JPH0439474B2 - - Google Patents

Info

Publication number
JPH0439474B2
JPH0439474B2 JP58161888A JP16188883A JPH0439474B2 JP H0439474 B2 JPH0439474 B2 JP H0439474B2 JP 58161888 A JP58161888 A JP 58161888A JP 16188883 A JP16188883 A JP 16188883A JP H0439474 B2 JPH0439474 B2 JP H0439474B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
keto
sorbose
gulonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58161888A
Other languages
Japanese (ja)
Other versions
JPS6054338A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58161888A priority Critical patent/JPS6054338A/en
Publication of JPS6054338A publication Critical patent/JPS6054338A/en
Publication of JPH0439474B2 publication Critical patent/JPH0439474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、2−ケト−L−グロン酸をL−ソル
ボースの酸化により製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 2-keto-L-gulonic acid by oxidation of L-sorbose.

従来、2−ケト−L−グロン酸をL−ソルボー
スの酸化で製造するには、ソルボースとアセトン
とを反応させて、ジアセトン−L−ソルボースと
し、これを次亜塩素酸塩または過マンガン酸塩を
用いて酸化し、ジアセトン−2−ケト−L−グロ
ン酸を製造し、これを脱アセトンする多段階の工
程を得て、製造している。
Conventionally, in order to produce 2-keto-L-gulonic acid by oxidation of L-sorbose, sorbose and acetone are reacted to form diacetone-L-sorbose, which is then treated with hypochlorite or permanganate. is used to produce diacetone-2-keto-L-gulonic acid, which is then deacetonized using a multi-step process.

しかし、この従来法は、多段反応操作を必要と
し、工程が繁雑であり、高価な酸化用の試薬を消
費する等の欠点がある。これらの欠点を克服する
ために、L−ソルボースをそのままの状態でアセ
トン化せずに、貴金属触媒の存在下に空気酸化す
る試みは古くからなされているが(USP2190377
(1940))、目的物の収率も低く、反応に60時間も
要する等で充分な結果は得られていない。これら
の欠点を改良する目的で、本発明者は先に貴金属
に鉛またはビスマスを添加した触媒を用いると、
従来既知の貴金属触媒に比較して反応時間が大巾
に短縮され、収率も向上することを見出し、この
触媒を用いる方法を既に提案した(特開昭57−
163340)。
However, this conventional method requires multi-stage reaction operations, is complicated, and has drawbacks such as consuming expensive oxidizing reagents. In order to overcome these drawbacks, attempts have been made for a long time to air oxidize L-sorbose in the presence of a noble metal catalyst without acetonizing it as is (USP 2190377).
(1940)), the yield of the target product was low, and the reaction required 60 hours, so satisfactory results were not obtained. In order to improve these drawbacks, the present inventor first used a catalyst in which lead or bismuth was added to a noble metal.
We found that the reaction time was greatly shortened and the yield was improved compared to conventionally known precious metal catalysts, and we have already proposed a method using this catalyst (Japanese Patent Application Laid-Open No. 1989-1999).
163340).

本発明の目的とするところは、先に本発明者の
提案した触媒系よりもより高活性を持つた触媒系
を用いる2−ケト−L−グロン酸の製造法を提供
することである。
An object of the present invention is to provide a method for producing 2-keto-L-gulonic acid using a catalyst system having higher activity than the catalyst system previously proposed by the present inventors.

本発明者は、先に提案した、貴金属−鉛または
ビスマス系よりもより活性の優れた触媒を得るこ
とを目的として種々研究した結果、貴金属−鉛系
に更にカドミウムを添加した貴金属−鉛−カドミ
ウム系触媒がより高活性を示めすことを見出し
て、本発明を完成するに至つた。
As a result of various studies aimed at obtaining a catalyst with more excellent activity than the previously proposed noble metal-lead or bismuth system, the present inventor discovered that the noble metal-lead-cadmium catalyst, which is a catalyst with further cadmium added to the noble metal-lead system, has been developed. The present invention was completed by discovering that the system catalyst exhibits higher activity.

即ち、本発明は、L−ソルボースを水溶液中で
白金および/またはパラジウムに鉛およびカドミ
ウムを含有する触媒の存在下に反応液のPHを6〜
10に保つて、含酸素ガスで酸化して2−ケト−L
−グロン酸を製造する方法である。
That is, in the present invention, L-sorbose is mixed in an aqueous solution in the presence of a catalyst containing lead and cadmium in platinum and/or palladium, and the pH of the reaction solution is adjusted to 6 to 6.
10 and oxidized with oxygen-containing gas to produce 2-keto-L.
- A method for producing gulonic acid.

本発明の方法によれば、L−ソルボースをアセ
トンと反応させて、ジアセトン−L−ソルボース
に誘導してから酸化する必要が無く、また、次亜
塩素酸塩または、過マンガン酸塩のような高価な
酸化剤も必要とせずに工業的に有利に2−ケト−
L−グロン酸を製造することが出来る。
According to the method of the present invention, there is no need to react L-sorbose with acetone to derive diacetone-L-sorbose and then oxidize it, and there is no need to oxidize L-sorbose, such as hypochlorite or permanganate. Industrially advantageous 2-keto-
L-gulonic acid can be produced.

本発明の方法で用いる触媒は、白金または/お
よびパラジウムに鉛およびカドミウムを添加した
ものであつて、通常は適当な担体、例えば活性
炭、アルミナ等に担持して使用する。白金および
パラジウムは金属状または酸化物であり、鉛およ
びカドミウムは金属状、水酸化物、酸化物、塩化
物、炭酸塩または硝酸塩等の無機酸塩あるいは有
機酸塩等である。
The catalyst used in the method of the present invention is prepared by adding lead and cadmium to platinum or/and palladium, and is usually supported on a suitable carrier such as activated carbon or alumina. Platinum and palladium are metallic or oxides, and lead and cadmium are metallic, inorganic or organic acid salts such as hydroxides, oxides, chlorides, carbonates or nitrates.

担体上への担持量は、白金またはパラジウムが
0.1〜10wt%、鉛が0.1〜10wt%、カドミウムが
0.01〜5wt%の範囲が多用される。
The amount of platinum or palladium supported on the carrier is
0.1-10wt%, lead 0.1-10wt%, cadmium
A range of 0.01 to 5wt% is often used.

触媒の調製方法は、常法、例えば、塩化白金酸
と硝酸鉛および硝酸カドミウムの混合水溶液を活
性炭粉末に浸漬し、ホルマリン水溶液で還元処理
する等の方法による。あるいは、市販の貴金属を
担持した炭素粉末触媒を鉛およびカドミウム塩を
溶解せしめた水溶液に浸漬する等の方法で触媒を
調製するのが最も簡便である。または、L−ソル
ボースの酸化反応を実施する際に、反応溶媒であ
る水の中に、貴金属を担持した触媒と共に鉛およ
びカドミウムの水可溶性塩を添加し、反応と触媒
調製とを同時に行う方法でもよい。
The catalyst can be prepared by a conventional method, for example, by immersing activated carbon powder in a mixed aqueous solution of chloroplatinic acid, lead nitrate, and cadmium nitrate, followed by reduction treatment with an aqueous formalin solution. Alternatively, it is most convenient to prepare a catalyst by immersing a commercially available carbon powder catalyst supporting a noble metal in an aqueous solution in which lead and cadmium salts are dissolved. Alternatively, when carrying out the oxidation reaction of L-sorbose, water-soluble salts of lead and cadmium are added together with a noble metal-supported catalyst to water, which is the reaction solvent, and the reaction and catalyst preparation can be carried out simultaneously. good.

本発明の方法は、溶媒中で実施するが、溶媒と
しては水を用いる。水溶媒中に仕込む原料L−ソ
ルボースの濃度は、1〜20wt%、特に2〜10wt
%の範囲が多用される。
The method of the invention is carried out in a solvent, and water is used as the solvent. The concentration of raw material L-sorbose charged in the water solvent is 1 to 20 wt%, especially 2 to 10 wt%.
% ranges are often used.

触媒の使用量は、例えば、反応をバツチで実施
する場合では、反応液1に対して、前述の担持
触媒10〜100gを用いる。
Regarding the amount of catalyst used, for example, when the reaction is carried out in batches, 10 to 100 g of the above-mentioned supported catalyst is used per 1 reaction solution.

反応の進行により、酸化により生じた目的物、
2−ケト−L−グロン酸のために、反応液のPHは
中性近傍から、酸性側に移行する。酸化反応の速
度は反応液のPHが酸性側では急激に低下するた
め、反応液のPHは中性近傍乃至弱アルカリ性に保
つことが、好ましい。この目的のために、反応の
進行に同期させて、アルカリ物質を逐時、反応液
中に添加し反応液のPHを6〜10に保つ。使用する
アルカリ物質は、苛性アルカリ、アルカリ金属の
炭酸塩・重炭酸塩・有機酸塩または燐酸塩等であ
る。通常はこれらの塩の水溶液をPHコントローラ
ーに同期させた定量ポンプで反応液中に添加す
る。反応液のPHを逆に10り塩基性にすると、酸化
反応の速度は増大するが、重合物やタール状の副
生物が増加するので好ましくない。以上の理由
で、反応液のPHは6〜10、更に好ましくは、7〜
9の範囲に保つて、反応を実施する。
As the reaction progresses, the target product produced by oxidation,
Because of 2-keto-L-gulonic acid, the pH of the reaction solution shifts from near neutral to acidic. Since the rate of oxidation reaction decreases rapidly when the pH of the reaction solution is acidic, it is preferable to keep the pH of the reaction solution close to neutral or slightly alkaline. For this purpose, an alkaline substance is added to the reaction solution from time to time in synchronization with the progress of the reaction to maintain the pH of the reaction solution at 6 to 10. The alkaline substances used include caustic alkali, alkali metal carbonates, bicarbonates, organic acid salts, or phosphates. Usually, an aqueous solution of these salts is added to the reaction solution using a metering pump synchronized with a PH controller. Conversely, if the pH of the reaction solution is made 10% more basic, the rate of the oxidation reaction will increase, but this is not preferable because it will increase the amount of polymers and tar-like by-products. For the above reasons, the pH of the reaction solution is 6 to 10, more preferably 7 to 10.
The reaction is carried out by keeping the temperature within the range of 9.

本発明の方法で用いられる酸化剤は含酸素ガス
であつて、酸素または空気が多用される。通常
は、空気を用いるのが好ましい。含酸素ガスの圧
力は常圧乃至5Kg/cm2の範囲が多用される。含酸
素ガスと反応液および触媒との混合状態は、ガス
を効率良く反応液中に分散吹込み充分に撹拌する
等の手段で、良好に保つことが必要である。
The oxidizing agent used in the method of the present invention is an oxygen-containing gas, and oxygen or air is often used. It is usually preferable to use air. The pressure of the oxygen-containing gas is often in the range of normal pressure to 5 kg/cm 2 . It is necessary to maintain a good mixing state of the oxygen-containing gas, the reaction liquid, and the catalyst by means such as efficiently dispersing and blowing the gas into the reaction liquid and thoroughly stirring the mixture.

反応の温度は室温乃至100℃、特に30℃〜60℃
の範囲が好ましい。反応に要する時間は、バツチ
で反応させる場合を例で示せば0.5〜20時間、通
常は1〜10時間の範囲である。
The reaction temperature is room temperature to 100℃, especially 30℃ to 60℃
A range of is preferred. The time required for the reaction is, for example, 0.5 to 20 hours when reacting in batches, and usually 1 to 10 hours.

反応器の型式は、完全混合型の懸濁床で撹拌槽
式あるいは、気泡搭式の反応器が多用される。粒
状の触媒を用いる固定床式の反応器でもよい。反
応槽は一段でも多段でも同様に使用できる。
As for the reactor type, completely mixed suspended bed, stirred tank type or bubble tower type reactors are often used. A fixed bed reactor using a granular catalyst may also be used. The reaction tank can be used in a single stage or in multiple stages.

反応終了後、触媒をろ過等の常法により除去し
た反応液を減圧下に濃縮し、これにイソプロピル
アルコール等の水可溶性有機溶媒を添加しよく撹
拌すると、目的物のアルカリ金属塩の結晶が析出
する。
After the reaction is complete, the catalyst is removed by a conventional method such as filtration, and the reaction solution is concentrated under reduced pressure. When a water-soluble organic solvent such as isopropyl alcohol is added to this and stirred thoroughly, crystals of the target alkali metal salt are precipitated. do.

本発明の方法で得られる、2−ケト−L−グロ
ン酸はアスコルビン酸(ビタミンC)の前駆体と
して、極めて有用な化合物である。
2-keto-L-gulonic acid obtained by the method of the present invention is an extremely useful compound as a precursor of ascorbic acid (vitamin C).

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 内径5cmのガラス製円筒の底部に焼結ガラスフ
イルターを付け、その下部に空気吹込管を付けた
ものを反応器として用いた。
Example 1 A sintered glass filter was attached to the bottom of a glass cylinder with an inner diameter of 5 cm, and an air blowing pipe was attached to the bottom of the glass cylinder, which was used as a reactor.

この反応器に4wt%のL−ソルボース水溶液
400ml、5wt%Pt、4wt%Pb(NO32、1wt%Cd
(NO32を担持した活性炭粉末触媒8gを仕込み、
外部より加熱し温度を48℃に昇温した。常圧空気
を反応管下部の空気吹込口から500ml/毎分で吹
込み反応させた。反応の進行に伴ない、反応液の
PHを7〜8に保つ様に苛性曹達水溶液を逐時注入
した。
4wt% L-sorbose aqueous solution was added to this reactor.
400ml, 5wt%Pt, 4wt%Pb( NO3 ) 2 , 1wt%Cd
(NO 3 ) 2 was charged with 8 g of activated carbon powder catalyst.
The temperature was raised to 48°C by heating from the outside. Normal pressure air was blown into the reaction tube at a rate of 500 ml/min from the air inlet at the bottom of the reaction tube to cause a reaction. As the reaction progresses, the reaction solution
A caustic soda aqueous solution was injected at intervals to maintain the pH at 7 to 8.

反応開始後1.5時間で苛性槽達水溶液の消費が
遅くなつたので、反応操作を停止し、反応液から
触媒を分解した。得られた反応終了液を、高速液
体クロマトグラフイーで分析した結果、2−ケト
−L−グロン酸のナトリウム塩が、83wt%の収
率で得られた。
1.5 hours after the start of the reaction, the consumption of the aqueous solution in the caustic tank became slow, so the reaction operation was stopped and the catalyst was decomposed from the reaction solution. As a result of analyzing the obtained reaction-completed liquid by high performance liquid chromatography, the sodium salt of 2-keto-L-gulonic acid was obtained in a yield of 83 wt%.

実施例 2 実施例1と同様の方法と装置で、用いる触媒を
3wt%Pd、1wt%Pt、3wt%(CH3COO)2Pb、
1wt%Cd(NO32/炭素粉末触媒に変えて反応さ
せた。反応の終了に2.5時間を要し収率78wt%で
2−ケト−L−グロン酸を得た。
Example 2 Using the same method and equipment as in Example 1, the catalyst used was
3wt%Pd, 1wt%Pt, 3wt%( CH3COO ) 2Pb ,
The reaction was performed using a 1wt% Cd(NO 3 ) 2 /carbon powder catalyst. It took 2.5 hours to complete the reaction, and 2-keto-L-gulonic acid was obtained in a yield of 78 wt%.

比較例 1 実施例1と同様の反応装置を用い、同様の方法
で用いる触媒のみを変えて反応を実施した。触媒
は、5wt%Pt、4wt%Pb(NO32を活性炭粉末に
担持したものに使用した。
Comparative Example 1 Using the same reaction apparatus as in Example 1, a reaction was carried out in the same manner except for the catalyst used. The catalyst used was 5 wt% Pt and 4 wt% Pb(NO 3 ) 2 supported on activated carbon powder.

反応の進行に伴ない、反応液のPHを7〜8に保
つ様に苛性曹達水溶液を反応液中に逐時注入し
た。反応開始2.5時間で苛性曹達水溶液の消費が
遅くなつたので、反応操作を停止した。実施例1
と同様の方法で分析した結果2−ケト−L−グロ
ン酸のナトリウム塩が80wt%の収率で得られた。
As the reaction progressed, a caustic soda aqueous solution was injected into the reaction solution one after another so as to maintain the pH of the reaction solution at 7 to 8. 2.5 hours after the start of the reaction, the consumption of the caustic soda aqueous solution became slow, so the reaction operation was stopped. Example 1
As a result of analysis in the same manner as above, sodium salt of 2-keto-L-gulonic acid was obtained in a yield of 80 wt%.

比較例 2 実施例1と同様の反応装置により、同様の方法
で、用いる触媒のみを変えて反応を実施した。触
媒は3wt%Pd、1wt%Pt、3wt%(CH3COO)2Pb
を活性炭粉末に担持したものを使用した。
Comparative Example 2 A reaction was carried out in the same manner as in Example 1 using the same reaction apparatus, except that the catalyst used was different. Catalyst is 3wt%Pd, 1wt%Pt, 3wt%( CH3COO ) 2Pb
was supported on activated carbon powder.

反応の進行に伴ない、反応液のPHを7〜8に保
つ様に苛性曹達水溶液を注入した。反応の終了に
3.5時間を要し、収率75wt%で2−ケト−L−グ
ロン酸を得た。
As the reaction progressed, a caustic soda aqueous solution was injected to maintain the pH of the reaction solution at 7 to 8. at the end of the reaction
It took 3.5 hours to obtain 2-keto-L-gulonic acid in a yield of 75 wt%.

Claims (1)

【特許請求の範囲】[Claims] 1 L−ソルボースを酸化し2−ケト−L−グロ
ン酸を製造するに際し、白金または/およびパラ
ジウムに鉛およびカドミウムを含有する触媒の存
在下に、水溶液中で反応液のPHを6〜10に保ち含
酸素ガスで酸化することを特徴とする2−ケト−
L−グロン酸の製造法。
1 When oxidizing L-sorbose to produce 2-keto-L-gulonic acid, the pH of the reaction solution is adjusted to 6 to 10 in an aqueous solution in the presence of a catalyst containing lead and cadmium in platinum or/and palladium. 2-keto-, which is characterized by being oxidized with oxygen-containing gas
Method for producing L-gulonic acid.
JP58161888A 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid Granted JPS6054338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161888A JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161888A JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Publications (2)

Publication Number Publication Date
JPS6054338A JPS6054338A (en) 1985-03-28
JPH0439474B2 true JPH0439474B2 (en) 1992-06-29

Family

ID=15743898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161888A Granted JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Country Status (1)

Country Link
JP (1) JPS6054338A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618135A1 (en) * 1986-05-30 1987-12-03 Bayer Ag METHOD FOR PRODUCING OXETANE-3-CARBONIC ACIDS
DE4307388A1 (en) * 1993-03-10 1994-09-15 Zuckerindustrie Verein Method and device for producing mono-oxidized products from carbohydrates, carbohydrate derivatives and primary alcohols

Also Published As

Publication number Publication date
JPS6054338A (en) 1985-03-28

Similar Documents

Publication Publication Date Title
JP2779156B2 (en) Aldose oxidation method
RU2267353C2 (en) Ammonia synthesis catalyst and a method of regeneration thereof
KR100445847B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
JPS62247837A (en) Oxidation method to polyvalent carboxylic acid of di-, tri-,oligo- and polysaccharide catalyst used and product
JP2716534B2 (en) Method for producing gluconic acid or its alkali metal salt
JPH0419985B2 (en)
JP4251809B2 (en) Supported metal catalyst, process for its production and its application in the direct production of hydrogen peroxide
JPS60163840A (en) Manufacture of 2-ketoaldonic acid
JP2903187B2 (en) Method for producing (poly) oxyethylene alkyl ether acetic acid
JPH0439474B2 (en)
JP2000506868A (en) Method for oxidizing di, tri, oligo and polysaccharides to polyhydroxycarboxylic acids
US4242525A (en) Process for producing salts of pyruvic acid
US4599446A (en) Process for the preparation of 2-keto-L-gulonic acid
JPS648638B2 (en)
SU641872A3 (en) Method of obtaining butendioldiacetates
JPS6040453B2 (en) Method for producing polyethylene glycolic acid
JPS59205343A (en) Production of monosaccharide oxide
JPS6039063B2 (en) Method for producing hydroxyacetic acid
JPH0223559B2 (en)
JPS6010016B2 (en) Method for producing hydroxyacetic acid
JPH10158227A (en) Production of n,n-dimethylformamide
KR820000822B1 (en) Process for producing salts of pyruvic acid
JPS6041656B2 (en) Method for oxidizing (poly)oxyethylene ether compounds
JP3313217B2 (en) Method for producing glyoxylic acid
NL9302127A (en) Method for preparing 2-keto-aldonic acids.