JP2009011896A - OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD - Google Patents
OXIDATION CATALYST, ITS MANUFACTURING METHOD, AND alpha,beta-UNSATURATED CARBOXYLIC ACID PRODUCTION METHOD Download PDFInfo
- Publication number
- JP2009011896A JP2009011896A JP2007174105A JP2007174105A JP2009011896A JP 2009011896 A JP2009011896 A JP 2009011896A JP 2007174105 A JP2007174105 A JP 2007174105A JP 2007174105 A JP2007174105 A JP 2007174105A JP 2009011896 A JP2009011896 A JP 2009011896A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- palladium
- mass
- cobalt
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
本発明はオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するための酸化触媒、その製造方法、並びにα,β−不飽和カルボン酸の製造方法に関する。 The present invention relates to an oxidation catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, a method for producing the same, and a method for producing an α, β-unsaturated carboxylic acid.
α,β−不飽和カルボン酸は工業上有用な物質が多い。例えば、アクリル酸やメタクリル酸は合成樹脂原料などの用途に極めて大量に使用されている。α,β−不飽和カルボン酸を製造する方法として、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相中で酸化して製造する方法について研究がされている。オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相中で酸化してα,β−不飽和カルボン酸を製造するための触媒として、例えば、特許文献1ではパラジウム含有触媒が提案されている。また、オレフィンを分子状酸素により液相中で酸化してα,β−不飽和カルボン酸を製造するための触媒として、例えば、特許文献2では、パラジウムと、鉛、ビスマス、タリウム又は水銀との金属間化合物を含有するパラジウム含有触媒が提案されている。
しかしながら、特許文献1および2のパラジウム含有触媒を使用した液相中での酸化では、目的生成物であるα,β−不飽和カルボン酸の生産性が必ずしも十分ではない。さらに、上記の触媒を用いた使用した液相中での酸化では、二酸化炭素の副生が多かった。副生する二酸化炭素の選択率が高くなるとα,β−不飽和カルボン酸の選択率が低下し、ひいてはα,β−不飽和カルボン酸の生産性が低下するため、二酸化炭素の選択率を抑えられる触媒が望まれていた。 However, in the oxidation in the liquid phase using the palladium-containing catalysts of Patent Documents 1 and 2, the productivity of the target product α, β-unsaturated carboxylic acid is not always sufficient. Furthermore, in the oxidation in the liquid phase using the above catalyst, carbon dioxide was a byproduct. As the by-product carbon dioxide selectivity increases, the selectivity of α, β-unsaturated carboxylic acid decreases, and the productivity of α, β-unsaturated carboxylic acid decreases. The desired catalyst was desired.
したがって、本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造するための触媒、その触媒の製造方法、並びにその触媒を用いるα,β−不飽和カルボン酸の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a catalyst for producing an α, β-unsaturated carboxylic acid with high productivity from an olefin or an α, β-unsaturated aldehyde, a method for producing the catalyst, and α, It is providing the manufacturing method of (beta) -unsaturated carboxylic acid.
本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するための酸化触媒であって、パラジウム元素と、テルル元素と、コバルト元素とを含有する酸化触媒である。 The present invention relates to an oxidation catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, the oxidation catalyst containing palladium element, tellurium element and cobalt element. is there.
また、本発明は、前記の酸化触媒を製造する方法であって、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程、酸化状態のテルル元素を含む化合物を混合する工程、および酸化状態のパラジウム元素を含む化合物を混合する工程を含む酸化触媒の製造方法である。 The present invention is also a method for producing the oxidation catalyst, the step of reducing the compound containing palladium element in the oxidized state with a reducing agent, the step of mixing the compound containing tellurium element in the oxidized state, and the oxidation state It is the manufacturing method of the oxidation catalyst including the process of mixing the compound containing the palladium element of.
また、本発明は、前記の酸化触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相中で酸化するα,β−不飽和カルボン酸の製造方法である。 The present invention is also a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is oxidized in the liquid phase with molecular oxygen using the oxidation catalyst.
本発明によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造可能な酸化触媒を提供することができる。そして、その酸化触媒を用いることで、α,β−不飽和カルボン酸を高生産性で製造することができる。さらには、二酸化炭素の副生を減らすことができる。 According to the present invention, it is possible to provide an oxidation catalyst capable of producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high productivity. And the alpha, beta-unsaturated carboxylic acid can be manufactured by high productivity by using the oxidation catalyst. Furthermore, carbon dioxide by-products can be reduced.
本発明の酸化触媒(以後、略して「触媒」ともいう。)は、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相中で酸化してα,β−不飽和カルボン酸を製造する(以後、略して「液相酸化」ともいう。)ための触媒であり、パラジウム元素と、テルル元素と、コバルト元素とを含有するものである。このような組成の酸化触媒とすることで、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高生産性で製造することが可能となる。 The oxidation catalyst of the present invention (hereinafter also referred to as “catalyst” for short) produces an α, β-unsaturated carboxylic acid by oxidizing an olefin or α, β-unsaturated aldehyde with molecular oxygen in the liquid phase. (Hereinafter also referred to as “liquid phase oxidation” for short), and contains a palladium element, a tellurium element, and a cobalt element. By using an oxidation catalyst having such a composition, it becomes possible to produce an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high productivity.
酸化触媒に含まれるパラジウム元素の化学状態は特に限定されず、金属状態でも酸化状態でもよいが、高い触媒活性を示すことからパラジウム元素は金属状態であることが好ましい。 The chemical state of the palladium element contained in the oxidation catalyst is not particularly limited, and it may be in the metal state or in the oxidized state, but it is preferable that the palladium element is in the metal state because it exhibits high catalytic activity.
酸化触媒に含まれる、パラジウム元素に対するテルル元素のモル比(Te/Pd)は、0を超えることが必要であるが、0.002〜0.30が好ましく、0.003〜0.25がより好ましい。Te/Pdは、後述する酸化触媒の製造に使用する、パラジウム元素及びテルル元素の各原料の配合比等により調整可能である。 The molar ratio (Te / Pd) of tellurium element to palladium element contained in the oxidation catalyst needs to exceed 0, but is preferably 0.002 to 0.30, more preferably 0.003 to 0.25. preferable. Te / Pd can be adjusted by the blending ratio of each raw material of palladium element and tellurium element used for manufacturing the oxidation catalyst described later.
酸化触媒に含まれるテルル元素の化学状態は特に限定されず、金属状態でも酸化状態でもよいが、パラジウム元素の電子状態をより変化させることから、テルル元素は金属状態であることが好ましい。また、テルル元素と隣接することにより電子状態が大きく変化したパラジウム元素の割合が高くなることから、テルル元素はパラジウム元素と合金化もしくは金属間化合物を形成していることがより好ましい。 The chemical state of the tellurium element contained in the oxidation catalyst is not particularly limited and may be a metal state or an oxidized state. However, since the electronic state of the palladium element is further changed, the tellurium element is preferably in the metal state. Moreover, since the ratio of the palladium element which the electronic state changed greatly by adjoining the tellurium element becomes high, it is more preferable that the tellurium element is alloyed or formed an intermetallic compound with the palladium element.
酸化触媒に含まれる、パラジウム元素に対するコバルト元素のモル比(Co/Pd)は、0を超えることが必要であるが、0.002〜0.30が好ましく、0.003〜0.10がより好ましい。Co/Pdは、後述する酸化触媒の製造に使用する、パラジウム元素及びコバルト元素の各原料の配合比等により調整可能である。 The molar ratio of cobalt element to palladium element (Co / Pd) contained in the oxidation catalyst needs to exceed 0, but is preferably 0.002 to 0.30, more preferably 0.003 to 0.10. preferable. Co / Pd can be adjusted by the blending ratio of each raw material of palladium element and cobalt element used for the production of the oxidation catalyst described later.
酸化触媒に含まれるコバルト元素の化学状態は特に限定されず、金属状態でも酸化状態でもよいが、パラジウム元素の電子状態をより変化させることから、コバルト元素は金属状態であることが好ましい。また、コバルト元素と隣接することにより電子状態が大きく変化したパラジウム元素の割合が高くなることから、コバルト元素はパラジウム元素と合金化もしくは金属間化合物を形成していることがより好ましい。 The chemical state of the cobalt element contained in the oxidation catalyst is not particularly limited and may be a metal state or an oxidized state. However, since the electronic state of the palladium element is further changed, the cobalt element is preferably in the metal state. Moreover, since the ratio of the palladium element which the electronic state changed greatly by adjoining a cobalt element becomes high, it is more preferable that a cobalt element is alloying or forming an intermetallic compound with a palladium element.
酸化触媒に含まれる、Te/PdとCo/Pdとの和((Te+Co)/Pd)は、0を超えることが必要であるが、α,β−不飽和カルボン酸の選択率をより高め、二酸化炭素の副生をより減らすためには、0.004〜0.40が好ましく、0.006〜0.30がより好ましい。 The sum of Te / Pd and Co / Pd ((Te + Co) / Pd) contained in the oxidation catalyst needs to exceed 0, but the selectivity of α, β-unsaturated carboxylic acid is further increased, In order to further reduce carbon dioxide by-product, 0.004 to 0.40 is preferable, and 0.006 to 0.30 is more preferable.
なお、Te/Pd、Co/Pd、および(Te+Co)/Pdは、調製後の酸化触媒に含まれるパラジウム元素、テルル元素およびコバルト元素の質量及び原子量から算出できる。酸化触媒中のパラジウム元素、テルル元素およびコバルト元素の質量は、以下の方法で測定できる。 Te / Pd, Co / Pd, and (Te + Co) / Pd can be calculated from the mass and atomic weight of palladium element, tellurium element, and cobalt element contained in the prepared oxidation catalyst. The mass of palladium element, tellurium element and cobalt element in the oxidation catalyst can be measured by the following method.
すなわち、酸化触媒、濃硝酸、濃硫酸、塩酸及び弗酸をテフロン(登録商標)製分解管に取り、マイクロ波加熱分解装置で溶解処理を行う。溶解液をメスフラスコにメスアップし、ICP発光分光分析装置で定量することで、酸化触媒中のパラジウム元素、テルル元素およびコバルト元素の質量を得ることができる。 That is, an oxidation catalyst, concentrated nitric acid, concentrated sulfuric acid, hydrochloric acid, and hydrofluoric acid are placed in a Teflon (registered trademark) decomposition tube and dissolved in a microwave thermal decomposition apparatus. Mass of the palladium element, tellurium element, and cobalt element in the oxidation catalyst can be obtained by measuring the dissolved solution in a volumetric flask and quantifying with an ICP emission spectroscopic analyzer.
本発明の酸化触媒は、他の金属元素を含有しても良い。例えば、白金、ロジウム、ルテニウム、イリジウム、金、銀、オスミウム等の貴金属元素、アンチモン、タリウム、鉛等の卑金属元素が挙げられる。他の金属元素は、2種以上含むこともできる。高い触媒活性を発現させる観点から、酸化触媒に含まれる金属元素のうち、パラジウム元素、テルル元素、及びコバルト元素の合計量が50質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The oxidation catalyst of the present invention may contain other metal elements. Examples thereof include noble metal elements such as platinum, rhodium, ruthenium, iridium, gold, silver and osmium, and base metal elements such as antimony, thallium and lead. Two or more other metal elements can be included. From the viewpoint of expressing high catalytic activity, the total amount of palladium element, tellurium element, and cobalt element among the metal elements contained in the oxidation catalyst is preferably 50% by mass or more, and preferably 80% by mass or more. More preferred.
本発明の酸化触媒は、非担持型でも良いが、パラジウム元素、テルル元素及びコバルト元素が担体に担持されている担持型とすることが好ましい。担体としては、例えば、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができるが、中でもシリカ、チタニアおよびジルコニアが好ましい。担体は1種でもよいが、2種以上を用いることもできる。2種以上を用いる場合は、例えば、シリカとアルミナを混合して得られる混合酸化物等の混合物、複合酸化物であるシリカ−アルミナ等の複合物等が挙げられる。 The oxidation catalyst of the present invention may be a non-supported type, but is preferably a supported type in which palladium element, tellurium element and cobalt element are supported on a support. Examples of the carrier include activated carbon, carbon black, silica, alumina, magnesia, calcia, titania and zirconia, among which silica, titania and zirconia are preferable. One type of carrier may be used, but two or more types may be used. When using 2 or more types, for example, a mixture such as a mixed oxide obtained by mixing silica and alumina, a composite such as silica-alumina which is a composite oxide, and the like can be given.
好ましい担体の比表面積は担体の種類等により異なるので一概に言えないが、シリカの場合、50m2/g以上が好ましく、100m2/g以上がより好ましい。また、1500m2/g以下が好ましく、1000m2/g以下がより好ましい。担体の比表面積は、上記範囲で小さいほど有用成分(パラジウム元素、テルル元素及びコバルト元素)がより表面に担持された触媒の製造が可能となり、上記範囲で大きいほど有用成分が多く担持された触媒の製造が可能となる。 Although the specific surface area of the preferred support can not be said sweepingly because different by the kind of carrier, the case of silica, preferably at least 50m 2 / g, 100m 2 / g or more is more preferable. Moreover, 1500 m < 2 > / g or less is preferable and 1000 m < 2 > / g or less is more preferable. The smaller the specific surface area of the support, the more the useful components (palladium element, tellurium element and cobalt element) supported on the surface can be produced, and the larger the range, the more useful components supported. Can be manufactured.
担体の細孔容積は特に限定されないが、0.1cc/g〜2.0cc/gが好ましく、0.2cc/g〜1.5cc/gがより好ましい。 The pore volume of the carrier is not particularly limited, but is preferably 0.1 cc / g to 2.0 cc / g, more preferably 0.2 cc / g to 1.5 cc / g.
担体の形状やサイズは、反応装置の形状、サイズ等によって異なり、特に制限されないが、例えば、粉末状、粒状、球状、ペレット状など種々の形状が挙げられる。中でもろ別等の操作性が容易な粒状、球状が好ましい。担体が粉末状や粒状の場合の粒径(メディアン径)は、0.5μm〜200μmが好ましく、1.0μm〜100μmがより好ましい。担体の粒径は大きいほど触媒と反応液の分離が容易になり、小さいほど反応液中における触媒の分散性がよくなる。 The shape and size of the carrier vary depending on the shape and size of the reaction apparatus and are not particularly limited, and examples thereof include various shapes such as powder, granules, spheres, and pellets. Among these, granular and spherical shapes are preferable because they are easy to operate such as filtration. The particle diameter (median diameter) when the carrier is powdery or granular is preferably 0.5 μm to 200 μm, more preferably 1.0 μm to 100 μm. The larger the particle size of the carrier, the easier the separation of the catalyst and the reaction solution, and the smaller the support, the better the dispersibility of the catalyst in the reaction solution.
担持型触媒の場合、パラジウム元素、テルル元素及びコバルト元素の合計の担持率は、担持前の担体質量に対して1質量%〜40質量%が好ましく、2質量%〜30質量%がより好ましく、4質量%〜20質量%が特に好ましい。 In the case of a supported catalyst, the total supported rate of palladium element, tellurium element, and cobalt element is preferably 1% by mass to 40% by mass, more preferably 2% by mass to 30% by mass with respect to the mass of the carrier before support, 4 mass%-20 mass% are especially preferable.
なお、用いた担体の質量は、以下の方法で測定できる。すなわち、担体がシリカの場合、触媒を白金るつぼに取り、炭酸ナトリウムを加えて融解し、蒸留水を加えて均一溶液として、ICPで試料溶液中のSi原子を定量することで、シリコン元素の質量を得ることができる。担体がチタニアあるいはジルコニアの場合、触媒をテフロン(登録商標)製分解管に取り、濃硫酸及び弗酸を加えてマイクロ波加熱分解装置で溶解し、蒸留水を加えて均一溶液として、ICPで試料溶液中のTiあるいはZr原子を定量することで、チタン元素あるいはジルコニア元素の質量を得ることができる。 The mass of the carrier used can be measured by the following method. That is, when the support is silica, the catalyst is taken up in a platinum crucible, melted by adding sodium carbonate, and distilled water is added to form a homogeneous solution, and the amount of silicon element is determined by ICP quantitative determination of Si atoms in the sample solution. Can be obtained. When the support is titania or zirconia, the catalyst is put in a Teflon (registered trademark) decomposition tube, concentrated sulfuric acid and hydrofluoric acid are added and dissolved in a microwave thermal decomposition apparatus, distilled water is added to form a uniform solution, and a sample is obtained by ICP. By quantifying Ti or Zr atoms in the solution, the mass of titanium element or zirconia element can be obtained.
本発明の酸化触媒は、パラジウム元素、テルル元素、およびコバルト元素の各単体金属、これら元素の合金、これら元素を含む化合物を原料として製造することができる。中でも、担体上に有用成分が高分散された高活性な触媒を簡便に調製できることから、原料としてはこれら元素を含む化合物が好ましい。 The oxidation catalyst of the present invention can be produced using, as raw materials, elemental metals of palladium element, tellurium element, and cobalt element, alloys of these elements, and compounds containing these elements. Among these, a compound containing these elements is preferable as a raw material because a highly active catalyst in which useful components are highly dispersed on a carrier can be easily prepared.
パラジウム元素の原料は特に限定されず、パラジウム金属、パラジウム塩、酸化パラジウム等を挙げることができるが、中でもパラジウム塩が好ましい。パラジウム塩としては、例えば、塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンパラジウム塩化物およびビス(アセチルアセトナト)パラジウム等を挙げることができるが、中でも塩化パラジウム、酢酸パラジウム、硝酸パラジウム、テトラアンミンパラジウム塩化物が好ましく、硝酸パラジウムが特に好ましい。 The raw material of the palladium element is not particularly limited, and examples thereof include palladium metal, palladium salt, palladium oxide, etc. Among them, palladium salt is preferable. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, tetraamminepalladium chloride and bis (acetylacetonato) palladium, among which palladium chloride, palladium acetate, palladium nitrate, tetraammine. Palladium chloride is preferred and palladium nitrate is particularly preferred.
テルル元素の原料は特に限定されず、テルル金属、テルル塩、テルル酸およびその塩、亜テルル酸およびその塩、酸化テルル等を挙げることができる。テルル塩としては、例えば、テルル化水素、四塩化テルル、二塩化テルル、六フッ化テルル、四ヨウ化テルル、四臭化テルル、二臭化テルル等を挙げることができる。テルル酸塩としては、例えば、テルル酸ナトリウム、テルル酸カリウム等を挙げることができる。亜テルル酸塩としては、例えば、亜テルル酸ナトリウム、亜テルル酸カリウム等を挙げることができる。中でもテルル酸およびその塩、亜テルル酸およびその塩、酸化テルルが好ましい。 The raw material of the tellurium element is not particularly limited, and examples include tellurium metal, tellurium salt, telluric acid and its salt, telluric acid and its salt, tellurium oxide and the like. Examples of tellurium salts include hydrogen telluride, tellurium tetrachloride, tellurium dichloride, tellurium hexafluoride, tellurium tetraiodide, tellurium tetrabromide, tellurium dibromide, and the like. Examples of tellurate include sodium tellurate and potassium tellurate. Examples of tellurite include sodium tellurite and potassium tellurite. Of these, telluric acid and its salt, telluric acid and its salt, and tellurium oxide are preferred.
コバルト元素の原料は特に限定されず、コバルト金属、コバルト塩、酸化コバルト等を挙げることができる。コバルト塩としては、例えば、酢酸コバルト(II)、臭化コバルト(II)、塩基性炭酸コバルト(II)、塩化コバルト(II)、よう化コバルト(II)、硝酸コバルト(II)、硫酸コバルト(II)等を挙げることができる。中でも酸化コバルトおよび硝酸コバルトが好ましい。 The raw material for the cobalt element is not particularly limited, and examples thereof include cobalt metal, cobalt salt, and cobalt oxide. Examples of the cobalt salt include cobalt acetate (II), cobalt bromide (II), basic cobalt carbonate (II), cobalt chloride (II), cobalt iodide (II), cobalt nitrate (II), cobalt sulfate ( II) and the like. Of these, cobalt oxide and cobalt nitrate are preferred.
上記のようなパラジウム元素、テルル元素及びコバルト元素の原料を適宜選択して、酸化触媒を製造するための原料として用いる。これらの原料の配合比は、酸化触媒中のパラジウム元素、テルル元素及びコバルト元素のモル比が目的とする値となるように適宜選択する。 The raw materials of palladium element, tellurium element and cobalt element as described above are appropriately selected and used as raw materials for producing an oxidation catalyst. The mixing ratio of these raw materials is appropriately selected so that the molar ratio of palladium element, tellurium element and cobalt element in the oxidation catalyst becomes a target value.
酸化触媒の製造方法では、酸化状態のパラジウム元素を含む化合物を還元剤で還元する工程、酸化状態のテルル元素を含む化合物を混合する工程、および酸化状態のパラジウム元素を含む化合物を混合する工程を含むことが好ましい。より好ましい製造方法としては、パラジウム元素、テルル元素及びコバルト元素の原料として、それぞれ、酸化状態のパラジウム元素を有する化合物、酸化状態のテルル元素を有する化合物、酸化状態のコバルト元素を有する化合物を選択して混合し、還元剤と接触させて、少なくともパラジウム元素を還元する方法を挙げることができる。その際、還元剤との接触により、テルル元素及び/又はコバルト元素も還元されていることがさらに好ましい。 The method for producing an oxidation catalyst includes a step of reducing a compound containing palladium element in an oxidized state with a reducing agent, a step of mixing a compound containing tellurium element in an oxidized state, and a step of mixing a compound containing palladium element in an oxidized state. It is preferable to include. As a more preferable production method, as a raw material of palladium element, tellurium element and cobalt element, respectively, a compound having palladium element in oxidation state, a compound having tellurium element in oxidation state, and a compound having cobalt element in oxidation state are selected. And a method of reducing at least palladium element by contacting with a reducing agent. At that time, it is more preferable that tellurium element and / or cobalt element is also reduced by contact with the reducing agent.
また、担持型の酸化触媒を製造する場合は、上記原料を担体に担持させれば良い。担体の使用量は、目的とする担持率の触媒が得られるように適宜選択する。 In the case of producing a supported oxidation catalyst, the raw material may be supported on a carrier. The amount of the carrier used is appropriately selected so that a catalyst having a desired loading rate can be obtained.
原料を担体に担持させる方法は、特に限定されないが、例えば沈澱法、イオン交換法、含浸法、沈着法等が挙げられる。含浸法で製造する場合は、パラジウム元素、テルル元素及びコバルト元素の原料を同時に含浸担持してもよいし、いずれかの原料を含浸担持した後、残りの原料を含浸担持してもよい。 A method for supporting the raw material on the carrier is not particularly limited, and examples thereof include a precipitation method, an ion exchange method, an impregnation method, and a deposition method. In the case of producing by the impregnation method, the raw materials of palladium element, tellurium element and cobalt element may be impregnated and supported at the same time, or after impregnating and supporting any of the raw materials, the remaining raw materials may be impregnated and supported.
また、パラジウム元素、テルル元素及びコバルト元素の原料を担体に担持した後に熱処理して、酸化パラジウム、酸化テルルおよび酸化コバルトが担体に担持された状態にしてもよい。熱処理温度の範囲としては、200℃〜800℃が好ましく、300℃〜700℃がより好ましい。熱処理時間は特に限定されないが、1時間から12時間の範囲が好ましい。 Alternatively, the palladium element, tellurium element, and cobalt element raw materials may be supported on the support and then heat-treated so that palladium oxide, tellurium oxide, and cobalt oxide are supported on the support. The range of the heat treatment temperature is preferably 200 ° C to 800 ° C, more preferably 300 ° C to 700 ° C. The heat treatment time is not particularly limited, but is preferably in the range of 1 hour to 12 hours.
そして、酸化状態のパラジウム元素、酸化状態のテルル元素および酸化状態のコバルト元素が担体に担持された状態で、還元剤で還元して酸化触媒を製造することができる。 The oxidation catalyst can be produced by reducing with a reducing agent in a state where the oxidized palladium element, the oxidized tellurium element and the oxidized cobalt element are supported on the carrier.
用いる還元剤は特に限定されないが、例えば、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、水素、蟻酸、蟻酸の塩、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン、1,3−ブタジエン、1−ヘプテン、2−ヘプテン、1−ヘキセン、2−ヘキセン、シクロヘキセン、アリルアルコール、メタリルアルコール、アクロレインおよびメタクロレイン等が挙げられる。2種以上を併用することもできる。気相での還元では、還元剤として水素が好ましい。また、液相での反応では還元剤としてヒドラジン、ホルムアルデヒド、蟻酸、蟻酸の塩が好ましい。 The reducing agent to be used is not particularly limited. For example, hydrazine, formaldehyde, sodium borohydride, hydrogen, formic acid, formic acid salt, ethylene, propylene, 1-butene, 2-butene, isobutylene, 1,3-butadiene, 1-butadiene, Examples include heptene, 2-heptene, 1-hexene, 2-hexene, cyclohexene, allyl alcohol, methallyl alcohol, acrolein, and methacrolein. Two or more kinds can be used in combination. For reduction in the gas phase, hydrogen is preferred as the reducing agent. In the reaction in the liquid phase, hydrazine, formaldehyde, formic acid, and a salt of formic acid are preferable as the reducing agent.
液相中での還元の際に使用する溶媒としては、水が好ましいが、担持型とする場合の担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸、n−吉草酸、イソ吉草酸等の有機酸類;ヘプタン、ヘキサン、シクロヘキサン等の炭化水素類等の有機溶媒を単独又は複数組み合わせて用いることができる。これらと水との混合溶媒を用いることもできる。 The solvent used in the reduction in the liquid phase is preferably water, but depending on the dispersibility of the carrier in the case of a supported type, ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol Alcohols such as acetone; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and isovaleric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane alone Or it can be used in combination. A mixed solvent of these and water can also be used.
還元剤が気体の場合、溶液中への溶解度を挙げるためにオートクレーブ等の加圧装置中で行うことが好ましい。その際、加圧装置の内部は還元剤で加圧する。その圧力は0.1MPa(ゲージ圧;以下圧力はゲージ圧表記とする)から1.0MPaの範囲が好ましい。 When the reducing agent is a gas, it is preferably carried out in a pressurizing apparatus such as an autoclave in order to increase the solubility in the solution. At that time, the inside of the pressurizer is pressurized with a reducing agent. The pressure is preferably in the range of 0.1 MPa (gauge pressure; hereinafter, pressure is expressed as gauge pressure) to 1.0 MPa.
また、還元剤が液体の場合、還元を行う装置に制限はなく、溶液中に還元剤を添加することで行うことができる。この時の還元剤の使用量は特に限定されないが、酸化状態のパラジウム元素1モルに対して1モルから100モルの範囲が好ましい。 In addition, when the reducing agent is a liquid, there is no limitation on the apparatus for performing the reduction, and it can be performed by adding the reducing agent to the solution. The amount of the reducing agent used at this time is not particularly limited, but is preferably in the range of 1 mol to 100 mol with respect to 1 mol of palladium element in the oxidized state.
還元温度および還元時間は還元剤等により異なるが、還元温度は−5℃〜150℃が好ましく、15℃〜80℃以下がより好ましい。還元時間は0.1時間〜4時間が好ましく、0.25時間〜3時間がより好ましく、0.5時間〜2時間が特に好ましい。 Although the reduction temperature and reduction time vary depending on the reducing agent and the like, the reduction temperature is preferably −5 ° C. to 150 ° C., more preferably 15 ° C. to 80 ° C. or less. The reduction time is preferably 0.1 to 4 hours, more preferably 0.25 to 3 hours, and particularly preferably 0.5 to 2 hours.
還元により調製した酸化触媒は、水、溶媒等で洗浄することが好ましい。水、溶媒等での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等の原料由来の不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によってはオレフィンまたはα,β−不飽和アルデヒドの液相酸化反応を阻害する恐れがあるため、不純物を十分除去できる程度に洗浄することが好ましい。洗浄された触媒は、ろ別または遠心分離などにより回収した後、そのまま反応に用いてもよい。 The oxidation catalyst prepared by reduction is preferably washed with water, a solvent or the like. By washing with water, a solvent or the like, impurities derived from raw materials such as chloride, acetate radical, nitrate radical and sulfate radical are removed. The washing method and number of times are not particularly limited, but depending on the impurities, the liquid phase oxidation reaction of olefins or α, β-unsaturated aldehydes may be hindered. Therefore, washing is preferably performed to such an extent that impurities can be sufficiently removed. The washed catalyst may be recovered by filtration or centrifugation and used for the reaction as it is.
また、回収された触媒を乾燥してもよい。乾燥方法は特に限定されないが、通常は乾燥機を用いて空気中または不活性ガス中で乾燥する。乾燥された触媒は、必要に応じて液相酸化反応に使用する前に活性化することもできる。活性化の方法には特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によれば、パラジウム金属表面の酸化皮膜と洗浄で取り除けなかった不純物を除去することができる。調製した触媒の物性は、BET表面積測定、XRD測定、COパルス吸着法、TEM測定、XPS測定等により確認できる。 Further, the recovered catalyst may be dried. The drying method is not particularly limited, but it is usually dried in air or in an inert gas using a dryer. The dried catalyst can be activated before use in a liquid phase oxidation reaction, if desired. The activation method is not particularly limited, and examples thereof include a heat treatment method in a reducing atmosphere in a hydrogen stream. According to this method, the oxide film on the surface of the palladium metal and impurities that could not be removed by washing can be removed. The physical properties of the prepared catalyst can be confirmed by BET surface area measurement, XRD measurement, CO pulse adsorption method, TEM measurement, XPS measurement and the like.
次に、本発明の酸化触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化して、α,β−不飽和カルボン酸を製造する方法について説明する。 Next, a method for producing an α, β-unsaturated carboxylic acid by liquid phase oxidation of olefin or α, β-unsaturated aldehyde with molecular oxygen using the oxidation catalyst of the present invention will be described.
原料のオレフィンとしては、例えば、プロピレン、イソブチレン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。オレフィンは2種以上併用することもできる。原料のオレフィンは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。 Examples of the raw material olefin include propylene, isobutylene, and 2-butene. Among these, propylene and isobutylene are preferable. Two or more olefins can be used in combination. The raw material olefin may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.
オレフィンから製造されるα,β−不飽和カルボン酸は、オレフィンと同一炭素骨格を有するα,β−不飽和カルボン酸である。具体的には、原料がプロピレンの場合アクリル酸が得られ、原料がイソブチレンの場合メタクリル酸が得られる。また、オレフィンからは通常α,β−不飽和アルデヒドが同時に得られる。このα,β−不飽和アルデヒドは、オレフィンと同一炭素骨格を有するα,β−不飽和アルデヒドである。例えば、原料がプロピレンの場合アクロレインが得られ、原料がイソブチレンの場合メタクロレインが得られる。 An α, β-unsaturated carboxylic acid produced from an olefin is an α, β-unsaturated carboxylic acid having the same carbon skeleton as the olefin. Specifically, acrylic acid is obtained when the raw material is propylene, and methacrylic acid is obtained when the raw material is isobutylene. In addition, α, β-unsaturated aldehyde is usually obtained from olefin at the same time. This α, β-unsaturated aldehyde is an α, β-unsaturated aldehyde having the same carbon skeleton as the olefin. For example, acrolein is obtained when the raw material is propylene, and methacrolein is obtained when the raw material is isobutylene.
原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。中でもアクロレインおよびメタクロレインが好適である。α,β−不飽和アルデヒドは2種以上併用することもできる。原料のα,β−不飽和アルデヒドは、不純物として飽和炭化水素および/または低級飽和アルデヒド等を少量含んでいてもよい。 Examples of the raw α, β-unsaturated aldehyde include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Of these, acrolein and methacrolein are preferable. Two or more α, β-unsaturated aldehydes can be used in combination. The raw α, β-unsaturated aldehyde may contain a small amount of saturated hydrocarbon and / or lower saturated aldehyde as impurities.
α,β−不飽和アルデヒドから製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β−不飽和カルボン酸である。具体的には、原料がアクロレインの場合アクリル酸が得られ、原料がメタクロレインの場合メタクリル酸が得られる。 The α, β-unsaturated carboxylic acid produced from the α, β-unsaturated aldehyde is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. Specifically, acrylic acid is obtained when the raw material is acrolein, and methacrylic acid is obtained when the raw material is methacrolein.
液相酸化の原料としては、オレフィン及びα,β−不飽和アルデヒドの一方だけを使用してもよく、両者の混合物を使用してもよい。 As a raw material for liquid phase oxidation, only one of olefin and α, β-unsaturated aldehyde may be used, or a mixture of both may be used.
液相酸化は連続式、バッチ式のいずれの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。 Liquid phase oxidation may be carried out in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.
液相酸化に用いる分子状酸素の源は、空気が経済的であり好ましいが、純酸素または純酸素と空気の混合ガスを用いることもでき、必要であれば、空気または純酸素を窒素、二酸化炭素、水蒸気等で希釈した混合ガスを用いることもできる。このような分子状酸素を含有するガスは、通常オートクレーブ等の反応容器内に加圧状態で供給することが好ましい。 As the source of molecular oxygen used for liquid phase oxidation, air is economical and preferable. However, pure oxygen or a mixed gas of pure oxygen and air can also be used. If necessary, air or pure oxygen is mixed with nitrogen, dioxide. A mixed gas diluted with carbon, water vapor or the like can also be used. Such a gas containing molecular oxygen is usually preferably supplied in a pressurized state in a reaction vessel such as an autoclave.
液相酸化に用いる溶媒としては、例えば、t−ブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの有機溶媒を用いることが好ましい。中でも、t−ブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸からなる群から選ばれる少なくとも1つの有機溶媒がより好ましい。また、α,β−不飽和カルボン酸をより選択率よく製造するために、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して2質量%〜70質量%が好ましく、5質量%〜50質量%がより好ましい。2種以上の混合溶媒の場合、その溶媒は均一な状態であることが望ましいが、不均一な状態であっても差し支えない。 Examples of the solvent used for the liquid phase oxidation include t-butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, and acetic acid. It is preferable to use at least one organic solvent selected from the group consisting of ethyl and methyl propionate. Among these, at least one organic solvent selected from the group consisting of t-butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid is more preferable. Further, in order to produce an α, β-unsaturated carboxylic acid with higher selectivity, it is preferable to coexist water in these organic solvents. Although the quantity of the water to coexist is not specifically limited, 2 mass%-70 mass% are preferable with respect to the total mass of an organic solvent and water, and 5 mass%-50 mass% are more preferable. In the case of two or more kinds of mixed solvents, the solvent is desirably in a uniform state, but may be in a non-uniform state.
液相酸化の原料となるオレフィンおよびα,β−不飽和アルデヒドの合計濃度は、反応器内に存在する溶媒に対して0.1質量%〜30質量%が好ましく、0.5質量%〜20質量%がより好ましい。 The total concentration of the olefin and α, β-unsaturated aldehyde used as the liquid phase oxidation raw material is preferably 0.1% by mass to 30% by mass, and 0.5% by mass to 20% with respect to the solvent present in the reactor. The mass% is more preferable.
分子状酸素の使用量は、液相酸化反応の原料となるオレフィンおよびα,β−不飽和アルデヒドの合計1モルに対して0.1モル〜0モルが好ましく、0.2モル〜15モルがより好ましく、0.3モル〜10モルが特に好ましい。 The amount of molecular oxygen used is preferably 0.1 mol to 0 mol, and preferably 0.2 mol to 15 mol with respect to 1 mol in total of the olefin and α, β-unsaturated aldehyde used as the raw material for the liquid phase oxidation reaction. More preferred is 0.3 to 10 moles.
触媒は液相酸化を行う反応液に懸濁させた状態で使用することが好ましいが、固定床で使用してもよい。触媒の使用量は、反応器内に存在する溶液に対して0.1質量%〜30質量%が好ましく、0.5質量%〜20質量%がより好ましく、1質量%〜15質量%が特に好ましい。 The catalyst is preferably used in a state suspended in a reaction solution for liquid phase oxidation, but may be used in a fixed bed. The amount of the catalyst used is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, and particularly preferably 1% by mass to 15% by mass with respect to the solution present in the reactor. preferable.
反応温度および反応圧力は、用いる溶媒および原料によって適宜選択される。反応温度は30℃〜200℃が好ましく、50℃〜150℃がより好ましい。また、反応圧力は大気圧(0MPa)〜10MPaが好ましく、0.5MPa〜5MPaがより好ましい。 The reaction temperature and reaction pressure are appropriately selected depending on the solvent and raw materials used. The reaction temperature is preferably 30 ° C to 200 ° C, more preferably 50 ° C to 150 ° C. The reaction pressure is preferably atmospheric pressure (0 MPa) to 10 MPa, more preferably 0.5 MPa to 5 MPa.
本発明の酸化触媒を用いると、高生産性でオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造でき、その際の二酸化炭素の副生が少なくなるメカニズムの詳細は不明であるが、以下のように推定している。金属状態のパラジウムは単独でも酸化触媒としての活性を示すが、それだけではオレフィンまたはα,β−不飽和アルデヒドが酸化されてα,β−不飽和カルボン酸が生成する反応の活性は十分ではなく、二酸化炭素の副生も多い。電気陰性度がパラジウムと異なるコバルトが存在すると、コバルトの作用によりパラジウムの電子状態が変化する。さらに電気陰性度がパラジウムともコバルトとも異なるテルルが存在すると、テルルの作用によりパラジウムの電子状態がさらに変化する。その結果、オレフィンまたはα,β−不飽和アルデヒドが酸化されてα,β−不飽和カルボン酸が生成する主反応に対する活性が上がる一方で二酸化炭素が生成する副反応が抑制される。 When the oxidation catalyst of the present invention is used, α, β-unsaturated carboxylic acid can be produced from olefin or α, β-unsaturated aldehyde with high productivity, and details of the mechanism by which by-product of carbon dioxide is reduced at that time Although it is unknown, it is estimated as follows. Metallic palladium alone exhibits activity as an oxidation catalyst, but by itself, the activity of the reaction in which an olefin or an α, β-unsaturated aldehyde is oxidized to form an α, β-unsaturated carboxylic acid is not sufficient, There are many by-products of carbon dioxide. When cobalt having an electronegativity different from that of palladium is present, the electronic state of palladium is changed by the action of cobalt. Furthermore, when tellurium having an electronegativity different from that of palladium or cobalt is present, the electronic state of palladium is further changed by the action of tellurium. As a result, the olefin or the α, β-unsaturated aldehyde is oxidized to increase the activity for the main reaction in which the α, β-unsaturated carboxylic acid is generated, while the side reaction in which carbon dioxide is generated is suppressed.
以下、本発明について実施例、比較例を挙げてさらに具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example. The “parts” in the following examples and comparative examples are parts by mass.
Te/Pd、Co/Pdと、担持率の算出に用いるパラジウム元素、テルル元素およびコバルト元素の質量は、使用するパラジウム元素の原料におけるパラジウム含有率と配合量、使用するテルル元素の原料におけるテルル含有率と配合量、使用するコバルト元素の原料におけるコバルト含有率と配合量から算出した。 Te / Pd, Co / Pd, and the masses of palladium element, tellurium element and cobalt element used to calculate the loading ratio are the palladium content and blending amount in the raw material of palladium element used, and the tellurium content in the raw material of tellurium element used. It calculated from the rate and the compounding quantity, and the cobalt content and compounding quantity in the raw material of the cobalt element to be used.
(XRD測定)
株式会社リガク製RU−200A(商品名)により測定した。測定条件は、X線:Cu−Kα/40kV/100mA、スキャンスピード:4°/minとした。
(XRD measurement)
It measured by Rigaku Corporation RU-200A (trade name). The measurement conditions were X-ray: Cu-Kα / 40 kV / 100 mA, scan speed: 4 ° / min.
(α,β−不飽和カルボン酸の製造における原料、生成物および副生物の分析)
α,β−不飽和カルボン酸の製造における原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンの反応率、生成するα,β−不飽和カルボン酸の生産性、副生する二酸化炭素の選択率は以下のように定義される。
オレフィンの反応率(%) =(B/A)×100
α,β−不飽和カルボン酸の生産性(g/g−Pd/h)=(C/F/G)×100
二酸化炭素の選択率(%) =(D/B/E)×100
ここで、Aは供給したオレフィンのモル数、Bは反応したオレフィンのモル数、Cは生成したα,β−不飽和カルボン酸の質量(g)、Dは副生した二酸化炭素のモル数、Eは使用したオレフィンの炭素数、Fは反応に使用したパラジウムの質量(g)、Gは反応時間(h)である。
(Analysis of raw materials, products and by-products in the production of α, β-unsaturated carboxylic acids)
Analysis of raw materials and products in the production of α, β-unsaturated carboxylic acid was performed using gas chromatography. The reaction rate of the olefin, the productivity of the α, β-unsaturated carboxylic acid to be produced, and the selectivity of the by-produced carbon dioxide are defined as follows.
Olefin reaction rate (%) = (B / A) × 100
Productivity of α, β-unsaturated carboxylic acid (g / g-Pd / h) = (C / F / G) × 100
Carbon dioxide selectivity (%) = (D / B / E) x 100
Here, A is the number of moles of olefin supplied, B is the number of moles of reacted olefin, C is the mass (g) of the α, β-unsaturated carboxylic acid produced, D is the number of moles of carbon dioxide produced as a by-product, E is the number of carbon atoms of the olefin used, F is the mass of palladium used in the reaction (g), and G is the reaction time (h).
[実施例1]
(触媒調製)
テルル酸0.0490部とその10倍の質量の蒸留水を加えて均一溶液とした。ここに、硝酸コバルト(II)・六水和物0.0133部とその10倍の質量の蒸留水を加えて均一溶液とした。硝酸パラジウム溶液(N.E.ケムキャット製:24.8質量%硝酸パラジウム含有硝酸酸性水溶液)1.8201部を加えて、さらに合計5.00部となるまで蒸留水を加えた。
[Example 1]
(Catalyst preparation)
0.0490 parts of telluric acid and 10 times its mass of distilled water were added to obtain a homogeneous solution. To this, 0.0133 parts of cobalt nitrate (II) hexahydrate and 10 times its mass of distilled water were added to obtain a homogeneous solution. 1.8201 parts of a palladium nitrate solution (manufactured by NE Chemcat: 24.8 mass% palladium nitrate-containing nitric acid aqueous solution) was added, and distilled water was further added to a total of 5.00 parts.
ジルコニア担体(比表面積70.94m2/g、細孔容積0.20cc/g)2.50部を上記溶液に浸漬し、エバポレーションを行った。その後、空気中450℃で3時間焼成を行った。得られた触媒前駆体を37質量%ホルムアルデヒド水溶液20部に加えた。70℃に加熱し、2時間攪拌保持し、吸引ろ過後温水1000部でろ過洗浄して、ジルコニア担持型酸化触媒を得た。この触媒のTe/Pdは0.05、Co/Pdは0.01であった。この触媒におけるパラジウム元素の担持率は15.14質量%、テルル元素の担持率は0.91質量%、コバルト元素の担持率は0.09質量%であった。この触媒のXRD測定にて2θ=39.95度にピークが検出され、金属状態のパラジウムを含有することが確認された。 2.50 parts of zirconia support (specific surface area 70.94 m 2 / g, pore volume 0.20 cc / g) were immersed in the above solution and evaporated. Then, it baked at 450 degreeC in the air for 3 hours. The obtained catalyst precursor was added to 20 parts of a 37 mass% formaldehyde aqueous solution. The mixture was heated to 70 ° C., kept under stirring for 2 hours, filtered and washed with 1000 parts of hot water after suction filtration to obtain a zirconia-supported oxidation catalyst. The catalyst had a Te / Pd of 0.05 and Co / Pd of 0.01. The catalyst had a palladium element loading of 15.14 mass%, a tellurium element loading of 0.91 mass%, and a cobalt element loading of 0.09 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.95 degrees, and it was confirmed that the catalyst contained palladium in a metal state.
(反応評価)
オートクレーブに上記の方法で得た触媒のうち0.65部と反応溶媒として75質量%t−ブタノール水溶液75部を入れ、オートクレーブを密閉した。次いで、イソブチレンを2.0部導入し、攪拌(回転数1000rpm)を開始し、90℃まで昇温した。昇温完了後、オートクレーブに窒素を内圧2.4MPaまで導入した後、圧縮空気を内圧4.8MPaまで導入した。反応中に内圧が0.10MPa低下した時点(内圧4.70MPa)で、酸素を0.11MPa導入する操作を繰り返した。反応時間30分で反応を終了した。
(Reaction evaluation)
The autoclave was sealed with 0.65 part of the catalyst obtained by the above method and 75 parts of 75% by mass aqueous t-butanol solution as a reaction solvent. Next, 2.0 parts of isobutylene was introduced, stirring (rotation speed: 1000 rpm) was started, and the temperature was raised to 90 ° C. After completion of the temperature increase, nitrogen was introduced into the autoclave to an internal pressure of 2.4 MPa, and then compressed air was introduced to an internal pressure of 4.8 MPa. When the internal pressure decreased by 0.10 MPa during the reaction (internal pressure 4.70 MPa), the operation of introducing 0.11 MPa of oxygen was repeated. The reaction was completed after a reaction time of 30 minutes.
反応終了後、氷浴でオートクレーブ内を氷冷した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、メンブランフィルターで触媒を分離して、反応液を回収した。回収した反応液と捕集したガスをガスクロマトグラフィーにより分析し、イソブチレンの反応率、メタクリル酸の生産性、二酸化炭素の選択率を算出した。結果は表1に示した。 After completion of the reaction, the inside of the autoclave was ice-cooled in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while collecting the gas that was opened by opening the gas outlet. The reaction solution containing the catalyst was taken out from the autoclave, the catalyst was separated with a membrane filter, and the reaction solution was recovered. The recovered reaction liquid and the collected gas were analyzed by gas chromatography, and the reaction rate of isobutylene, the productivity of methacrylic acid, and the selectivity of carbon dioxide were calculated. The results are shown in Table 1.
[実施例2]
(触媒調製)
テルル酸の使用量を0.0484部に変更し、硝酸コバルト(II)・六水和物の使用量を0.0742部に変更し、硝酸パラジウム溶液の使用量を1.8063部に変更した以外は実施例1と同様の方法で、酸化触媒を得た。この触媒のTe/Pdは0.05、Co/Pdは0.06であった。この触媒におけるパラジウム元素の担持率は14.98質量%、テルル元素の担持率は0.90質量%、コバルト元素の担持率は0.49質量%であった。この触媒のXRD測定にて2θ=39.87度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Example 2]
(Catalyst preparation)
The amount of telluric acid was changed to 0.0484 parts, the amount of cobalt nitrate (II) hexahydrate was changed to 0.0742 parts, and the amount of palladium nitrate solution was changed to 1.8063 parts. Except for the above, an oxidation catalyst was obtained in the same manner as in Example 1. The catalyst had a Te / Pd of 0.05 and Co / Pd of 0.06. The catalyst had a palladium element loading of 14.98 mass%, a tellurium element loading of 0.90 mass%, and a cobalt element loading of 0.49 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.87 degrees, and it was confirmed that it contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[実施例3]
(触媒調製)
テルル酸の使用量を0.0467部に変更し、硝酸コバルト(II)・六水和物の使用量を0.1399部に変更し、硝酸パラジウム溶液の使用量を1.8409部に変更した以外は実施例1と同様の方法で、酸化触媒を得た。この触媒のTe/Pdは0.05、Co/Pdは0.11であった。この触媒におけるパラジウム元素の担持率は15.17質量%、テルル元素の担持率は0.86質量%、コバルト元素の担持率は0.92質量%であった。この触媒のXRD測定にて2θ=39.80度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Example 3]
(Catalyst preparation)
The amount of telluric acid was changed to 0.0467 parts, the amount of cobalt nitrate (II) hexahydrate was changed to 0.1399 parts, and the amount of palladium nitrate solution was changed to 1.8409 parts. Except for the above, an oxidation catalyst was obtained in the same manner as in Example 1. The catalyst had a Te / Pd of 0.05 and Co / Pd of 0.11. The catalyst had a palladium element loading of 15.17 mass%, a tellurium element loading of 0.86 mass%, and a cobalt element loading of 0.92 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.80 degrees, and it was confirmed that the catalyst contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[実施例4]
(触媒調製)
テルル酸の使用量を0.0978部に変更し、硝酸コバルト(II)・六水和物の使用量を0.0138部に変更し、硝酸パラジウム溶液の使用量を1.8298部に変更した以外は実施例1と同様の方法で、酸化触媒を得た。この触媒のTe/Pdは0.10、Co/Pdは0.01であった。この触媒におけるパラジウム元素の担持率は15.07質量%、テルル元素の担持率は1.81質量%、コバルト元素の担持率は0.09質量%であった。この触媒のXRD測定にて2θ=39.65度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Example 4]
(Catalyst preparation)
The amount of telluric acid was changed to 0.0978 parts, the amount of cobalt nitrate (II) hexahydrate was changed to 0.0138 parts, and the amount of palladium nitrate solution was changed to 1.8298 parts. Except for the above, an oxidation catalyst was obtained in the same manner as in Example 1. The catalyst had Te / Pd of 0.10 and Co / Pd of 0.01. The catalyst had a palladium element loading of 15.07 mass%, a tellurium element loading of 1.81 mass%, and a cobalt element loading of 0.09 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.65 degrees, and it was confirmed that it contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[実施例5]
(触媒調製)
テルル酸の使用量を0.0990部に変更し、硝酸コバルト(II)・六水和物の使用量を0.0737部に変更し、硝酸パラジウム溶液の使用量を1.8329部に変更した以外は実施例1と同様の方法で、酸化触媒を得た。この触媒のTe/Pdは0.10、Co/Pdは0.06であった。この触媒におけるパラジウム元素の担持率は15.03質量%、テルル元素の担持率は1.82質量%、コバルト元素の担持率は0.48質量%であった。この触媒のXRD測定にて2θ=39.48度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Example 5]
(Catalyst preparation)
The amount of telluric acid was changed to 0.0990 parts, the amount of cobalt nitrate (II) hexahydrate was changed to 0.0737 parts, and the amount of palladium nitrate solution was changed to 1.8329 parts. Except for the above, an oxidation catalyst was obtained in the same manner as in Example 1. The catalyst had Te / Pd of 0.10 and Co / Pd of 0.06. The catalyst had a palladium element loading of 15.03 mass%, a tellurium element loading of 1.82 mass%, and a cobalt element loading of 0.48 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.48 degrees, and it was confirmed that the catalyst contained palladium in the metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[実施例6]
(触媒調製)
テルル酸の使用量を0.0974部に変更し、硝酸コバルト(II)・六水和物の使用量を0.1484部に変更し、硝酸パラジウム溶液の使用量を1.8198部に変更した以外は実施例1と同様の方法で、酸化触媒を得た。この触媒のTe/Pdは0.10、Co/Pdは0.12であった。この触媒におけるパラジウム元素の担持率は14.87質量%、テルル元素の担持率は1.78質量%、コバルト元素の担持率は0.96質量%であった。この触媒のXRD測定にて2θ=39.40度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Example 6]
(Catalyst preparation)
The amount of telluric acid was changed to 0.0974 parts, the amount of cobalt nitrate (II) hexahydrate was changed to 0.1484 parts, and the amount of palladium nitrate solution was changed to 1.8198 parts. Except for the above, an oxidation catalyst was obtained in the same manner as in Example 1. The catalyst had Te / Pd of 0.10 and Co / Pd of 0.12. The catalyst had a palladium element loading of 14.87 mass%, a tellurium element loading of 1.78 mass%, and a cobalt element loading of 0.96 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.40 degrees, and it was confirmed that the catalyst contained palladium in a metallic state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[比較例1]
(触媒調製)
テルル酸及び硝酸コバルト(II)・六水和物のいずれも使用せず、硝酸パラジウム溶液の使用量を1.8418部に変更したこと以外は実施例1と同様の方法で酸化触媒を得た。この触媒におけるパラジウム元素の担持率は15.45質量%であった。この触媒のXRD測定にて2θ=40.11度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Comparative Example 1]
(Catalyst preparation)
Neither telluric acid nor cobalt nitrate (II) hexahydrate was used, and an oxidation catalyst was obtained in the same manner as in Example 1 except that the amount of palladium nitrate solution was changed to 1.8418 parts. . The palladium element loading of this catalyst was 15.45% by mass. In the XRD measurement of this catalyst, a peak was detected at 2θ = 40.11 degrees, and it was confirmed that it contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[比較例2]
(触媒調製)
硝酸コバルト(II)・六水和物を使用せず、硝酸パラジウム溶液の使用量を1.8455部に変更したこと以外は実施例1と同様の方法で酸化触媒を得た。この触媒のTe/Pdは0.05であった。この触媒におけるパラジウム元素の担持率は15.33質量%、テルル元素の担持率は0.91質量%であった。この触媒のXRD測定にて2θ=39.50度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Comparative Example 2]
(Catalyst preparation)
An oxidation catalyst was obtained in the same manner as in Example 1 except that cobalt nitrate (II) hexahydrate was not used and the amount of palladium nitrate solution used was changed to 1.8455 parts. The catalyst had a Te / Pd of 0.05. The catalyst had a palladium element loading of 15.33 mass% and a tellurium element loading of 0.91 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.50 degrees, and it was confirmed that it contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[比較例3]
(触媒調製)
テルル酸の使用量を0.0976部に変更し、硝酸コバルト(II)・六水和物を使用せず、硝酸パラジウム溶液の使用量を1.8219部に変更したこと以外は実施例1と同様の方法で酸化触媒を得た。この触媒のTe/Pdは0.10であった。この触媒におけるパラジウム元素の担持率は15.03質量%、テルル元素の担持率は1.80質量%であった。この触媒のXRD測定にて2θ=39.00度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Comparative Example 3]
(Catalyst preparation)
Example 1 except that the amount of telluric acid was changed to 0.0976 parts, cobalt nitrate (II) hexahydrate was not used, and the amount of palladium nitrate solution was changed to 1.8219 parts. An oxidation catalyst was obtained in the same manner. Te / Pd of this catalyst was 0.10. The catalyst had a palladium element loading of 15.03 mass% and a tellurium element loading of 1.80 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.00 degrees, and it was confirmed that the catalyst contained palladium in a metallic state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[比較例4]
(触媒調製)
テルル酸を使用せず、硝酸コバルト(II)・六水和物の使用量を0.0722部に変更し、硝酸パラジウム溶液の使用量を1.8044部に変更したこと以外は実施例1と同様の方法で酸化触媒を得た。この触媒のCo/Pdは0.05であった。この触媒におけるパラジウム元素の担持率は15.04質量%、コバルト元素の担持率は0.48質量%であった。この触媒のXRD測定にて2θ=39.85度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Comparative Example 4]
(Catalyst preparation)
Example 1 except that no telluric acid was used, the amount of cobalt nitrate (II) hexahydrate used was changed to 0.0722 parts, and the amount of palladium nitrate solution used was changed to 1.8044 parts. An oxidation catalyst was obtained in the same manner. Co / Pd of this catalyst was 0.05. The catalyst had a palladium element loading of 15.04 mass% and a cobalt element loading of 0.48 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.85 degrees, and it was confirmed that the catalyst contained palladium in the metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
[比較例5]
(触媒調製)
テルル酸を使用せず、硝酸コバルト(II)・六水和物の使用量を0.1435部に変更し、硝酸パラジウム溶液の使用量を1.8044部に変更したこと以外は実施例1と同様の方法で酸化触媒を得た。この触媒のCo/Pdは0.12であった。この触媒におけるパラジウム元素の担持率は15.04質量%、コバルト元素の担持率は0.95質量%であった。この触媒のXRD測定にて2θ=39.70度にピークが検出され、金属状態のパラジウムを含有することが確認された。
[Comparative Example 5]
(Catalyst preparation)
Example 1 except that no telluric acid was used, the amount of cobalt nitrate (II) hexahydrate used was changed to 0.1435 parts, and the amount of palladium nitrate solution was changed to 1.8044 parts. An oxidation catalyst was obtained in the same manner. Co / Pd of this catalyst was 0.12. The catalyst had a palladium element loading of 15.04 mass% and a cobalt element loading of 0.95 mass%. In the XRD measurement of this catalyst, a peak was detected at 2θ = 39.70 degrees, and it was confirmed that it contained palladium in a metal state.
(反応評価)
上記で得られた触媒を用いて、実施例1と同様の方法で行った。結果は表1に示した。
(Reaction evaluation)
The same procedure as in Example 1 was performed using the catalyst obtained above. The results are shown in Table 1.
以上のように、本発明の酸化触媒を用いることで、α,β−不飽和カルボン酸がより高い生産性で製造でき、二酸化炭素の副生が少なかった。 As described above, by using the oxidation catalyst of the present invention, an α, β-unsaturated carboxylic acid can be produced with higher productivity, and the amount of carbon dioxide by-product is small.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007174105A JP4908332B2 (en) | 2007-07-02 | 2007-07-02 | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007174105A JP4908332B2 (en) | 2007-07-02 | 2007-07-02 | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009011896A true JP2009011896A (en) | 2009-01-22 |
JP4908332B2 JP4908332B2 (en) | 2012-04-04 |
Family
ID=40353466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007174105A Active JP4908332B2 (en) | 2007-07-02 | 2007-07-02 | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4908332B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11963784B2 (en) | 2013-11-07 | 2024-04-23 | Safeop Surgical, Inc. | Systems and methods for detecting nerve function |
US11986321B2 (en) | 2016-09-22 | 2024-05-21 | Safeop Surgical, Inc. | System and method for detecting and removing periodic non-physiological artifact from evoked potentials |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005118134A1 (en) * | 2004-06-04 | 2005-12-15 | Mitsubishi Rayon Co., Ltd. | Palladium-containing catalyst and method for producing same |
JP2007090164A (en) * | 2005-09-27 | 2007-04-12 | Mitsubishi Rayon Co Ltd | NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME |
JP2007152152A (en) * | 2005-11-30 | 2007-06-21 | Mitsubishi Rayon Co Ltd | Palladium-containing supported catalyst and manufacturing method of alpha and beta-unsaturated carboxylic acid using the same |
JP2007152234A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2007185633A (en) * | 2006-01-16 | 2007-07-26 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2008212817A (en) * | 2007-03-02 | 2008-09-18 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2009006236A (en) * | 2007-06-27 | 2009-01-15 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
-
2007
- 2007-07-02 JP JP2007174105A patent/JP4908332B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005118134A1 (en) * | 2004-06-04 | 2005-12-15 | Mitsubishi Rayon Co., Ltd. | Palladium-containing catalyst and method for producing same |
JP2007090164A (en) * | 2005-09-27 | 2007-04-12 | Mitsubishi Rayon Co Ltd | NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME |
JP2007152152A (en) * | 2005-11-30 | 2007-06-21 | Mitsubishi Rayon Co Ltd | Palladium-containing supported catalyst and manufacturing method of alpha and beta-unsaturated carboxylic acid using the same |
JP2007152234A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING SUPPORTED CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2007185633A (en) * | 2006-01-16 | 2007-07-26 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYSTS, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2008212817A (en) * | 2007-03-02 | 2008-09-18 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha, beta-UNSATURATED CARBOXYLIC ACID |
JP2009006236A (en) * | 2007-06-27 | 2009-01-15 | Mitsubishi Rayon Co Ltd | PALLADIUM-CONTAINING CATALYST, ITS MANUFACTURING METHOD AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11963784B2 (en) | 2013-11-07 | 2024-04-23 | Safeop Surgical, Inc. | Systems and methods for detecting nerve function |
US11986321B2 (en) | 2016-09-22 | 2024-05-21 | Safeop Surgical, Inc. | System and method for detecting and removing periodic non-physiological artifact from evoked potentials |
Also Published As
Publication number | Publication date |
---|---|
JP4908332B2 (en) | 2012-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846576B2 (en) | Palladium-containing catalyst and method for producing the same | |
JP5017092B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4764174B2 (en) | Palladium-containing catalyst for liquid phase oxidation, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4908332B2 (en) | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4571872B2 (en) | Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same | |
JP4846625B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5804145B2 (en) | Method for producing palladium-containing catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP4908328B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP4911361B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5069412B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2011235215A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP5247081B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP5648520B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP5280239B2 (en) | Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP5645050B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2013180242A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACIDS | |
JP5006175B2 (en) | Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2012166188A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP2011104457A (en) | PALLADIUM-CONTAINING SUPPORTED CATALYST, METHOD OF PREPARING THE SAME, AND METHOD OF PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5416886B2 (en) | Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP2009254956A (en) | PALLADIUM-SUPPORTING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP5019586B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2009297634A (en) | NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2006000727A (en) | Palladium-containing catalyst and its manufacturing method, and method for producing alpha, beta-unsaturated aldehyde and alpha, beta-unsaturated carboxylic acid | |
JP2010179258A (en) | PALLADIUM-CONTAINING CATALYST, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4908332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |