JP2009006236A - PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID - Google Patents

PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID Download PDF

Info

Publication number
JP2009006236A
JP2009006236A JP2007168885A JP2007168885A JP2009006236A JP 2009006236 A JP2009006236 A JP 2009006236A JP 2007168885 A JP2007168885 A JP 2007168885A JP 2007168885 A JP2007168885 A JP 2007168885A JP 2009006236 A JP2009006236 A JP 2009006236A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
platinum
carboxylic acid
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168885A
Other languages
Japanese (ja)
Other versions
JP4908328B2 (en
Inventor
Yoshiyuki Himeno
嘉之 姫野
Toshiya Yasukawa
隼也 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007168885A priority Critical patent/JP4908328B2/en
Publication of JP2009006236A publication Critical patent/JP2009006236A/en
Application granted granted Critical
Publication of JP4908328B2 publication Critical patent/JP4908328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for manufacturing α,β-unsaturated carboxylic acid with high productivity from olefin or α,β-unsaturated aldehyde, to provide a manufacturing method of the catalyst and to provide a manufacturing method of α,β-unsaturated carboxylic acid using the same. <P>SOLUTION: The palladium-containing catalyst is manufactured so that the catalyst contains 0.001-0.15 mols of platinum element per 1.0 mol of palladium element. The catalyst is used for manufacturing α,β-unsaturated carboxylic acid. Further, it is preferable that the catalyst contains 0.001-0.40 mols of tellurium element per 1.0 mol of palladium element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒およびその製造方法に関する。また本発明は、α,β−不飽和カルボン酸の製造方法に関する。   The present invention relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde and a method for producing the same. The present invention also relates to a method for producing an α, β-unsaturated carboxylic acid.

α,β−不飽和カルボン酸は工業上有用な物質が多い。例えば、アクリル酸やメタクリル酸は合成樹脂原料などの用途に極めて大量に使用されている。   Many α, β-unsaturated carboxylic acids are industrially useful. For example, acrylic acid and methacrylic acid are used in extremely large quantities for applications such as synthetic resin raw materials.

α,β−不飽和カルボン酸を製造する方法として、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化して製造する方法について研究がされている。オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するための触媒として、例えば、特許文献1ではパラジウム、白金、ロジウムまたはルテニウムを触媒として用いたプロピレンの酸化によるアクリル酸製造が、特許文献2および3ではパラジウムを触媒として用いたオレフィンの酸化によるα,β−不飽和カルボン酸製造が提案されている。
米国特許3624147号明細書 特開昭56−115737号公報 国際公開第05/118134号パンフレット
As a method for producing an α, β-unsaturated carboxylic acid, research has been conducted on a method for producing an olefin or α, β-unsaturated aldehyde by liquid phase oxidation with molecular oxygen. As a catalyst for producing α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen, for example, in Patent Document 1, palladium, platinum, rhodium or ruthenium is used as a catalyst. Acrylic acid production by the oxidation of propylene used as a catalyst, and Patent Documents 2 and 3 propose the production of an α, β-unsaturated carboxylic acid by oxidation of an olefin using palladium as a catalyst.
US Pat. No. 3,624,147 JP-A-56-115737 International Publication No. 05/118134 Pamphlet

しかしながら、特許文献1〜3のパラジウム含有触媒を使用した液相酸化では、目的生成物であるα,β−不飽和カルボン酸の生産性が必ずしも十分ではなく、更なる生産性の向上が望まれていた。   However, in the liquid phase oxidation using the palladium-containing catalyst of Patent Documents 1 to 3, the productivity of the target product α, β-unsaturated carboxylic acid is not always sufficient, and further improvement in productivity is desired. It was.

本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造するための触媒、その触媒の製造方法、並びにその触媒を用いるα,β−不飽和カルボン酸の製造方法を提供することにある。   An object of the present invention is to provide a catalyst for producing an α, β-unsaturated carboxylic acid with high productivity from an olefin or an α, β-unsaturated aldehyde, a method for producing the catalyst, and α, β- using the catalyst. It is providing the manufacturing method of unsaturated carboxylic acid.

本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒であって、パラジウム元素1モルに対して白金元素0.001〜0.15モルを含有するパラジウム含有触媒である。   The present invention relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, and 0.001 to 0.15 platinum element per 1 mol of palladium element. Palladium-containing catalyst containing moles.

また、本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒であって、パラジウム元素1モルに対して白金元素0.001〜0.15モルおよびテルル元素0.001〜0.4モルを含有するパラジウム含有触媒である。   The present invention also relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, wherein the platinum element is 0.001 to 0 per 1 mol of palladium element. A palladium-containing catalyst containing .15 moles and 0.001-0.4 moles of tellurium element.

また、本発明は、触媒活性成分が担体に担持されているパラジウム含有触媒である。   The present invention also provides a palladium-containing catalyst in which a catalytically active component is supported on a carrier.

また、本発明は、パラジウム含有触媒を製造する方法であって、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程、酸化状態の白金元素を含む化合物を還元剤で還元する工程を含むパラジウム含有触媒の製造方法である。   The present invention is also a method for producing a palladium-containing catalyst, comprising a step of reducing a compound containing palladium element in an oxidized state with a reducing agent, and a step of reducing a compound containing platinum element in an oxidized state with a reducing agent. It is a manufacturing method of a palladium containing catalyst.

さらに、本発明は、前記パラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法である。   Furthermore, the present invention is a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is subjected to liquid phase oxidation with molecular oxygen using the palladium-containing catalyst.

本発明によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で得ることができるパラジウム含有触媒、その製造方法、並びにそれを用いたα,β−不飽和カルボン酸の製造方法を提供することができる。   According to the present invention, a palladium-containing catalyst capable of obtaining an α, β-unsaturated carboxylic acid with high productivity from an olefin or an α, β-unsaturated aldehyde, a method for producing the same, and an α, β- using the same. A method for producing an unsaturated carboxylic acid can be provided.

本発明のパラジウム含有触媒(以後、略して「触媒」ともいう。)は、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素で液相酸化してα,β−不飽和カルボン酸を製造する(以後、略して「液相酸化」ともいう。)ための触媒であって、パラジウム元素1モルに対して白金元素が0.001〜0.15モルを含有するものである。前記触媒はさらに、パラジウム元素1モルに対して0.001〜0.4モルのテルル元素を含有することが好ましい。   The palladium-containing catalyst of the present invention (hereinafter also referred to as “catalyst” for short) produces α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen. (Hereinafter, also referred to as “liquid phase oxidation” for short), a platinum element containing 0.001 to 0.15 mol per mol of palladium element. The catalyst preferably further contains 0.001 to 0.4 mol of tellurium element with respect to 1 mol of palladium element.

触媒中のパラジウム元素1モルに対する白金元素のモル数(すなわち白金元素とパラジウム元素とのモル比:Pt/Pd)をこのような所定範囲にすることで、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造することが可能な触媒が得られる。Pt/Pdは0.005〜0.10が好ましく、0.01〜0.07がより好ましい。また、触媒中のパラジウム元素1モルに対するテルル元素のモル数(すなわちテルル元素とパラジウム元素のモル比:Te/Pd)を所定範囲にすることで、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸をより高生産性で製造することが可能な触媒となる。Te/Pdは0.005〜0.35がより好ましく、0.01〜0.3がさらに好ましい。このPt/PdおよびTe/Pdは、パラジウム含有触媒の製造に使用するパラジウム化合物(以後、「Pd原料」ともいう。)、白金化合物(以後、「Pt原料」ともいう。)、およびテルル化合物(以後、「Te原料」ともいう。)の配合比等により調整可能である。   By setting the number of moles of platinum element relative to 1 mole of palladium element in the catalyst (that is, the molar ratio of platinum element to palladium element: Pt / Pd) within such a predetermined range, the olefin or α, β-unsaturated aldehyde can be used. A catalyst capable of producing an α, β-unsaturated carboxylic acid with high productivity is obtained. Pt / Pd is preferably 0.005 to 0.10, and more preferably 0.01 to 0.07. Further, by setting the number of moles of tellurium to 1 mole of palladium element in the catalyst (that is, the molar ratio of tellurium element to palladium element: Te / Pd), the olefin or α, β-unsaturated aldehyde can be changed to α, It becomes a catalyst capable of producing β-unsaturated carboxylic acid with higher productivity. Te / Pd is more preferably 0.005 to 0.35, and still more preferably 0.01 to 0.3. The Pt / Pd and Te / Pd are palladium compounds (hereinafter also referred to as “Pd raw materials”), platinum compounds (hereinafter also referred to as “Pt raw materials”), and tellurium compounds (which are used in the production of palladium-containing catalysts). Hereinafter, it can be adjusted by the blending ratio of “Te raw material”).

Pt/Pdは、触媒に含まれる白金元素とパラジウム元素の質量および原子量から算出できる。触媒に含まれる白金元素とパラジウム元素の質量は元素分析により定量できる。また、ポアフィリング法のようにPd原料とPt原料に含まれるパラジウム元素と白金元素の実質的に全量が触媒に含まれる方法で触媒を製造した場合には、使用するPd原料のパラジウム元素含有率と配合量、使用するPt原料の白金元素含有率と配合量から両元素の質量を算出してもよい。Te/Pdも同様の方法で定量できる。   Pt / Pd can be calculated from the mass and atomic weight of platinum element and palladium element contained in the catalyst. The masses of platinum and palladium contained in the catalyst can be quantified by elemental analysis. In addition, when the catalyst is manufactured by a method in which the catalyst contains substantially all of palladium element and platinum element contained in the Pd raw material and Pt raw material as in the pore filling method, the palladium element content of the Pd raw material used. The mass of both elements may be calculated from the blending amount, the platinum element content of the Pt raw material to be used, and the blending amount. Te / Pd can also be quantified by the same method.

元素分析法による触媒中のパラジウム元素と白金元素の質量の定量方法としては次のA処理液とB処理液を調製して分析する方法が例示できる。テルル元素も同様に測定できる。
A処理液の調製:触媒0.2g、および、所定量の濃硝酸、濃硫酸、過酸化水素水をテフロン(登録商標)製分解管にとり、マイクロ波加熱分解装置(CEM社製、MARS5(商品名))で溶解処理を行う。試料をろ過し、ろ液および洗浄水を合わせてメスフラスコにメスアップし、A処理液とする。
B処理液の調製:A処理での不溶解部を集めたろ紙を白金製ルツボに移し加熱・灰化した後、メタホウ酸リチウムを加えてガスバーナーで溶融する。冷却後に塩酸と少量の水をルツボに入れて溶解後、メスフラスコにメスアップし、B処理液とする。
As a method for determining the mass of palladium element and platinum element in the catalyst by elemental analysis, the following A treatment liquid and B treatment liquid are prepared and analyzed. The tellurium element can be measured similarly.
Preparation of treatment solution A: 0.2 g of catalyst and a predetermined amount of concentrated nitric acid, concentrated sulfuric acid, and hydrogen peroxide water were placed in a Teflon (registered trademark) decomposition tube, and a microwave thermal decomposition apparatus (CEM, MARS5 (product) Name)). The sample is filtered, and the filtrate and washing water are combined, and the volume is made up in a volumetric flask to obtain the treatment solution A.
Preparation of B treatment solution: The filter paper in which the insoluble parts in the A treatment are collected is transferred to a platinum crucible, heated and incinerated, and then added with lithium metaborate and melted with a gas burner. After cooling, add hydrochloric acid and a small amount of water in a crucible and dissolve, then add up to a volumetric flask to make the B treatment solution.

得られたA処理液およびB処理液に含まれる白金元素とパラジウム元素の質量を、ICP発光分析装置(サーモエレメンタル社製、IRIS−Advantage(商品名))で定量し、両処理液中の元素毎の質量の合計から触媒中の各元素の質量を求めることができる。   The mass of platinum element and palladium element contained in the obtained A treatment liquid and B treatment liquid was quantified with an ICP emission analyzer (manufactured by Thermo Elemental, IRIS-Advantage (trade name)), and the elements in both treatment liquids The mass of each element in the catalyst can be determined from the total mass of each.

また、上記のような本発明の触媒は、非担持型でもよいが、触媒活性成分(パラジウム元素、白金元素およびテルル元素の少なくとも1種)が担体に担持されている担持型が好ましい。担体としては、例えば、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができる。中でもシリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニアがより好ましく、シリカ、チタニア、ジルコニアが特に好ましい。担体は1種でもよいが、2種以上を用いることもできる。2種以上を用いる場合は、例えば、シリカとアルミナを混合して得られる混合酸化物等の混合物、複合酸化物であるシリカ−アルミナ等の複合物等が挙げられる。   The catalyst of the present invention as described above may be a non-supported type, but a supported type in which a catalytically active component (at least one of palladium element, platinum element and tellurium element) is supported on a support is preferable. Examples of the carrier include activated carbon, carbon black, silica, alumina, magnesia, calcia, titania and zirconia. Among these, silica, alumina, magnesia, calcia, titania and zirconia are more preferable, and silica, titania and zirconia are particularly preferable. One type of carrier may be used, but two or more types may be used. When using 2 or more types, for example, a mixture such as a mixed oxide obtained by mixing silica and alumina, a composite such as silica-alumina which is a composite oxide, and the like can be given.

担体の好ましい比表面積は担体の種類等により異なるので一概に言えないが、シリカの場合、50m2/g以上が好ましく、100m2/g以上がより好ましい。また1500m2/g以下が好ましく、1000m2/g以下がより好ましい。担体の比表面積は、小さいほど有用成分(パラジウム元素、白金元素)がより表面に担持された触媒の製造が可能となり、大きいほど有用成分が多く担持された触媒の製造が可能となる。 The preferred specific surface area of the support can not be said sweepingly because different by the kind of carrier, the case of silica, preferably at least 50m 2 / g, 100m 2 / g or more is more preferable. Moreover, 1500 m < 2 > / g or less is preferable and 1000 m < 2 > / g or less is more preferable. The smaller the specific surface area of the support is, the more the catalyst having a useful component (palladium element or platinum element) supported on the surface can be produced, and the larger the specific surface area, the more the useful component can be produced.

担体の細孔容積は特に限定されないが、0.1cc/g以上が好ましく、0.2cc/g以上がより好ましい。また2.0cc/g以下が好ましく、1.5cc/g以下がより好ましい。   The pore volume of the carrier is not particularly limited, but is preferably 0.1 cc / g or more, and more preferably 0.2 cc / g or more. Moreover, 2.0 cc / g or less is preferable and 1.5 cc / g or less is more preferable.

担体の形状やサイズは、反応装置の形状、サイズ等によって異なり、特に制限されないが、例えば、粉末状、粒状、球状、ペレット状など種々の形状が挙げられる。中でもろ別等の操作性が容易な粒状、球状が好ましい。担体が粉末状や粒状の場合の粒径(メディアン径)は、0.5μm以上が好ましく、1.0μm以上がより好ましい。また、200μm以下が好ましく、100μm以下がより好ましい。担体の粒径は大きいほど触媒と反応液の分離が容易になり、小さいほど反応液中における触媒の分散性がよくなる。   The shape and size of the carrier vary depending on the shape and size of the reaction apparatus and are not particularly limited, and examples thereof include various shapes such as powder, granules, spheres, and pellets. Among these, granular and spherical shapes are preferable because they are easy to operate such as filtration. When the carrier is powdery or granular, the particle size (median diameter) is preferably 0.5 μm or more, and more preferably 1.0 μm or more. Moreover, 200 micrometers or less are preferable and 100 micrometers or less are more preferable. The larger the particle size of the carrier, the easier the separation of the catalyst and the reaction solution, and the smaller the support, the better the dispersibility of the catalyst in the reaction solution.

担持型触媒の場合、担体に対するパラジウム元素および白金元素の合計担持率は、担持前の担体質量に対して0.1〜40質量%が好ましく、0.5〜30質量%がより好ましく、1.0〜20質量%がさらに好ましい。   In the case of a supported catalyst, the total supported rate of palladium element and platinum element with respect to the support is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass relative to the mass of the carrier before support. 0-20 mass% is further more preferable.

担持型触媒の場合の担持率は、前記の方法等で求められる各元素の質量と使用する担体の質量から算出できる。また、担体の質量は、次のような方法で定量することもできる。すなわち、触媒を白金るつぼに取り、炭酸ナトリウムを加えて融解する。その後、蒸留水を加えて均一溶液として、ICP発光分析で試料溶液中の特定元素の定量をする。例えばシリカ担体の場合、Si元素を定量する。   In the case of a supported catalyst, the loading rate can be calculated from the mass of each element determined by the above method and the mass of the carrier used. The mass of the carrier can also be quantified by the following method. That is, the catalyst is placed in a platinum crucible and melted by adding sodium carbonate. Thereafter, distilled water is added to obtain a uniform solution, and a specific element in the sample solution is quantified by ICP emission analysis. For example, in the case of a silica carrier, Si element is quantified.

本発明の触媒は、パラジウム元素、白金元素、およびテルル元素以外の、その他の金属元素を含んでいてもよい。その他の金属元素としては、例えば、ロジウム、ルテニウム、イリジウム、金、銀、オスミウム、銅、鉛、アンチモン、ビスマス、タリウム、水銀等が挙げられる。他の金属元素は1種または2種以上含有することができる。高い触媒活性を発現させる観点から、触媒に含まれる金属元素のうち、パラジウム元素、白金元素、およびテルル元素の合計が60質量%以上であることが好ましく、80質量%以上であることがより好ましい。   The catalyst of the present invention may contain other metal elements other than palladium element, platinum element and tellurium element. Examples of other metal elements include rhodium, ruthenium, iridium, gold, silver, osmium, copper, lead, antimony, bismuth, thallium, mercury, and the like. One or more other metal elements can be contained. From the viewpoint of expressing high catalytic activity, the total of palladium element, platinum element, and tellurium element is preferably 60% by mass or more, more preferably 80% by mass or more, among the metal elements contained in the catalyst. .

本発明の触媒の製造方法について説明する。   The manufacturing method of the catalyst of this invention is demonstrated.

本発明の触媒は、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程(以後、「Pd還元工程」ともいう。)、および酸化状態の白金元素を含む化合物を還元剤で還元する工程(以後、「Pt還元工程」ともいう。)を含む方法で好適に製造できる。さらにテルル元素を含む触媒を製造する場合は、Pd還元工程、Pt還元工程、およびテルル元素を含む化合物を添加する工程(以後、「Te添加工程」ともいう。)を含む方法で好適に製造できる。   The catalyst of the present invention includes a step of reducing a compound containing palladium element in an oxidized state with a reducing agent (hereinafter also referred to as “Pd reduction step”), and a step of reducing a compound containing platinum element in an oxidized state with a reducing agent. (Hereinafter, also referred to as “Pt reduction step”). Furthermore, when producing a catalyst containing tellurium element, it can be suitably produced by a method including a Pd reduction step, a Pt reduction step, and a step of adding a compound containing tellurium element (hereinafter also referred to as “Te addition step”). .

酸化状態のパラジウム元素を含むパラジウム化合物としては、例えば、パラジウム塩、酸化パラジウム、酸化パラジウム合金等を挙げることができるが、中でもパラジウム塩が好ましい。パラジウム塩としては、例えば、塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンパラジウム塩化物およびビス(アセチルアセトナト)パラジウム等を挙げることができるが、中でも塩化パラジウム、酢酸パラジウム、硝酸パラジウム、テトラアンミンパラジウム塩化物が好ましい。   Examples of the palladium compound containing palladium element in an oxidized state include palladium salts, palladium oxides, palladium oxide alloys, etc. Among them, palladium salts are preferable. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, tetraamminepalladium chloride and bis (acetylacetonato) palladium, among which palladium chloride, palladium acetate, palladium nitrate, tetraammine. Palladium chloride is preferred.

酸化状態の白金元素を含む白金化合物としては、例えば、白金塩、酸化白金等を挙げることができる。具体的には、塩化白金酸、ヨウ化白金酸、ジクロロジアンミン白金、ジニトロジアンミン白金、テトラアンミン白金塩化物、テトラアンミン白金硝酸塩、テトラアンミン白金酢酸塩、テトラアンミン白金硫酸塩、テトラクロロ白金酸カリウム、ヘキサクロロ白金酸カリウム、テトラニトロ白金酸カリウム、テトラブロモ白金酸カリウム、ヘキサヒドロキソ白金酸、ビス(アセチルアセトナト)白金、酸化白金等を挙げることができる。中でも塩化白金酸、ジクロロジアンミン白金、ジニトロジアンミン白金、テトラアンミン白金塩化物、テトラアンミン白金硝酸塩、テトラアンミン白金酢酸塩、ビス(アセチルアセトナト)白金等が好ましい。   Examples of the platinum compound containing platinum element in an oxidized state include platinum salts and platinum oxide. Specifically, chloroplatinic acid, iodinated platinic acid, dichlorodiammine platinum, dinitrodiammine platinum, tetraammine platinum chloride, tetraammine platinum nitrate, tetraammine platinum acetate, tetraammine platinum sulfate, potassium tetrachloroplatinate, hexachloroplatinic acid Examples include potassium, potassium tetranitroplatinate, potassium tetrabromoplatinate, hexahydroxoplatinic acid, bis (acetylacetonato) platinum, and platinum oxide. Of these, chloroplatinic acid, dichlorodiammine platinum, dinitrodiammine platinum, tetraammine platinum chloride, tetraammine platinum nitrate, tetraammine platinum acetate, bis (acetylacetonato) platinum and the like are preferable.

テルル元素を含むテルル化合物としては、テルル金属、テルル塩、テルル酸およびその塩、亜テルル酸およびその塩、酸化テルル等を挙げることができる。テルル塩としては、例えば、テルル化水素、四塩化テルル、二塩化テルル、六フッ化テルル、四ヨウ化テルル、四臭化テルル、二臭化テルル等を挙げることができる。テルル酸塩としては、例えば、テルル酸ナトリウム、テルル酸カリウム等を挙げることができる。亜テルル酸塩としては、例えば、亜テルル酸ナトリウム、亜テルル酸カリウム等を挙げることができる。中でもテルル酸およびその塩、亜テルル酸およびその塩、酸化テルルが好ましい。なお、Te原料の還元は必ずしも必須でないことから、Te原料に含まれるテルル元素は、酸化状態でも還元状態でも金属状態でもよい。   Examples of the tellurium compound containing the tellurium element include tellurium metal, tellurium salt, telluric acid and its salt, telluric acid and its salt, tellurium oxide and the like. Examples of tellurium salts include hydrogen telluride, tellurium tetrachloride, tellurium dichloride, tellurium hexafluoride, tellurium tetraiodide, tellurium tetrabromide, tellurium dibromide, and the like. Examples of tellurate include sodium tellurate and potassium tellurate. Examples of tellurite include sodium tellurite and potassium tellurite. Of these, telluric acid and its salt, telluric acid and its salt, and tellurium oxide are preferred. Since reduction of the Te raw material is not necessarily essential, the tellurium element contained in the Te raw material may be in an oxidized state, a reduced state, or a metal state.

また、触媒の原料として上記の化合物を用いる方法の他に、パラジウム元素、白金元素およびテルル元素のうち2種以上を含有する化合物等を用いることも可能である。具体的には、例えばパラジウム−テルル錯体PdXn(TeRR’)4-n(式中、Pdはパラジウムを表し、Xはフッ素、塩素、臭素またはヨウ素を表し、Teはテルルを表し、R、R’はそれぞれ独立して炭素数1〜8の直鎖状又は分岐状のアルキル基を表し、nは0〜3の整数を表す。)等が挙げられる。また、酸化状態のパラジウム元素と酸化状態の白金元素の両方を含有する化合物等を用いることも可能である。 In addition to the method using the above compound as a catalyst raw material, it is also possible to use a compound containing two or more of palladium element, platinum element and tellurium element. Specifically, for example, palladium-tellurium complex PdX n (TeRR ′) 4-n (wherein Pd represents palladium, X represents fluorine, chlorine, bromine or iodine, Te represents tellurium, R, R 'Each independently represents a linear or branched alkyl group having 1 to 8 carbon atoms, and n represents an integer of 0 to 3). It is also possible to use a compound containing both an oxidized palladium element and an oxidized platinum element.

上記のようなPd原料、Pt原料を適宜選択して、触媒を製造するための原料として用いる。これらの化合物の配合量は、Pt/Pdや担持率が目的とする値となるように適宜選択する。テルル元素を含む触媒を製造する場合は、上記のようなTe原料を適宜選択して、触媒を製造するための原料として用いる。Te原料の配合量は、Te/Pdや担持率が目的とする値となるように適宜選択する。   The above Pd raw material and Pt raw material are appropriately selected and used as a raw material for producing a catalyst. The compounding amount of these compounds is appropriately selected so that Pt / Pd and the loading ratio are the target values. When producing a catalyst containing tellurium element, the above Te raw material is appropriately selected and used as a raw material for producing the catalyst. The blending amount of the Te raw material is appropriately selected so that Te / Pd and the loading rate become the target values.

また、パラジウム元素、白金元素、テルル元素以外に、その他の金属元素を含む触媒を製造する場合は、原料として、その他の金属元素を含む化合物(以後、「その他原料」ともいう。)を併用すればよい。その他原料としては、例えば、その他の金属元素を含む、金属、金属酸化物、金属塩、金属酸素酸、金属酸素酸塩等が挙げられる。なお、その他原料の還元は必ずしも必須でないことから、その他原料に含まれる金属元素は、酸化状態でも還元状態でも金属状態でもよい。   Further, in the case of producing a catalyst containing other metal elements in addition to palladium element, platinum element and tellurium element, a compound containing other metal elements (hereinafter also referred to as “other raw materials”) is used in combination as a raw material. That's fine. Examples of the other raw materials include metals, metal oxides, metal salts, metal oxyacids, and metal oxyacid salts containing other metal elements. Since reduction of other raw materials is not always essential, the metal element contained in the other raw materials may be in an oxidized state, a reduced state, or a metal state.

Pd還元工程、Pt還元工程は同時に行ってもよいし、別々に行ってもよい。別々に行う場合のPd還元工程、Pt還元工程の順序は任意である。Te添加工程を行う場合のTe添加工程は、Pd還元工程および/またはPt還元工程と同時に、又は任意の順序で行うことができる。また、パラジウム元素、白金元素、テルル元素以外の金属元素を含む触媒を製造する場合、その他原料を添加する工程や酸化状態のその他原料を還元剤で還元する工程はPd還元工程および/またはPt還元工程および/またはTe添加工程と同時に、又は任意の順序で行うことができる。   The Pd reduction process and the Pt reduction process may be performed simultaneously or separately. The order of the Pd reduction process and the Pt reduction process in the case of performing separately is arbitrary. When performing the Te addition step, the Te addition step can be performed simultaneously with the Pd reduction step and / or the Pt reduction step, or in any order. In the case of producing a catalyst containing a metal element other than palladium element, platinum element and tellurium element, the process of adding other raw materials and the process of reducing other raw materials in an oxidized state with a reducing agent are the Pd reduction process and / or the Pt reduction process. It can be performed simultaneously with the step and / or the Te addition step or in any order.

担持型の触媒を製造する場合、担体の存在下で前記の還元工程を行うことが好ましい。担持型の触媒を製造する際の還元方法としては、例えば、
(1)塩や酸化物等の酸化状態の金属元素を担体上に担持してから還元剤を接触させて金属を還元する方法、
(2)塩や酸化物等の酸化状態の金属元素の溶液またはスラリーと担体が接触している状態で還元剤を接触させて溶液またはスラリー中の金属を還元すると同時に担持する方法、
(3)(2)の方法を実施した後、さらに金属原料を添加する方法等が挙げられる。中でも金属の分散度が高い触媒が得られ易い(1)の還元方法が好ましい。
In the case of producing a supported catalyst, it is preferable to perform the reduction step in the presence of a carrier. As a reduction method when producing a supported catalyst, for example,
(1) A method in which a metal element in an oxidized state such as a salt or an oxide is supported on a support and then brought into contact with a reducing agent to reduce the metal,
(2) A method in which a reducing agent is brought into contact with a carrier in contact with a solution or slurry of an oxidized metal element such as a salt or an oxide to reduce the metal in the solution or slurry and simultaneously carry it,
(3) After carrying out the method of (2), there may be mentioned a method of further adding a metal raw material. Of these, the reduction method (1) is preferred because a catalyst having a high degree of metal dispersion is easily obtained.

(1)の還元方法としては、Pd原料、Pt原料、Te原料およびその他原料(以後、まとめて「金属原料」ともいう。)の1種または2種以上を溶媒に溶解した溶解液を担体に含浸した後、加熱処理して金属原料の一部又は全部を金属酸化物に変化させ、次いで担体に担持された金属酸化物に還元剤を接触させて金属酸化物を還元する方法が好ましい。また、この方法では、加熱処理の前に溶媒を蒸発させて金属原料を担体に担持することが好ましい。   As the reduction method of (1), a Pd raw material, Pt raw material, Te raw material, and other raw materials (hereinafter collectively referred to as “metal raw materials”) in a solvent are used as a carrier. After impregnation, a method is preferred in which part or all of the metal raw material is converted into a metal oxide by heat treatment, and then the metal oxide is reduced by contacting the metal oxide supported on the carrier with a reducing agent. In this method, it is preferable to evaporate the solvent before the heat treatment to carry the metal raw material on the carrier.

溶解液を担体に含浸して触媒を製造する方法では、金属原料の溶解液に担体を浸漬した後に溶媒を蒸発させる方法、または担体の細孔容積分の金属原料の溶解液を担体に吸収させた後に溶媒を蒸発させる、いわゆるポアフィリング法が好ましい。溶解液の溶媒は金属原料を溶解するものであれば特に限定されない。金属原料の溶媒としては、例えば、水;酢酸、吉草酸等の有機カルボン酸類;硝酸、塩酸等の無機酸類;エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の溶媒を単独または複数組み合わせて用いることができる。金属原料並びに還元剤の溶解性または担体の分散性の観点から、水、有機カルボン酸類が好ましい。   In the method of producing a catalyst by impregnating a carrier with a solution, the solvent is evaporated after the carrier is immersed in the metal raw material solution, or the metal raw material solution corresponding to the pore volume of the carrier is absorbed by the carrier. A so-called pore filling method in which the solvent is evaporated thereafter is preferable. The solvent of the solution is not particularly limited as long as it dissolves the metal raw material. Examples of the metal raw material solvent include water; organic carboxylic acids such as acetic acid and valeric acid; inorganic acids such as nitric acid and hydrochloric acid; and alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, and t-butanol. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; solvents such as hydrocarbons such as heptane, hexane, and cyclohexane can be used singly or in combination. From the viewpoint of the solubility of the metal raw material and the reducing agent or the dispersibility of the carrier, water and organic carboxylic acids are preferred.

溶解液を含浸する操作は、全ての金属原料を含む溶解液を用いて1度だけ行うこともできるが、複数の溶解液を用いて複数回行うこともできる。複数回行う場合は、2回目以降の含浸操作は前回の加熱処理後または還元処理後のいずれに行ってもよい。金属元素を担持する順序は特に限定されない。   The operation of impregnating the solution can be performed only once using a solution containing all the metal raw materials, but can also be performed a plurality of times using a plurality of solutions. When performing several times, you may perform impregnation operation after the 2nd time after either the last heat processing or a reduction process. The order in which the metal elements are supported is not particularly limited.

加熱処理の温度は金属原料が酸化物に変化する分解温度以上とすることが好ましい。加熱処理の温度は金属原料の少なくとも一部が金属酸化物に変化する時間であればよく、1〜12時間が好ましい。   It is preferable that the temperature of the heat treatment be equal to or higher than a decomposition temperature at which the metal raw material is changed to an oxide. The temperature of the heat treatment may be a time during which at least a part of the metal raw material changes to a metal oxide, and is preferably 1 to 12 hours.

(2)の還元方法としては、例えば、金属原料の1種または2種以上を溶媒に溶解または分散させた溶液またはスラリーを担体に含浸させた状態で還元剤を接触させて金属原料を還元する方法、上記の溶解またはスラリー中に担体を分散させた状態で還元剤を接触させて金属原料を還元する方法等が挙げられる。   As the reduction method of (2), for example, the metal raw material is reduced by contacting a reducing agent in a state where the support is impregnated with a solution or slurry in which one or more metal raw materials are dissolved or dispersed in a solvent. And a method of reducing a metal raw material by bringing a reducing agent into contact with the carrier in a state of dissolution or slurry as described above.

還元剤を接触させる操作は、全ての金属原料を含む溶解液を用いて1度だけ行うこともできるが、複数の溶解液を用いて複数回行うこともできる。複数回行う場合は、2回目以降の還元処理では前回の還元処理した担体を使用する。金属元素を担持する順序は特に限定されない。   The operation of bringing the reducing agent into contact can be performed only once using a solution containing all metal raw materials, but can also be performed a plurality of times using a plurality of solutions. In the case of performing a plurality of times, the carrier subjected to the previous reduction treatment is used in the second and subsequent reduction treatments. The order in which the metal elements are supported is not particularly limited.

(3)の還元方法としては、例えば、担体の存在下で金属原料を還元剤で還元した後の溶液またはスラリーに、別途、他の金属原料を水などの溶媒に溶解または分散させた溶液またはスラリーを添加する手法が好ましい。添加する溶液またはスラリーの溶媒としては、水が好ましいが、前述したような種々の有機溶媒等を用いてもよい。他の金属原料を添加した後に、再度還元剤を添加して還元してもよい。   As the reduction method of (3), for example, a solution or slurry obtained by reducing a metal raw material with a reducing agent in the presence of a carrier, or a solution obtained by dissolving or dispersing another metal raw material in a solvent such as water, or A method of adding a slurry is preferred. The solvent of the solution or slurry to be added is preferably water, but various organic solvents as described above may be used. After adding another metal raw material, you may reduce by adding a reducing agent again.

還元処理を複数回行う場合、還元剤の種類、還元温度および時間、液相で行う際の溶媒の種類等は、各回毎に独立して適宜設定できる。   When the reduction treatment is performed a plurality of times, the type of the reducing agent, the reduction temperature and time, the type of the solvent used in the liquid phase, and the like can be appropriately set independently for each time.

還元の際に用いる還元剤は特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、アリルアルコール、メタクリルアルコール、アクロレインおよびメタクロレイン等が挙げられる。中でもエチレングリコール、プロピレングリコール、ヒドラジン、ホルムアルデヒド、水素、蟻酸、蟻酸の塩が好ましい。また、これらを2種以上併用することもできる。   The reducing agent used for the reduction is not particularly limited. For example, ethylene glycol, propylene glycol, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, Examples include isobutylene, 1,3-butadiene, 1-heptene, 1-hexene, 2-hexene, cyclohexene, allyl alcohol, methacryl alcohol, acrolein, and methacrolein. Of these, ethylene glycol, propylene glycol, hydrazine, formaldehyde, hydrogen, formic acid, and formic acid salts are preferred. Two or more of these may be used in combination.

液相中で還元する際に使用する溶媒としては、水が好ましいが、担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、イソ吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の有機溶媒を単独または複数組み合わせて用いることができる。これらと水の混合溶媒を用いることもできる。   The solvent used for reduction in the liquid phase is preferably water, but depending on the dispersibility of the carrier, alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, and t-butanol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and isovaleric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane may be used alone or in combination. it can. A mixed solvent of these and water can also be used.

還元剤が気体の場合、溶液中への溶解度を上げるためにオートクレーブ等の加圧装置中で行うことが望ましい。その際、加圧装置の内部は還元剤で加圧することが好ましい。その圧力は0.1〜1MPa(ゲージ圧;以下圧力はゲージ圧表記とする)が好ましい。   When the reducing agent is a gas, it is desirable to carry out in a pressure device such as an autoclave in order to increase the solubility in the solution. In that case, it is preferable to pressurize the inside of a pressurization apparatus with a reducing agent. The pressure is preferably 0.1 to 1 MPa (gauge pressure; hereinafter, pressure is expressed as gauge pressure).

また、還元剤が液体の場合、還元を行う装置に制限は無く溶液中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、パラジウム元素1モルに対して1モル〜100モルとすることが好ましい。   In addition, when the reducing agent is a liquid, there is no limitation on the apparatus for performing the reduction, and the reduction can be performed by adding the reducing agent to the solution. Although the usage-amount of a reducing agent at this time is not specifically limited, It is preferable to set it as 1 mol-100 mol with respect to 1 mol of palladium elements.

還元温度および還元時間は、還元対象の金属原料または金属酸化物や還元剤等により異なるが、還元温度は−5〜150℃が好ましく、15〜80℃がより好ましい。還元時間は0.1〜4時間が好ましく、0.25〜3時間がより好ましく、0.5〜2時間がさらに好ましい。   Although the reduction temperature and the reduction time vary depending on the metal raw material to be reduced, the metal oxide, the reducing agent, or the like, the reduction temperature is preferably −5 to 150 ° C., more preferably 15 to 80 ° C. The reduction time is preferably 0.1 to 4 hours, more preferably 0.25 to 3 hours, and further preferably 0.5 to 2 hours.

還元を必要としない金属原料を用いて担持型触媒を製造する場合は、上記の還元を終えた担体に、その金属原料を担持させればよい。   When producing a supported catalyst using a metal raw material that does not require reduction, the metal raw material may be supported on the carrier after the reduction.

得られた触媒は、水、有機溶媒等で洗浄することが好ましい。水、有機溶媒等での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等の金属原料等に由来する不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によっては液相酸化反応を阻害する恐れがあるため不純物を十分除去できる程度に洗浄することが好ましい。洗浄された触媒は、ろ別または遠心分離などにより回収した後、そのまま反応に用いてもよい。また、パラジウム化合物の還元および白金化合物の還元を別工程で行う場合、その工程間で洗浄を行うことも好ましい。   The obtained catalyst is preferably washed with water, an organic solvent or the like. By washing with water, an organic solvent or the like, impurities derived from metal raw materials such as chloride, acetate radical, nitrate radical, and sulfate radical are removed. The cleaning method and the number of times are not particularly limited. However, depending on the impurities, there is a possibility that the liquid phase oxidation reaction may be inhibited. The washed catalyst may be recovered by filtration or centrifugation and used for the reaction as it is. Further, when the reduction of the palladium compound and the reduction of the platinum compound are performed in separate steps, it is also preferable to perform washing between the steps.

また、回収された触媒を乾燥してもよい。乾燥方法は特に限定されないが、乾燥機を用いて空気中または不活性ガス中で乾燥することが好ましい。乾燥された触媒は、必要に応じて反応に使用する前に活性化することもできる。活性化の方法は特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によればパラジウム元素や白金元素の表面の酸化被膜および洗浄で取り除けなかった不純物を除去することができる。   Further, the recovered catalyst may be dried. Although a drying method is not specifically limited, It is preferable to dry in air or an inert gas using a dryer. The dried catalyst can also be activated before use in the reaction if desired. The activation method is not particularly limited, and examples thereof include a heat treatment method in a reducing atmosphere in a hydrogen stream. According to this method, an oxide film on the surface of palladium element or platinum element and impurities that could not be removed by washing can be removed.

次に、本発明のパラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化して、α,β−不飽和カルボン酸を製造する方法について説明する。   Next, a method for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen using the palladium-containing catalyst of the present invention will be described.

液相酸化の原料のオレフィンとα,β−不飽和アルデヒドはどちらか一方だけ使用してもよいし、両者の混合物を使用することもできる。   Only one of the raw material olefin and α, β-unsaturated aldehyde for liquid phase oxidation may be used, or a mixture of both may be used.

原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。オレフィンは2種以上併用することもできる。原料のオレフィンは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。   Examples of the raw material olefin include propylene, isobutylene, and 2-butene. Among these, propylene and isobutylene are preferable. Two or more olefins can be used in combination. The raw material olefin may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.

オレフィンから製造されるα,β−不飽和カルボン酸は、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。例えば、原料がプロピレンの場合アクリル酸が得られ、原料がイソブチレンの場合メタクリル酸が得られる。また、通常はオレフィンからはα,β−不飽和アルデヒドが同時に得られる。このα,β−不飽和アルデヒドは、オレフィンと同一炭素骨格を有するα,β−不飽和アルデヒドである。例えば、原料がプロピレンの場合アクロレインが得られ、原料がイソブチレンの場合メタクロレインが得られる。   An α, β-unsaturated carboxylic acid produced from an olefin is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin. For example, acrylic acid is obtained when the raw material is propylene, and methacrylic acid is obtained when the raw material is isobutylene. Usually, α, β-unsaturated aldehyde is simultaneously obtained from olefin. This α, β-unsaturated aldehyde is an α, β-unsaturated aldehyde having the same carbon skeleton as the olefin. For example, acrolein is obtained when the raw material is propylene, and methacrolein is obtained when the raw material is isobutylene.

原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。中でもアクロレインおよびメタクロレインが好適である。α,β−不飽和アルデヒドは2種以上併用することもできる。原料のα,β−不飽和アルデヒドは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。   Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Of these, acrolein and methacrolein are preferable. Two or more α, β-unsaturated aldehydes can be used in combination. The raw α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.

α,β−不飽和アルデヒドから製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。具体的には、原料がアクロレインの場合にはアクリル酸が得られ、原料がメタクロレインの場合にはメタクリル酸が得られる。   The α, β-unsaturated carboxylic acid produced from the α, β-unsaturated aldehyde is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. Specifically, acrylic acid is obtained when the raw material is acrolein, and methacrylic acid is obtained when the raw material is methacrolein.

液相酸化は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。   The liquid phase oxidation may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.

液相酸化に用いる分子状酸素の原料は、空気が経済的であり好ましいが、純酸素または純酸素と空気の混合ガス等を用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。分子状酸素は、オートクレーブ等の反応容器内に加圧状態で供給することが好ましい。   The raw material of molecular oxygen used for liquid phase oxidation is preferably air because it is economical, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen can be converted to nitrogen, A mixed gas diluted with carbon dioxide, water vapor or the like can also be used. It is preferable to supply molecular oxygen in a pressurized state in a reaction vessel such as an autoclave.

液相酸化反応に用いる溶媒としては、例えば、t−ブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの有機溶媒を用いることが好ましい。中でも、t−ブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つの有機溶媒がより好ましい。また、α,β−不飽和カルボン酸をより選択率よく製造するために、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して好ましくは2質量%以上、より好ましくは5質量%以上であり、好ましくは70質量%以下、より好ましくは50質量%以下である。有機溶媒と水の混合物は均一な状態であることが望ましいが、不均一な状態であっても差し支えない。   Examples of the solvent used in the liquid phase oxidation reaction include t-butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, It is preferable to use at least one organic solvent selected from the group consisting of ethyl acetate and methyl propionate. Among these, at least one organic solvent selected from the group consisting of t-butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid is more preferable. Further, in order to produce an α, β-unsaturated carboxylic acid with higher selectivity, it is preferable to coexist water in these organic solvents. The amount of water to coexist is not particularly limited, but is preferably 2% by mass or more, more preferably 5% by mass or more, preferably 70% by mass or less, more preferably 50% by mass with respect to the total mass of the organic solvent and water. % Or less. The mixture of the organic solvent and water is desirably in a uniform state, but may be in a non-uniform state.

液相酸化の原料であるオレフィンおよびα,β−不飽和アルデヒドの合計濃度は、反応器内に存在する溶媒に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また30質量%以下が好ましく、20質量%以下がより好ましい。   The total concentration of the olefin and α, β-unsaturated aldehyde which are the raw materials for liquid phase oxidation is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the solvent present in the reactor. Moreover, 30 mass% or less is preferable, and 20 mass% or less is more preferable.

分子状酸素の使用量は、原料であるオレフィンおよびα,β−不飽和アルデヒド1モルに対して0.1モル以上が好ましく、0.2モル以上がより好ましく、0.3モル以上が特に好ましい。また、20モル以下が好ましく、15モル以下がより好ましく、10モル以下が特に好ましい。   The amount of molecular oxygen used is preferably 0.1 mol or more, more preferably 0.2 mol or more, and particularly preferably 0.3 mol or more with respect to 1 mol of the raw material olefin and α, β-unsaturated aldehyde. . Moreover, 20 mol or less is preferable, 15 mol or less is more preferable, and 10 mol or less is especially preferable.

触媒は液相酸化を行う反応液に懸濁させた状態で使用することが好ましいが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が特に好ましい。また、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下が特に好ましい。   The catalyst is preferably used in a state suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more with respect to the solution present in the reactor. Moreover, 40 mass% or less is preferable, 35 mass% or less is more preferable, and 30 mass% or less is especially preferable.

反応温度および反応圧力は、用いる溶媒および原料によって適宜選択される。反応温度は30℃以上が好ましく、50℃以上がより好ましい。また、200℃以下が好ましく、150℃以下がより好ましい。反応圧力は大気圧(0MPa)以上が好ましく、2MPa以上がより好ましい。また、10MPa以下が好ましく、7MPa以下がより好ましい。   The reaction temperature and reaction pressure are appropriately selected depending on the solvent and raw materials used. The reaction temperature is preferably 30 ° C or higher, more preferably 50 ° C or higher. Moreover, 200 degrees C or less is preferable and 150 degrees C or less is more preferable. The reaction pressure is preferably atmospheric pressure (0 MPa) or more, more preferably 2 MPa or more. Moreover, 10 MPa or less is preferable and 7 MPa or less is more preferable.

以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.

(α,β−不飽和カルボン酸の製造における原料および生成物の分析)
α,β−不飽和カルボン酸の製造における原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンまたはα,β−不飽和アルデヒドの反応率、生成するα,β−不飽和カルボン酸の生産性は以下のように定義される。
オレフィンまたはα,β−不飽和アルデヒドの反応率(%)=(B/A)×100
α,β−不飽和カルボン酸の生産性(g/gPd/h) =(C/D/E)
ここで、Aは供給したオレフィンまたはα,β−不飽和アルデヒドのモル数、Bは反応したオレフィンまたはα,β−不飽和アルデヒドのモル数、Cは生成したα,β−不飽和カルボン酸の質量(g)、Dは触媒中のパラジウム元素の質量(g)、Eは反応時間(h)である。
(Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid)
Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid was performed using gas chromatography. The reaction rate of olefin or α, β-unsaturated aldehyde and the productivity of the α, β-unsaturated carboxylic acid produced are defined as follows.
Reaction rate of olefin or α, β-unsaturated aldehyde (%) = (B / A) × 100
Productivity of α, β-unsaturated carboxylic acid (g / gPd / h) = (C / D / E)
Here, A is the number of moles of olefin or α, β-unsaturated aldehyde supplied, B is the number of moles of reacted olefin or α, β-unsaturated aldehyde, and C is the amount of α, β-unsaturated carboxylic acid produced. Mass (g), D is the mass of palladium element in the catalyst (g), and E is the reaction time (h).

なお、以下の実施例及び比較例では、イソブチレンからメタクリル酸を製造する反応を行っており、この場合、Aは供給したイソブチレンのモル数、Bは反応したイソブチレンのモル数、Cは生成したメタクリル酸の質量(g)である。   In the following examples and comparative examples, a reaction for producing methacrylic acid from isobutylene is carried out. In this case, A is the number of moles of isobutylene supplied, B is the number of moles of reacted isobutylene, and C is the amount of methacrylic acid produced. It is the mass (g) of the acid.

[実施例1]
(触媒調製)
硝酸パラジウム硝酸溶液(N.E.ケムキャット製、パラジウム元素含有率:25.0質量%)4.0部に、テトラアンミン白金硝酸塩溶液(N.E.ケムキャット製、白金元素含有率:5.0質量%)0.37部、およびテルル酸0.11部を純水30部に溶解した水溶液を加えた。次いで、シリカ担体(比表面積:750m2/g、細孔容積:1.05cc/g)10.0部を上記溶液に浸漬し、エバポレーションを行った。その後、熱処理として、空気中で室温から200℃まで1.0℃/分で昇温し、200℃で3時間保持した後、室温まで降温した。
[Example 1]
(Catalyst preparation)
To 4.0 parts of palladium nitrate nitric acid solution (manufactured by NE Chemcat, palladium element content: 25.0 mass%), tetraammine platinum nitrate solution (manufactured by NE Chemcat, platinum element content: 5.0 mass) %) 0.37 part and an aqueous solution in which 0.11 part of telluric acid was dissolved in 30 parts of pure water were added. Next, 10.0 parts of a silica carrier (specific surface area: 750 m 2 / g, pore volume: 1.05 cc / g) was immersed in the above solution and evaporated. Thereafter, as a heat treatment, the temperature was raised from room temperature to 200 ° C. at a rate of 1.0 ° C./min, held at 200 ° C. for 3 hours, and then lowered to room temperature.

こうして得られた触媒前駆体を、還元剤であるエチレングリコール50.0部に加えた。70℃に加熱し、2時間攪拌保持し、吸引ろ過後純水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、シリカ担持型パラジウム含有触媒を得た。得られた触媒のXRD測定を行ったところ、金属パラジウムが生成していることが確認された。この触媒のPt/Pdは0.01、Te/Pdは0.05、パラジウム元素の担持率は10.0質量%、白金元素の担持率は0.19質量%、テルル元素の担持率は0.60質量%であった。   The catalyst precursor thus obtained was added to 50.0 parts of ethylene glycol as a reducing agent. The mixture was heated to 70 ° C., stirred and held for 2 hours, filtered and washed with 1000 parts of pure water after suction filtration. Further, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a silica-supported palladium-containing catalyst. When the XRD measurement of the obtained catalyst was performed, it was confirmed that the metal palladium was producing | generating. The catalyst has a Pt / Pd of 0.01, a Te / Pd of 0.05, a palladium element loading of 10.0% by mass, a platinum element loading of 0.19% by mass, and a tellurium element loading of 0%. It was 60 mass%.

なお、Pt/Pd、Te/Pd及び各元素の担持率の算出に用いる、パラジウム元素、白金元素およびテルル元素の質量は、使用するPd原料のパラジウム元素含有率と配合量、使用するPt原料の白金元素含有率と配合量、使用するTe原料のテルル元素含有率と配合量から算出した。触媒中の担体質量は次のように定量した。まず、触媒を白金るつぼに取り、炭酸ナトリウムを加えて融解した。蒸留水を加えて均一溶液として、ICPで試料溶液中のSi原子を定量した。   The masses of palladium element, platinum element and tellurium element used for calculation of Pt / Pd, Te / Pd and the loading ratio of each element are the palladium element content and blending amount of the Pd raw material used, and the Pt raw material used. The platinum element content and blending amount were calculated from the tellurium element content and blending amount of the Te raw material used. The support mass in the catalyst was quantified as follows. First, the catalyst was placed in a platinum crucible and melted by adding sodium carbonate. Distilled water was added to obtain a homogeneous solution, and the Si atoms in the sample solution were quantified by ICP.

(反応評価)
上記の方法で得た触媒の1/10(パラジウム元素0.1部に相当)を75質量%t−ブタノール水溶液でろ過洗浄した。得られた触媒と反応溶媒として75質量%t−ブタノール水溶液75部をオートクレーブに入れ、オートクレーブを密閉した。次いで、イソブチレンを2.0部導入し、攪拌(回転数1000rpm)を開始し、110℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入して反応を開始させた。反応中に内圧が0.1MPa低下した時点(内圧4.7MPa)で、酸素を0.1MPa導入する操作を繰り返した。導入直後の圧力は4.8MPaである。反応開始後30分で反応を終了した。
(Reaction evaluation)
1/10 (corresponding to 0.1 part of palladium element) of the catalyst obtained by the above method was filtered and washed with a 75 mass% t-butanol aqueous solution. As a catalyst and a reaction solvent, 75 parts by mass of 75% by mass t-butanol aqueous solution was put in an autoclave, and the autoclave was sealed. Next, 2.0 parts of isobutylene was introduced, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 110 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa to initiate the reaction. When the internal pressure decreased by 0.1 MPa during the reaction (internal pressure 4.7 MPa), the operation of introducing 0.1 MPa of oxygen was repeated. The pressure immediately after introduction is 4.8 MPa. The reaction was completed 30 minutes after the start of the reaction.

反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、イソブチレンの反応率及びメタクリル酸の生産性を算出した。   After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated with a membrane filter, and the reaction solution was recovered. The collected reaction liquid and the collected gas were analyzed by gas chromatography, and the reaction rate of isobutylene and the productivity of methacrylic acid were calculated.

[実施例2]
テトラアンミン白金硝酸塩溶液の使用量を1.8部に変更した以外は実施例1と同様の方法で行った。
[Example 2]
The same procedure as in Example 1 was performed except that the amount of tetraammineplatinum nitrate solution was changed to 1.8 parts.

[実施例3]
テトラアンミン白金硝酸塩溶液の使用量を3.7部に変更した以外は実施例1と同様の方法で行った。
[Example 3]
The same procedure as in Example 1 was performed except that the amount of the tetraammineplatinum nitrate solution was changed to 3.7 parts.

[実施例4]
テトラアンミン白金硝酸塩溶液の使用量を1.8部に変更し、テルル酸を使用しなかった以外は実施例1と同様の方法で行った。
[Example 4]
The same procedure as in Example 1 was performed, except that the amount of tetraammineplatinum nitrate solution was changed to 1.8 parts and no telluric acid was used.

[実施例5]
テトラアンミン白金硝酸塩溶液の使用量を3.7部に変更し、テルル酸を使用しなかった以外は実施例1と同様の方法で行った。
[Example 5]
The amount of the tetraammineplatinum nitrate solution was changed to 3.7 parts, and the same procedure as in Example 1 was performed except that telluric acid was not used.

[比較例1]
テトラアンミン白金硝酸塩溶液およびテルル酸を使用しなかった以外は実施例1と同様の方法で行った。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the tetraammineplatinum nitrate solution and telluric acid were not used.

[比較例2]
テトラアンミン白金硝酸塩溶液の使用量を7.3部に変更し、テルル酸を使用しなかった以外は実施例1と同様の方法で行った。
[Comparative Example 2]
The amount of the tetraammineplatinum nitrate solution was changed to 7.3 parts, and the same procedure as in Example 1 was performed except that telluric acid was not used.

[比較例3]
テトラアンミン白金硝酸塩溶液の使用量を7.3部に変更した以外は実施例1と同様の方法で行った。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that the amount of the tetraammineplatinum nitrate solution was changed to 7.3 parts.

Figure 2009006236
Figure 2009006236

以上の結果を表1にまとめて示したように、本発明の方法によれば、より高い生産性でα,β−不飽和カルボン酸を製造できることが分かった。   As the above results are summarized in Table 1, it was found that according to the method of the present invention, α, β-unsaturated carboxylic acid can be produced with higher productivity.

Claims (5)

オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒であって、パラジウム元素1.0モルに対して白金元素0.001〜0.15モルを含有するパラジウム含有触媒。   A palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, wherein 0.001 to 0.15 mol of platinum element is added to 1.0 mol of palladium element. Contains palladium-containing catalyst. さらに、パラジウム元素1.0モルに対してテルル元素0.001〜0.40モルを含有する請求項1記載のパラジウム含有触媒。   Furthermore, the palladium containing catalyst of Claim 1 which contains 0.001-0.40 mol of tellurium elements with respect to 1.0 mol of palladium elements. 触媒活性成分が担体に担持されている請求項1または2記載のパラジウム含有触媒。   The palladium-containing catalyst according to claim 1 or 2, wherein the catalytically active component is supported on a carrier. 請求項1〜3のいずれか一項に記載のパラジウム含有触媒を製造する方法であって、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程、及び酸化状態の白金元素を含む化合物を還元剤で還元する工程を有するパラジウム含有触媒の製造方法。   A method for producing a palladium-containing catalyst according to any one of claims 1 to 3, comprising a step of reducing a compound containing palladium element in an oxidized state with a reducing agent, and a compound containing platinum element in an oxidized state. A method for producing a palladium-containing catalyst comprising a step of reducing with a reducing agent. 請求項1〜3のいずれか一項に記載のパラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法。   A method for producing an α, β-unsaturated carboxylic acid, which comprises subjecting an olefin or α, β-unsaturated aldehyde to liquid phase oxidation with molecular oxygen using the palladium-containing catalyst according to claim 1.
JP2007168885A 2007-06-27 2007-06-27 Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid Expired - Fee Related JP4908328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168885A JP4908328B2 (en) 2007-06-27 2007-06-27 Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168885A JP4908328B2 (en) 2007-06-27 2007-06-27 Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2009006236A true JP2009006236A (en) 2009-01-15
JP4908328B2 JP4908328B2 (en) 2012-04-04

Family

ID=40321892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168885A Expired - Fee Related JP4908328B2 (en) 2007-06-27 2007-06-27 Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4908328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011896A (en) * 2007-07-02 2009-01-22 Mitsubishi Rayon Co Ltd OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125306A (en) * 2003-10-27 2005-05-19 Mitsubishi Rayon Co Ltd CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
WO2005118134A1 (en) * 2004-06-04 2005-12-15 Mitsubishi Rayon Co., Ltd. Palladium-containing catalyst and method for producing same
WO2005118518A1 (en) * 2004-06-02 2005-12-15 Mitsubishi Rayon Co., Ltd. METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP2007090164A (en) * 2005-09-27 2007-04-12 Mitsubishi Rayon Co Ltd NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP2007152152A (en) * 2005-11-30 2007-06-21 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and manufacturing method of alpha and beta-unsaturated carboxylic acid using the same
JP2007185633A (en) * 2006-01-16 2007-07-26 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2008212817A (en) * 2007-03-02 2008-09-18 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha, beta-UNSATURATED CARBOXYLIC ACID

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125306A (en) * 2003-10-27 2005-05-19 Mitsubishi Rayon Co Ltd CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
WO2005118518A1 (en) * 2004-06-02 2005-12-15 Mitsubishi Rayon Co., Ltd. METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
WO2005118134A1 (en) * 2004-06-04 2005-12-15 Mitsubishi Rayon Co., Ltd. Palladium-containing catalyst and method for producing same
JP2007090164A (en) * 2005-09-27 2007-04-12 Mitsubishi Rayon Co Ltd NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP2007152152A (en) * 2005-11-30 2007-06-21 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and manufacturing method of alpha and beta-unsaturated carboxylic acid using the same
JP2007185633A (en) * 2006-01-16 2007-07-26 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP2008212817A (en) * 2007-03-02 2008-09-18 Mitsubishi Rayon Co Ltd PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha, beta-UNSATURATED CARBOXYLIC ACID

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011896A (en) * 2007-07-02 2009-01-22 Mitsubishi Rayon Co Ltd OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD

Also Published As

Publication number Publication date
JP4908328B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
JP5017092B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4764174B2 (en) Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4846625B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007090164A (en) NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP4908328B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007245068A (en) NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP5804145B2 (en) Method for producing palladium-containing catalyst and method for producing α, β-unsaturated carboxylic acid
JP4911361B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP4908332B2 (en) Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5645050B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2013180242A (en) PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACIDS
JP5280239B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5006175B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5340705B2 (en) Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP5648520B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP2011235215A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP5362348B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5084004B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5247081B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP5069412B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2011104457A (en) PALLADIUM-CONTAINING SUPPORTED CATALYST, METHOD OF PREPARING THE SAME, AND METHOD OF PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007185623A (en) Method for producing alpha,beta-unsaturated carboxylic acid, catalyst to be used therein and method for manufacturing the catalyst
JP2010179258A (en) PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4908328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees