JPS648638B2 - - Google Patents

Info

Publication number
JPS648638B2
JPS648638B2 JP56047148A JP4714881A JPS648638B2 JP S648638 B2 JPS648638 B2 JP S648638B2 JP 56047148 A JP56047148 A JP 56047148A JP 4714881 A JP4714881 A JP 4714881A JP S648638 B2 JPS648638 B2 JP S648638B2
Authority
JP
Japan
Prior art keywords
reaction
keto
sorbose
catalyst
gulonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047148A
Other languages
Japanese (ja)
Other versions
JPS57163340A (en
Inventor
Tadamitsu Kyora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56047148A priority Critical patent/JPS57163340A/en
Publication of JPS57163340A publication Critical patent/JPS57163340A/en
Publication of JPS648638B2 publication Critical patent/JPS648638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、2―ケト―L―グロン酸をL―ソル
ボースの酸化により製造する方法に関するもので
ある。 従来、2―ケト―L―グロン酸をL―ソルボー
スの酸化で製造するには、2―ケト―L―グロン
酸とアセトンとを反応させ、ジアセトン―L―ソ
ルボースとし、これを次亜塩素酸塩または過マン
ガン酸塩を用いて酸化し、ジアセトン―2―ケト
―L―グロン酸を製造し、これを脱アセトンにす
る多段階の行程を経て製造していた。 この従来法は、多段反応操作を要し、行程が繁
雑であり、酸化剤として、高価な過マンガン酸塩
または次亜塩素酸塩等を消費する欠点があつた。
本発明の目的とするところは、従来法のような欠
点のない2―ケト―L―グロン酸の製造法を提供
するところにある。 本発明者は従来法のような欠点のないL―ソル
ボースの酸化方法に関して種々研究した結果、白
金またはパラジウムに第2成分として鉛またはビ
スマスを添加した触媒を用い、反応水溶液のPHを
適当に保ちながら空気酸化すれば、2―ケト―L
―グロン酸を、従来法と同様の収率で製造し得る
ことを見出し本発明を完成するに至つた。 すなわち、本発明の方法は、L―ソルボースを
水溶液中で白金または/およびパラジウムに鉛ま
たは/およびビスマスを含有する触媒の存在下に
反応液のPHを6〜10に保つて、含酸素ガスで酸化
した2―ケト―L―グロン酸を製造するものであ
る。 本発明の方法によれば、L―ソルボースをアセ
トンと反応させてジアセトン―L―ソルボースに
誘導してから酸化する必要がなく、従来法では三
段階を要した反応が一段で実施できる。また、次
亜塩素酸塩または過マンガン酸塩のような高価な
酸化剤を必要とせず、排酸化剤の後処理工程もな
しに、工業的に有利に2―ケト―L―グロン酸を
製造することが出来る。 本発明の方法で使用される触媒は、白金また
は/およびパラジウムに鉛または/およびビスマ
スを添加したものであつて、通常は適当な担体、
例えば、活性炭またはアルミナ等に担持して使用
する。白金およびパラジウムは金属状または酸化
物であつて、鉛およびビスマスは金属状、水酸化
物、酸化物、塩化物、炭酸塩、有機酸塩または硝
酸塩等である。担体への担持量は、パラジウムま
たは/および白金が0.1〜10wt%、好ましくは0.5
〜5wt%の範囲であり、鉛または/およびビスマ
スが0.5〜10wt%、好ましくは1〜5wt%の範囲
である。 触媒の調製方法は、常法、例えば、塩化白金酸
と硝酸鉛の水溶液を活性炭粉末に浸漬し、ホルマ
リン水溶液で還元処理する等による。また、市販
の貴金属を担持した炭素粉末触媒を、鉛または/
およびビスマスの可溶性塩の水溶液に浸漬、乾燥
する等の方法によつても調製できる。 本発明の方法は溶媒中で実施するが、溶媒とし
ては水を多用する。水溶液中に仕込む原料L―ソ
ルボースの濃度は、2〜20wt%、好ましくは5
〜15wt%の範囲である。 触媒の使用量は、例えば、反応をバツチで実施
する場合では、反応液1に対し5〜100g、通
常は10〜50gの触媒を用いる。 反応の進行により、酸化により生じた目的物の
酸のために反応液のPHは7近傍から酸性側に移行
する。酸化反応の速度は、反応液のPHが酸性側で
は急激に低下するため、反応液のPHは中性近傍に
保つことが好ましい。この目的のために、反応の
進行に同期させて、アルカリ物質を逐時反応液中
に添加し、反応液のPHを6〜10に保つ。使用する
アルカリ物質は、苛性アルカリ、アルカリ金属の
炭酸塩または重炭酸塩等で、通常はこれらの水溶
液の形で、反応液に添加する。反応液のPHを逆に
PH10より塩基性にすると酸化反応の速度は増大す
るが、重合物やタール状の副生物が増加するので
好ましくない。したがつて、反応液のPHは6〜
10、更に好ましくは7〜9の範囲に保つて反応を
実施する。 本発明の方法で使用される酸化剤は含酸素ガス
であつて、酸素または空気が多用される。特に空
気を用いるのが好ましい。反応時の含酸素ガスの
圧力は常圧ないし5Kg/cm2が多用される。含酸素
ガスと反応液との混合状態は、ガスを反応液中に
吹込みよく撹拌する等して、気液の分散を良好に
保つことが必要である。 反応の温度は、室温〜100℃、特に40〜70℃の
範囲が好ましい。反応に要する時間は、バツチで
反応させる場合で示せば、1〜20時間、通常は2
〜10時間の範囲である。 反応器の形式は、通常、完全混合型の懸濁床で
撹拌槽式または気泡塔式の反応器が用いられる。
粒状の触媒による固定床式の反応器でもよい。反
応槽は一段でも、多段式でも同様に使用できる。
反応終了後、触媒を別した水溶液を減圧下に濃
縮し、これにメタノール等の低級アルコールまた
はアセトン等の溶媒を添加撹拌すると、目的物の
ナトリウム塩の結晶が析出するので、これを別
洗滌等の手段により単離することが出来る。 本発明の方法により得られる2―ケト―L―グ
ロン酸はアスコルビン酸(ビタミンC)の前駆体
として極めて有用な化合物である。 以下、実施例により本発明を説明する。 実施例 1 内径20cmのステンレス円筒容器にバツフル板、
タービン翼型の撹拌器、空気吹込管を付けたもの
を反応器に用いた。8wt%のL―ソルボース水溶
液1,2wt%pt,3wt%pbco3を活性炭粉末に担
持した触媒30gを仕込み、50℃に昇温した。常圧
で、空気を200ml/minで吹込み、500rpmで撹拌
しながら反応させた。反応の進行に伴ない、反応
液PHを7〜8に保つ様に水酸化ナトリウム水溶液
を逐時添加した。反応開始後2.5時間で水酸化ナ
トリウム水溶液の消費が停止したので反応を終了
し、反応液から触媒を分離した。反応液を高速液
体クロマトグラフイーで分析定量した結果、2―
ケト―L―グロン酸のナトリウム塩が87%の収率
で生成していた。 実施例 2 実施例―1と同様の方法で、用いる触媒をかえ
て反応させた。得られた結果を表―1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 2-keto-L-gulonic acid by oxidation of L-sorbose. Conventionally, in order to produce 2-keto-L-gulonic acid by oxidizing L-sorbose, 2-keto-L-gulonic acid and acetone were reacted to form diacetone-L-sorbose, which was then mixed with hypochlorous acid. Diacetone-2-keto-L-gulonic acid was produced by oxidation using a salt or permanganate, and this was produced through a multi-step process of deacetonization. This conventional method requires multi-stage reaction operations, is complicated, and has the drawback of consuming expensive permanganate or hypochlorite as an oxidizing agent.
An object of the present invention is to provide a method for producing 2-keto-L-gulonic acid that does not have the drawbacks of conventional methods. As a result of various research into a method for oxidizing L-sorbose that does not have the drawbacks of conventional methods, the inventors of the present invention found that the pH of the reaction aqueous solution was maintained at an appropriate level by using a catalyst consisting of platinum or palladium with lead or bismuth added as a second component. If oxidized in air, 2-keto-L
-We have discovered that gulonic acid can be produced with the same yield as conventional methods, and have completed the present invention. That is, in the method of the present invention, L-sorbose is treated in an aqueous solution in the presence of a catalyst containing lead and/or bismuth in platinum or/and palladium, while maintaining the pH of the reaction solution at 6 to 10 and using an oxygen-containing gas. This method produces oxidized 2-keto-L-gulonic acid. According to the method of the present invention, it is not necessary to react L-sorbose with acetone to derive diacetone-L-sorbose and then oxidize it, and the reaction that required three steps in the conventional method can be carried out in one step. In addition, 2-keto-L-gulonic acid can be produced industrially advantageously without the need for expensive oxidizing agents such as hypochlorite or permanganate, and without any post-treatment process for waste oxidants. You can. The catalyst used in the process of the invention is platinum or/and palladium with lead or/and bismuth added, and is usually supported by a suitable carrier.
For example, it is used by being supported on activated carbon or alumina. Platinum and palladium are metallic or oxides, and lead and bismuth are metallic, hydroxides, oxides, chlorides, carbonates, organic acid salts or nitrates. The amount of palladium or/and platinum supported on the carrier is 0.1 to 10 wt%, preferably 0.5
~5 wt%, and lead or/and bismuth in the range of 0.5 to 10 wt%, preferably 1 to 5 wt%. The catalyst can be prepared by a conventional method, for example, immersing activated carbon powder in an aqueous solution of chloroplatinic acid and lead nitrate, followed by reduction treatment with an aqueous formalin solution. In addition, commercially available precious metal-supported carbon powder catalysts were mixed with lead or /
It can also be prepared by methods such as immersion in an aqueous solution of a soluble salt of bismuth and drying. The method of the present invention is carried out in a solvent, and water is frequently used as the solvent. The concentration of the raw material L-sorbose to be added to the aqueous solution is 2 to 20 wt%, preferably 5
~15wt% range. The amount of catalyst used is, for example, when the reaction is carried out in batches, 5 to 100 g, usually 10 to 50 g, of catalyst per reaction solution 1. As the reaction progresses, the pH of the reaction solution shifts from around 7 to the acidic side due to the acid of the target product produced by oxidation. Since the rate of oxidation reaction rapidly decreases when the pH of the reaction solution is acidic, it is preferable to maintain the pH of the reaction solution near neutrality. For this purpose, an alkaline substance is added to the reaction solution one after another in synchronization with the progress of the reaction, and the pH of the reaction solution is maintained at 6 to 10. The alkaline substance used is a caustic alkali, an alkali metal carbonate or bicarbonate, etc., and is usually added to the reaction solution in the form of an aqueous solution thereof. Reverse the PH of the reaction solution
If the pH is made more basic than 10, the rate of oxidation reaction will increase, but this is not preferable because it increases the amount of polymers and tar-like by-products. Therefore, the pH of the reaction solution is 6~
The reaction is carried out while maintaining the molecular weight within the range of 10, more preferably 7 to 9. The oxidizing agent used in the method of the present invention is an oxygen-containing gas, and oxygen or air is often used. In particular, it is preferable to use air. The pressure of the oxygen-containing gas during the reaction is often from normal pressure to 5 kg/cm 2 . Regarding the mixed state of the oxygen-containing gas and the reaction liquid, it is necessary to maintain good gas-liquid dispersion by, for example, blowing gas into the reaction liquid and stirring well. The reaction temperature is preferably in the range of room temperature to 100°C, particularly 40 to 70°C. The time required for the reaction is 1 to 20 hours when reacting in batches, usually 2 hours.
In the range of ~10 hours. The type of reactor is usually a completely mixed suspended bed, stirred tank type or bubble column type reactor.
A fixed bed reactor using a granular catalyst may also be used. The reaction tank can be used in a single stage or in a multistage type.
After the reaction is complete, the aqueous solution from which the catalyst has been removed is concentrated under reduced pressure, and when a lower alcohol such as methanol or a solvent such as acetone is added and stirred, crystals of the sodium salt of the target product precipitate, and these are washed separately, etc. It can be isolated by the following means. 2-keto-L-gulonic acid obtained by the method of the present invention is an extremely useful compound as a precursor of ascorbic acid (vitamin C). The present invention will be explained below with reference to Examples. Example 1 A stainless steel cylindrical container with an inner diameter of 20 cm and a full plate,
A turbine blade type stirrer and an air blowing tube were used in the reactor. 30 g of a catalyst consisting of an 8 wt % L-sorbose aqueous solution 1.2 wt % pt, 3 wt % PBCO 3 supported on activated carbon powder was charged, and the temperature was raised to 50°C. The reaction was carried out at normal pressure with air blown in at 200 ml/min and stirring at 500 rpm. As the reaction progressed, an aqueous sodium hydroxide solution was added at intervals to maintain the pH of the reaction solution at 7 to 8. The consumption of the aqueous sodium hydroxide solution stopped 2.5 hours after the start of the reaction, so the reaction was terminated and the catalyst was separated from the reaction solution. As a result of analyzing and quantifying the reaction solution using high performance liquid chromatography, 2-
The sodium salt of keto-L-gulonic acid was produced in 87% yield. Example 2 A reaction was carried out in the same manner as in Example-1, except that the catalyst used was changed. The results obtained are shown in Table-1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 L―ソルボースを酸化し2―ケト―L―グロ
ン酸を製造するに際し、白金または/およびパラ
ジウムに鉛または/およびビスマスを含有する触
媒の存在下、含酸素ガスで酸化することを特徴と
する2―ケト―L―グロン酸の製造法。
1. When oxidizing L-sorbose to produce 2-keto-L-gulonic acid, the process is characterized by oxidizing with an oxygen-containing gas in the presence of a catalyst containing lead or/and bismuth in platinum or/and palladium. Method for producing 2-keto-L-gulonic acid.
JP56047148A 1981-04-01 1981-04-01 Preparation of 2-keto-l-gulonic acid Granted JPS57163340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56047148A JPS57163340A (en) 1981-04-01 1981-04-01 Preparation of 2-keto-l-gulonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56047148A JPS57163340A (en) 1981-04-01 1981-04-01 Preparation of 2-keto-l-gulonic acid

Publications (2)

Publication Number Publication Date
JPS57163340A JPS57163340A (en) 1982-10-07
JPS648638B2 true JPS648638B2 (en) 1989-02-14

Family

ID=12767007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56047148A Granted JPS57163340A (en) 1981-04-01 1981-04-01 Preparation of 2-keto-l-gulonic acid

Country Status (1)

Country Link
JP (1) JPS57163340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI75577C (en) * 1984-01-23 1988-07-11 Akzo Nv Process for preparing 2-keto-aldonic acids.

Also Published As

Publication number Publication date
JPS57163340A (en) 1982-10-07

Similar Documents

Publication Publication Date Title
EP2364208B1 (en) Supported palladium-gold catalysts and preparation of vinyl acetate therewith
JP6069199B2 (en) Method for synthesizing 2,5-furandicarboxylic acid
KR100445847B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
JPS60163840A (en) Manufacture of 2-ketoaldonic acid
JP2903187B2 (en) Method for producing (poly) oxyethylene alkyl ether acetic acid
JPS648638B2 (en)
US4599446A (en) Process for the preparation of 2-keto-L-gulonic acid
JPH0439474B2 (en)
JPH08337554A (en) Continuous production of carboxylic ester
JPH0223559B2 (en)
JP4026350B2 (en) Method for producing alkyl nitrite
JPS6040453B2 (en) Method for producing polyethylene glycolic acid
JP2006117576A (en) Process of glycolic acid
JP3748588B2 (en) Method for producing glycolic acid
JP3313217B2 (en) Method for producing glyoxylic acid
JPS6010016B2 (en) Method for producing hydroxyacetic acid
CN111574477B (en) Synthesis method of amide compound
JP2002201144A (en) Method for producing compound having carboxy and/or carbonyl group
JPS6115862B2 (en)
JPS6041656B2 (en) Method for oxidizing (poly)oxyethylene ether compounds
JPH10158214A (en) Production of carboxylate
JPS59205343A (en) Production of monosaccharide oxide
JP3123867B2 (en) Method for producing glyoxylic acid
JPH09253489A (en) Method for regeneration of catalyst for preparing carboxylate
JPH06157399A (en) Production of glyoxylic acid