JP2007185633A - PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID - Google Patents
PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID Download PDFInfo
- Publication number
- JP2007185633A JP2007185633A JP2006007525A JP2006007525A JP2007185633A JP 2007185633 A JP2007185633 A JP 2007185633A JP 2006007525 A JP2006007525 A JP 2006007525A JP 2006007525 A JP2006007525 A JP 2006007525A JP 2007185633 A JP2007185633 A JP 2007185633A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- catalyst
- producing
- silver
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明はオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒、その製造方法、並びにα,β−不飽和カルボン酸の製造方法に関する。 The present invention relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, a method for producing the same, and a method for producing an α, β-unsaturated carboxylic acid.
α,β−不飽和カルボン酸は工業上有用な物質が多い。例えば、アクリル酸やメタクリル酸は合成樹脂原料などの用途に極めて大量に使用されている。α,β−不飽和カルボン酸を製造する方法として、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化して製造する方法について研究がされている。オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するための触媒として、例えば、特許文献1ではパラジウム含有触媒が提案されている。また、オレフィンを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するための触媒として、例えば、特許文献2では、パラジウムと、鉛、ビスマス、タリウム又は水銀との金属間化合物を含有するパラジウム含有触媒が提案されている。
しかしながら、特許文献1および2のパラジウム含有触媒を使用した液相酸化では、目的生成物であるα,β−不飽和カルボン酸の選択率が十分ではなく、更なる選択率の向上が望まれていた。特に、副生する二酸化炭素の選択率が高くなると、α,β−不飽和カルボン酸の選択率が低下するため、二酸化炭素の選択率を抑えられる触媒が望まれていた。 However, in the liquid phase oxidation using the palladium-containing catalysts of Patent Documents 1 and 2, the selectivity of the target product α, β-unsaturated carboxylic acid is not sufficient, and further improvement of the selectivity is desired. It was. In particular, when the selectivity of by-product carbon dioxide increases, the selectivity of α, β-unsaturated carboxylic acid decreases, so a catalyst that can suppress the selectivity of carbon dioxide has been desired.
本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高選択率で製造するため、および副生する二酸化炭素の選択率を抑えるための触媒、その触媒の製造方法、並びにその触媒を用いるα,β−不飽和カルボン酸の製造方法を提供することにある。 An object of the present invention is to produce an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high selectivity, and a catalyst for suppressing the selectivity of by-product carbon dioxide, and the catalyst And a method for producing an α, β-unsaturated carboxylic acid using the catalyst.
本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒であって、パラジウム元素1モルに対して銀元素0.001〜0.25モルを含有するパラジウム含有触媒である。前記パラジウム元素と銀元素が担体に担持されている担持型のパラジウム含有触媒とすることが好ましい。 The present invention relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, and 0.001 to 0.25 silver element per 1 mol of palladium element. Palladium-containing catalyst containing moles. It is preferable to use a supported palladium-containing catalyst in which the palladium element and the silver element are supported on a carrier.
また本発明は、パラジウム含有触媒を製造する方法であって、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程、および酸化状態の銀元素を含む化合物を還元剤で還元する工程を含むパラジウム含有触媒の製造方法である。担持型のパラジウム含有触媒を製造する場合は、上記2つの還元する工程を担体の存在下で行うことが好ましい。 The present invention is also a method for producing a palladium-containing catalyst, comprising a step of reducing a compound containing palladium element in an oxidized state with a reducing agent, and a step of reducing a compound containing silver element in an oxidized state with a reducing agent. It is a manufacturing method of a palladium containing catalyst. In the case of producing a supported palladium-containing catalyst, it is preferable to perform the two reduction steps in the presence of a carrier.
さらに本発明は、前記パラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法である。 Furthermore, the present invention is a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is subjected to liquid phase oxidation with molecular oxygen using the palladium-containing catalyst.
本発明によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高選択率で得ることができ、副生する二酸化炭素の選択率を抑えることができるパラジウム含有触媒、その製造方法、並びにそれを用いたα,β−不飽和カルボン酸の製造方法を提供することができる。 According to the present invention, a palladium-containing catalyst capable of obtaining an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high selectivity and suppressing the selectivity of carbon dioxide produced as a by-product. , A method for producing the same, and a method for producing an α, β-unsaturated carboxylic acid using the same.
本発明のパラジウム含有触媒(以後、略して「触媒」ともいう。)は、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素で液相酸化してα,β−不飽和カルボン酸を製造する(以後、略して「液相酸化」ともいう。)ための触媒であって、パラジウム元素1モルに対して銀元素が0.001〜0.25モルを含有するものである。前記触媒はさらに、パラジウム元素1モルに対して0.001〜0.4モルのテルル元素を含有することが好ましい。 The palladium-containing catalyst of the present invention (hereinafter also referred to as “catalyst” for short) produces α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen. (Hereinafter, also referred to as “liquid phase oxidation” for short), which contains 0.001 to 0.25 mol of silver element per 1 mol of palladium element. The catalyst preferably further contains 0.001 to 0.4 mol of tellurium element with respect to 1 mol of palladium element.
パラジウム含有触媒に含まれるパラジウム元素は、0価の金属状態であることが好ましい。パラジウム含有触媒に含まれる銀元素は、0価の金属状態であることが好ましい。パラジウム含有触媒に場合により含まれるテルル元素は、+6価、+4価の酸化状態または0価の金属状態であることが好ましい。 The palladium element contained in the palladium-containing catalyst is preferably in a zero-valent metal state. The silver element contained in the palladium-containing catalyst is preferably in a zero-valent metal state. The tellurium element optionally contained in the palladium-containing catalyst is preferably in a + 6-valent, + 4-valent oxidized state or a zero-valent metal state.
本明細書では、触媒中のパラジウム元素1.0モルに対する銀元素のモル数、すなわち銀元素とパラジウム元素とのモル比をAg/Pdと略することもある。同様にテルル元素とパラジウム元素のモル比をTe/Pdと略することもある。Ag/Pd、Te/Pdをこのような所定範囲にすることで、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高選択率で製造することが可能な触媒が得られる。Ag/Pdは0.005〜0.25が好ましく、0.01〜0.23がより好ましい。Te/Pdは0.005〜0.35が好ましく、0.01〜0.3がより好ましい。このAg/PdおよびTe/Pdは、パラジウム含有触媒の製造に使用するパラジウム化合物、銀化合物、およびテルル化合物の配合比等により調整可能である。 In the present specification, the number of moles of silver element relative to 1.0 mole of palladium element in the catalyst, that is, the molar ratio of silver element to palladium element may be abbreviated as Ag / Pd. Similarly, the molar ratio of tellurium element and palladium element may be abbreviated as Te / Pd. By setting Ag / Pd and Te / Pd in such predetermined ranges, a catalyst capable of producing α, β-unsaturated carboxylic acid with high selectivity from olefin or α, β-unsaturated aldehyde is obtained. It is done. Ag / Pd is preferably 0.005 to 0.25, and more preferably 0.01 to 0.23. Te / Pd is preferably 0.005 to 0.35, and more preferably 0.01 to 0.3. The Ag / Pd and Te / Pd can be adjusted by the blending ratio of the palladium compound, silver compound, and tellurium compound used for the production of the palladium-containing catalyst.
Ag/PdおよびTe/Pdは、触媒に含まれる各元素の質量および原子量から算出できる。触媒に含まれる各元素の質量は元素分析により定量できる。元素分析法による触媒中の各元素の質量の定量方法としては次のA処理液とB処理液を調製して分析する方法が例示できる。
A処理液の調製:触媒0.2g、および、所定量の濃硝酸、濃硫酸、過酸化水素水をテフロン(登録商標)製分解管にとり、マイクロ波加熱分解装置(CEM社製、MARS5(商品名))で溶解処理を行った。試料をろ過し、ろ液および洗浄水を合わせてメスフラスコにメスアップし、A処理液とする。
B処理液の調製:A処理での不溶解部を集めたろ紙を白金製ルツボに移し加熱・灰化した後、メタホウ酸リチウムを加えてガスバーナーで溶融した。冷却後に塩酸と少量の水をルツボに入れて溶解後、メスフラスコにメスアップし、B処理液とする。
得られたA処理液およびB処理液に含まれる銀とパラジウムの質量を、ICP発光分析装置(サーモエレメンタル社製、IRIS−AdvantAge(商品名))で定量し、両処理液中の元素毎の質量の合計から触媒中の各元素の質量を求めることができる。
Ag / Pd and Te / Pd can be calculated from the mass and atomic weight of each element contained in the catalyst. The mass of each element contained in the catalyst can be quantified by elemental analysis. As a method for quantifying the mass of each element in the catalyst by elemental analysis, the following A treatment liquid and B treatment liquid are prepared and analyzed.
Preparation of treatment solution A: 0.2 g of catalyst and a predetermined amount of concentrated nitric acid, concentrated sulfuric acid, and hydrogen peroxide water were placed in a Teflon (registered trademark) decomposition tube, and a microwave thermal decomposition apparatus (CEM, MARS5 (product) Name)). The sample is filtered, and the filtrate and washing water are combined, and the volume is made up in a volumetric flask to obtain the treatment solution A.
Preparation of B treatment liquid: The filter paper in which the insoluble parts in the A treatment were collected was transferred to a platinum crucible, heated and incinerated, and then added with lithium metaborate and melted with a gas burner. After cooling, add hydrochloric acid and a small amount of water in a crucible and dissolve, then add up to a volumetric flask to make the B treatment solution.
The mass of silver and palladium contained in the obtained A treatment liquid and B treatment liquid was quantified with an ICP emission analyzer (manufactured by Thermo Elemental Co., Ltd., IRIS-Advantage (trade name)), and the mass of each element in both treatment liquids was determined. The mass of each element in the catalyst can be determined from the total mass.
また、ポアフィリング法等のように原料に含まれる金属元素の実質的に全量が触媒に含まれる方法で触媒を製造した場合には、使用する原料の金属元素含有率と配合量から各元素の質量を算出してもよい。 In addition, when a catalyst is produced by a method in which the catalyst contains substantially all of the metal elements contained in the raw material, such as the pore filling method, the content of each element and the blending amount of the raw material used are determined. The mass may be calculated.
また、上記のような本発明の触媒は、非担持型でもよいが、パラジウム元素及び銀元素、あるいはパラジウム元素、銀元素及びテルル元素が担体に担持されている担持型が好ましい。担体としては、例えば、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができできる。中でもシリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニアがより好ましく、シリカ、チタニア、ジルコニアが特に好ましい。担体は1種でもよいが、2種以上を用いることもできる。2種以上を用いる場合は、例えば、シリカとアルミナを混合して得られる混合酸化物等の混合物、複合酸化物であるシリカ−アルミナ等の複合物等が挙げられる。 The catalyst of the present invention as described above may be a non-supported type, but a supported type in which palladium element and silver element or palladium element, silver element and tellurium element are supported on a support is preferable. Examples of the carrier include activated carbon, carbon black, silica, alumina, magnesia, calcia, titania and zirconia. Among these, silica, alumina, magnesia, calcia, titania and zirconia are more preferable, and silica, titania and zirconia are particularly preferable. One type of carrier may be used, but two or more types may be used. When using 2 or more types, for example, a mixture such as a mixed oxide obtained by mixing silica and alumina, a composite such as silica-alumina which is a composite oxide, and the like can be given.
担体の好ましい比表面積は担体の種類等により異なるので一概に言えないが、シリカの場合、50m2/g以上が好ましく、100m2/g以上がより好ましい。また1500m2/g以下が好ましく、1000m2/g以下がより好ましい。担体の比表面積は、小さいほど有用成分(パラジウム、銀)がより表面に担持された触媒の製造が可能となり、大きいほど有用成分が多く担持された触媒の製造が可能となる。 The preferred specific surface area of the support varies depending on the type of the support and the like and cannot be generally stated. In the case of silica, it is preferably 50 m 2 / g or more, more preferably 100 m 2 / g or more. Moreover, 1500 m < 2 > / g or less is preferable and 1000 m < 2 > / g or less is more preferable. The smaller the specific surface area of the carrier is, the more the catalyst having a useful component (palladium, silver) supported on the surface can be produced, and the larger the specific surface area, the more the useful component can be produced.
担体の細孔容積は特に限定されないが、0.1cc/g以上が好ましく、0.2cc/g以上がより好ましい。また2cc/g以下が好ましく、1.5cc/g以下がより好ましい。 The pore volume of the carrier is not particularly limited, but is preferably 0.1 cc / g or more, and more preferably 0.2 cc / g or more. Moreover, 2 cc / g or less is preferable and 1.5 cc / g or less is more preferable.
担体の形状やサイズは、反応装置の形状、サイズ等によって異なり、特に制限されないが、例えば、粉末状、粒状、球状、ペレット状など種々の形状が挙げられる。中でもろ別等の操作性が容易な粒状、球状が好ましい。担体が粉末状や粒状の場合の粒径(メディアン径)は、0.5μm以上が好ましく、1μm以上がより好ましい。また、200μm以下が好ましく、100μm以下がより好ましい。担体の粒径は大きいほど触媒と反応液の分離が容易になり、小さいほど反応液中における触媒の分散性がよくなる。 The shape and size of the carrier vary depending on the shape and size of the reaction apparatus and are not particularly limited. Examples thereof include various shapes such as powder, granules, spheres, and pellets. Among these, granular and spherical shapes are preferable because they are easy to operate such as filtration. When the carrier is powdery or granular, the particle size (median diameter) is preferably 0.5 μm or more, and more preferably 1 μm or more. Moreover, 200 micrometers or less are preferable and 100 micrometers or less are more preferable. The larger the particle size of the carrier, the easier the separation of the catalyst and the reaction solution, and the smaller the support, the better the dispersibility of the catalyst in the reaction solution.
担持型触媒の場合、担体に対するパラジウム元素の担持率は、担持前の担体質量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。また、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。 In the case of a supported catalyst, the loading ratio of palladium element to the support is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more with respect to the mass of the carrier before support. Moreover, 40 mass% or less is preferable, 30 mass% or less is more preferable, and 20 mass% or less is further more preferable.
担持型触媒の場合の担持率は、前記の方法等で求められる触媒に含まれる各元素の質量と、使用する担体の質量から算出できる。また、担体の質量は、次のような方法で定量することもできる。すなわち、触媒を白金るつぼに取り、炭酸ナトリウムを加えて融解する。その後、蒸留水を加えて均一溶液として、ICP発光分析で試料溶液中の特定元素の定量をする。例えばシリカ担体の場合、Si元素を定量する。 In the case of a supported catalyst, the loading rate can be calculated from the mass of each element contained in the catalyst determined by the above method and the like and the mass of the carrier used. The mass of the carrier can also be quantified by the following method. That is, the catalyst is placed in a platinum crucible and melted by adding sodium carbonate. Thereafter, distilled water is added to obtain a uniform solution, and a specific element in the sample solution is quantified by ICP emission analysis. For example, in the case of a silica carrier, Si element is quantified.
本発明の触媒は、パラジウム元素、銀元素、およびテルル元素以外に、その他の金属元素を含んでいてもよい。その他の金属元素としては、例えば、白金、ロジウム、ルテニウム、イリジウム、金、オスミウム、銅、鉛、ビスマス、タリウム、水銀、アンチモン等が挙げられる。他の金属元素は1種または2種以上含有することができる。高い触媒活性を発現させる観点から、触媒に含まれる金属元素のうち、パラジウム元素、銀元素、およびテルル元素の合計が60質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The catalyst of the present invention may contain other metal elements in addition to palladium element, silver element and tellurium element. Examples of other metal elements include platinum, rhodium, ruthenium, iridium, gold, osmium, copper, lead, bismuth, thallium, mercury, antimony, and the like. One or more other metal elements can be contained. From the viewpoint of expressing high catalytic activity, the total of palladium element, silver element, and tellurium element is preferably 60% by mass or more, more preferably 80% by mass or more, among the metal elements contained in the catalyst. .
本発明の触媒は、酸化状態の元素を含む化合物を還元剤で還元する工程を有する方法で好適に製造できる。例えば、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程(以後、「Pd還元工程」ともいう。)、および酸化状態の銀元素を含む化合物を還元剤で還元する工程(以後、「Ag還元工程」ともいう。)を含む方法で好適に製造できる。さらにテルル元素を含む触媒を製造する場合は、Pd還元工程、Ag還元工程、および酸化状態のテルル元素を含む化合物を還元剤で還元する工程(以後、「Te還元工程」ともいう。)を含む方法が挙げられる。ただし、テルル元素を含む触媒を製造する場合に、Te還元工程は必ずしも必須ではない。以下、この方法による触媒の製造について説明する。 The catalyst of the present invention can be preferably produced by a method having a step of reducing a compound containing an element in an oxidized state with a reducing agent. For example, a step of reducing a compound containing palladium element in an oxidized state with a reducing agent (hereinafter also referred to as “Pd reduction step”) and a step of reducing a compound containing silver element in an oxidized state with a reducing agent (hereinafter referred to as “ It can also be suitably produced by a method including an “Ag reduction step”. Further, in the case of producing a catalyst containing tellurium element, a Pd reduction step, an Ag reduction step, and a step of reducing a compound containing tellurium element in an oxidized state with a reducing agent (hereinafter also referred to as “Te reduction step”) are included. A method is mentioned. However, when producing a catalyst containing tellurium element, the Te reduction step is not necessarily essential. Hereinafter, the production of the catalyst by this method will be described.
酸化状態のパラジウム元素を含むパラジウム化合物(以後、「Pd原料」ともいう。)としては、例えば、パラジウム塩、酸化パラジウム、酸化パラジウム合金等を挙げることができるが、中でもパラジウム塩が好ましい。パラジウム塩としては、例えば、塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンパラジウム塩化物およびビス(アセチルアセトナト)パラジウム等を挙げることができるが、中でも塩化パラジウム、酢酸パラジウム、硝酸パラジウム、テトラアンミンパラジウム塩化物が好ましい。 Examples of the palladium compound containing palladium element in the oxidized state (hereinafter also referred to as “Pd raw material”) include palladium salts, palladium oxides, palladium oxide alloys, etc. Among them, palladium salts are preferable. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, tetraamminepalladium chloride and bis (acetylacetonato) palladium, among which palladium chloride, palladium acetate, palladium nitrate, tetraammine. Palladium chloride is preferred.
酸化状態の銀元素を含む銀化合物(以後、「Ag原料」ともいう。)としては、例えば、銀塩、酸化銀等を挙げることができる。具体的には、酢酸銀、アセチルアセトン酸銀、安息香酸銀、臭化銀、炭酸銀、塩化銀、クエン酸銀水和物、フッ化銀、ヨウ化銀、乳酸銀、硝酸銀、亜硝酸銀、酸化銀、リン酸銀、または水性無機酸中の銀溶液、たとえば硝酸中溶液であってよい。 Examples of the silver compound containing silver element in an oxidized state (hereinafter also referred to as “Ag raw material”) include silver salts and silver oxide. Specifically, silver acetate, silver acetylacetonate, silver benzoate, silver bromide, silver carbonate, silver chloride, silver citrate hydrate, silver fluoride, silver iodide, silver lactate, silver nitrate, silver nitrite, oxidation It may be silver, silver phosphate, or a silver solution in an aqueous inorganic acid, such as a solution in nitric acid.
テルル元素を含むテルル化合物(以後、「Te原料」ともいう)としては、テルル金属、テルル塩、テルル酸およびその塩、亜テルル酸およびその塩、酸化テルル等を挙げることができる。テルル塩としては、例えば、テルル化水素、四塩化テルル、二塩化テルル、六フッ化テルル、四ヨウ化テルル、四臭化テルル、二臭化テルル等を挙げることができる。テルル酸塩としては、例えば、テルル酸ナトリウム、テルル酸カリウム等を挙げることができる。亜テルル酸塩としては、例えば、亜テルル酸ナトリウム、亜テルル酸カリウム等を挙げることができる。中でもテルル酸およびその塩、亜テルル酸およびその塩、酸化テルルが好ましい。なお、Te還元工程は必ずしも必須ではないことから、Te原料に含まれるテルル元素は、酸化状態でも還元状態でも金属状態でもよい。 Examples of tellurium compounds containing tellurium elements (hereinafter also referred to as “Te raw materials”) include tellurium metal, tellurium salts, telluric acid and salts thereof, telluric acid and salts thereof, and tellurium oxide. Examples of tellurium salts include hydrogen telluride, tellurium tetrachloride, tellurium dichloride, tellurium hexafluoride, tellurium tetraiodide, tellurium tetrabromide, tellurium dibromide, and the like. Examples of tellurate include sodium tellurate and potassium tellurate. Examples of tellurite include sodium tellurite and potassium tellurite. Of these, telluric acid and its salt, telluric acid and its salt, and tellurium oxide are preferred. Since the Te reduction step is not always essential, the tellurium element contained in the Te raw material may be in an oxidized state, a reduced state, or a metal state.
また、上記の化合物の他に、パラジウム元素、銀元素およびテルル元素のうち2種以上の元素を含有する化合物等を、その2種以上の元素の原料として用いることも可能である。具体的には、例えばパラジウム−テルル錯体等[PdXn(TeRR’)4-n](式中、Xはフッ素、塩素、臭素、及びヨウ素のいずれかであり、TeRR’は有機テルル化合物である)をPd原料かつTe原料として用いることが挙げられる。酸化状態のパラジウム元素と酸化状態の銀元素の両方を含有する化合物等をPd原料かつTe原料として用いることも可能である。 In addition to the above compound, a compound containing two or more elements of palladium element, silver element and tellurium element can be used as a raw material for the two or more elements. Specifically, for example, palladium-tellurium complex or the like [PdX n (TeRR ′) 4-n ] (wherein X is any one of fluorine, chlorine, bromine, and iodine, and TeRR ′ is an organic tellurium compound). ) As a Pd raw material and a Te raw material. A compound containing both palladium element in an oxidized state and silver element in an oxidized state can be used as the Pd raw material and the Te raw material.
上記のようなPd原料、Ag原料を適宜選択して、触媒を製造するための原料として用いる。これらの化合物の配合量は、Ag/Pdやパラジウム元素の担持率が目的とする値となるように適宜選択する。テルル元素を含む触媒を製造する場合は、上記のようなTe原料を適宜選択して、触媒を製造するための原料として用いる。Te原料の配合量は、Te/Pdが目的とする値となるように適宜選択する。 The Pd raw material and the Ag raw material as described above are appropriately selected and used as a raw material for producing the catalyst. The compounding amount of these compounds is appropriately selected so that the loading ratio of Ag / Pd or palladium element becomes a target value. When producing a catalyst containing tellurium element, the above Te raw material is appropriately selected and used as a raw material for producing the catalyst. The blending amount of the Te raw material is appropriately selected so that Te / Pd becomes a target value.
また、パラジウム、銀、テルル以外に、その他の金属元素を含む触媒を製造する場合は、原料として、その他の金属元素を含む化合物(以後、「その他原料」ともいう。)を併用すればよい。その他原料としては、例えば、その他の金属元素を含む、金属、金属酸化物、金属塩、金属酸素酸、金属酸素酸塩等が挙げられる。 In addition to palladium, silver and tellurium, in the case of producing a catalyst containing other metal elements, a compound containing other metal elements (hereinafter also referred to as “other raw materials”) may be used in combination. Examples of the other raw materials include metals, metal oxides, metal salts, metal oxyacids, and metal oxyacid salts containing other metal elements.
Pd還元工程およびAg還元工程は同時に行ってもよいし、別々に行ってもよい。別々に行う場合、Pd還元工程およびAg還元工程の順序は任意である。Te還元工程を行う場合、そのTe還元工程は、Pd還元工程および/またはAg還元工程と同時に、又は任意の順序で行うことができる。 The Pd reduction step and the Ag reduction step may be performed simultaneously or separately. When performed separately, the order of the Pd reduction step and the Ag reduction step is arbitrary. When performing the Te reduction step, the Te reduction step can be performed simultaneously with the Pd reduction step and / or the Ag reduction step, or in any order.
また、パラジウム、銀、テルル以外に、その他の金属元素を含む触媒を製造する場合であって、その他原料を還元剤で還元する工程が必要な場合、その還元工程は、Pd還元工程および/またはAg還元工程および/またはTe還元工程と同時に、又は任意の順序で行うことができる。 Further, in the case of producing a catalyst containing other metal elements in addition to palladium, silver, and tellurium, and when a step of reducing other raw materials with a reducing agent is necessary, the reduction step includes a Pd reduction step and / or It can be performed simultaneously with the Ag reduction step and / or the Te reduction step, or in any order.
Pd還元工程の後、Ag還元工程を行う方法が好ましい。テルル化合物を添加する工程を行う場合は、その工程はPd還元工程の後が好ましい。 A method of performing an Ag reduction step after the Pd reduction step is preferable. When performing the process of adding a tellurium compound, the process is preferably after the Pd reduction process.
担持型の触媒を製造する際の還元方法としては、例えば、(1)酸化状態の金属元素を含む原料を担体上に担持してから還元剤を接触させて金属元素を還元する方法、(2)酸化状態の金属元素を含む原料の溶液またはスラリーと担体が接触している状態で還元剤を接触させて溶液またはスラリー中の金属元素を還元すると同時に担持する方法、(3)(2)の方法を実施した後、さらに他の原料を添加する方法等が挙げられる。中でも金属元素の分散度が高い触媒が得られ易い(1)の還元方法が好ましい。 Examples of the reduction method for producing a supported catalyst include, for example, (1) a method in which a raw material containing a metal element in an oxidized state is supported on a carrier and then brought into contact with a reducing agent to reduce the metal element (2 A method of reducing and supporting the metal element in the solution or slurry by bringing a reducing agent into contact with the support in contact with the solution or slurry of the raw material containing the metal element in the oxidized state; Examples include a method of adding another raw material after the method is carried out. Among them, the reduction method (1) in which a catalyst having a high degree of metal element dispersion is easily obtained is preferable.
(1)の還元方法としては、Pd原料、Ag原料、Te原料およびその他原料(以後、まとめて「金属原料」ともいう。)の1種または2種以上を溶媒に溶解した溶解液を担体に含浸した後、加熱処理して金属酸化物として担体に担持し、次いで還元剤を接触させて酸化物を還元する方法が好ましい。 As the reduction method (1), a solution obtained by dissolving one or more of Pd raw material, Ag raw material, Te raw material and other raw materials (hereinafter collectively referred to as “metal raw material”) in a solvent is used as a carrier. After impregnation, a method is preferred in which the oxide is reduced by contacting with a reducing agent after heat treatment and supporting it as a metal oxide.
溶解液を担体に含浸する含浸方法としては、溶解液を担体に吸収させる、いわゆるポアフィリング法が好ましい。溶解液の溶媒は金属原料を溶解するものであれば特に限定されない。金属原料の溶媒としては、例えば、水;酢酸、吉草酸等の有機カルボン酸類;硝酸、塩酸等の無機酸;エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の溶媒を単独または複数組み合わせて用いることができる。金属原料並びに還元剤の溶解性または担体の分散性の観点から、水、有機カルボン酸類が好ましい。 As the impregnation method for impregnating the carrier with the solution, a so-called pore filling method in which the carrier is absorbed by the carrier is preferable. The solvent of the solution is not particularly limited as long as it dissolves the metal raw material. Examples of the solvent for the metal raw material include water; organic carboxylic acids such as acetic acid and valeric acid; inorganic acids such as nitric acid and hydrochloric acid; alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, and t-butanol. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; solvents such as hydrocarbons such as heptane, hexane, and cyclohexane can be used singly or in combination. From the viewpoint of the solubility of the metal raw material and the reducing agent or the dispersibility of the carrier, water and organic carboxylic acids are preferred.
溶解液を担体に含浸する操作は、全ての金属原料を含む溶解液を用いて1度だけ行うこともできるが、複数の溶解液を用いて複数回行うこともできる。複数回行う場合は、2回目以降の含浸操作は前回の加熱処理後または還元処理後のいずれに行ってもよい。金属元素を担持する順序は特に限定されない。 The operation of impregnating the carrier with the solution can be performed only once using a solution containing all the metal raw materials, but can also be performed a plurality of times using a plurality of solutions. When performing several times, you may perform impregnation operation after the 2nd time after either the last heat processing or a reduction process. The order in which the metal elements are supported is not particularly limited.
加熱処理の温度は金属原料が金属酸化物に変化する分解温度以上とすることが好ましい。加熱処理の時間は金属原料が金属酸化物に変化する時間であれば特に限定されないが、1時間以上が好ましく、12時間以下が好ましい。 It is preferable that the temperature of the heat treatment be equal to or higher than a decomposition temperature at which the metal raw material is changed to a metal oxide. The time for the heat treatment is not particularly limited as long as the metal raw material is changed to a metal oxide, but is preferably 1 hour or longer, and preferably 12 hours or shorter.
(2)の還元方法としては、例えば、金属原料の1種または2種以上を溶媒に溶解した溶解液を担体に含浸させた状態で還元剤を接触させて金属原料を還元する方法、溶解液中に担体を分散させた状態で還元剤を接触させて金属原料を還元する方法等が挙げられる。 Examples of the reduction method (2) include a method of reducing a metal raw material by contacting a reducing agent in a state in which a carrier is impregnated with a solution obtained by dissolving one or more metal raw materials in a solvent, and a solution. Examples thereof include a method of reducing a metal raw material by bringing a reducing agent into contact with the carrier dispersed therein.
還元剤を接触させる操作は、全ての金属原料を含む溶解液を用いて1度だけ行うこともできるが、複数の溶解液を用いて複数回行うこともできる。複数回行う場合は、2回目以降の還元処理では前回の還元処理した担体を使用する。金属元素を担持する順序は特に限定されない。 The operation of bringing the reducing agent into contact can be performed only once using a solution containing all metal raw materials, but can also be performed a plurality of times using a plurality of solutions. In the case of performing a plurality of times, the carrier subjected to the previous reduction treatment is used in the second and subsequent reduction treatments. The order in which the metal elements are supported is not particularly limited.
(3)の還元方法としては、例えば、担体の存在下で金属原料を還元剤で還元した後の溶液またはスラリーに、別途、他の金属原料を水などの溶媒に溶解または分散させた溶液またはスラリーを添加する手法が好ましい。添加する溶液またはスラリーの溶媒としては、水が一般的であるが、前述したような種々の有機溶媒等を用いてもよい。他の金属原料を添加した後に、再度還元剤を添加して還元してもよい。 As the reduction method of (3), for example, a solution or slurry obtained by reducing a metal raw material with a reducing agent in the presence of a carrier, or a solution obtained by dissolving or dispersing another metal raw material in a solvent such as water, or A method of adding a slurry is preferred. As a solvent of the solution or slurry to be added, water is generally used, but various organic solvents as described above may be used. After adding another metal raw material, you may reduce by adding a reducing agent again.
還元処理を複数回行う場合、還元剤の種類、還元温度および時間、液相で行う際の溶媒の種類等は、各回毎に独立して適宜設定できる。 When the reduction treatment is performed a plurality of times, the type of the reducing agent, the reduction temperature and time, the type of the solvent in the liquid phase, and the like can be appropriately set independently for each time.
還元の際に用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、アリルアルコール、メタクリルアルコール、アクロレインおよびメタクロレイン等が挙げられる。中でもヒドラジン、ホルムアルデヒド、水素、蟻酸、蟻酸の塩が好ましい。また、これらを2種以上併用することもできる。 The reducing agent used in the reduction is not particularly limited. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, isobutylene, 1,3- Examples include butadiene, 1-heptene, 1-hexene, 2-hexene, cyclohexene, allyl alcohol, methacryl alcohol, acrolein, and methacrolein. Of these, hydrazine, formaldehyde, hydrogen, formic acid, and formic acid salts are preferred. Two or more of these may be used in combination.
液相中で還元する際に使用する溶媒としては、水が好ましいが、担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、イソ吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の有機溶媒を単独または複数組み合わせて用いることができる。これらと水の混合溶媒を用いることもできる。 The solvent used for reduction in the liquid phase is preferably water, but depending on the dispersibility of the carrier, alcohols such as ethanol, 1-propanol, 2-propanol, n-butanol, and t-butanol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and isovaleric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane may be used alone or in combination. it can. A mixed solvent of these and water can also be used.
還元剤が気体の場合、溶液中への溶解度を上げるためにオートクレーブ等の加圧装置中で行うことが望ましい。その際、加圧装置の内部は還元剤で加圧することが好ましい。その圧力は0.1MPa(ゲージ圧;以下圧力はゲージ圧表記とする)以上とすることが好ましく、また1MPa以下とすることが好ましい。 When the reducing agent is a gas, it is desirable to carry out in a pressure device such as an autoclave in order to increase the solubility in the solution. In that case, it is preferable to pressurize the inside of a pressurization apparatus with a reducing agent. The pressure is preferably 0.1 MPa (gauge pressure; hereinafter referred to as gauge pressure) or more, and preferably 1 MPa or less.
また、還元剤が液体の場合、還元を行う装置に制限は無く溶液中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、還元する原料1モルに対して1モル以上とすることが好ましく、また、100モル以下とすることが好ましい。 In addition, when the reducing agent is a liquid, there is no limitation on the apparatus for performing the reduction, and the reduction can be performed by adding the reducing agent to the solution. The amount of the reducing agent used at this time is not particularly limited, but it is preferably 1 mol or more and 1 mol or less with respect to 1 mol of the raw material to be reduced.
還元温度および還元時間は、還元する原料や還元剤等により異なるが、還元温度は−5℃以上が好ましく、15℃以上がより好ましい。また、150℃以下が好ましく、80℃以下がより好ましい。 The reduction temperature and reduction time vary depending on the raw material to be reduced, the reducing agent, etc., but the reduction temperature is preferably −5 ° C. or higher, more preferably 15 ° C. or higher. Moreover, 150 degrees C or less is preferable and 80 degrees C or less is more preferable.
還元時間は0.1時間以上が好ましく、0.25時間以上がより好ましく、0.5時間以上がさらに好ましい。また、4時間以下が好ましく、3時間以下がより好ましく、2時間以下がさらに好ましい。 The reduction time is preferably 0.1 hour or longer, more preferably 0.25 hour or longer, and further preferably 0.5 hour or longer. Moreover, 4 hours or less are preferable, 3 hours or less are more preferable, and 2 hours or less are more preferable.
還元を必要としない金属原料を用いて担持型触媒を製造する場合は、上記の還元を終えた担体に、その金属原料を担持させればよい。 When producing a supported catalyst using a metal raw material that does not require reduction, the metal raw material may be supported on the carrier after the reduction.
得られた触媒は、水、有機溶媒等で洗浄することが好ましい。水、有機溶媒等での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等の金属原料等に由来する不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によっては液相酸化反応を阻害する恐れがあるため不純物を十分除去できる程度に洗浄することが好ましい。洗浄された触媒は、ろ別または遠心分離などにより回収した後、そのまま反応に用いてもよい。また、Pd還元工程およびAg還元工程を別工程で行う場合、その工程間で洗浄を行うことも好ましい。 The obtained catalyst is preferably washed with water, an organic solvent or the like. By washing with water, an organic solvent or the like, impurities derived from metal raw materials such as chloride, acetate radical, nitrate radical, and sulfate radical are removed. The cleaning method and the number of times are not particularly limited. However, depending on the impurities, there is a possibility that the liquid phase oxidation reaction may be inhibited. The washed catalyst may be recovered by filtration or centrifugation and used for the reaction as it is. Moreover, when performing a Pd reduction process and an Ag reduction process by another process, it is also preferable to wash between the processes.
また、回収された触媒を乾燥してもよい。乾燥方法は特に限定されないが、乾燥機を用いて空気中または不活性ガス中で乾燥することが好ましい。乾燥された触媒は、必要に応じて反応に使用する前に活性化することもできる。活性化の方法は特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によればパラジウムや銀の表面の酸化被膜と洗浄で取り除けなかった不純物を除去することができる。 Further, the recovered catalyst may be dried. Although a drying method is not specifically limited, It is preferable to dry in air or an inert gas using a dryer. The dried catalyst can also be activated before use in the reaction if desired. The activation method is not particularly limited, and examples thereof include a heat treatment method in a reducing atmosphere in a hydrogen stream. According to this method, an oxide film on the surface of palladium or silver and impurities that could not be removed by washing can be removed.
次に、本発明のパラジウム含有触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化して、α,β−不飽和カルボン酸を製造する方法について説明する。 Next, a method for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen using the palladium-containing catalyst of the present invention will be described.
液相酸化の原料のオレフィンとα,β−不飽和アルデヒドはどちらか一方だけ使用してもよいし、両者の混合物を使用することもできる。 Only one of the raw material olefin and α, β-unsaturated aldehyde for liquid phase oxidation may be used, or a mixture of both may be used.
原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。オレフィンは2種以上併用することもできる。原料のオレフィンは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。 Examples of the raw material olefin include propylene, isobutylene, and 2-butene. Among these, propylene and isobutylene are preferable. Two or more olefins can be used in combination. The raw material olefin may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.
オレフィンから製造されるα,β−不飽和カルボン酸は、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。例えば、原料がプロピレンの場合アクリル酸が得られ、原料がイソブチレンの場合メタクリル酸が得られる。また、通常はオレフィンからはα,β−不飽和アルデヒドが同時に得られる。このα,β−不飽和アルデヒドは、オレフィンと同一炭素骨格を有するα,β−不飽和アルデヒドである。例えば、原料がプロピレンの場合アクロレインが得られ、原料がイソブチレンの場合メタクロレインが得られる。 An α, β-unsaturated carboxylic acid produced from an olefin is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin. For example, acrylic acid is obtained when the raw material is propylene, and methacrylic acid is obtained when the raw material is isobutylene. Usually, α, β-unsaturated aldehyde is simultaneously obtained from olefin. This α, β-unsaturated aldehyde is an α, β-unsaturated aldehyde having the same carbon skeleton as the olefin. For example, acrolein is obtained when the raw material is propylene, and methacrolein is obtained when the raw material is isobutylene.
原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。中でもアクロレインおよびメタクロレインが好適である。α,β−不飽和アルデヒドは2種以上併用することもできる。原料のα,β−不飽和アルデヒドは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。 Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Of these, acrolein and methacrolein are preferable. Two or more α, β-unsaturated aldehydes can be used in combination. The raw α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.
α,β−不飽和アルデヒドから製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。例えば、原料がアクロレインの場合アクリル酸が得られ、原料がメタクロレインの場合メタクリル酸が得られる。 The α, β-unsaturated carboxylic acid produced from the α, β-unsaturated aldehyde is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. For example, acrylic acid is obtained when the raw material is acrolein, and methacrylic acid is obtained when the raw material is methacrolein.
また液相酸化反応では、α,β−不飽和カルボン酸と同時に当該α,β−不飽和カルボン酸の無水物が得られることがある。この無水物は加水分解することにより目的生成物であるα,β−不飽和カルボン酸に分解できることから、α,β−不飽和カルボン酸の製造において有用物とみなすことができる。 In the liquid phase oxidation reaction, an α, β-unsaturated carboxylic acid anhydride may be obtained simultaneously with the α, β-unsaturated carboxylic acid. Since this anhydride can be decomposed into the target product α, β-unsaturated carboxylic acid by hydrolysis, it can be regarded as a useful product in the production of α, β-unsaturated carboxylic acid.
液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。 The liquid phase oxidation reaction may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.
液相酸化反応に用いる分子状酸素源は、空気が経済的であり好ましいが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。この空気等のガスは、オートクレーブ等の反応容器内に加圧状態で供給することが好ましい。 As the molecular oxygen source used in the liquid phase oxidation reaction, air is economical and preferable, but pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is converted into nitrogen, dioxide. A mixed gas diluted with carbon, water vapor or the like can also be used. The gas such as air is preferably supplied in a pressurized state into a reaction vessel such as an autoclave.
液相酸化反応に用いる溶媒としては、例えば、t−ブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの有機溶媒を用いることが好ましい。中でも、t−ブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つの有機溶媒がより好ましい。また、α,β−不飽和カルボン酸をより選択率よく製造するために、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して好ましくは2質量%以上、より好ましくは5質量%以上であり、好ましくは70質量%以下、より好ましくは50質量%以下である。有機溶媒と水の混合物は均一な状態であることが望ましいが、不均一な状態であっても差し支えない。 Examples of the solvent used in the liquid phase oxidation reaction include t-butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, It is preferable to use at least one organic solvent selected from the group consisting of ethyl acetate and methyl propionate. Among these, at least one organic solvent selected from the group consisting of t-butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid is more preferable. Further, in order to produce an α, β-unsaturated carboxylic acid with higher selectivity, it is preferable to coexist water in these organic solvents. The amount of coexisting water is not particularly limited, but is preferably 2% by mass or more, more preferably 5% by mass or more, and preferably 70% by mass or less, more preferably 50% by mass with respect to the total mass of the organic solvent and water. % Or less. The mixture of the organic solvent and water is desirably in a uniform state, but may be in a non-uniform state.
液相酸化反応の原料であるオレフィンおよびα,β−不飽和アルデヒドの合計濃度は、反応器内に存在する溶媒に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また30質量%以下が好ましく、20質量%以下がより好ましい。 The total concentration of the olefin and α, β-unsaturated aldehyde that are raw materials for the liquid phase oxidation reaction is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the solvent present in the reactor. . Moreover, 30 mass% or less is preferable, and 20 mass% or less is more preferable.
分子状酸素の使用量は、原料であるオレフィンおよびα,β−不飽和アルデヒド1モルに対して0.1モル以上が好ましく、0.2モル以上がより好ましく、0.3モル以上が特に好ましい。また、20モル以下が好ましく、15モル以下がより好ましく、10モル以下が特に好ましい。 The amount of molecular oxygen used is preferably 0.1 mol or more, more preferably 0.2 mol or more, and particularly preferably 0.3 mol or more with respect to 1 mol of the raw material olefin and α, β-unsaturated aldehyde. . Moreover, 20 mol or less is preferable, 15 mol or less is more preferable, and 10 mol or less is especially preferable.
触媒は液相酸化を行う反応液に懸濁させた状態で使用することが好ましいが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が特に好ましい。また、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下が特に好ましい。 The catalyst is preferably used in a state suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more with respect to the solution present in the reactor. Moreover, 40 mass% or less is preferable, 35 mass% or less is more preferable, and 30 mass% or less is especially preferable.
反応温度および反応圧力は、用いる溶媒および原料によって適宜選択される。反応温度は30℃以上が好ましく、50℃以上がより好ましい。また、200℃以下が好ましく、150℃以下がより好ましい。反応圧力は大気圧(0MPa)以上が好ましく、2MPa以上がより好ましい。また、10MPa以下が好ましく、7MPa以下がより好ましい。 The reaction temperature and reaction pressure are appropriately selected depending on the solvent and raw materials used. The reaction temperature is preferably 30 ° C or higher, more preferably 50 ° C or higher. Moreover, 200 degrees C or less is preferable and 150 degrees C or less is more preferable. The reaction pressure is preferably atmospheric pressure (0 MPa) or more, more preferably 2 MPa or more. Moreover, 10 MPa or less is preferable and 7 MPa or less is more preferable.
以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.
(触媒中の各元素の定量)
Ag/Pd、Te/Pd、およびパラジウム元素の担持率の算出に用いるパラジウム元素、銀元素およびテルル元素の質量は、使用するPd原料のパラジウム元素含有率と配合量、使用するAg原料の銀元素含有率と配合量、使用するTe原料のテルル元素含有率と配合量から算出した。
(Quantification of each element in the catalyst)
Ag / Pd, Te / Pd, and the mass of palladium element, silver element, and tellurium element used for calculation of palladium element loading are the palladium element content and blending amount of the Pd raw material used, and the silver element of the Ag raw material used. It was calculated from the content and blending amount, and the tellurium element content and blending amount of the Te raw material to be used.
また、担体質量に対するパラジウム元素の質量の比を「パラジウム元素の担持率」とした。担体質量は以下のように定量した。 Further, the ratio of the mass of palladium element to the mass of carrier was defined as “palladium element loading ratio”. The carrier mass was quantified as follows.
(触媒中の担体質量の定量)
触媒を白金るつぼに取り、炭酸ナトリウムを加えて融解した。蒸留水を加えて均一溶液として、ICP発光分析装置(サーモエレメンタル社製、IRIS−AdvantAge(商品名))で試料溶液中のSi元素を定量した。
(Quantification of support mass in catalyst)
The catalyst was taken up in a platinum crucible and melted by adding sodium carbonate. Distilled water was added to obtain a homogeneous solution, and the Si element in the sample solution was quantified with an ICP emission analyzer (manufactured by Thermo Elemental Co., Ltd., IRIS-Advantage (trade name)).
(α,β−不飽和カルボン酸の製造における原料、生成物および副生物の分析)
α,β−不飽和カルボン酸の製造における原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンの反応率、生成するα,β−不飽和カルボン酸及びα,β−不飽和カルボン酸無水物の選択率、並びに副生する二酸化炭素の選択率は以下のように定義される。
(Analysis of raw materials, products and by-products in the production of α, β-unsaturated carboxylic acids)
Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid was performed using gas chromatography. In addition, the reaction rate of an olefin, the selectivity of the produced α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride, and the selectivity of carbon dioxide produced as a by-product are defined as follows.
オレフィンの反応率(%) =(B/A)×100
α,β−不飽和カルボン酸の選択率(%) =(C/B)×100
α,β−不飽和カルボン酸無水物の選択率(%)=(D×2/B)×100
二酸化炭素の選択率(%) =(E/F/B)×100
ここで、Aは供給したオレフィンのモル数、Bは反応したオレフィンのモル数、Cは生成したα,β−不飽和カルボン酸のモル数、Dは生成したα,β−不飽和カルボン酸無水物のモル数、Eは副生した二酸化炭素のモル数、Fは原料オレフィンの炭素数である。
Olefin reaction rate (%) = (B / A) × 100
Selectivity of α, β-unsaturated carboxylic acid (%) = (C / B) × 100
Selectivity of α, β-unsaturated carboxylic anhydride (%) = (D × 2 / B) × 100
Carbon dioxide selectivity (%) = (E / F / B) x 100
Here, A is the number of moles of olefin supplied, B is the number of moles of reacted olefin, C is the number of moles of α, β-unsaturated carboxylic acid produced, and D is the α, β-unsaturated carboxylic acid anhydride produced. The number of moles of the product, E is the number of moles of carbon dioxide produced as a by-product, and F is the number of carbons of the raw material olefin.
また、触媒の性能の指標として、目的生成物であるα,β−不飽和カルボン酸の選択率と有用物であるα,β−不飽和カルボン酸無水物の選択率との合計選択率も採用している。 In addition, the total selectivity of the target product α, β-unsaturated carboxylic acid and the useful product α, β-unsaturated carboxylic acid anhydride is also used as an indicator of catalyst performance. is doing.
[実施例1]
(触媒調製)
硝酸銀0.08部を純水15部に溶解させた硝酸銀水溶液に、硝酸パラジウム硝酸溶液(田中貴金属製、パラジウム元素含有率24.41wt%)4.1部を加えて得られた均一水溶液に、粒状のシリカ担体(比表面積450m2/g、細孔容積0.68cc/g、メディアン径53.58μm)5.0部を添加した後、エバポレーションで水を取り除いた。このような浸漬法で金属塩を含浸させた担体を空気中450℃で3時間焼成を行い、パラジウム元素と銀元素が担持されたシリカ担体を得た。得られたシリカ担体を37質量%ホルムアルデヒド水溶液75部に加えた。70℃に加熱し、2時間攪拌保持する還元処理を行った。次いで、吸引ろ過後、温水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、還元されたパラジウム元素および銀元素がシリカ担体に担持された担持型パラジウム含有触媒を得た。
[Example 1]
(Catalyst preparation)
To a uniform aqueous solution obtained by adding 4.1 parts of a palladium nitrate nitric acid solution (made by Takanaka Tanaka, palladium element content 24.41 wt%) to an aqueous silver nitrate solution in which 0.08 part of silver nitrate is dissolved in 15 parts of pure water, After adding 5.0 parts of a granular silica carrier (specific surface area 450 m 2 / g, pore volume 0.68 cc / g, median diameter 53.58 μm), water was removed by evaporation. The carrier impregnated with the metal salt by such an immersion method was baked in air at 450 ° C. for 3 hours to obtain a silica carrier on which palladium element and silver element were supported. The obtained silica carrier was added to 75 parts of a 37 mass% formaldehyde aqueous solution. A reduction treatment was performed by heating to 70 ° C. and stirring for 2 hours. Subsequently, after suction filtration, it was filtered and washed with 1000 parts of warm water. Furthermore, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a supported palladium-containing catalyst in which reduced palladium element and silver element were supported on a silica support.
この触媒のAg/Pdは0.05、パラジウム元素の担持率は20質量%であった。 This catalyst had an Ag / Pd of 0.05 and a palladium element loading of 20% by mass.
(反応評価)
オートクレーブに上記の方法で得た触媒のうち3部と反応溶媒として75質量%t−ブタノール水溶液75部を入れ、オートクレーブを密閉した。次いで、イソブチレンを2.0部導入し、攪拌(回転数1000rpm)を開始し、反応温度である90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、空気を内圧4.8MPaまで導入して反応を開始した。反応中に内圧が0.1MPa低下した時点(内圧4.7MPa)毎に酸素を0.1MPa導入して内圧を4.8MPaにする操作(以下、酸素導入操作ともいう。)を8回繰り返した。8回目の酸素導入後、内圧が4.7MPaまで低下した時点で反応を終了した。
(Reaction evaluation)
In the autoclave, 3 parts of the catalyst obtained by the above method and 75 parts of a 75 mass% t-butanol aqueous solution as a reaction solvent were put, and the autoclave was sealed. Next, 2.0 parts of isobutylene was introduced, stirring (revolution 1000 rpm) was started, and the temperature was raised to 90 ° C., which is the reaction temperature. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then air was introduced to an internal pressure of 4.8 MPa to initiate the reaction. Every time when the internal pressure decreased by 0.1 MPa during the reaction (internal pressure 4.7 MPa), an operation of introducing 0.1 MPa of oxygen to make the internal pressure 4.8 MPa (hereinafter also referred to as oxygen introducing operation) was repeated 8 times. . The reaction was terminated when the internal pressure decreased to 4.7 MPa after the eighth oxygen introduction.
反応終了後、オートクレーブを氷浴に入れ内容物を冷却した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒を含んだ反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、反応率および選択率を算出した。結果を表1に示した。 After completion of the reaction, the autoclave was placed in an ice bath to cool the contents. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated by a membrane filter, and the reaction solution was recovered. The recovered reaction solution and the collected gas were analyzed by gas chromatography, and the reaction rate and selectivity were calculated. The results are shown in Table 1.
[実施例2]
(触媒調製)
硝酸銀0.08部を純水15部に溶解させた硝酸銀水溶液に、硝酸パラジウム硝酸溶液(田中貴金属製、パラジウム元素含有率24.41wt%)4.1部を加えて得られた均一水溶液に、粒状のシリカ担体(比表面積450m2/g、細孔容積0.68cc/g、メディアン径53.58μm)5部を添加した後、エバポレーションで水を取り除いた。このような浸漬法で金属塩を含浸させた担体を空気中450℃で3時間焼成を行い、パラジウム元素と銀元素が担持されたシリカ担体を得た。得られたシリカ担体を37質量%ホルムアルデヒド水溶液75部に加えた。70℃に加熱し、2時間攪拌保持する還元処理を行った。次いで、吸引ろ過後、温水1000部でろ過洗浄して、パラジウム元素および銀元素が担持されたシリカ担体を得た。
[Example 2]
(Catalyst preparation)
To a uniform aqueous solution obtained by adding 4.1 parts of a palladium nitrate nitric acid solution (made by Takanaka Tanaka, palladium element content 24.41 wt%) to an aqueous silver nitrate solution in which 0.08 part of silver nitrate is dissolved in 15 parts of pure water, After adding 5 parts of a granular silica carrier (specific surface area 450 m 2 / g, pore volume 0.68 cc / g, median diameter 53.58 μm), water was removed by evaporation. The carrier impregnated with the metal salt by such an immersion method was baked in air at 450 ° C. for 3 hours to obtain a silica carrier on which palladium element and silver element were supported. The obtained silica carrier was added to 75 parts of a 37 mass% formaldehyde aqueous solution. A reduction treatment was performed by heating to 70 ° C. and stirring for 2 hours. Next, after suction filtration, it was filtered and washed with 1000 parts of warm water to obtain a silica carrier carrying palladium element and silver element.
このパラジウム元素と銀元素が担持されたシリカ担体を純水50部に分散させ、この分散溶液中に、テルル酸0.06部を純水5部に溶解させたテルル酸水溶液を滴下した。この溶液を70℃に加熱し、2時間攪拌する処理を行った。次いで、吸引ろ過後、温水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、還元されたパラジウム元素、銀元素およびテルル元素がシリカ担体に担持された担持型パラジウム含有触媒を得た。 The silica carrier carrying the palladium element and the silver element was dispersed in 50 parts of pure water, and an aqueous telluric acid solution in which 0.06 part of telluric acid was dissolved in 5 parts of pure water was dropped into the dispersion. The solution was heated to 70 ° C. and stirred for 2 hours. Subsequently, after suction filtration, it was filtered and washed with 1000 parts of warm water. Furthermore, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a supported palladium-containing catalyst in which reduced palladium element, silver element and tellurium element were supported on a silica carrier.
この触媒のAg/Pdは0.05、Te/Pdは0.05であり、パラジウム元素の担持率は20質量%であった。 This catalyst had an Ag / Pd of 0.05, Te / Pd of 0.05, and a palladium element loading of 20% by mass.
(反応評価)
上記で得られた触媒のうち3部を用い、実施例1と同様にして反応評価を行った。結果を表1に示した。
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using 3 parts of the catalyst obtained above. The results are shown in Table 1.
[実施例3]
(触媒調製)
硝酸銀0.16部を純水15部に溶解させた硝酸銀水溶液と、テルル酸0.324部を純水20部に溶解させたテルル酸水溶液の混合均一溶液に、硝酸パラジウム硝酸溶液(田中貴金属製、パラジウム元素含有率24.41wt%)4.10部を加えて均一水溶液を得た。これに、粒状のシリカ担体(比表面積450m2/g、細孔容積0.68cc/g、メディアン径53.58μm)5.0部を添加した後、エバポレーションで水を取り除いた。このような浸漬法で金属塩を含浸させた担体を空気中450℃で3時間焼成を行い、パラジウム元素と銀元素とテルル元素が担持されたシリカ担体を得た。得られたシリカ担体を37質量%ホルムアルデヒド水溶液75部に加え、70℃に加熱し、2時間攪拌保持する還元処理を行った。次いで、吸引ろ過後、温水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、還元されたパラジウム元素、銀元素およびテルル元素がシリカ担体に担持された担持型パラジウム含有触媒を得た。
[Example 3]
(Catalyst preparation)
A mixed solution of silver nitrate aqueous solution in which 0.16 part of silver nitrate is dissolved in 15 parts of pure water and telluric acid aqueous solution in which 0.324 part of telluric acid is dissolved in 20 parts of pure water is mixed with a palladium nitrate nitric acid solution (manufactured by Tanaka Kikinzoku). , Palladium element content 24.41 wt%) 4.10 parts was added to obtain a homogeneous aqueous solution. To this was added 5.0 parts of a granular silica carrier (specific surface area 450 m 2 / g, pore volume 0.68 cc / g, median diameter 53.58 μm), and then water was removed by evaporation. The carrier impregnated with the metal salt by such an immersion method was baked in air at 450 ° C. for 3 hours to obtain a silica carrier on which palladium element, silver element and tellurium element were supported. The obtained silica carrier was added to 75 parts of a 37% by mass aqueous formaldehyde solution, heated to 70 ° C., and subjected to a reduction treatment in which the mixture was stirred for 2 hours. Subsequently, after suction filtration, it was filtered and washed with 1000 parts of warm water. Furthermore, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a supported palladium-containing catalyst in which reduced palladium element, silver element and tellurium element were supported on a silica carrier.
この触媒のAg/Pdは0.1、Te/Pdは0.15であり、パラジウム元素の担持率は20質量%であった。 This catalyst had an Ag / Pd of 0.1, Te / Pd of 0.15, and a palladium element loading of 20% by mass.
(反応評価)
上記で得られた触媒3部を用いて、反応温度を110℃とする以外は実施例1と同様の方法で行った。結果を表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed except that 3 parts of the catalyst obtained above was used and the reaction temperature was changed to 110 ° C. The results are shown in Table 1.
[実施例4]
(触媒調製)
硝酸銀を0.08部、テルル酸を0.22部用いたこと以外は実施例3と同様の方法で担持型パラジウム含有触媒を得た。この触媒のAg/Pdは0.05、Te/Pdは0.1であり、パラジウム元素の担持率は20質量%であった。
[Example 4]
(Catalyst preparation)
A supported palladium-containing catalyst was obtained in the same manner as in Example 3 except that 0.08 part of silver nitrate and 0.22 part of telluric acid were used. This catalyst had an Ag / Pd of 0.05, Te / Pd of 0.1, and a palladium element loading of 20% by mass.
(反応評価)
上記で得られた触媒3部を用いて、実施例3と同様の方法で行った。結果を表1に示した。
(Reaction evaluation)
The same procedure as in Example 3 was performed using 3 parts of the catalyst obtained above. The results are shown in Table 1.
[実施例5]
(触媒調製)
硝酸銀を0.03部、テルル酸を0.22部用いたこと以外は実施例3と同様の方法で担持型パラジウム含有触媒を得た。この触媒のAg/Pdは0.02、Te/Pdは0.1であり、パラジウム元素の担持率は20質量%であった。
[Example 5]
(Catalyst preparation)
A supported palladium-containing catalyst was obtained in the same manner as in Example 3 except that 0.03 part of silver nitrate and 0.22 part of telluric acid were used. This catalyst had an Ag / Pd of 0.02, Te / Pd of 0.1, and a palladium element loading of 20% by mass.
(反応評価)
上記で得られた触媒3部を用いて、実施例3と同様の方法で行った。結果を表1に示した。
(Reaction evaluation)
The same procedure as in Example 3 was performed using 3 parts of the catalyst obtained above. The results are shown in Table 1.
[比較例1]
(触媒調製)
硝酸パラジウム硝酸溶液(田中貴金属製、パラジウム元素含有率24.41wt%)4.1部に純水15部を加えて得られた均一水溶液に、粒状のシリカ担体(比表面積450m2/g、細孔容積0.68cc/g、メディアン径53.58μm)5部を添加した後、エバポレーションで水を取り除いた。このような浸漬法で金属塩を含浸させた担体を空気中450℃で3時間焼成を行い、パラジウム元素が担持されたシリカ担体を得た。得られたシリカ担体を37質量%ホルムアルデヒド水溶液75部に加えた。70℃に加熱し、2時間攪拌保持する還元処理を行った。次いで、吸引ろ過後、温水1000部でろ過洗浄した。さらに窒素流通下100℃で2時間乾燥して、還元されたパラジウム元素がシリカ担体に担持された担持型パラジウム含有触媒を得た。
[Comparative Example 1]
(Catalyst preparation)
To a homogeneous aqueous solution obtained by adding 15 parts of pure water to 4.1 parts of a palladium nitrate nitric acid solution (made by Tanaka Kikinzoku, palladium element content 24.41 wt%), a granular silica support (specific surface area 450 m 2 / g, fine After adding 5 parts (pore volume 0.68 cc / g, median diameter 53.58 μm), water was removed by evaporation. The carrier impregnated with the metal salt by such an immersion method was calcined in air at 450 ° C. for 3 hours to obtain a silica carrier carrying palladium element. The obtained silica carrier was added to 75 parts of a 37 mass% formaldehyde aqueous solution. A reduction treatment was performed by heating to 70 ° C. and stirring for 2 hours. Subsequently, after suction filtration, it was filtered and washed with 1000 parts of warm water. Furthermore, it was dried at 100 ° C. for 2 hours under a nitrogen flow to obtain a supported palladium-containing catalyst in which the reduced palladium element was supported on a silica carrier.
この触媒のパラジウム元素の担持率は20質量%であった。 The palladium element loading of this catalyst was 20% by mass.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様にして反応評価を行った。結果を表1に示した。
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using the catalyst obtained above. The results are shown in Table 1.
[比較例2]
(反応評価)
比較例1で得られた触媒を用いて、実施例3と同様にして反応評価を行った。結果を表1に示した。
[Comparative Example 2]
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 3 using the catalyst obtained in Comparative Example 1. The results are shown in Table 1.
以上より、本発明のパラジウム含有触媒を用いるとα,β−不飽和カルボン酸が高選択率で製造でき、また同等のα,β−カルボン酸選択率において二酸化炭素の副生をおさえることができることが分かった。 As described above, when the palladium-containing catalyst of the present invention is used, α, β-unsaturated carboxylic acid can be produced with high selectivity, and carbon dioxide by-product can be suppressed at equivalent α, β-carboxylic acid selectivity. I understood.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006007525A JP4764174B2 (en) | 2006-01-16 | 2006-01-16 | Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006007525A JP4764174B2 (en) | 2006-01-16 | 2006-01-16 | Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007185633A true JP2007185633A (en) | 2007-07-26 |
JP4764174B2 JP4764174B2 (en) | 2011-08-31 |
Family
ID=38341166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006007525A Active JP4764174B2 (en) | 2006-01-16 | 2006-01-16 | Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4764174B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284440A (en) * | 2007-05-16 | 2008-11-27 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING/CARRYING CATALYST AND alpha,beta-UNSATURATED CARBOXYLIC ACID PREPARING METHOD |
JP2009006236A (en) * | 2007-06-27 | 2009-01-15 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
JP2009011896A (en) * | 2007-07-02 | 2009-01-22 | Mitsubishi Rayon Co Ltd | OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD |
JP2009297634A (en) * | 2008-06-12 | 2009-12-24 | Mitsubishi Rayon Co Ltd | NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6176436A (en) * | 1984-09-20 | 1986-04-18 | Mitsubishi Rayon Co Ltd | Production of unsaturated carboxylic acid |
-
2006
- 2006-01-16 JP JP2006007525A patent/JP4764174B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6176436A (en) * | 1984-09-20 | 1986-04-18 | Mitsubishi Rayon Co Ltd | Production of unsaturated carboxylic acid |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284440A (en) * | 2007-05-16 | 2008-11-27 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING/CARRYING CATALYST AND alpha,beta-UNSATURATED CARBOXYLIC ACID PREPARING METHOD |
JP2009006236A (en) * | 2007-06-27 | 2009-01-15 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
JP2009011896A (en) * | 2007-07-02 | 2009-01-22 | Mitsubishi Rayon Co Ltd | OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD |
JP2009297634A (en) * | 2008-06-12 | 2009-12-24 | Mitsubishi Rayon Co Ltd | NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID |
Also Published As
Publication number | Publication date |
---|---|
JP4764174B2 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846576B2 (en) | Palladium-containing catalyst and method for producing the same | |
JP5017092B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4764174B2 (en) | Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4846625B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4571872B2 (en) | Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP5804145B2 (en) | Method for producing palladium-containing catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP4908332B2 (en) | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4911361B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4908328B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2013180242A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACIDS | |
JP5280239B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5645050B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5648520B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2011104457A (en) | PALLADIUM-CONTAINING SUPPORTED CATALYST, METHOD OF PREPARING THE SAME, AND METHOD OF PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5006175B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5247081B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP5069412B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2010179258A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5340705B2 (en) | Method for producing noble metal-containing catalyst, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
JP2011235215A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP4446807B2 (en) | Palladium-containing catalyst and method for producing the same, and method for producing α, β-unsaturated aldehyde and α, β-unsaturated carboxylic acid | |
JP5084004B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2013180241A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING SUPPORTED CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACIDS | |
JP2012166188A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP5416886B2 (en) | Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110610 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4764174 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |