic substance can be used, or two or more types can be used in combination.

貴金属成分、無機溶媒及び有機物を含む原料溶液を調製する手法は特に限定されないが、無機溶媒に貴金属成分を溶解した溶液に有機物を混合する手法、有機溶媒等の有機物に貴金属成分を溶解した溶液に無機溶媒を混合する手法、無機溶媒及び有機物を混合した溶液に貴金属成分を溶解する手法等が挙げられる。   The method of preparing the raw material solution containing the noble metal component, the inorganic solvent and the organic material is not particularly limited, but the method of mixing the organic material into the solution in which the noble metal component is dissolved in the inorganic solvent, the solution in which the noble metal component is dissolved in the organic material such as the organic solvent. Examples thereof include a method of mixing an inorganic solvent, a method of dissolving a noble metal component in a solution in which an inorganic solvent and an organic substance are mixed.

原料溶液中の無機溶媒と有機物との混合比率は特に限定しないが、無機溶媒と有機物の質量比で50:1〜1:100が好ましく、40:1〜1:50がより好ましい。   The mixing ratio of the inorganic solvent and the organic substance in the raw material solution is not particularly limited, but the mass ratio of the inorganic solvent and the organic substance is preferably 50: 1 to 1: 100, and more preferably 40: 1 to 1:50.

原料溶液中の貴金属成分の濃度は特に限定しないが、0.5〜20質量%が好ましく、1.0〜10質量%がより好ましい。   Although the density | concentration of the noble metal component in a raw material solution is not specifically limited, 0.5-20 mass% is preferable and 1.0-10 mass% is more preferable.

担持型の貴金属含有触媒を製造する場合は、貴金属を担体に担持させるため、原料溶液を担体に浸漬又は含浸すればよい。その場合に使用する原料溶液の液量(容量)としては、使用する担体の細孔容積、親疎水性等により異なるので一概に言えないが、担体の細孔容積の1.0〜10倍が好ましく、2.0〜7.0倍がより好ましい。   When a supported noble metal-containing catalyst is produced, the raw material solution may be immersed or impregnated in the support in order to support the noble metal on the support. In this case, the amount (volume) of the raw material solution used varies depending on the pore volume, hydrophilicity / hydrophobicity, etc. of the carrier used, but it cannot be generally stated, but is preferably 1.0 to 10 times the pore volume of the carrier. 2.0 to 7.0 times is more preferable.

上記のように原料溶液中に有機物を含有させることで、原料溶液の表面張力が低くなり、触媒中の貴金属粒子が担体上で微粒子化及び高分散化される。有機物を加えた場合、有機物を加えない場合と比較して、触媒中の貴金属粒子の粒径が約20〜50%小さくなる。その結果、α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を高選択率かつ高生産性で製造できる触媒を得ることができる。   By including an organic substance in the raw material solution as described above, the surface tension of the raw material solution is lowered, and the noble metal particles in the catalyst are finely divided and highly dispersed on the support. When the organic substance is added, the particle size of the noble metal particles in the catalyst is reduced by about 20 to 50% compared to the case where the organic substance is not added. As a result, a catalyst capable of producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride with high selectivity and high productivity can be obtained.

貴金属以外の金属を含む貴金属含有触媒を製造する場合は、対応する金属又はその塩や酸化物等の金属成分を原料溶液中に共存させればよい。その方法としては、原料溶液に貴金属以外の金属成分を共存させる方法、無機溶媒に貴金属成分を溶解した溶液に貴金属以外の金属成分を共存させた後に有機物を混合する方法が挙げられるが、特に限定されない。なお、後者の方法において、無機溶媒に貴金属成分を溶解した溶液に貴金属以外の金属を共存させた溶液と有機物との混合比率は特に限定しないが、当該溶液と有機物の質量比で50:1〜1:100が好ましく、40:1〜1:50がより好ましい。   When producing a noble metal-containing catalyst containing a metal other than a noble metal, a corresponding metal or a metal component such as a salt or oxide thereof may be present in the raw material solution. Examples of the method include a method in which a metal component other than a noble metal coexists in a raw material solution, and a method in which an organic substance is mixed after a metal component other than a noble metal coexists in a solution in which a noble metal component is dissolved in an inorganic solvent. Not. In the latter method, the mixing ratio of a solution in which a metal other than the noble metal coexists in a solution in which a noble metal component is dissolved in an inorganic solvent and the organic substance is not particularly limited, but the mass ratio of the solution to the organic substance is 50: 1 to 1: 100 is preferable and 40: 1 to 1:50 is more preferable.

貴金属以外の金属を担体に担持させる際の担持方法としては特に限定されないが、貴金属を担持する方法と同様に行うことができる。また、貴金属以外の金属は、貴金属を担持する前に担持することもでき、貴金属を担持した担持後に担持することもでき、貴金属と同時に担持することもできる。   The supporting method for supporting a metal other than the noble metal on the carrier is not particularly limited, but can be performed in the same manner as the method for supporting the noble metal. Further, the metal other than the noble metal can be supported before the noble metal is supported, can be supported after the noble metal is supported, or can be supported simultaneously with the noble metal.

原料溶液を調製後、原料溶液を乾燥して、原料溶液中の溶媒を蒸発させた触媒前駆体を得る。担持型の貴金属含有触媒を製造する場合は、原料溶液を担体に浸漬又は含浸した後に乾燥する。乾燥する方法としては、常圧高温で乾燥する方法又は減圧低温で乾燥する方法が挙げられるが、減圧下(例えば−0.2〜−0.001MPa;以下圧力はゲージ圧表記とする)、30〜80℃で2〜5時間乾燥することが好ましい。   After preparing the raw material solution, the raw material solution is dried to obtain a catalyst precursor obtained by evaporating the solvent in the raw material solution. When producing a supported noble metal-containing catalyst, the raw material solution is dipped or impregnated in a carrier and then dried. Examples of the drying method include a method of drying at normal pressure and high temperature, and a method of drying at low pressure and low temperature, but under reduced pressure (for example, -0.2 to -0.001 MPa; hereinafter, pressure is expressed in gauge pressure), 30 It is preferable to dry at ~ 80 ° C for 2 to 5 hours.

乾燥した後は、触媒前駆体を加熱処理することが好ましい。加熱処理により、貴金属塩を使用した場合には貴金属塩が分解して貴金属酸化物が得られる。加熱処理の温度は、貴金属塩の熱分解温度以上かつ有機物の蒸発又は分解温度以上が好ましい。熱処理の温度は、使用する貴金属塩の種類により異なるため一概には言えないが、おおよそ150〜600℃が好ましく、昇温速度は1〜10℃/分が好ましい。熱処理の時間は、貴金属塩が貴金属酸化物となる時間であれば特に限定されないが、1〜12時間が好ましい。   After drying, it is preferable to heat-treat the catalyst precursor. When a noble metal salt is used by heat treatment, the noble metal salt is decomposed to obtain a noble metal oxide. The temperature of the heat treatment is preferably higher than the thermal decomposition temperature of the noble metal salt and higher than the evaporation or decomposition temperature of the organic matter. The temperature of the heat treatment varies depending on the type of noble metal salt used, and cannot be generally specified, but is preferably about 150 to 600 ° C., and the rate of temperature rise is preferably 1 to 10 ° C./min. The heat treatment time is not particularly limited as long as the noble metal salt becomes a noble metal oxide, but is preferably 1 to 12 hours.

以上のようにして製造された触媒前駆体を還元することで、貴金属含有触媒を得ることができる。   A noble metal-containing catalyst can be obtained by reducing the catalyst precursor produced as described above.

触媒前駆体の還元に用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、2−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、エチレングリコール、アリルアルコール、メタリルアルコール、アクロレイン及びメタクロレイン等が挙げられる。なかでも、水素、ヒドラジン、ホルムアルデヒド、蟻酸、エチレングリコールが好ましい。これらを2種以上併用することもできる。   The reducing agent used for reducing the catalyst precursor is not particularly limited. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, isobutylene, 1, Examples include 3-butadiene, 1-heptene, 2-heptene, 1-hexene, 2-hexene, cyclohexene, ethylene glycol, allyl alcohol, methallyl alcohol, acrolein, and methacrolein. Of these, hydrogen, hydrazine, formaldehyde, formic acid, and ethylene glycol are preferable. Two or more of these may be used in combination.

触媒前駆体を還元する方法は、溶媒に溶解又は分散させた触媒前駆体を還元剤により還元する液相還元法でも、触媒前駆体の固体を還元雰囲気で還元する気相還元法でも良い。なかでも、液相還元法が好ましい。   The method for reducing the catalyst precursor may be a liquid phase reduction method in which a catalyst precursor dissolved or dispersed in a solvent is reduced with a reducing agent, or a gas phase reduction method in which a solid of the catalyst precursor is reduced in a reducing atmosphere. Of these, the liquid phase reduction method is preferred.

液相中で還元を行う際に使用する溶媒としては、水が好ましいが、担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、イソ吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の有機溶媒を単独又は複数組み合わせて用いることができる。これらと水との混合溶媒を用いることもできる。   The solvent used for the reduction in the liquid phase is preferably water, but depending on the dispersibility of the carrier, alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol, ethylene glycol, etc. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and isovaleric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane alone or in combination Can be used. A mixed solvent of these and water can also be used.

還元剤が気体の場合、溶液中への溶解度を挙げるためにオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は0.1MPa以上とすることが好ましく、また1.0MPa以下とすることが好ましい。   When the reducing agent is a gas, it is preferably carried out in a pressurizing apparatus such as an autoclave in order to increase the solubility in the solution. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is preferably 0.1 MPa or more, and preferably 1.0 MPa or less.

還元剤が液体の場合、貴金属の還元を行う装置に制限はなく、溶液中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、貴金属1モルに対して1モル以上とすることが好ましく、また100モル以下とすることが好ましい。   When the reducing agent is a liquid, there is no limitation on the apparatus for reducing the noble metal, and the reducing agent can be added to the solution. The amount of the reducing agent used at this time is not particularly limited, but it is preferably 1 mol or more and 1 mol or less with respect to 1 mol of the noble metal.

還元温度及び還元時間は、用いる貴金属や還元剤等により異なるが、還元温度は−5〜150℃が好ましく、15〜80℃がより好ましい。還元時間は0.1〜4時間が好ましく、0.25〜4時間がより好ましく、0.5〜3時間がさらに好ましい。   Although the reduction temperature and reduction time vary depending on the precious metal and reducing agent used, the reduction temperature is preferably -5 to 150 ° C, more preferably 15 to 80 ° C. The reduction time is preferably 0.1 to 4 hours, more preferably 0.25 to 4 hours, and further preferably 0.5 to 3 hours.

上記還元の際に、触媒前駆体を分散させた状態で、超音波処理を施すこともできる。   During the reduction, ultrasonic treatment can be performed in a state where the catalyst precursor is dispersed.

得られた貴金属含有触媒は、水、有機溶媒等で洗浄することが好ましい。水、有機溶媒等での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等の貴金属化合物由来の不純物が除去される。洗浄の方法及び回数は特に限定されないが、不純物によってはオレフィンの液相酸化反応を阻害する恐れがあるため、不純物を十分除去できる程度に洗浄することが好ましい。洗浄された触媒は、濾別又は遠心分離などにより回収した後、そのまま反応に用いてもよい。   The obtained noble metal-containing catalyst is preferably washed with water, an organic solvent or the like. By washing with water, an organic solvent, or the like, impurities derived from noble metal compounds such as chloride, acetate radical, nitrate radical, and sulfate radical are removed. The cleaning method and the number of times are not particularly limited. However, depending on the impurities, there is a possibility that the liquid phase oxidation reaction of the olefin may be inhibited. The washed catalyst may be used for the reaction as it is after being recovered by filtration or centrifugation.

また、回収された触媒を乾燥してもよい。乾燥方法は特に限定されないが、乾燥機を用いて空気中又は不活性ガスで乾燥することが好ましい。乾燥された触媒は、必要に応じて反応に使用する前に活性化することもできる。活性化の方法には特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によれば、貴金属表面の酸化被膜と洗浄で取り除けなかった不純物を除去することができる。   Further, the recovered catalyst may be dried. Although a drying method is not specifically limited, It is preferable to dry in air or an inert gas using a dryer. The dried catalyst can also be activated before use in the reaction if desired. The activation method is not particularly limited, and examples thereof include a heat treatment method in a reducing atmosphere in a hydrogen stream. According to this method, the oxide film on the surface of the noble metal and impurities that could not be removed by cleaning can be removed.

得られた貴金属含有触媒の物性は、BET比表面積測定、XRD測定、COパルス吸着法、TEM観察等により確認できる。   The physical properties of the obtained noble metal-containing catalyst can be confirmed by BET specific surface area measurement, XRD measurement, CO pulse adsorption method, TEM observation and the like.

次に、本発明の貴金属含有触媒を用いて、α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を製造する方法について説明する。α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造方法としては、液相中で、原料であるオレフィンを分子状酸素で酸化して、α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物とする反応を、本発明の貴金属含有触媒の存在下で行う方法が好ましい。このような方法によれば、高選択性かつ高生産性でα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物が製造可能となる。   Next, a method for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride using the noble metal-containing catalyst of the present invention will be described. As a method for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride, an olefin as a raw material is oxidized with molecular oxygen in a liquid phase, and an α, β-unsaturated carboxylic acid is obtained. A method in which the reaction to form an acid and an α, β-unsaturated carboxylic acid anhydride is performed in the presence of the noble metal-containing catalyst of the present invention is preferred. According to such a method, α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride can be produced with high selectivity and high productivity.

オレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられる。なかでも、プロピレン及びイソブチレンが好適である。原料のオレフィンには、不純物として飽和炭化水素及び/又は低級飽和アルデヒド等が少々含まれていてもよい。   Examples of the olefin include propylene, isobutylene and 2-butene. Of these, propylene and isobutylene are preferred. The raw olefin may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.

製造されるα,β−不飽和カルボン酸は、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸であり、製造されるα,β−不飽和カルボン酸無水物は、そのα,β−不飽和カルボン酸の2分子が脱水縮合した化合物である。具体的には、原料がプロピレンの場合、アクリル酸及びアクリル酸無水物が得られ、原料がイソブチレンの場合、メタクリル酸及びメタクリル酸無水物が得られる。   The produced α, β-unsaturated carboxylic acid is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin, and the produced α, β-unsaturated carboxylic acid is an α, β -A compound obtained by dehydration condensation of two molecules of unsaturated carboxylic acid. Specifically, when the raw material is propylene, acrylic acid and acrylic anhydride are obtained, and when the raw material is isobutylene, methacrylic acid and methacrylic anhydride are obtained.

本発明の貴金属含有触媒は、プロピレンからアクリル酸及びアクリル酸無水物、イソブチレンからメタクリル酸及びメタクリル酸無水物を製造する液相酸化で特に好適である。   The noble metal-containing catalyst of the present invention is particularly suitable for liquid phase oxidation for producing acrylic acid and acrylic anhydride from propylene and methacrylic acid and methacrylic anhydride from isobutylene.

液相酸化反応に用いる分子状酸素源としては、空気が経済的であり好ましいが、純酸素又は純酸素と空気の混合ガスを用いることもでき、必要であれば、空気又は純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。この空気等のガスは、通常オートクレーブ等の反応容器内に加圧状態で供給される。   As the molecular oxygen source used in the liquid phase oxidation reaction, air is economical and preferable, but pure oxygen or a mixed gas of pure oxygen and air can also be used, and if necessary, air or pure oxygen is nitrogen, A mixed gas diluted with carbon dioxide, water vapor or the like can also be used. This gas such as air is usually supplied in a pressurized state into a reaction vessel such as an autoclave.

液相酸化反応に用いる溶媒は特に限定されないが、例えば、水、アルコール類、ケトン類、有機酸類、有機酸エステル類、炭化水素類等が使用できる。アルコール類としては、例えば、ターシャリーブタノール、シクロヘキサノール等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。有機酸類としては、例えば、酢酸、プロピオン酸、n−酪酸、イソ酪酸、n−吉草酸、イソ吉草酸等が挙げられる。有機酸エステル類としては、例えば、酢酸エチル、プロピオン酸メチル等が挙げられる。炭化水素類としては、例えば、ヘキサン、シクロヘキサン、トルエン等が挙げられる。なかでも、炭素数2〜6の有機酸類、炭素数3〜6のケトン類、ターシャリーブタノールが好ましい。溶媒は1種でもよく、2種以上の混合溶媒でもよい。また、アルコール類、ケトン類、有機酸類及び有機酸エステル類からなる群から選ばれる少なくとも1種を使用する場合は、水との混合溶媒とすることが好ましい。その際の水の量は特に限定されないが、混合溶媒の質量に対して、2〜70質量%が好ましく、5〜50質量%がより好ましい。混合溶媒は均一であることが望ましいが、不均一な状態で用いても差し支えない。   The solvent used for the liquid phase oxidation reaction is not particularly limited. For example, water, alcohols, ketones, organic acids, organic acid esters, hydrocarbons and the like can be used. Examples of alcohols include tertiary butanol and cyclohexanol. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of organic acids include acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, isovaleric acid and the like. Examples of the organic acid esters include ethyl acetate and methyl propionate. Examples of hydrocarbons include hexane, cyclohexane, and toluene. Of these, organic acids having 2 to 6 carbon atoms, ketones having 3 to 6 carbon atoms, and tertiary butanol are preferable. The solvent may be one kind or a mixed solvent of two or more kinds. Moreover, when using at least 1 sort (s) chosen from the group which consists of alcohols, ketones, organic acids, and organic acid esters, it is preferable to use it as a mixed solvent with water. Although the amount of water at that time is not particularly limited, it is preferably 2 to 70% by mass and more preferably 5 to 50% by mass with respect to the mass of the mixed solvent. The mixed solvent is desirably uniform, but may be used in a non-uniform state.

液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。   The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.

液相酸化反応の原料であるオレフィンの使用量は、溶媒100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。   0.1-20 mass parts is preferable with respect to 100 mass parts of solvent, and, as for the usage-amount of the olefin which is a raw material of a liquid phase oxidation reaction, 0.5-10 mass parts is more preferable.

分子状酸素の使用量は、原料であるオレフィン1モルに対して、0.1〜30モルが好ましく、0.3〜25モルがより好ましく、0.5〜20モルが特に好ましい。   The amount of molecular oxygen used is preferably from 0.1 to 30 mol, more preferably from 0.3 to 25 mol, particularly preferably from 0.5 to 20 mol, based on 1 mol of the raw material olefin.

通常、触媒は液相酸化反応を行う反応液に懸濁させた状態で使用されるが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液100質量部に対して、反応器内に存在する触媒として0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜15質量部が特に好ましい。   Usually, the catalyst is used in a state of being suspended in a reaction solution for performing a liquid phase oxidation reaction, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight as the catalyst present in the reactor with respect to 100 parts by weight of the solution present in the reactor. ˜15 parts by mass is particularly preferred.

液相酸化反応を行う温度及び圧力は、用いる溶媒及び原料によって適宜選択される。反応温度は30〜200℃が好ましく、50〜150℃がより好ましい。反応圧力は0〜10MPaが好ましく、2〜7MPaがより好ましい。   The temperature and pressure at which the liquid phase oxidation reaction is performed are appropriately selected depending on the solvent and the raw material used. The reaction temperature is preferably 30 to 200 ° C, more preferably 50 to 150 ° C. The reaction pressure is preferably 0 to 10 MPa, and more preferably 2 to 7 MPa.

以下、本発明について実施例及び比較例を挙げてさらに具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例及び比較例中の「部」は質量部である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.

(α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造における原料及び生成物の分析)
α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造における原料及び生成物の分析は、ガスクロマトグラフィーを用いて行った。なお、オレフィン(原料)の反応率、生成するα,β−不飽和アルデヒド(副生物)の選択率及び生産性、生成するα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物(目的生成物)の選択率及び生産性は以下のように定義される。
オレフィンの反応率(%) =(B/A)×100
α,β−不飽和アルデヒドの選択率(%) =(C/B)×100
α,β−不飽和カルボン酸の選択率(%) =(D/B)×100
α,β−不飽和カルボン酸無水物の選択率(%)=(E/B)×100
α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の選択率(%)
=((D+E)/B)×100
α,β−不飽和アルデヒドの生産性(g−MAL/(g−貴金属×h))
=F/(G×H)
α,β−不飽和カルボン酸の生産性(g−MAA/(g−貴金属×h))
=I/(G×H)
α,β−不飽和カルボン酸無水物の生産性(g−MAAanh/(g−貴金属×h)) =J/(G×H)
α,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の生産性((g−MAA+MAAanh)/(g−貴金属×h)) =(I+J)/(G×H)
ここで、Aは供給したオレフィンのモル数、Bは反応したオレフィンのモル数、Cは生成したα,β−不飽和アルデヒドのモル数、Dは生成したα,β−不飽和カルボン酸のモル数、Eは生成したα,β−不飽和カルボン酸無水物のモル数、Fは生成したα,β−不飽和アルデヒドの質量(g)、Gは使用した触媒の中に含まれる貴金属の質量(g)、Hは反応時間(h)、Iは生成したα,β−不飽和カルボン酸の質量(g)、Jは生成したα,β−不飽和カルボン酸無水物の質量(g)である。
(Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride)
Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride was performed using gas chromatography. In addition, reaction rate of olefin (raw material), selectivity and productivity of α, β-unsaturated aldehyde (byproduct) to be produced, α, β-unsaturated carboxylic acid to be produced and α, β-unsaturated carboxylic acid anhydride The selectivity and productivity of a product (target product) are defined as follows.
Olefin reaction rate (%) = (B / A) × 100
Selectivity of α, β-unsaturated aldehyde (%) = (C / B) × 100
Selectivity of α, β-unsaturated carboxylic acid (%) = (D / B) × 100
Selectivity of α, β-unsaturated carboxylic anhydride (%) = (E / B) × 100
Selectivity (%) of α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic anhydride
= ((D + E) / B) × 100
Productivity of α, β-unsaturated aldehyde (g-MAL / (g-noble metal × h))
= F / (G x H)
Productivity of α, β-unsaturated carboxylic acid (g-MAA / (g-noble metal × h))
= I / (G × H)
Productivity of α, β-unsaturated carboxylic acid anhydride (g-MAAanh / (g-noble metal × h)) = J / (G × H)
Productivity of α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride ((g-MAA + MAAanh) / (g-noble metal × h)) = (I + J) / (G × H)
Here, A is the number of moles of olefin supplied, B is the number of moles of reacted olefin, C is the number of moles of α, β-unsaturated aldehyde produced, and D is the mole of α, β-unsaturated carboxylic acid produced. Number, E is the number of moles of the α, β-unsaturated carboxylic acid anhydride formed, F is the mass of the α, β-unsaturated aldehyde formed (g), and G is the mass of the noble metal contained in the catalyst used. (G), H is the reaction time (h), I is the mass (g) of the produced α, β-unsaturated carboxylic acid, and J is the mass (g) of the produced α, β-unsaturated carboxylic acid anhydride. is there.

参考例1
(触媒調製)
硝酸パラジウム水溶液(N.E.ケムキャット製、パラジウム含有率:23.3質量%)4.3部を純水10.7部にて希釈し、20℃で、有機物としての酢酸0.5部を加えてパラジウム溶液(原料溶液)を調製した。このパラジウム溶液にシリカ担体(比表面積760m2/g、細孔容積1.05cc/g)5.0部を添加し、減圧下(約−0.02MPa)、50℃で2時間乾燥し、その後大気流通下300℃で3時間焼成した。
[ Reference Example 1 ]
(Catalyst preparation)
An aqueous palladium nitrate solution (manufactured by NE Chemcat, palladium content: 23.3 mass%) is diluted with 4.3 parts of pure water, and at 20 ° C., 0.5 parts of acetic acid as an organic substance is diluted. In addition, a palladium solution (raw material solution) was prepared. To this palladium solution is added 5.0 parts of a silica carrier (specific surface area 760 m 2 / g, pore volume 1.05 cc / g), dried under reduced pressure (about −0.02 MPa) at 50 ° C. for 2 hours, and then Firing was performed at 300 ° C. for 3 hours under atmospheric flow.

得られた固形物をエチレングリコール20.0部に加え、80℃で2時間還元処理を行った。その後、純水で洗浄濾過し、シリカ担持パラジウム触媒を得た。この触媒のパラジウム担持率は16質量%である。   The obtained solid was added to 20.0 parts of ethylene glycol and subjected to reduction treatment at 80 ° C. for 2 hours. Thereafter, the product was washed and filtered with pure water to obtain a silica-supported palladium catalyst. The palladium loading of this catalyst is 16% by mass.

(反応評価)
オートクレーブに、上記の方法で得たシリカ担持パラジウム触媒0.6部と、反応溶媒として75質量%t−ブタノール水溶液75部とを入れ、オートクレーブを密閉した。次いで、オートクレーブにイソブチレンを2.0部導入し、攪拌(回転数1000rpm)を開始し、100℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入し、30分間イソブチレンの液相酸化反応を行った。
(Reaction evaluation)
In an autoclave, 0.6 part of the silica-supported palladium catalyst obtained by the above method and 75 parts of a 75 mass% t-butanol aqueous solution as a reaction solvent were placed, and the autoclave was sealed. Next, 2.0 parts of isobutylene was introduced into the autoclave, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 100 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa, and a liquid phase oxidation reaction of isobutylene was performed for 30 minutes.

反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液だけを回収した。回収した反応液と捕集したガスはガスクロマトグラフィーにより分析した。   After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated by a membrane filter, and only the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography.

参考例2
有機物として2−ブタノールを用いた点以外は、参考例1と同様にしてシリカ担持パラジウム触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[ Reference Example 2 ]
A silica-supported palladium catalyst was prepared in the same manner as in Reference Example 1 except that 2-butanol was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例3]
有機物としてプロピオン酸を用いた点以外は、参考例1と同様にしてシリカ担持パラジウム触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 3]
A silica-supported palladium catalyst was prepared in the same manner as in Reference Example 1 except that propionic acid was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

参考例3
(触媒調製)
硝酸パラジウム水溶液(N.E.ケムキャット製、パラジウム含有率:23.3質量%)4.3部を純水5.6部にて希釈して、パラジウム溶液を調製した。このパラジウム溶液に、テルル酸(和光純薬工業製)0.10部を純水5部に溶解したテルル溶液を添加した後、20℃で、有機物としての酢酸を0.5部加えることで、パラジウム−テルル溶液(原料溶液)を調製した。その後、参考例1と同様にシリカ担体5.0部を添加し、減圧下(−0.02MPa)、50℃で2時間乾燥し、その後大気流通下300℃で3時間焼成した。
[ Reference Example 3 ]
(Catalyst preparation)
A palladium solution was prepared by diluting 4.3 parts of an aqueous palladium nitrate solution (manufactured by NE Chemcat, palladium content: 23.3 mass%) with 5.6 parts of pure water. To this palladium solution, after adding a tellurium solution in which 0.10 parts of telluric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 5 parts of pure water, at 20 ° C., 0.5 parts of acetic acid as an organic substance was added, A palladium-tellurium solution (raw material solution) was prepared. Thereafter, 5.0 parts of silica support was added in the same manner as in Reference Example 1 , dried under reduced pressure (−0.02 MPa) at 50 ° C. for 2 hours, and then calcined at 300 ° C. for 3 hours under atmospheric flow.

得られた固形物をエチレングリコール20.0部に加え、80℃で2時間還元処理を行った。その後、純水で洗浄濾過し、シリカ担持パラジウム−テルル触媒を得た。この触媒のパラジウム担持率は16質量%であり、触媒中のTe/Pd(質量比)は0.06であった。   The obtained solid was added to 20.0 parts of ethylene glycol and subjected to reduction treatment at 80 ° C. for 2 hours. Thereafter, the resultant was washed and filtered with pure water to obtain a silica-supported palladium-tellurium catalyst. The palladium loading of this catalyst was 16% by mass, and Te / Pd (mass ratio) in the catalyst was 0.06.

(反応評価)
参考例1と同様の方法で行った。
(Reaction evaluation)
The same method as in Reference Example 1 was performed.

[実施例5]
有機物として1,4−ジオキサンを用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 5]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 1,4-dioxane was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例6]
有機物としてメチルイソブチルケトンを用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 6]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that methyl isobutyl ketone was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例7]
硝酸パラジウム水溶液を純水で希釈せず、有機物として1,4−ジオキサンを10部加えた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 7]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 10 parts of 1,4-dioxane was added as an organic substance without diluting the aqueous palladium nitrate solution with pure water. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

参考例4
有機物として2−エトキシエタノールを用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[ Reference Example 4 ]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 2-ethoxyethanol was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例9]
有機物として3−メトキシ−1−ブタノールを用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 9]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 3-methoxy-1-butanol was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例10]
有機物としてエチレングリコール0.1部を用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 10]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 0.1 part of ethylene glycol was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[実施例11]
有機物としてグリセリン0.1部を用いた点以外は、参考例3と同様にしてシリカ担持パラジウム−テルル触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Example 11]
A silica-supported palladium-tellurium catalyst was prepared in the same manner as in Reference Example 3 except that 0.1 part of glycerin was used as the organic substance. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[比較例1]
有機物を加えない点以外は、参考例1と同様にしてシリカ担持パラジウム触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Comparative Example 1]
A silica-supported palladium catalyst was prepared in the same manner as in Reference Example 1 except that no organic substance was added. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

[比較例2]
(触媒調製)
酢酸パラジウム(II)(N.E.ケムキャット社製)2.2部を酢酸20.0部に溶解した酢酸溶液を調製した。シリカ担体(比表面積760m2/g、細孔容積1.05cc/g)20.0部に上記酢酸溶液を少量ずつ添加し、振とうすることを繰り返した。次いで、減圧下(約−0.02MPa)、50℃で2時間乾燥し、その後大気流通下300℃で3時間焼成した。
[Comparative Example 2]
(Catalyst preparation)
An acetic acid solution was prepared by dissolving 2.2 parts of palladium (II) acetate (manufactured by NE Chemcat) in 20.0 parts of acetic acid. The acetic acid solution was added little by little to 20.0 parts of silica support (specific surface area 760 m 2 / g, pore volume 1.05 cc / g), and shaking was repeated. Next, it was dried at 50 ° C. for 2 hours under reduced pressure (about −0.02 MPa), and then calcined at 300 ° C. for 3 hours under atmospheric flow.

得られた固形物をエチレングリコール80.0部に加え、80℃で2時間還元処理を行った。その後、純水で洗浄濾過し、シリカ担持パラジウム触媒を得た。この触媒のパラジウム担持率は4.8質量%である。   The obtained solid was added to 80.0 parts of ethylene glycol and subjected to reduction treatment at 80 ° C. for 2 hours. Thereafter, the product was washed and filtered with pure water to obtain a silica-supported palladium catalyst. The palladium loading of this catalyst is 4.8% by mass.

(反応評価)
この触媒を2.1部用いた点以外は、参考例1と同様にして反応評価を行った。
(Reaction evaluation)
The reaction was evaluated in the same manner as in Reference Example 1 except that 2.1 parts of this catalyst was used.

[比較例3]
有機物を加えない点以外は、参考例3と同様にしてシリカ担持パラジウム触媒を調製した。この触媒を用いた点以外は、参考例1と同様にして反応評価を行った。
[Comparative Example 3]
A silica-supported palladium catalyst was prepared in the same manner as in Reference Example 3 except that no organic substance was added. The reaction was evaluated in the same manner as in Reference Example 1 except that this catalyst was used.

以上の反応評価結果を表1及び表2に示す。本発明の貴金属含有触媒を用いることでメタクリル酸及びメタクリル酸無水物が高選択率かつ高生産性で製造可能であることが分かった。   The above reaction evaluation results are shown in Tables 1 and 2. It was found that by using the noble metal-containing catalyst of the present invention, methacrylic acid and methacrylic anhydride can be produced with high selectivity and high productivity.

Figure 0005340705
Figure 0005340705

Figure 0005340705
Figure 0005340705

Claims (2)

オレフィンからα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物を製造するための貴金属含有触媒の製造方法であって、
プロピオン酸、1,4−ジオキサン、メチルイソブチルケトン、3−メトキシ−1−ブタノール、エチレングリコール及びグリセリンからなる群より選ばれる少なくとも1つの有機物、貴金属成分並びに無機溶媒を含む原料溶液を担体に浸漬又は含浸して、その原料溶液を乾燥して、触媒前駆体を得る工程と、
その触媒前駆体を加熱処理する工程と、
前記触媒前駆体を還元する工程と
を有する貴金属含有触媒の製造方法。
A process for producing a noble metal-containing catalyst for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid anhydride from an olefin,
Propionic acid, 1,4-dioxane, dipping methyl isobutyl ketone, 3-methoxy-1-butanol, at least one organic substance selected from the group consisting of ethylene glycol and glycerine, a raw material solution containing a precious metal component and inorganic Solvent the carrier Or impregnating and drying the raw material solution to obtain a catalyst precursor;
Heat-treating the catalyst precursor;
A method for producing a noble metal-containing catalyst comprising a step of reducing the catalyst precursor.
請求項記載の製造方法で貴金属含有触媒を製造し、その存在下で、オレフィンを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の製造方法。 To produce a precious metal-containing catalyst in the process according to claim 1, wherein, in the presence of that, oxidized in a liquid phase an olefin with molecular oxygen alpha, beta-unsaturated carboxylic acids and alpha, beta-unsaturated carboxylic acid Method for producing anhydride.
JP2008302730A 2008-01-08 2008-11-27 Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride Active JP5340705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302730A JP5340705B2 (en) 2008-01-08 2008-11-27 Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008001171 2008-01-08
JP2008001171 2008-01-08
JP2008302730A JP5340705B2 (en) 2008-01-08 2008-11-27 Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride

Publications (2)

Publication Number Publication Date
JP2009183938A JP2009183938A (en) 2009-08-20
JP5340705B2 true JP5340705B2 (en) 2013-11-13

Family

ID=41067758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302730A Active JP5340705B2 (en) 2008-01-08 2008-11-27 Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride

Country Status (1)

Country Link
JP (1) JP5340705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327969B2 (en) * 2009-10-23 2013-10-30 三菱レイヨン株式会社 Method for producing noble metal-containing supported catalyst, catalyst therefor, and method for producing α, β-unsaturated carboxylic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571809B2 (en) * 2004-02-05 2010-10-27 三菱レイヨン株式会社 Method for producing noble metal-containing catalyst
US7498462B2 (en) * 2004-02-09 2009-03-03 Mitsubishi Rayon Co., Ltd. Process for producing α,β-unsaturated carboxylic acid
US20080064899A1 (en) * 2004-06-02 2008-03-13 Seiichi Kawato Method For Producing Alpha, Beta-Unsaturated Carboxylic Acid
JP5001543B2 (en) * 2004-11-17 2012-08-15 三菱レイヨン株式会社 Method for producing palladium-containing supported catalyst
JP2007245068A (en) * 2006-03-17 2007-09-27 Mitsubishi Rayon Co Ltd NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP4995479B2 (en) * 2006-04-21 2012-08-08 三菱レイヨン株式会社 Process for producing α, β-unsaturated carboxylic acid and acid anhydride having α, β-unsaturated carboxylic acid skeleton

Also Published As

Publication number Publication date
JP2009183938A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4728761B2 (en) Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP4571872B2 (en) Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP2006265227A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP2007245068A (en) NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP4846625B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007152152A (en) Palladium-containing supported catalyst and manufacturing method of alpha and beta-unsaturated carboxylic acid using the same
JP5049118B2 (en) Method for producing palladium-containing catalyst
JP4829730B2 (en) Method for producing palladium-containing supported catalyst
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP4676887B2 (en) Method for producing α, β-unsaturated carboxylic acid, catalyst therefor and method for producing the same
JP5362348B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5084004B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4911361B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2011235215A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP4522841B2 (en) Noble metal-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP5609394B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP5416886B2 (en) Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP5280239B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5006175B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5910873B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2011088084A (en) Method for producing noble metal-containing supported catalyst, the catalyst produced thereby and method for producing alpha,beta-unsaturated carboxylic acid
JP5645050B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2009006236A (en) PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R151 Written notification of patent or utility model registration

Ref document number: 5340705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250