JP5084004B2 - Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid - Google Patents
Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid Download PDFInfo
- Publication number
- JP5084004B2 JP5084004B2 JP2005351286A JP2005351286A JP5084004B2 JP 5084004 B2 JP5084004 B2 JP 5084004B2 JP 2005351286 A JP2005351286 A JP 2005351286A JP 2005351286 A JP2005351286 A JP 2005351286A JP 5084004 B2 JP5084004 B2 JP 5084004B2
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- catalyst
- mass
- producing
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims description 186
- 229910052763 palladium Inorganic materials 0.000 title claims description 93
- 239000003054 catalyst Substances 0.000 title claims description 83
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000011148 porous material Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 25
- 150000001336 alkenes Chemical class 0.000 claims description 21
- 150000002940 palladium Chemical class 0.000 claims description 21
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 20
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 17
- 239000007791 liquid phase Substances 0.000 claims description 17
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 12
- 229910001882 dioxygen Inorganic materials 0.000 claims description 9
- 229910003445 palladium oxide Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims description 3
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 2
- JQPTYAILLJKUCY-UHFFFAOYSA-N palladium(ii) oxide Chemical compound [O-2].[Pd+2] JQPTYAILLJKUCY-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 150000001299 aldehydes Chemical class 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 12
- 238000011068 loading method Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 8
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Natural products CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 ethylene, propylene, 1-butene Chemical class 0.000 description 4
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- OTTZHAVKAVGASB-HYXAFXHYSA-N 2-Heptene Chemical compound CCCC\C=C/C OTTZHAVKAVGASB-HYXAFXHYSA-N 0.000 description 1
- OTTZHAVKAVGASB-UHFFFAOYSA-N 2-heptene Natural products CCCCC=CC OTTZHAVKAVGASB-UHFFFAOYSA-N 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 206010065042 Immune reconstitution inflammatory syndrome Diseases 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- YPJKMVATUPSWOH-UHFFFAOYSA-N nitrooxidanyl Chemical compound [O][N+]([O-])=O YPJKMVATUPSWOH-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- JKDRQYIYVJVOPF-FDGPNNRMSA-L palladium(ii) acetylacetonate Chemical compound [Pd+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O JKDRQYIYVJVOPF-FDGPNNRMSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造するためのパラジウジム含有担持触媒及びその製造方法、並びに、その触媒を用いたα,β−不飽和カルボン酸の製造方法に関する。 The present invention relates to a supported catalyst containing paradidymium for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde by liquid phase oxidation, a method for producing the same, and α, β using the catalyst. -It relates to a process for producing unsaturated carboxylic acids.
オレフィンまたはα、β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を得るための触媒としては、パラジウム含有触媒が知られている。例えば、特許文献1の実施例には平均粒子径が1〜8nmの範囲にあるパラジウムが活性炭に担体されたパラジウム含有触媒と触媒の製造方法が開示されている。また、特許文献1の明細書には担体として、活性炭、シリカ、アルミナ、チタニア、およびジルコニアが挙げられている。
しかしながら、特許文献1の実施例で開示された触媒のパラジウム量は担体1質量部に対して最大0.10質量部(以下、担体質量に対するパラジウムの質量の割合を「パラジウムの担持率」または単に「担持率」という。)である。また、特許文献1では使用する担体の平均細孔径について何ら開示がない。本願発明者は、このような従来の方法で平均細孔径が8nmを超える担体を使用して担持率が0.10を超える触媒を製造すると、パラジウムの平均粒子径が担体の平均細孔径である8nmに制約されないので、パラジウムの平均粒子径が8nmを超えてしまい、担持触媒の質量あたりの触媒活性が頭打ち傾向になるという問題を見いだした。 However, the amount of palladium in the catalyst disclosed in the example of Patent Document 1 is 0.10 parts by mass at the maximum with respect to 1 part by mass of the carrier (hereinafter, the ratio of the mass of palladium to the mass of the carrier is “palladium loading” or simply It is referred to as “loading rate”). Patent Document 1 does not disclose any average pore diameter of the carrier used. When the present inventor produces a catalyst having a loading ratio exceeding 0.10 using a carrier having an average pore diameter exceeding 8 nm by such a conventional method, the average particle diameter of palladium is the average pore diameter of the carrier. Since it is not restricted to 8 nm, the average particle diameter of palladium exceeded 8 nm, and the problem that the catalyst activity per mass of a supported catalyst tends to peak was found.
したがって本発明の目的は、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高いオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒及びその製造方法、並びに、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高いα,β−不飽和カルボン酸を製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a palladium-containing supported for producing an α, β-unsaturated carboxylic acid from an olefin or α, β-unsaturated aldehyde with a high yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst. It is an object of the present invention to provide a catalyst, a method for producing the same, and a method for producing an α, β-unsaturated carboxylic acid having a high yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst.
本発明は、無機酸化物担体にパラジウムが担持されてなる、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒であって、
該無機酸化物担体の平均細孔径が2〜8nm、該担持されたパラジウムの質量が無機酸化物担体1質量部に対して0.12〜1質量部、該担持されたパラジウムの平均粒子径が1〜8nmの範囲である触媒である。
The present invention is for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde formed of palladium supported on an inorganic oxide support in a liquid phase with molecular oxygen. A palladium-containing supported catalyst comprising:
The average pore diameter of the inorganic oxide carrier is 2 to 8 nm, the mass of the supported palladium is 0.12 to 1 part by mass with respect to 1 part by mass of the inorganic oxide carrier, and the average particle size of the supported palladium is It is a catalyst in the range of 1-8 nm.
また本発明は、含浸法によりパラジウム塩を平均細孔径が2〜8nmの無機酸化物担体に担持させた後に、加熱処理を行ってパラジウム塩を酸化パラジウムとし、その無機酸化物担体の存在下で酸化状態にあるパラジウムを還元する前述の触媒の製造方法である。 Further, in the present invention, a palladium salt is supported on an inorganic oxide carrier having an average pore diameter of 2 to 8 nm by an impregnation method , followed by heat treatment to convert the palladium salt to palladium oxide, and in the presence of the inorganic oxide carrier. This is a method for producing the above-described catalyst for reducing palladium in an oxidized state.
さらに本発明は、前述の触媒の存在下で、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化するα,β−不飽和カルボン酸の製造方法である。 Furthermore, the present invention is a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is oxidized in the liquid phase with molecular oxygen in the presence of the aforementioned catalyst.
本発明によれば、オレフィンまたはα,β−不飽和アルデヒドから液相酸化によりα,β−不飽和カルボン酸を製造する場合に、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高いパラジウム含有担持触媒及びその製造方法を提供できる。 According to the present invention, when α, β-unsaturated carboxylic acid is produced from olefin or α, β-unsaturated aldehyde by liquid phase oxidation, the yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst is increased. A high palladium-containing supported catalyst and a method for producing the same can be provided.
また、本発明のパラジウム含有担持触媒を用いると、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高い状態でα,β−不飽和カルボン酸を製造することができる。 In addition, when the palladium-containing supported catalyst of the present invention is used, an α, β-unsaturated carboxylic acid can be produced with a high yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst.
本発明は、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造するためのパラジウム含有担持触媒(以下、「パラジウム含有触媒」または単に「触媒」と称することがある)であって、無機酸化物担体の平均細孔径が2〜8nm、該担持されたパラジウムの質量が無機酸化物担体1質量部に対して0.12〜1質量部(担持率0.12〜1)、該担持されたパラジウムの平均粒子径が1〜8nmの範囲にある触媒である。無機酸化物担体の平均細孔径、パラジウムの担持率、パラジウムの平均粒子径が前記範囲にある触媒は、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高いという特徴がある。 The present invention relates to a palladium-containing supported catalyst (hereinafter referred to as “palladium-containing catalyst”) for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde with molecular oxygen in a liquid phase. Or may be simply referred to as “catalyst”), the average pore diameter of the inorganic oxide support is 2 to 8 nm, and the mass of the supported palladium is 0.12 to 1 part by mass of the inorganic oxide support. 1 part by mass (supporting rate 0.12-1), the average particle diameter of the supported palladium is a catalyst in the range of 1-8 nm. A catalyst in which the average pore size of the inorganic oxide support, the palladium loading rate, and the palladium average particle size are in the above ranges is characterized by a high yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst.
本発明におけるパラジウムの担持率は、担持触媒に含まれる担体の質量とパラジウムの質量とから算出できる。また、還元処理や洗浄処理で失われるパラジウムの質量が無視できる場合には、触媒を製造する際に用いた担体の質量と、用いたパラジウム化合物が含有するパラジウムの質量とからも算出できる。 The palladium loading in the present invention can be calculated from the mass of the carrier and the mass of palladium contained in the supported catalyst. Further, when the mass of palladium lost in the reduction treatment or the washing treatment is negligible, it can also be calculated from the mass of the carrier used in producing the catalyst and the mass of palladium contained in the used palladium compound.
担体がシリカである場合は、以下のように分析を行う。パラジウム含有触媒、濃硝酸及び48質量%弗酸をテフロン(登録商標)製分解管にとり、マイクロ波加熱分解装置で溶解処理を行う。試料をろ過し、ろ液および洗浄水を合わせてメスフラスコにメスアップし、処理液に含まれるパラジウムの質量をICP発光分光分析装置で定量する。別途、パラジウム含有触媒を白金るつぼに取り、炭酸ナトリウムを加えてアルカリ溶融を行った後、蒸留水を加える。試料をろ過し、ろ液および洗浄水を合わせてメスフラスコにメスアップし、処理液に含まれるSi原子の質量をICP発光分光分析装置で定量し、シリカの質量に換算する。 When the support is silica, analysis is performed as follows. A palladium-containing catalyst, concentrated nitric acid, and 48% by mass hydrofluoric acid are placed in a decomposition tube made of Teflon (registered trademark) and dissolved by a microwave thermal decomposition apparatus. The sample is filtered, and the filtrate and the washing water are combined and made up into a measuring flask, and the mass of palladium contained in the processing solution is quantified with an ICP emission spectroscopic analyzer. Separately, a palladium-containing catalyst is placed in a platinum crucible, and sodium carbonate is added to perform alkali melting, followed by addition of distilled water. The sample is filtered, and the filtrate and washing water are combined to make up a measuring flask. The mass of Si atoms contained in the treatment liquid is quantified with an ICP emission spectroscopic analyzer and converted to the mass of silica.
本発明の触媒では、上記のようにして算出したパラジウムの担持率が0.12以上であり、0.20以上であることが好ましく、0.41以上であることが特に好ましい。パラジウムの担持率は、1.0以下であることが好ましく、0.85以下であることがより好ましく、0.65以下であることが特に好ましい。 In the catalyst of the present invention, the palladium loading calculated as described above is 0.12 or more, preferably 0.20 or more, and particularly preferably 0.41 or more. The supported rate of palladium is preferably 1.0 or less, more preferably 0.85 or less, and particularly preferably 0.65 or less.
本発明の触媒は、少なくともパラジウムが担体としての無機酸化物に担持されている。担体として使用する無機酸化物(以下、単に「担体」ともいう。)は、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができるが、中でもシリカ、チタニアおよびジルコニアが好ましく、シリカが特に好ましい。 In the catalyst of the present invention, at least palladium is supported on an inorganic oxide as a carrier. Examples of the inorganic oxide used as the carrier (hereinafter also simply referred to as “carrier”) include silica, alumina, magnesia, calcia, titania and zirconia. Among them, silica, titania and zirconia are preferable, and silica is preferable. Particularly preferred.
本発明において、担体の平均細孔径の測定は窒素ガス吸着法で行う。窒素ガス吸着法の測定により得られた吸着側の等温線をジャーナルオブアメリカンケミカルソサエティ(J.Am.Chem.Soc.),73,373−380(1951)に記載されたBJH(Barrett−Joyner−Halenda)法によって解析することにより、平均細孔径が求められる。担体の平均細孔径は触媒の状態で測定することは通常困難であるが、担体の平均細孔径は触媒の調製前後で実質的に変化しないことから、製造に使用する前の担体について前記の方法により平均細孔径を測定すればよい。また、担体の平均細孔径を実質的に変化させることなく触媒からパラジウム等の担持成分を除去することが可能であれば、触媒から担持成分を除去し担体について前記の方法により平均細孔径を測定してもよい。 In the present invention, the average pore diameter of the carrier is measured by a nitrogen gas adsorption method. The isotherm on the adsorption side obtained by the measurement of the nitrogen gas adsorption method is represented by BJH (Barrett-Joyner- described in J. Am. Chem. Soc., 73, 373-380 (1951)). By analyzing by the Halenda method, the average pore diameter is determined. Although it is usually difficult to measure the average pore diameter of the support in the state of the catalyst, the average pore diameter of the support does not substantially change before and after the preparation of the catalyst. The average pore diameter may be measured by Also, if it is possible to remove supported components such as palladium from the catalyst without substantially changing the average pore size of the support, the supported components are removed from the catalyst and the average pore size of the support is measured by the above method. May be.
担体の平均細孔径は、2nm以上であり、3nm以上であることが好ましく、4nm以上であることが特に好ましい。担体の平均細孔径は、8nm以下であり、7nm以下であることが好ましく、6nm以下であることが特に好ましい。 The average pore diameter of the carrier is 2 nm or more, preferably 3 nm or more, and particularly preferably 4 nm or more. The average pore diameter of the carrier is 8 nm or less, preferably 7 nm or less, and particularly preferably 6 nm or less.
平均細孔径が8nmを上回る場合、パラジウムの平均粒子径が大きくなって8nmを超えるため触媒の活性が低下して、α,β−不飽和カルボン酸の収率が低下する傾向にある。平均細孔径が2nmを下回る場合、液相反応においては細孔内へのオレフィンまたはα,β−不飽和アルデヒドの拡散及び細孔外へのα,β−不飽和カルボン酸の拡散が抑制されるため、触媒の活性が低下して、α,β−不飽和カルボン酸の収率が低下する傾向にある。 When the average pore diameter exceeds 8 nm, the average particle diameter of palladium increases and exceeds 8 nm, so that the activity of the catalyst decreases, and the yield of α, β-unsaturated carboxylic acid tends to decrease. When the average pore diameter is less than 2 nm, diffusion of olefin or α, β-unsaturated aldehyde into the pores and diffusion of α, β-unsaturated carboxylic acid outside the pores are suppressed in the liquid phase reaction. Therefore, the activity of the catalyst is lowered, and the yield of the α, β-unsaturated carboxylic acid tends to be lowered.
担体として使用する無機酸化物の好ましい比表面積は、担体の種類等により異なるので一概に言えないが、シリカの場合、50m2/g以上が好ましく、100m2/g以上がより好ましい。また、1500m2/g以下が好ましく、1000m2/g以下がより好ましい。なお、担体の比表面積は、小さいほどパラジウム等の担持成分がより表面に担持された触媒の製造が可能となり、大きいほど担持成分が多く担持された触媒の製造が可能となる。 The preferred specific surface area of the inorganic oxide used as the carrier varies depending on the type of carrier and the like, and thus cannot be generally stated. In the case of silica, it is preferably 50 m 2 / g or more, more preferably 100 m 2 / g or more. Moreover, 1500 m < 2 > / g or less is preferable and 1000 m < 2 > / g or less is more preferable. In addition, the smaller the specific surface area of the carrier, the more capable of producing a catalyst having a supported component such as palladium supported on the surface, and the larger the specific surface area of the carrier, the more capable of producing a catalyst having more supported component.
担体の細孔容積は特に限定されないが、0.1cc/g以上が好ましく、0.2cc/g以上がより好ましい。また、2.0cc/g以下が好ましく、1.5cc/g以下がより好ましい。 The pore volume of the carrier is not particularly limited, but is preferably 0.1 cc / g or more, and more preferably 0.2 cc / g or more. Moreover, 2.0 cc / g or less is preferable and 1.5 cc / g or less is more preferable.
また、担体の好ましい体積平均粒径については、装置の形状、サイズによって異なり、特に限定されないが、0.5μm以上が好ましく、1.0μm以上がより好ましい。また、200μm以下が好ましく、100μm以下がより好ましい。担体の体積平均粒径は、大きいほど触媒と反応液の分離が容易になり、小さいほど反応液と触媒の分散性が良くなる。 The preferred volume average particle size of the carrier varies depending on the shape and size of the apparatus and is not particularly limited, but is preferably 0.5 μm or more, more preferably 1.0 μm or more. Moreover, 200 micrometers or less are preferable and 100 micrometers or less are more preferable. The larger the volume average particle size of the carrier, the easier the separation of the catalyst and the reaction solution, and the smaller the support, the better the dispersibility of the reaction solution and the catalyst.
本発明におけるパラジウムの平均粒子径とは、触媒中のパラジウムについて透過型電子顕微鏡によって測定したものであり、具体的には以下のようにして算出する値である。パラジウムの粒子径の計測が可能な観察倍率の透過型電子顕微鏡の観察画像の各視野に対して、IMAGE PRO plus等の画像処理ソフトウェアを用いて、無作為に選んだパラジウム粒子100点の粒子径を計測する。この操作を複数の視野について実施し、計測値の平均をとり平均粒子径とする。 The average particle diameter of palladium in the present invention is measured with a transmission electron microscope for palladium in the catalyst, and is specifically a value calculated as follows. Particle size of 100 palladium particles selected at random using image processing software such as IMAGE PRO plus for each field of view of a transmission electron microscope with an observation magnification capable of measuring the particle size of palladium. Measure. This operation is carried out for a plurality of visual fields, and the average of the measured values is taken as the average particle diameter.
パラジウム含有触媒が金属状態のパラジウムに対する一酸化炭素吸着を阻害する成分を含まない場合は、一酸化炭素パルス法による一酸化炭素吸着量からパラジウム分散度、パラジウム金属表面積を求め、そこから球形を仮定した場合のパラジウム平均粒子径を算出しても良い。なお、一酸化炭素吸着量の測定においてパラジウム含有量が既知の触媒に対して事前に水素雰囲気下で還元処理を行う。 When the palladium-containing catalyst does not contain a component that inhibits carbon monoxide adsorption on palladium in the metal state, the degree of palladium dispersion and the surface area of the palladium metal are obtained from the amount of carbon monoxide adsorbed by the carbon monoxide pulse method, and then a spherical shape is assumed. In this case, the average particle diameter of palladium may be calculated. In the measurement of the carbon monoxide adsorption amount, a reduction treatment is performed in advance in a hydrogen atmosphere on a catalyst having a known palladium content.
上記のようにして算出するパラジウムの平均粒子径の下限値は1nm以上であり、1.2nm以上が好ましく、1.4nm以上がより好ましい、また、パラジウムの平均粒子径の上限値は8nm以下であり、7nm以下が好ましく、6nm以下がより好ましい。パラジウムの平均粒子径が所定の範囲外にある場合、それを含むパラジウム含有担持触媒の活性が低下する傾向にあり、α,β−不飽和カルボン酸の収率が低下する傾向にある。 The lower limit value of the average particle diameter of palladium calculated as described above is 1 nm or more, preferably 1.2 nm or more, more preferably 1.4 nm or more, and the upper limit value of the average particle diameter of palladium is 8 nm or less. Yes, 7 nm or less is preferable, and 6 nm or less is more preferable. When the average particle diameter of palladium is outside the predetermined range, the activity of the palladium-containing supported catalyst containing the palladium tends to decrease, and the yield of the α, β-unsaturated carboxylic acid tends to decrease.
パラジウムを担体としての無機酸化物に担持させる方法は特に限定されないが、担体細孔内に担持されていて担体細孔径以下の粒子径であるパラジウムの割合が多くなることから、含浸法によりパラジウムを担体に担持させることが好ましい。この場合、パラジウム塩の溶解液に担体を浸漬した後に溶媒を蒸発させる方法、または、担体の細孔容積分のパラジウム塩の溶解液を担体に吸収させた後に溶媒を蒸発させる、いわゆるポアフィリング法による方法が特に好ましい。 The method for supporting palladium on an inorganic oxide as a carrier is not particularly limited, but since the proportion of palladium that is supported in the pores of the carrier and has a particle size equal to or smaller than the pore size of the carrier increases, palladium is impregnated by the impregnation method. It is preferable to carry it on a carrier. In this case, a method of evaporating the solvent after immersing the carrier in a solution of palladium salt, or a so-called pore filling method of evaporating the solvent after absorbing the palladium salt solution for the pore volume of the carrier into the carrier. Is particularly preferred.
使用するパラジウム塩は特に限定されないが、例えば、塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンパラジウム塩化物およびビス(アセチルアセトナト)パラジウム等を挙げることができるが、中でも塩化パラジウム、酢酸パラジウム、硝酸パラジウム、テトラアンミンパラジウム塩化物が好ましく、硝酸パラジウムが特に好ましい。パラジウム塩を溶解させる溶媒としては、パラジウム塩を溶解するものであれば特に限定されない。 The palladium salt to be used is not particularly limited, and examples thereof include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, tetraammine palladium chloride, and bis (acetylacetonato) palladium, among which palladium chloride and palladium acetate. Palladium nitrate and tetraamminepalladium chloride are preferable, and palladium nitrate is particularly preferable. The solvent for dissolving the palladium salt is not particularly limited as long as it dissolves the palladium salt.
また、パラジウム塩を担体に担持させた後に加熱処理を行い担体上のパラジウム塩を一旦酸化パラジウムとし、その後還元する方法が好ましい。 Also preferred is a method in which a palladium salt is supported on a carrier and then subjected to a heat treatment to once convert the palladium salt on the carrier to palladium oxide, followed by reduction.
加熱処理の温度は、用いるパラジウム塩の分解温度以上の温度とすることが好ましい。加熱処理の時間は、パラジウム塩が酸化パラジウムとなる時間であれば特に限定されないが、1時間以上が好ましく、また12時間以下が好ましい。 The temperature of the heat treatment is preferably a temperature equal to or higher than the decomposition temperature of the palladium salt used. The time for the heat treatment is not particularly limited as long as the palladium salt becomes palladium oxide, but is preferably 1 hour or longer, and preferably 12 hours or shorter.
酸化パラジウムの還元時に用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、2−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、アリルアルコール、メタリルアルコール、アクロレインおよびメタクロレイン等が挙げられる。水素、ヒドラジン、ホルムアルデヒド、蟻酸、蟻酸の塩が好ましい。これらを2種以上併用することもできる。 The reducing agent used for reducing palladium oxide is not particularly limited. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, isobutylene, 1, 3 -Butadiene, 1-heptene, 2-heptene, 1-hexene, 2-hexene, cyclohexene, allyl alcohol, methallyl alcohol, acrolein, methacrolein and the like. Hydrogen, hydrazine, formaldehyde, formic acid and formic acid salts are preferred. Two or more of these may be used in combination.
液相中での還元の際に使用する溶媒としては、水が好ましいが、担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、イソ吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の有機溶媒を単独又は複数組み合わせて用いることができる。これらと水との混合溶媒を用いることもできる。 The solvent used in the reduction in the liquid phase is preferably water, but depending on the dispersibility of the carrier, alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol and t-butanol; acetone Ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and isovaleric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane, or a combination thereof Can do. A mixed solvent of these and water can also be used.
還元剤が気体の場合、溶液中への溶解度を挙げる為にオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は0.1MPa(ゲージ圧;以下圧力はゲージ圧表記とする)以上とすることが好ましく、また1.0MPa以下とすることが好ましい。 When the reducing agent is a gas, it is preferably carried out in a pressurizing apparatus such as an autoclave in order to increase the solubility in the solution. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is preferably 0.1 MPa (gauge pressure; hereinafter referred to as gauge pressure) or more, and preferably 1.0 MPa or less.
また、還元剤が液体の場合、酸化パラジウムまたははパラジウム塩の還元を行う装置に制限はなく、溶液中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、酸化パラジウムまたはパラジウム塩1モルに対して1モル以上とすることが好ましく、また100モル以下とすることが好ましい。 When the reducing agent is a liquid, there is no limitation on the apparatus for reducing palladium oxide or palladium salt, and the reduction can be performed by adding the reducing agent to the solution. The amount of the reducing agent used at this time is not particularly limited, but it is preferably 1 mol or more, and preferably 100 mol or less with respect to 1 mol of palladium oxide or palladium salt.
還元温度および還元時間は、用いる酸化パラジウムまたはパラジウム塩や還元剤等により異なるが、還元温度は−5℃以上が好ましく、15℃以上がより好ましい。また、150℃以下が好ましく、80℃以下がより好ましい。還元時間は0.1時間以上が好ましく、0.25時間以上がより好ましく、0.5時間以上がさらに好ましい。また、4時間以下が好ましく、3時間以下がより好ましく、2時間以下がさらに好ましい。 The reduction temperature and reduction time vary depending on the palladium oxide or palladium salt used, the reducing agent, etc., but the reduction temperature is preferably −5 ° C. or higher, more preferably 15 ° C. or higher. Moreover, 150 degrees C or less is preferable and 80 degrees C or less is more preferable. The reduction time is preferably 0.1 hour or longer, more preferably 0.25 hour or longer, and further preferably 0.5 hour or longer. Moreover, 4 hours or less are preferable, 3 hours or less are more preferable, and 2 hours or less are more preferable.
得られたパラジウム含有触媒は、水、有機溶媒等で洗浄することが好ましい。水、有機溶媒等での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等のパラジウム塩由来の不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によってはオレフィンまたはα,β−不飽和アルデヒドの液相酸化反応を阻害する恐れがあるため、不純物を十分除去できる程度に洗浄することが好ましい。洗浄された触媒は、ろ別または遠心分離などにより回収した後、そのまま反応に用いてもよい。 The obtained palladium-containing catalyst is preferably washed with water, an organic solvent or the like. By washing with water, an organic solvent or the like, impurities derived from palladium salts such as chloride, acetate radical, nitrate radical and sulfate radical are removed. The washing method and number of times are not particularly limited, but depending on the impurities, the liquid phase oxidation reaction of olefins or α, β-unsaturated aldehydes may be hindered. Therefore, washing is preferably performed to such an extent that impurities can be sufficiently removed. The washed catalyst may be recovered by filtration or centrifugation and used for the reaction as it is.
また、回収された触媒を乾燥してもよい。乾燥方法は特に限定されないが、乾燥機を用いて空気中または不活性ガスで乾燥することが好ましい。乾燥された触媒は、必要に応じて反応に使用する前に活性化することもできる。活性化の方法には特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によれば、パラジウム表面の酸化被膜と洗浄で取り除けなかった不純物を除去することができる。 Further, the recovered catalyst may be dried. The drying method is not particularly limited, but it is preferable to dry in air or an inert gas using a dryer. The dried catalyst can also be activated before use in the reaction if desired. The activation method is not particularly limited, and examples thereof include a heat treatment method in a reducing atmosphere in a hydrogen stream. According to this method, the oxide film on the palladium surface and impurities that could not be removed by washing can be removed.
なお、本発明のパラジウム含有触媒では、パラジウム以外の金属成分を含むものとすることができる。パラジウム以外の金属成分としては、例えば、アンチモン、テルル、タリウム、鉛、ビスマス等が挙げられる。パラジウム以外の金属成分は、2種以上含むこともできる。高い触媒活性を発現させる観点から、パラジウム含有触媒に含まれる金属のうち、50質量%以上がパラジウムであることが好ましい。 In addition, in the palladium containing catalyst of this invention, metal components other than palladium can be included. Examples of metal components other than palladium include antimony, tellurium, thallium, lead, bismuth and the like. Two or more metal components other than palladium can be contained. From the viewpoint of expressing high catalytic activity, it is preferable that 50% by mass or more of the metal contained in the palladium-containing catalyst is palladium.
パラジウム以外の金属成分を含むパラジウム含有触媒は、対応する金属の塩や酸化物等の金属化合物が担体に担持された状態で前記の還元を行うことで得ることができる。その際の金属化合物の担持方法としては特に限定されないが、パラジウム塩を担持する方法と同様に行うことができる。また、パラジウム以外の金属の金属化合物は、パラジウム塩を担持する前に担持することもでき、パラジウム塩を担持した担持後に担持することもでき、パラジウム塩と同時に担持することもできる。 A palladium-containing catalyst containing a metal component other than palladium can be obtained by performing the above-described reduction while a metal compound such as a corresponding metal salt or oxide is supported on a carrier. The method for supporting the metal compound at that time is not particularly limited, but can be carried out in the same manner as the method for supporting the palladium salt. Further, the metal compound of a metal other than palladium can be supported before the palladium salt is supported, can be supported after the palladium salt is supported, or can be supported simultaneously with the palladium salt.
得られたパラジウム含有触媒の物性は、BET比表面積測定、XRD測定、COパルス吸着法、TEM観察等により確認できる。 The physical properties of the obtained palladium-containing catalyst can be confirmed by BET specific surface area measurement, XRD measurement, CO pulse adsorption method, TEM observation and the like.
次に、本発明のパラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素によって液相中で酸化してα,β−不飽和カルボン酸を製造する方法について説明する。 Next, a method for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or an α, β-unsaturated aldehyde with molecular oxygen in a liquid phase using the palladium-containing catalyst of the present invention will be described.
原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。原料のオレフィンは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。製造されるα,β−不飽和カルボン酸は、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。具体的には、原料がプロピレンの場合はアクリル酸が得られ、原料がイソブチレンの場合はメタクリル酸が得られる。 Examples of the raw material olefin include propylene, isobutylene, and 2-butene. Among these, propylene and isobutylene are preferable. The raw material olefin may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities. The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin. Specifically, acrylic acid is obtained when the raw material is propylene, and methacrylic acid is obtained when the raw material is isobutylene.
原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。中でもアクロレインおよびメタクロレインが好適である。原料のα,β−不飽和アルデヒドは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。具体的には、原料がアクロレインの場合アクリル酸が得られ、原料がメタクロレインの場合メタクリル酸が得られる。 Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Of these, acrolein and methacrolein are preferable. The raw α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities. The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. Specifically, acrylic acid is obtained when the raw material is acrolein, and methacrylic acid is obtained when the raw material is methacrolein.
液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。 The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.
液相酸化反応に用いる分子状酸素の源は、空気が経済的であり好ましいが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。この空気等のガスは、通常オートクレーブ等の反応容器内に加圧状態で供給される。 As the source of molecular oxygen used in the liquid phase oxidation reaction, air is economical and preferable. However, pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is converted into nitrogen, A mixed gas diluted with carbon dioxide, water vapor or the like can also be used. This gas such as air is usually supplied in a pressurized state into a reaction vessel such as an autoclave.
液相酸化反応に用いる溶媒としては、例えば、t−ブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの有機溶媒を用いることが好ましい。中でも、t−ブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つの有機溶媒がより好ましい。また、α,β−不飽和カルボン酸をより選択率よく製造するために、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して2質量%以上が好ましく、より好ましくは5質量%以上であり、70質量%以下が好ましく、より好ましくは50質量%以下である。有機溶媒と水の混合物は均一な状態であることが望ましいが、不均一な状態であっても差し支えない。 Examples of the solvent used in the liquid phase oxidation reaction include t-butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, It is preferable to use at least one organic solvent selected from the group consisting of ethyl acetate and methyl propionate. Among these, at least one organic solvent selected from the group consisting of t-butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid is more preferable. Further, in order to produce an α, β-unsaturated carboxylic acid with higher selectivity, it is preferable to coexist water in these organic solvents. The amount of water to be coexisted is not particularly limited, but is preferably 2% by mass or more, more preferably 5% by mass or more, and preferably 70% by mass or less, more preferably 50% by mass with respect to the total mass of the organic solvent and water. % Or less. The mixture of the organic solvent and water is desirably in a uniform state, but may be in a non-uniform state.
液相酸化反応の原料であるオレフィンまたはα,β−不飽和アルデヒドの濃度は、反応器内に存在する溶媒に対して0.1質量%以上が好ましく、より好ましくは0.5質量%以上であり、30質量%以下が好ましく、より好ましくは20質量%以下である。 The concentration of the olefin or α, β-unsaturated aldehyde that is a raw material for the liquid phase oxidation reaction is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the solvent present in the reactor. Yes, 30 mass% or less is preferable, More preferably, it is 20 mass% or less.
分子状酸素の使用量は、原料であるオレフィンまたはα,β−不飽和アルデヒド1モルに対して0.1モル以上が好ましく、より好ましくは0.2モル以上、さらに好ましくは0.3モル以上であり、20モル以下が好ましく、より好ましくは15モル以下、さらに好ましくは10モル以下である。 The amount of molecular oxygen used is preferably at least 0.1 mol, more preferably at least 0.2 mol, even more preferably at least 0.3 mol, based on 1 mol of the raw material olefin or α, β-unsaturated aldehyde. It is preferably 20 mol or less, more preferably 15 mol or less, still more preferably 10 mol or less.
通常、触媒は液相酸化を行う反応液に懸濁させた状態で使用されるが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液に対して0.1質量%以上が好ましく、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、30質量%以下が好ましく、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。本発明の触媒は、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高いため、とりわけ懸濁床における反応において、反応器あたりのα,β−不飽和カルボン酸収量を高めることに適している。 Usually, the catalyst is used in a state suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and 30% by mass or less with respect to the solution present in the reactor. More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less. The catalyst of the present invention has a high yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst, so that the yield of α, β-unsaturated carboxylic acid per reactor is increased particularly in a reaction in a suspended bed. Is suitable.
反応温度および反応圧力は、用いる溶媒および原料によって適宜選択される。反応温度は30℃以上が好ましく、より好ましくは50℃以上である。また、反応温度は200℃以下が好ましく、より好ましくは150℃以下である。また、反応圧力は0MPa以上が好ましく、より好ましくは0.5MPa以上である。また、反応圧力は10MPa以下が好ましく、より好ましくは5MPa以下である。 The reaction temperature and reaction pressure are appropriately selected depending on the solvent and raw materials used. The reaction temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher. The reaction temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower. The reaction pressure is preferably 0 MPa or more, more preferably 0.5 MPa or more. The reaction pressure is preferably 10 MPa or less, more preferably 5 MPa or less.
以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.
(担体の平均細孔径の測定)
担体の平均細孔径は、Micromeritics社製自動比表面積/細孔分布測定装置TriStar3000(商品名)を用いて窒素ガス吸着法により測定した。平均細孔径は、吸着側の等温線をBJH法により解析して求めた。担体の比表面積も前記の装置で測定して、BET法により算出した。
(Measurement of average pore diameter of support)
The average pore diameter of the carrier was measured by a nitrogen gas adsorption method using an automatic specific surface area / pore distribution measuring device TriStar 3000 (trade name) manufactured by Micromeritics. The average pore diameter was determined by analyzing the isotherm on the adsorption side by the BJH method. The specific surface area of the carrier was also measured with the above apparatus and calculated by the BET method.
(担体に対するパラジウムの担持率の測定)
乾燥した触媒1部、62質量%硝酸50部及び48質量%弗化水素酸50部をテフロン(登録商標)製分解管にとり、マイクロ波加熱分解装置(CEM社製、MARS5(商品名))で溶解処理を行った。得られた均一溶液に含まれるパラジウムを、ICP発光分析装置(サーモエレメンタル製、IRIS−Advantage(商品名))で定量した。
(Measurement of palladium loading on carrier)
Take 1 part of the dried catalyst, 50 parts of 62% by mass nitric acid and 50 parts of 48% by mass hydrofluoric acid in a Teflon (registered trademark) decomposition tube, and use a microwave thermal decomposition apparatus (CEM, MARS5 (trade name)). Dissolution treatment was performed. Palladium contained in the obtained homogeneous solution was quantified with an ICP emission spectrometer (manufactured by Thermo Elemental, IRIS-Advantage (trade name)).
別途、乾燥した触媒1部を白金るつぼに取り、炭酸ナトリウム5部を加えてアルカリ溶融を行った後、蒸留水を加えた。試料をろ過し、ろ液および洗浄水を合わせてメスフラスコにメスアップし、処理液に含まれるSi原子の質量をICP発光分光分析装置で定量し、シリカの質量に換算した。上記の方法により測定した担持触媒に含まれるシリカの質量とパラジウムの質量とから担体に対するパラジウムの担持率を算出した。 Separately, 1 part of the dried catalyst was placed in a platinum crucible, 5 parts of sodium carbonate was added and alkali fusion was performed, and then distilled water was added. The sample was filtered, and the filtrate and washing water were combined to make up a measuring flask. The mass of Si atoms contained in the treatment liquid was quantified with an ICP emission spectroscopic analyzer and converted to the mass of silica. From the mass of silica and the mass of palladium contained in the supported catalyst measured by the method described above, the palladium loading on the carrier was calculated.
(パラジウムの平均粒子径の測定)
事前にパラジウム含有量を測定した触媒を水素雰囲気下200℃で還元処理を行った後、一酸化炭素パルス法(熱伝導度検出器)により一酸化炭素吸着量を測定した。ここから表面パラジウム2原子に対して一酸化炭素1分子が吸着すると仮定して、パラジウム分散度、パラジウム金属表面積を求め、さらに球形を仮定した場合のパラジウム平均粒子径を算出した。
(Measurement of average particle diameter of palladium)
The catalyst whose palladium content was measured in advance was subjected to reduction treatment at 200 ° C. in a hydrogen atmosphere, and then the amount of carbon monoxide adsorbed was measured by a carbon monoxide pulse method (thermal conductivity detector). From this, assuming that one molecule of carbon monoxide is adsorbed to 2 atoms of surface palladium, the degree of palladium dispersion and the surface area of palladium metal were determined, and the average particle diameter of palladium when a spherical shape was assumed was calculated.
(α,β−不飽和カルボン酸の製造における原料、生成物および副生物の分析)
α,β−不飽和カルボン酸の製造における原料、生成物および副生物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンの反応率、生成するα,β−不飽和アルデヒド、α,β−不飽和カルボン酸の選択率は以下のように定義される。
(Analysis of raw materials, products and by-products in the production of α, β-unsaturated carboxylic acids)
Analysis of raw materials, products and by-products in the production of α, β-unsaturated carboxylic acid was performed using gas chromatography. The reaction rate of the olefin, the α, β-unsaturated aldehyde to be produced, and the selectivity of the α, β-unsaturated carboxylic acid are defined as follows.
オレフィンの反応率(%) =(B/A)×100
α,β−不飽和アルデヒドの選択率(%) =(C/B)×100
α,β−不飽和カルボン酸の選択率(%) =(D/B)×100
ここで、Aは供給したオレフィンのモル数、Bは反応したオレフィンのモル数、Cは生成したα,β−不飽和アルデヒドのモル数、Dは生成したα,β−不飽和カルボン酸のモル数である。
Olefin reaction rate (%) = (B / A) × 100
Selectivity of α, β-unsaturated aldehyde (%) = (C / B) × 100
Selectivity of α, β-unsaturated carboxylic acid (%) = (D / B) × 100
Here, A is the number of moles of olefin supplied, B is the number of moles of reacted olefin, C is the number of moles of α, β-unsaturated aldehyde produced, and D is the mole of α, β-unsaturated carboxylic acid produced. Is a number.
[実施例1]
(触媒調製)
硝酸パラジウム水溶液(N.E.ケムキャット製:24.4質量%硝酸パラジウム)1.025部(パラジウムとしては0.25部)に蒸留水1部を加えた。
[Example 1]
(Catalyst preparation)
1 part of distilled water was added to 1.025 part (0.25 parts as palladium) of an aqueous palladium nitrate solution (manufactured by NE Chemcat: 24.4% by mass palladium nitrate).
担体として使用するシリカ(平均細孔径:5.0nm、比表面積:528m2/g)1.25部を上記溶液に浸漬し、エバポレーションを行った。その後、空気中200℃で3時間焼成を行った。得られた触媒前駆体に37質量%ホルムアルデヒド水溶液5部を加えた。70℃に加熱し、2時間攪拌保持し、吸引ろ過後、蒸留水100部でろ過洗浄して、パラジウム含有触媒1.50部を得た。担体に対するパラジウムの担持率及びパラジウムの平均粒子径は表1に示した。 1.25 parts of silica (average pore diameter: 5.0 nm, specific surface area: 528 m 2 / g) used as a carrier was immersed in the above solution and evaporated. Then, it baked at 200 degreeC in the air for 3 hours. To the obtained catalyst precursor, 5 parts of a 37 mass% aqueous formaldehyde solution was added. The mixture was heated to 70 ° C., stirred and held for 2 hours, suction filtered, and then filtered and washed with 100 parts of distilled water to obtain 1.50 parts of a palladium-containing catalyst. Table 1 shows the loading ratio of palladium on the carrier and the average particle diameter of palladium.
(反応評価)
オートクレーブに上記の方法で得た触媒全量(パラジウムとしては0.25部)と反応溶媒として75質量%t−ブタノール水溶液75部を入れ、オートクレーブを密閉した。次いで、イソブチレンを1.96部導入し、攪拌(回転数1000rpm)を開始し、90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入した。反応中に内圧が0.1MPa低下した時点(内圧4.7MPa)で、酸素を0.1MPa導入する操作を繰り返した。反応時間30分で反応を終了した。
(Reaction evaluation)
Into the autoclave, the total amount of the catalyst obtained by the above method (0.25 parts as palladium) and 75 parts by weight of 75% by weight aqueous t-butanol solution as a reaction solvent were put, and the autoclave was sealed. Next, 1.96 parts of isobutylene was introduced, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 90 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa. When the internal pressure decreased by 0.1 MPa during the reaction (internal pressure 4.7 MPa), the operation of introducing 0.1 MPa of oxygen was repeated. The reaction was completed after a reaction time of 30 minutes.
反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、反応率及び選択率を算出した。また、担持触媒1質量部あたりのメタクリル酸生成量(質量部)も算出した。結果は表2に示した。 After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated with a membrane filter, and the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography, and the reaction rate and selectivity were calculated. Moreover, the amount of methacrylic acid produced per part by mass of the supported catalyst (parts by mass) was also calculated. The results are shown in Table 2.
[実施例2〜8]
(触媒調製)
表1に示した平均細孔径、比表面積及び質量のシリカを用いた以外は、実施例1と同様に触媒を調製した。担体に対するパラジウムの担持率及びパラジウムの平均粒子径は表1に示した。
[Examples 2 to 8]
(Catalyst preparation)
A catalyst was prepared in the same manner as in Example 1 except that silica having the average pore diameter, specific surface area, and mass shown in Table 1 was used. Table 1 shows the loading ratio of palladium on the carrier and the average particle diameter of palladium.
(反応評価)
実施例2〜6で調製した触媒について、実施例1と同様の方法で行った。結果は表2に示した。
(Reaction evaluation)
The catalysts prepared in Examples 2 to 6 were carried out in the same manner as in Example 1. The results are shown in Table 2.
[比較例1]
(触媒調製)
担体として実施例1と異なるシリカ(平均細孔径:19nm、比表面積:248m2/g)0.625部を用いた以外は、実施例1と同様の方法でパラジウム含有触媒を得た。担体に対するパラジウムの担持率及びパラジウムの平均粒子径は表1に示した。
[Comparative Example 1]
(Catalyst preparation)
A palladium-containing catalyst was obtained in the same manner as in Example 1 except that 0.625 parts of silica (average pore diameter: 19 nm, specific surface area: 248 m 2 / g) different from Example 1 was used as the carrier. Table 1 shows the loading ratio of palladium on the carrier and the average particle diameter of palladium.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表2に示した。
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 2.
以上のように、本発明の方法によれば、担持触媒の質量あたりのα,β−不飽和カルボン酸収量が高い状態でα,β−不飽和カルボン酸を製造できることが分かった。 As described above, it was found that according to the method of the present invention, α, β-unsaturated carboxylic acid can be produced in a state where the yield of α, β-unsaturated carboxylic acid per mass of the supported catalyst is high.
Claims (3)
該無機酸化物担体の平均細孔径が2〜8nm、該担持されたパラジウムの質量が無機酸化物担体1質量部に対して0.12〜1質量部、該担持されたパラジウムの平均粒子径が1〜8nmの範囲である触媒。 A palladium-containing supported catalyst for producing an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde in the liquid phase with molecular oxygen in a palladium supported on an inorganic oxide support Because
The average pore diameter of the inorganic oxide carrier is 2 to 8 nm, the mass of the supported palladium is 0.12 to 1 part by mass with respect to 1 part by mass of the inorganic oxide carrier, and the average particle size of the supported palladium is Catalyst in the range of 1-8 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351286A JP5084004B2 (en) | 2005-12-05 | 2005-12-05 | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351286A JP5084004B2 (en) | 2005-12-05 | 2005-12-05 | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007152234A JP2007152234A (en) | 2007-06-21 |
JP5084004B2 true JP5084004B2 (en) | 2012-11-28 |
Family
ID=38237256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005351286A Active JP5084004B2 (en) | 2005-12-05 | 2005-12-05 | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5084004B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4908332B2 (en) * | 2007-07-02 | 2012-04-04 | 三菱レイヨン株式会社 | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969274A (en) * | 1974-03-14 | 1976-07-13 | National Distillers And Chemical Corporation | Fixed bed catalyst |
JPS5340713A (en) * | 1976-09-21 | 1978-04-13 | Kao Corp | Oxidation of monosaccharides |
DE19637365A1 (en) * | 1996-09-13 | 1998-03-19 | Studiengesellschaft Kohle Mbh | Use of microporous inorganic membrane catalysts |
JP4204491B2 (en) * | 2004-02-10 | 2009-01-07 | 三菱レイヨン株式会社 | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
JP4699038B2 (en) * | 2004-02-10 | 2011-06-08 | 三菱レイヨン株式会社 | Catalyst for producing α, β-unsaturated carboxylic acid, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
JP2005324084A (en) * | 2004-05-12 | 2005-11-24 | Mitsubishi Rayon Co Ltd | METHOD FOR PRODUCING PALLADIUM-CONTAINING CATALYST, PALLADIUM-CONTAINING CATALYST, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID |
JP2007044607A (en) * | 2005-08-09 | 2007-02-22 | Mitsubishi Rayon Co Ltd | Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same |
-
2005
- 2005-12-05 JP JP2005351286A patent/JP5084004B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007152234A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846576B2 (en) | Palladium-containing catalyst and method for producing the same | |
JP2007203284A (en) | Palladium-supported catalyst and its manufacturing method | |
JP4728761B2 (en) | Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
JP5001543B2 (en) | Method for producing palladium-containing supported catalyst | |
JP4571872B2 (en) | Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP4951235B2 (en) | Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP5084004B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2007245068A (en) | NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT | |
JP2007044607A (en) | Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same | |
JP4676887B2 (en) | Method for producing α, β-unsaturated carboxylic acid, catalyst therefor and method for producing the same | |
JP4908332B2 (en) | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5340705B2 (en) | Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
JP5416886B2 (en) | Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP5247081B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP4522841B2 (en) | Noble metal-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP4908328B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5069412B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4911361B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2008068228A (en) | Method of manufacturing palladium-containing supported catalyst | |
JP5645050B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5609394B2 (en) | Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP2005218953A (en) | PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID | |
JP5280239B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5910873B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2013180242A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACIDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5084004 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |