JPS62269745A - Catalyst composition for oxidation reaction - Google Patents

Catalyst composition for oxidation reaction

Info

Publication number
JPS62269745A
JPS62269745A JP61111649A JP11164986A JPS62269745A JP S62269745 A JPS62269745 A JP S62269745A JP 61111649 A JP61111649 A JP 61111649A JP 11164986 A JP11164986 A JP 11164986A JP S62269745 A JPS62269745 A JP S62269745A
Authority
JP
Japan
Prior art keywords
component
catalyst
catalyst composition
platinum
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61111649A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
洋 木村
Akio Kimura
昭雄 木村
Yoshinori Mitsuta
義徳 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Kao Corp
Original Assignee
Kawaken Fine Chemicals Co Ltd
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd, Kao Corp filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP61111649A priority Critical patent/JPS62269745A/en
Publication of JPS62269745A publication Critical patent/JPS62269745A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To improve the catalytic activity and the oxidation efficiency by depositing a platinum group element as the first component, an element such as Sn as the second component, and a rare-earth element as the third component on an inorg. carrier, and specifying the ratios of the first component to the second and third components. CONSTITUTION:(a) One or more kinds of elements selected from platinum group elements, (b) >=1 kind of element selected from a group consisting of Sn, Bi, Ce, Te, and Sb, and (c) >=1 kind of element selected from rare-earth elements are deposited on an inorg. carrier to obtain the catalyst composition for oxidation reaction. In this case, the atomic ratio (b/a) of the (a) component to the (b) component is controlled to 0.001-10, and the atomic ratio (c/a) of the (a) component to the (c) component is adjusted to 0.01-5. Besides, 0.1-20wt% (a) component, 0.001-20wt% (b) component, and 0.01-20wt% (c) component are deposited. The catalyst is used when oxidized saccharides are produced by oxidizing saccharides.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はIi類を酸化してW類酸化物を製造する際に用
いる酸化反応用触媒組成物に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a catalyst composition for an oxidation reaction used in producing a W-class oxide by oxidizing a II-class oxide.

wM類酸酸化物多くの産業分野で利用されているが、そ
の最も代表的なものとして単糖類であるグルコン酸又は
その塩が挙げられる。これらはキレート剤、鉄、アルミ
ニウムなどの金属やガラス表面の洗浄剤、洗剤のビルグ
ー、コンクリート混和剤、医薬品、食品添加物などに広
く用いられている。
wM acid oxides are used in many industrial fields, and the most representative example is gluconic acid, which is a monosaccharide, or its salt. These are widely used as chelating agents, cleaning agents for surfaces of metals such as iron and aluminum, glass surfaces, virgoo detergents, concrete admixtures, pharmaceuticals, and food additives.

その他オリゴ糖酸化物として、二糖類であるマルトピオ
ン酸又はその塩、及び三[1以上のオリゴ糖酸化物等も
キレート剤、洗剤のビルグー、医薬品原料としての用途
が期待される。
Other oligosaccharide oxides, such as the disaccharide maltopionic acid or its salts, and oligosaccharide oxides of trisaccharides or more, are also expected to be used as chelating agents, building blocks for detergents, and raw materials for pharmaceuticals.

更に、ジアルデヒド澱粉酸化物、また環状オリゴ糖であ
るβ−シクロデキストリン及びメチル化β−シクロデキ
ストリン酸化物等も、その構造に由来する機能により種
々の用途が考えられる。即ち、本発明は多彩な用途が考
えられる種々の糖酸化物を高収率で製造するための酸化
反応用触媒組成物を提供するものである。
Furthermore, dialdehyde starch oxides, cyclic oligosaccharides such as β-cyclodextrin and methylated β-cyclodextrin oxides can be used in various ways depending on the functions derived from their structures. That is, the present invention provides a catalyst composition for oxidation reactions for producing various sugar oxides in high yield, which can be used in a variety of ways.

〔従来の技術及び問題点〕[Conventional technology and problems]

現在、単糖類であるグルコン酸は醗酵法によって工業生
産されている。この方法は最も容易で、かつ経済的に優
れた方法であるが、菌体分離、副生成物の制御、排水の
処理が容易でない等の多くの問題がある。
Currently, gluconic acid, a monosaccharide, is industrially produced by fermentation. Although this method is the easiest and economically superior method, it has many problems such as the difficulty in separating bacterial cells, controlling by-products, and treating wastewater.

一方、醗酵法におけるこれらの問題点を解決する方法と
して、白金、又はパラジウム系貴金属触媒の存在下、グ
ルコースと分子状酸素をアルカリ雰囲気下で接触酸化さ
せる方法が知られている。例えば、特公昭60−922
39号公報及び特公昭60−92240号公報には主触
媒元素である白金、パラジウムに触媒第2成分としてビ
スマス、セレン等の第2触媒元素を添加し、収率の向上
を達成する方法が記載されている。
On the other hand, as a method for solving these problems in the fermentation method, a method is known in which glucose and molecular oxygen are catalytically oxidized in an alkaline atmosphere in the presence of a platinum or palladium-based noble metal catalyst. For example, Tokuko Sho 60-922
No. 39 and Japanese Patent Publication No. 60-92240 describe a method of improving the yield by adding a second catalyst element such as bismuth or selenium as a second catalyst component to main catalyst elements such as platinum or palladium. has been done.

そこで、これらの二つの公報記載の触媒を用い、グルコ
ースを被酸化物として追試した結果、反応収率は95%
以上に達したが、触媒耐久性の点ではまだ満足のいくも
のではなかった。
Therefore, as a result of additional tests using these two catalysts described in the publication and glucose as the oxidizable substance, the reaction yield was 95%.
Although the above was achieved, the durability of the catalyst was still unsatisfactory.

さらに、被酸化物をマルトースからさらにマールトトリ
オースと高位のオリゴ糖に代えて同様の反応を行ってみ
たが、収率はそれぞれ約70%、約20%と、グルコー
ス残基が増えるにつれ酸化反応性が低下した。
Furthermore, we performed a similar reaction by changing the oxidized product from maltose to maltotriose and higher-order oligosaccharides, but the yields were approximately 70% and 20%, respectively.As the number of glucose residues increased, the oxidation reaction increased. sex has decreased.

このように、現在二糖類以上のオリゴ糖を収率よく対応
するカルボン酸に変換する触媒は開発されていない。
Thus, currently no catalyst has been developed that converts oligosaccharides of disaccharides or higher into the corresponding carboxylic acids with good yield.

一方、W類は被酸化部位として、アルデヒド基と一級水
酸基を有する。前者は30〜60℃という低温で対応す
るカルボキシル基に収率よく酸化されるのに対し、後者
の場合収率よく酸化反応を進行させる為には、50〜8
0℃と、前者に比べ若干反応温度を高めにしなければな
らない。
On the other hand, Ws have an aldehyde group and a primary hydroxyl group as oxidized sites. The former is oxidized to the corresponding carboxyl group with good yield at a low temperature of 30 to 60°C, whereas in the latter case, in order to proceed with the oxidation reaction with good yield, it is necessary to
The reaction temperature must be set to 0°C, which is slightly higher than the former.

これはアルデヒド基が容易に酸化されるのに対し、−級
水酸基が酸化されにくいことを示している。
This indicates that aldehyde groups are easily oxidized, whereas -class hydroxyl groups are difficult to oxidize.

従来より、糖のアルデヒド基を収率よく酸化する触媒と
して、既述の特公昭60−92239号公報及び特公昭
60−92240号公報に記載されている5χB115
χPd/C又は1χ5e15χPd/Cがある。しかる
に、これらの公報に記載されている触媒を使用5して糖
類の一級水酸基を酸化させても、収率は極めて低いもの
であった。従って、反応温度を上げるとか、或いは触媒
添加量を増大させる等の方法が考えられるが、これらの
方法を採用した場合、原料及び酸化生成物の分解を併発
し品質の点で問題となる。
Conventionally, 5χB115, which is described in the aforementioned Japanese Patent Publication No. 60-92239 and Japanese Patent Publication No. 60-92240, has been used as a catalyst for oxidizing aldehyde groups of sugars with good yield.
There is χPd/C or 1χ5e15χPd/C. However, even when the primary hydroxyl groups of sugars were oxidized using the catalysts described in these publications, the yield was extremely low. Therefore, methods such as raising the reaction temperature or increasing the amount of catalyst added may be considered, but when these methods are adopted, the decomposition of the raw materials and oxidized products occurs, resulting in problems in terms of quality.

このように、従来糖類のアルデヒド基の酸化は勿論のこ
と、−級水酸基も低温で効率よく酸化し得る触媒は開発
されていないのが現状である。
As described above, at present, no catalyst has been developed that can efficiently oxidize not only aldehyde groups of sugars but also -class hydroxyl groups at low temperatures.

〔問題点を解決する為の手段〕[Means for solving problems]

そこで、本発明者等はia類のアルデヒド基と一級水酸
基の両方を酸化させ得る高活性触媒を見出すべく鋭意研
究を行った結果、本発明を完成した。
Therefore, the present inventors conducted intensive research to find a highly active catalyst capable of oxidizing both the aldehyde group and the primary hydroxyl group of class IA, and as a result, completed the present invention.

即ち本発明は、触媒第1成分として、白金族元素(パラ
ジウム、白金、ルテニウム、ロジウム)から選ばれる1
種以上の元素、触媒第2成分として、スズ、ビスマス、
セレン、テルル及びアンチモンから成る群から選ばれる
1種以上の元素、及び触媒第3成分として、希土類元素
から選ばれる1種以上の元素を無機担体上に担持させて
なり、該触媒第1成分と該触媒第2成分の比率R1(第
2成分/第1成分)が原子比で0.001〜10であり
、該触媒第1成分と該触媒第3成分の比率R2(第3成
分/第1成分)が原子比で0.01〜5であることを特
徴とする118Mを酸化してIi類酸酸化物製造する際
に用いる酸化反応用触媒組成物を提供するものである。
That is, the present invention uses 1 selected from platinum group elements (palladium, platinum, ruthenium, rhodium) as the first catalyst component.
More than one element, as the second catalyst component, tin, bismuth,
One or more elements selected from the group consisting of selenium, tellurium, and antimony, and one or more elements selected from rare earth elements as the third catalyst component are supported on an inorganic carrier, and the first catalyst component The ratio R1 (second component/first component) of the second catalyst component is 0.001 to 10 in atomic ratio, and the ratio R2 (third component/first component) of the first catalyst component and the third catalyst component is 0.001 to 10. The object of the present invention is to provide a catalyst composition for an oxidation reaction used when producing a class II acid oxide by oxidizing 118M, which is characterized in that the atomic ratio of the components (component) is 0.01 to 5 in atomic ratio.

本発明の酸化反応用触媒組成物においては、触媒第1成
分の1種以上、第2成分の1種以上及び第3成分の1種
以上を同時に併用することが重要である。
In the oxidation reaction catalyst composition of the present invention, it is important to simultaneously use one or more of the first catalyst component, one or more of the second component, and one or more of the third component.

触媒主元素である触媒第1成分に対する第2成分及び第
3成分の比率、R1、R2はそれぞれ原子比で0.00
1〜10.0.01〜5の範囲であるが、好ましくはそ
れぞれ0.005〜?、0.05〜3の範囲、特に好ま
しくはそれぞれ0.01〜4.0.1〜1.5の範囲で
あることが重要である。
The ratios of the second and third components to the first catalyst component, which is the main catalyst element, R1 and R2 are each 0.00 in atomic ratio.
The range is from 1 to 10.0.01 to 5, preferably from 0.005 to ? , 0.05 to 3, particularly preferably 0.01 to 4.0.1 to 1.5.

また、本発明の触媒は無機担体上に担持させた担持触媒
として使用される。無機担体としては一般に公知のもの
が使用される。例えば活性炭、石綿、アルミナ、シリカ
ゲル、活性白土、或いは珪藻上等が挙げられるが、中で
も特に活性炭が好ましい。
Further, the catalyst of the present invention is used as a supported catalyst supported on an inorganic carrier. Generally known inorganic carriers are used. Examples include activated carbon, asbestos, alumina, silica gel, activated clay, and diatoms, among which activated carbon is particularly preferred.

触媒第1成分、第2成分、第3成分の担持量は通常それ
ぞれ0.1〜20重量%、0.001〜20重量%、0
.01〜20重量%の範囲であるが、好ましくはそれぞ
れ1〜15重量%、0.01〜15重量%、0.05〜
15重景%、特に好ましくはそれぞれ2〜13重量%、
0.05〜10重量%、0.1〜5重量%である。
The supported amounts of the first, second and third catalyst components are usually 0.1-20% by weight, 0.001-20% by weight, and 0% by weight, respectively.
.. 01 to 20% by weight, preferably 1 to 15% by weight, 0.01 to 15% by weight, and 0.05 to 15% by weight, respectively.
15% by weight, particularly preferably 2 to 13% by weight, respectively.
The content is 0.05 to 10% by weight, and 0.1 to 5% by weight.

また本発明の触媒には、触媒の耐久性、或いは本発明の
触媒を酸化反応に使用した時の反応生成物の色相の向上
をもたらすため、必要に応じアルカリ土類元素、亜鉛或
いは遷移金属等の化合物を添加することが出来る。
Furthermore, the catalyst of the present invention may contain alkaline earth elements, zinc, transition metals, etc., as necessary, in order to improve the durability of the catalyst or the hue of the reaction product when the catalyst of the present invention is used in an oxidation reaction. Compounds can be added.

触媒第1成分の原料としては、塩化ルテニウム、塩化ロ
ジウム、硝酸ロジウム、塩化パラジウム、よう化パラジ
ウム、硝酸パラジウム、酸化パラジウム、塩化白金酸、
よう化白金酸、硝酸白金、酸化白金、塩化白金、シアン
化白金、よう化白金、或いは酢酸パラジウムやパラジウ
ムアセチルアセトン等の分子内錯体、或いは予め調製さ
れた白金カーボン触媒やパラジウムカーボン触媒等が挙
げられるが、特に、塩化パラジウムと塩化白金酸がよい
Raw materials for the first catalyst component include ruthenium chloride, rhodium chloride, rhodium nitrate, palladium chloride, palladium iodide, palladium nitrate, palladium oxide, chloroplatinic acid,
Examples include platinum iodide, platinum nitrate, platinum oxide, platinum chloride, platinum cyanide, platinum iodide, intramolecular complexes such as palladium acetate and palladium acetylacetone, or pre-prepared platinum carbon catalysts and palladium carbon catalysts. However, palladium chloride and chloroplatinic acid are particularly preferred.

触媒第2成分の原料としては、三臭化テルル、二塩化テ
ルル、酸化テルル、四塩化テルル、四臭化テルル、四よ
う化テルル、テルル酸及びそのアルカリ金属塩、亜テル
ル酸及びその−フルカリ金属塩、或いは触媒第1成分も
しくは第3成分との間に形成される化合物、四塩化スズ
、四臭化スズ、よう化スズ、酸化スズ、酸化セレン、亜
セレン酸、セレン酸、塩化セレン、亜セレン酸又はセレ
ン酸のアルカリ金属塩、セレン化水素、或いは触媒第1
成分もしくは触媒第3成分との間に形成されるセレナイ
ド、例えばセレン化パラジウム、セレン化白金、或いは
触媒第2成分間で形成される例えばビスマスセレナイド
等のバイナリ−セレナイドもしくはセレネートが挙げら
れ、さらに酸化アンチモン、アンチモンオキシクロリド
、五塩化アンチモン、塩化ビスマス、ビスマスオキシク
ロリド、ビスマスオキシプロミド、酒石酸ビスマス、水
酸化ビスマス等が挙げられる。
Raw materials for the second catalyst component include tellurium tribromide, tellurium dichloride, tellurium oxide, tellurium tetrachloride, tellurium tetrabromide, tellurium tetraiodide, telluric acid and its alkali metal salts, tellurite acid and its alkali metal salts. Metal salt, or a compound formed between the first component or the third component of the catalyst, tin tetrachloride, tin tetrabromide, tin iodide, tin oxide, selenium oxide, selenite, selenite, selenium chloride, Alkali metal salt of selenite or selenite, hydrogen selenide, or catalyst No. 1
or selenides formed between the components or the third component of the catalyst, such as palladium selenide, platinum selenide, or binary selenides or selenides, such as bismuth selenide, formed between the second component of the catalyst, and Examples include antimony oxide, antimony oxychloride, antimony pentachloride, bismuth chloride, bismuth oxychloride, bismuth oxybromide, bismuth tartrate, bismuth hydroxide, and the like.

触媒第3成分の原料としては、希土類元素の塩化物、硝
酸塩、酢酸塩、硫酸塩、例えば塩化ランタン、硝酸ラン
タン、塩化セリウム、硝酸セリウム、塩化プラセオジウ
ム、硝酸プラセオジウム、塩化ネオジウム、硝酸ネオジ
ウム等が挙げられるが、特に塩化セリウムと塩化ランタ
ンがよい。
Examples of raw materials for the third catalyst component include chlorides, nitrates, acetates, and sulfates of rare earth elements, such as lanthanum chloride, lanthanum nitrate, cerium chloride, cerium nitrate, praseodymium chloride, praseodymium nitrate, neodymium chloride, neodymium nitrate, etc. Cerium chloride and lanthanum chloride are particularly good.

本発明の触媒は公知の方法で調製される。触媒の調製に
あたっては、触媒第1成分、第2成分及び第3成分の水
溶液を調製し、イオン交換水中で、例えば活性炭に吸着
させる。この際、触媒成分の水溶液が出来ない場合には
塩酸等で可溶化させて吸着させる。吸着後はホルマリン
、水素、ヒドラジン、ソジウムボロハイドライド等の還
元剤で触媒成分の還元処理を行う。還元後、触媒を水洗
し、濾別することにより本発明の触媒が得られる。触媒
は通常含水率が50〜60%であるが、乾燥することな
く酸化反応に使用することが出来る。本発明の他の触媒
も同様の方法で調製することが出来る。本発明の触媒は
再使用可能であるが、幾つかのものは再還元することに
より活性が高レベルに維持される場合がある。
The catalyst of the present invention is prepared by known methods. In preparing the catalyst, an aqueous solution of the first, second and third components of the catalyst is prepared and adsorbed onto, for example, activated carbon in ion-exchanged water. At this time, if an aqueous solution of the catalyst component cannot be prepared, it is solubilized with hydrochloric acid or the like and adsorbed. After adsorption, the catalyst components are reduced using a reducing agent such as formalin, hydrogen, hydrazine, or sodium borohydride. After reduction, the catalyst of the present invention is obtained by washing the catalyst with water and separating it by filtration. Although the catalyst usually has a water content of 50 to 60%, it can be used in the oxidation reaction without drying. Other catalysts of the invention can be prepared in a similar manner. Although the catalysts of the present invention are reusable, some may be re-reduced to maintain high levels of activity.

本発明を実施する際の被酸化物であるill類としては
以下のものが挙げられる。
Examples of ills to be oxidized in carrying out the present invention include the following.

アルデヒド基を有する単糖類として、グルコース及びそ
の誘導体、アルデヒド基を持たない単tl類としてメチ
ルグルコシド或いはグルコン□酸もしくはその塩。
Monosaccharides having an aldehyde group include glucose and derivatives thereof; monosaccharides without an aldehyde group include methyl glucoside, gluconic acid, and salts thereof.

アルデヒド基を有するオリゴ糖として、マルトース、マ
ルトトリオース、マルトテトラオース、及び低級オリゴ
糖混合物。
Oligosaccharides having aldehyde groups include maltose, maltotriose, maltotetraose, and lower oligosaccharide mixtures.

さらに、アルデヒド基を持たない環状オリゴ糖として、
β−シクロデキストリン及びそのメチル化物。
Furthermore, as a cyclic oligosaccharide without an aldehyde group,
β-cyclodextrin and its methylated products.

或いはジアルデヒド澱粉等が挙げられる。Alternatively, dialdehyde starch and the like may be mentioned.

−aに反応は水溶液系でなされる。その際、被酸化物で
ある糖類の10〜70%水溶液、好ましくは20〜40
%水溶液を使用する。触媒添加量は被酸化物であるwI
@に対し0.1〜20%、好ましく、は0.5〜15%
である。
-a, the reaction is carried out in an aqueous solution system. At that time, a 10 to 70% aqueous solution of the sugar to be oxidized, preferably 20 to 40%
% aqueous solution is used. The amount of catalyst added is the oxidized material wI
0.1 to 20%, preferably 0.5 to 15% of @
It is.

酸化剤としては、酸素もしくは空気などの酸素含有ガス
を使用する。
As the oxidizing agent, oxygen or an oxygen-containing gas such as air is used.

反応温度は20〜90℃、好ましくは25〜80℃であ
る。圧力は10気圧以下が好ましく、特に常圧が好まし
い、また、酸化反応の進行と共に反応系のpHが低下し
ていくので、反応系のpHが7.5〜11になるよう連
続的もしくは断続的に苛性アルカリ水溶液を添加するよ
うにした方がよい。
The reaction temperature is 20-90°C, preferably 25-80°C. The pressure is preferably 10 atm or less, particularly normal pressure. Also, as the pH of the reaction system decreases as the oxidation reaction progresses, the pressure is continuously or intermittently maintained so that the pH of the reaction system is 7.5 to 11. It is better to add an aqueous caustic alkali solution.

本発明の触媒においては、貴金属触媒に特有の酸素によ
る触媒の自己被毒現象が大きく抑制され、その為酸化収
率が高いのが特徴である。
The catalyst of the present invention is characterized in that the phenomenon of self-poisoning of the catalyst by oxygen, which is characteristic of noble metal catalysts, is greatly suppressed, and therefore the oxidation yield is high.

更にもう一つの特徴は、希土類元素が添加されている為
、触媒活性が非常に大であり、その為低温反応(20〜
40℃)が可能である。
Another feature is that the catalytic activity is extremely high due to the addition of rare earth elements.
40°C) is possible.

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明の詳細な説明する。 The present invention will be explained in detail by giving examples below.

実施例1 (2χCe/3χB115χPd/C触媒の調製)9.
0gの活性炭を1OO−のイオン交換水に浸漬させてお
く。触媒第1成分の原料として0.83gの塩化パラジ
ウムを5%塩酸水溶液22mに溶解させる。触媒第2成
分の原料として0.45gの塩化ビスマスを6%塩酸3
6−に溶解させる。触媒第3成分の原料として0.53
gの塩化セリウムをイオン交換水に溶解させる。
Example 1 (Preparation of 2χCe/3χB115χPd/C catalyst)9.
0g of activated carbon is soaked in 1OO- of ion-exchanged water. As a raw material for the first catalyst component, 0.83 g of palladium chloride is dissolved in 22 m of a 5% aqueous hydrochloric acid solution. As a raw material for the second catalyst component, 0.45g of bismuth chloride was mixed with 6% hydrochloric acid 3
6-Dissolve in. 0.53 as a raw material for the third component of the catalyst
Dissolve g of cerium chloride in ion exchange water.

これら3種の触媒成分の溶液を先に調製した活性炭中に
添加し吸着処理を行う。その後、48%苛性ソーダ17
g 、 37%ホルマリン水溶液12n7を添加し、8
0℃で触媒の還元を行う。
A solution of these three types of catalyst components is added to the previously prepared activated carbon for adsorption treatment. Then 48% caustic soda 17
g, 12n7 of 37% formalin aqueous solution was added, 8
Catalyst reduction is carried out at 0°C.

還元された触媒はイオン交換水で洗浄し、触媒を濾別す
る。
The reduced catalyst is washed with ion-exchanged water, and the catalyst is filtered off.

得られた触媒は約50%の水を含有する2XCe/3χ
B115χPd/C触媒である。触媒は乾燥することな
(酸化反応に使用することができる。
The resulting catalyst was a 2XCe/3χ containing about 50% water.
B115χPd/C catalyst. The catalyst can be used for oxidation reactions without drying.

実施例2〜6 本発明のその他の触媒についても同様の方法で調製した
(表1)。
Examples 2 to 6 Other catalysts of the present invention were prepared in the same manner (Table 1).

l (グルコースの 化) 温度計、撹拌器、pHメーター、酸素導入管、苛性ソー
ダ水溶液導入管及び廃ガス出口の付いた11の丸底フラ
スコに、市販グルコースの30%水溶液を500g及び
本発明の触媒を4.5g (含水率=50%、乾燥品で
2.3gに相当)添加する。
(Conversion of glucose) 500 g of a 30% aqueous solution of commercially available glucose and the catalyst of the invention were placed in 11 round-bottomed flasks equipped with a thermometer, a stirrer, a pH meter, an oxygen inlet tube, a caustic soda aqueous solution inlet tube and a waste gas outlet. Add 4.5 g (moisture content = 50%, equivalent to 2.3 g dry product).

撹拌下、40℃に昇温し酸素ガスを3Q l /hrで
バブリング導入する。一方、酸化反応の進行と共に反応
系のpEIが低下していくので、苛性ソーダ水溶液を連
続導入し反応系のpHを約10に維持する。反応中は発
熱が大であるので冷却を必要とする。反応は45分で終
了した。結果を表1に示す。
While stirring, the temperature was raised to 40° C., and oxygen gas was introduced by bubbling at a rate of 3 Q 1 /hr. On the other hand, as the oxidation reaction progresses, the pEI of the reaction system decreases, so a caustic soda aqueous solution is continuously introduced to maintain the pH of the reaction system at about 10. During the reaction, a large amount of heat is generated, so cooling is required. The reaction was completed in 45 minutes. The results are shown in Table 1.

なお、同様の条件下で特公昭60−92239号公報及
び特公昭60−92240号公報に記載されている触媒
(それぞれ5χ旧15χPd/C,1χ5s15χPd
/C)を用いて反応し、本発明の触媒との活性比較を行
った。
In addition, under similar conditions, the catalysts described in Japanese Patent Publication No. 60-92239 and Japanese Patent Publication No. 60-92240 (5χ old 15χPd/C, 1χ5s15χPd, respectively)
/C), and the activity was compared with the catalyst of the present invention.

その結果を表1に示す。これより本発明の触媒の方が触
媒活性が大であることが分る。
The results are shown in Table 1. This shows that the catalyst of the present invention has higher catalytic activity.

表   1 実施例7 本発明の触媒である2χCe/3χBt15χPd/C
触媒を用いて、表2に示す化合物の20%水溶液をpt
rto、温度60℃、常圧にて酸素酸化した。結果を表
2に示す。
Table 1 Example 7 2χCe/3χBt15χPd/C which is a catalyst of the present invention
Using a catalyst, a 20% aqueous solution of the compounds shown in Table 2 was
Oxygen oxidation was performed at rto, temperature of 60° C., and normal pressure. The results are shown in Table 2.

表   2Table 2

Claims (1)

【特許請求の範囲】 1 触媒第1成分として、白金族元素(パラジウム、白
金、ルテニウム、ロジウム)から選ばれる1種以上の元
素、触媒第2成分として、スズ、ビスマス、セレン、テ
ルル及びアンチモンから成る群から選ばれる1種以上の
元素、及び触媒第3成分として、希土類元素から選ばれ
る1種以上の元素を無機担体上に担持させてなり、該触
媒第1成分と該触媒第2成分の比率R1(第2成分/第
1成分)が原子比で0.001〜10であり、該触媒第
1成分と該触媒第3成分の比率R2(第3成分/第1成
分)が原子比で0.01〜5であることを特徴とする糖
類を酸化して糖類酸化物を製造する際に用いる酸化反応
用触媒組成物。 2 触媒第1成分が白金及び/又はパラジウムである特
許請求の範囲第1項記載の酸化反応用触媒組成物。 3 触媒組成物中の触媒第1成分の含有量が0.1〜2
0重量%である特許請求の範囲第1項記載の酸化反応用
触媒組成物。 4 触媒組成物中の触媒第2成分の含有量が0.001
〜20重量%である特許請求の範囲第1項記載の酸化反
応用触媒組成物。 5 触媒組成物中の触媒第3成分の含有量が0.01〜
20重量%である特許請求の範囲第1項記載の酸化反応
用触媒組成物。
[Scope of Claims] 1 The first catalyst component is one or more elements selected from platinum group elements (palladium, platinum, ruthenium, rhodium), and the second catalyst component is tin, bismuth, selenium, tellurium, and antimony. One or more elements selected from the group consisting of: and one or more elements selected from rare earth elements as the third catalyst component are supported on an inorganic carrier; The ratio R1 (second component/first component) is 0.001 to 10 in atomic ratio, and the ratio R2 (third component/first component) of the catalyst first component and the catalyst third component is in atomic ratio. A catalyst composition for an oxidation reaction used in producing a saccharide oxide by oxidizing a saccharide, characterized in that the oxidation ratio is 0.01 to 5. 2. The catalyst composition for oxidation reactions according to claim 1, wherein the first catalyst component is platinum and/or palladium. 3 Content of the first catalyst component in the catalyst composition is 0.1 to 2
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 0% by weight. 4 Content of the second catalyst component in the catalyst composition is 0.001
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 20% by weight. 5 Content of the third catalyst component in the catalyst composition is from 0.01 to
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 20% by weight.
JP61111649A 1986-05-15 1986-05-15 Catalyst composition for oxidation reaction Pending JPS62269745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111649A JPS62269745A (en) 1986-05-15 1986-05-15 Catalyst composition for oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111649A JPS62269745A (en) 1986-05-15 1986-05-15 Catalyst composition for oxidation reaction

Publications (1)

Publication Number Publication Date
JPS62269745A true JPS62269745A (en) 1987-11-24

Family

ID=14566674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111649A Pending JPS62269745A (en) 1986-05-15 1986-05-15 Catalyst composition for oxidation reaction

Country Status (1)

Country Link
JP (1) JPS62269745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018034A (en) * 1997-03-25 2000-01-25 Cerestar Holdings B.V. Process for the production of 2-keto-D-glusonic acid
JP2005305243A (en) * 2004-04-19 2005-11-04 Mitsubishi Rayon Co Ltd CATALYST FOR PRODUCING alpha, beta-UNSATURATED ALDEHYDE AND/OR alpha, beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND USAGE THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018034A (en) * 1997-03-25 2000-01-25 Cerestar Holdings B.V. Process for the production of 2-keto-D-glusonic acid
JP2005305243A (en) * 2004-04-19 2005-11-04 Mitsubishi Rayon Co Ltd CATALYST FOR PRODUCING alpha, beta-UNSATURATED ALDEHYDE AND/OR alpha, beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND USAGE THEREOF
JP4507247B2 (en) * 2004-04-19 2010-07-21 三菱レイヨン株式会社 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof

Similar Documents

Publication Publication Date Title
US4845208A (en) Process for the oxidation of aldoses, catalyst used in said process and products thus obtained
US4843173A (en) Process for producing gluconic acid
JPS62247837A (en) Oxidation method to polyvalent carboxylic acid of di-, tri-,oligo- and polysaccharide catalyst used and product
US7982031B2 (en) Method for selective carbohydrate oxidation using supported gold catalysts
JP2716534B2 (en) Method for producing gluconic acid or its alkali metal salt
JPS62269745A (en) Catalyst composition for oxidation reaction
EP1023259B1 (en) Process for the oxidation of di-, tri-, oligo- and polysaccharides into polyhydroxycarboxylic acids
CN1210758A (en) Method for preparing Pt-Pd/c loaded noble metal catalyst
JP2010517740A (en) Carbon support-supported gold catalyst, process for its production and use for oxidation of organic compounds
JPS62269748A (en) Catalyst composition for oxidation reaction
JPS62269746A (en) Catalyst composition for oxidation reaction
US5981742A (en) Glucuronyl arabinarates and process for producing them
JPS59205343A (en) Production of monosaccharide oxide
JPS6092240A (en) Preparation of monosaccharide oxide
JPS62269749A (en) Catalyst composition for oxidation reaction
CN116217375A (en) Preparation method of high-selectivity calcium gluconate
JPS6039063B2 (en) Method for producing hydroxyacetic acid
JP4035694B2 (en) Method for producing hydrogen-containing gas
JPH07173099A (en) Production of glyoxylic acid
NL9302127A (en) Method for preparing 2-keto-aldonic acids.
JPH0439474B2 (en)
JPS62265243A (en) Production of 1,4-cyclohexadione
MXPA96006649A (en) Glucuronilo-arabinaratos, its procedure debtention and applications of these products
PL214011B1 (en) Catalyst for selective oxidation of glucose in the liquid phase with oxygen to sodium gluconate and the process for the preparation of this catalyst