JPS62269749A - Catalyst composition for oxidation reaction - Google Patents

Catalyst composition for oxidation reaction

Info

Publication number
JPS62269749A
JPS62269749A JP61111650A JP11165086A JPS62269749A JP S62269749 A JPS62269749 A JP S62269749A JP 61111650 A JP61111650 A JP 61111650A JP 11165086 A JP11165086 A JP 11165086A JP S62269749 A JPS62269749 A JP S62269749A
Authority
JP
Japan
Prior art keywords
catalyst
component
catalyst composition
reaction
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61111650A
Other languages
Japanese (ja)
Other versions
JPH0640961B2 (en
Inventor
Hiroshi Kimura
洋 木村
Akio Kimura
昭雄 木村
Yoshinori Mitsuta
義徳 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61111650A priority Critical patent/JPH0640961B2/en
Publication of JPS62269749A publication Critical patent/JPS62269749A/en
Publication of JPH0640961B2 publication Critical patent/JPH0640961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To improve the oxidation efficiency of the title catalyst composition by depositing a platinum group element as the first component, an element such as Sn as the second component, and an element such as Ce as the third component on an inorg. carrier, and specifying the ratios of the first component to the second and third components. CONSTITUTION:(a) One or more kinds of elements selected from platinum group elements, (b) >=1 kind of element selected from a group consisting of Sn, Bi, and Sb, and (c) >=1 kind of element selected from Ce, Sn, and Te [excluding Sn when Sn is used as the (b) component] are deposited on an inorg. carrier to obtain the catalyst composition. In this case, the atomic ratio (b/a) of the (a) component to the (b) component is controlled to 0.01-5, and the atomic ratio (c/a) of the (a) component to the (c) component is adjusted to 0.001-5. Besides, 0.1-20wt% (a) component, 0.1-20wt% (b) component, and 0.01-20wt% (c) component are deposited. The catalyst is used when a carboxylic or ketonic compd. is produced by oxidizing a hydroxy or aldehydric compd. (excluding saccharides).

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はヒドロキシ化合物又はアルデヒド化合物を酸化
してカルボキシル化合物又はケトン化合物を製造する際
に用いる酸化反応用触媒組成物に関し、更に詳しくは白
金系貴金属触媒を多元化、即ち触媒主元素である白金族
元素に対し、触媒成分として更に2成分以上の元素を追
加し、触媒成分を複合化した、従来にはなかった高活性
、高選択性を有する酸化反応用触媒組成物に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides a catalyst composition for an oxidation reaction used when oxidizing a hydroxy compound or an aldehyde compound to produce a carboxyl compound or a ketone compound. In more detail, we have made the platinum-based noble metal catalyst multi-elementized, that is, added two or more elements as catalyst components to the platinum group element, which is the main catalyst element, and created a composite catalyst component, which has never been done before. The present invention relates to a catalyst composition for oxidation reactions having high activity and high selectivity.

〔従来の技術及び問題点〕[Conventional technology and problems]

従来よりヒドロキシ化合物やアルデヒド化合物を、貴金
属触媒であるパラジウムカーボン(Pd/C)や白金カ
ーボン(P t/C)触媒の存在下に接触酸化し、相当
するカルボキシル化合物(もしくはそのアルカリ金属塩
)やケトン化合物に変換する方法が知られている。しか
し、この場合以下のような問題点が生ずる。
Conventionally, hydroxy compounds and aldehyde compounds are catalytically oxidized in the presence of noble metal catalysts such as palladium carbon (Pd/C) and platinum carbon (Pt/C) to produce the corresponding carboxyl compounds (or their alkali metal salts) and A method of converting it into a ketone compound is known. However, in this case, the following problems arise.

即ち、pd/lpt/c触媒を酸化反応に使用すると、
反応初期から中期にかけては反応は円滑に進行するが、
特に反応末期になると反応速度が著しく低下するか、或
いは反応が未完結のまま停止してしまうという現象が観
測される。この現象は被酸化物の構造によって程度に差
はあれ、貴金属触媒を用いる酸化反応においては一般に
観測される現象である。
That is, when a pd/lpt/c catalyst is used in an oxidation reaction,
The reaction progresses smoothly from the early stage to the middle stage, but
Particularly at the end of the reaction, a phenomenon is observed in which the reaction rate drops significantly or the reaction stops without being completed. Although the degree of this phenomenon varies depending on the structure of the object to be oxidized, it is generally observed in oxidation reactions using noble metal catalysts.

例えば、特開昭53−141218号公報にはポリオキ
シエチレンアルキルエーテルを5χPd/C触媒を用い
て酸化し相当するカルボン酸塩に変換する方法が記載さ
れている。しかし、この方法では反応は収率約80%の
時点で停止してしまう。
For example, JP-A-53-141218 describes a method of oxidizing polyoxyethylene alkyl ether using a 5χPd/C catalyst to convert it into the corresponding carboxylic acid salt. However, in this method, the reaction stops at about 80% yield.

又、J、Catal、、 67、1 (1981)には
、2ZP t/C触媒触媒−用グルコースのグルコン酸
ソーダへの酸化反応が記載されているが、この場合にも
収率が約90%の時点で反応が停止してしまう。
In addition, J. Catal, 67, 1 (1981) describes the oxidation reaction of glucose to sodium gluconate using a 2ZP t/C catalyst, but in this case too, the yield was about 90%. The reaction stops at this point.

このように、白金系貴金属触媒を用いる酸化反応におい
ては、一般に反応が途中で停止して完結しないという問
題点が生じる。
As described above, oxidation reactions using platinum-based noble metal catalysts generally have the problem that the reaction stops midway and is not completed.

一方、従来よりP t/CやPd/Cに代表される酸化
反応用貴金属触媒に触媒第2成分を添加し、2元触媒と
してその触媒活性を向上させようという試みが幾つかの
特許に見られる。
On the other hand, there have been several patents that have attempted to add a second catalyst component to noble metal catalysts for oxidation reactions, such as Pt/C and Pd/C, to improve their catalytic activity as two-way catalysts. It will be done.

例えば、特開昭54−132547号公報には鉛を添加
したP t/CもしくはPd/C触媒を使用する芳香族
カルボン酸の製造法が記載されている。又、特開昭54
−138886号公報には鉛、スズ、インジウム、テル
ルを添加した触媒組成物が記載されている。
For example, JP-A-54-132547 describes a method for producing aromatic carboxylic acids using a lead-added Pt/C or Pd/C catalyst. Also, Japanese Patent Application Publication No. 1973
Japanese Patent No. 138886 describes a catalyst composition containing lead, tin, indium, and tellurium.

又、特開昭57−163376号公報にはビスマス又は
鉛を添加したP t/C又はPd/C触媒を使用するジ
アセトン−2−ケトーL−グロン酸の製造法が記載され
ている。又、BP−1070の明細書には白金系元素(
白金、パラジウム、ロジウム、ルテニウム、レニウム)
に銀、テルル、スズ、鉛、インジウムを添加して使用す
るピルビン酸の製造法が記載されており、これらはいず
れも収率の向上をうたっている。
Furthermore, JP-A-57-163376 describes a method for producing diacetone-2-keto L-gulonic acid using a Pt/C or Pd/C catalyst to which bismuth or lead is added. In addition, the specification of BP-1070 contains platinum-based elements (
platinum, palladium, rhodium, ruthenium, rhenium)
describes a method for producing pyruvic acid using the addition of silver, tellurium, tin, lead, and indium, all of which claim to improve yield.

しかしながら、これらの特許の明細書に記載の方法にお
いても反応は完結しておらず、収率の点でも満足できる
ものではなかった。
However, even in the methods described in the specifications of these patents, the reaction was not completed and the yield was not satisfactory.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は上記の如き酸化反応における白金
系貴金属触媒の問題点を解決すべく、そのメカニズムに
つき鋭意研究した結果、貴金属触媒を酸化反応に使用し
た時観測される反応未完結現象は、主に主触媒元素であ
る白金やパラジウムの高い酸素吸着力に由来することを
見出した。
Therefore, in order to solve the problems of platinum-based precious metal catalysts in oxidation reactions as described above, the present inventors conducted intensive research on the mechanism and found that the incomplete reaction phenomenon observed when precious metal catalysts are used in oxidation reactions. It was discovered that this is mainly due to the high oxygen adsorption power of platinum and palladium, which are the main catalytic elements.

即ち、反応初期は被酸化物の濃度も高く、酸素は供給律
速で消費されるが、反応末期になって、被酸化物の濃度
が低下し反応系の酸素濃度が過大になってくると、触媒
表面上への酸素の過剰吸着が起こり、その結果、未反応
被酸化物の触媒表面への吸着が抑制され、反応が途中で
停止してしまうのである。特に加圧系ではその効果が著
しくなる。
That is, at the beginning of the reaction, the concentration of the oxidizable material is high and oxygen is consumed at a supply rate-limiting rate, but at the end of the reaction, when the concentration of the oxidizable material decreases and the oxygen concentration in the reaction system becomes excessive, Excessive adsorption of oxygen occurs on the catalyst surface, and as a result, adsorption of unreacted oxidized substances onto the catalyst surface is suppressed, and the reaction is stopped midway. This effect is particularly noticeable in pressurized systems.

そこで、本発明者等はこの現象を緩和もしくは抑制すべ
く更に研究を続けた結果、本発明を完成した。
Therefore, the present inventors continued research to alleviate or suppress this phenomenon, and as a result, completed the present invention.

即ち本発明は、触媒第1成分として、白金族元素(パラ
ジウム、白金、ルテニウム、ロジウム)から選ばれる1
種以上の元素、触媒第2成分として、スズ、ビスマス及
びアンチモンから成る群から選ばれる1種以上の元素、
及び触媒第3成分として、セレン、スズ及びテルルから
選ばれる1種以上の元素(但し、第2成分がスズの場合
スズを除く)を無機担体上に担持させてなり、該触媒第
1成分と該触媒第2成分の比率R1(第2成分/第1成
分)が原子比で0.01〜5.0であり、該触媒第1成
分と該触媒第3成分の比率R2(第3成分/第1成分)
が原子比で0.001〜5であることを特徴とするヒド
ロキシ化合物又はアルデヒド化合物(但し、I!類を除
く)を酸化してカルボキシル化合物又はケトン化合物を
製造する際に用いる酸化反応用触媒組成物を提供するも
のである。
That is, the present invention uses 1 selected from platinum group elements (palladium, platinum, ruthenium, rhodium) as the first catalyst component.
one or more elements selected from the group consisting of tin, bismuth, and antimony as a second catalyst component;
and as a third component of the catalyst, one or more elements selected from selenium, tin, and tellurium (excluding tin when the second component is tin) are supported on an inorganic carrier, and the first component of the catalyst is The ratio R1 (second component/first component) of the second catalyst component is 0.01 to 5.0 in atomic ratio, and the ratio R2 (third component/first component) of the first catalyst component and the third catalyst component is 1st component)
A catalyst composition for an oxidation reaction used when producing a carboxyl compound or a ketone compound by oxidizing a hydroxy compound or an aldehyde compound (excluding Group I!), characterized in that the atomic ratio is 0.001 to 5. It is something that provides something.

本発明の酸化反応用触媒組成物においては、触媒第1成
分の1種以上、第2成分の1種以上及び第3成分の1種
以上を同時に併用することが重要である。
In the oxidation reaction catalyst composition of the present invention, it is important to simultaneously use one or more of the first catalyst component, one or more of the second component, and one or more of the third component.

触媒主元素である触媒第1成分に対する第2成分及び第
3成分の比率、R1、R2はそれぞれ原子比で0.01
〜5.0.001〜5の範囲であるが、好ましくはそれ
ぞれ0.05〜3.0.005〜3の範囲、特に好まし
くはそれぞれ0.08〜2.0.01〜1.5の範囲で
あることが重要である。
The ratios of the second and third components to the first catalyst component, which is the main catalyst element, R1 and R2 are each 0.01 in atomic ratio.
-5.0.001-5, preferably 0.05-3.0.005-3, particularly preferably 0.08-2.0.01-1.5, respectively. It is important that

また、本発明の触媒は無機担体上に担持させた担持触媒
として使用される。担体としては一般に公知のものが使
用される。例えば、活性炭、石綿、アルミナ、シリカゲ
ル、活性白土、或いは珪橿土等が挙げられるが、中でも
特に活性炭が好ましい。
Further, the catalyst of the present invention is used as a supported catalyst supported on an inorganic carrier. Generally known carriers are used as the carrier. Examples include activated carbon, asbestos, alumina, silica gel, activated clay, and diatomaceous earth, among which activated carbon is particularly preferred.

本発明で使用する触媒の触媒第1成分、第2成分、第3
成分の担持量は通常それぞれ0.1〜20重量%、0.
1〜20重量%、0.01〜20重景%の範囲であり、
好ましくはそれぞれ1〜15重量%、0.5〜15重量
%、0.05〜15重量%、特に好ましくはそれぞれ2
〜13重量%、0.75〜10重量%、0.10〜10
重量%である。
The first component, the second component, and the third component of the catalyst used in the present invention
The supported amounts of the components are usually 0.1 to 20% by weight and 0.1 to 20% by weight, respectively.
The range is 1 to 20% by weight, 0.01 to 20% by weight,
Preferably 1 to 15% by weight, 0.5 to 15% by weight, 0.05 to 15% by weight, particularly preferably 2 to 15% by weight, respectively.
~13% by weight, 0.75-10% by weight, 0.10-10
Weight%.

また本発明の触媒には触媒の耐久性、或いは本発明の触
媒を酸化反応に使用した時の反応生成物の色相の向上を
もたらすため、必要に応じアルカリ土類元素、亜鉛或い
は遷移金属等の化合物を添加することが出来る。
In addition, the catalyst of the present invention may contain alkaline earth elements, zinc, transition metals, etc., if necessary, in order to improve the durability of the catalyst or the hue of the reaction product when the catalyst of the present invention is used in an oxidation reaction. Compounds can be added.

本発明の触媒のX線回折測定に於いては、例えば触媒第
1成分であるパラジウムの回折ピークは大きくブロード
ニングを起こしている。即ち、本発明の触媒においては
、触媒主元素である触媒第1成分は高分散状態になって
いると言える。
In X-ray diffraction measurements of the catalyst of the present invention, for example, the diffraction peak of palladium, which is the first component of the catalyst, is significantly broadened. That is, in the catalyst of the present invention, it can be said that the first catalyst component, which is the main catalyst element, is in a highly dispersed state.

触媒第1成分の原料としては、塩化パラジウム、よう化
パラジウム、硝酸パラジウム、酸化パラジウム、塩化白
金酸、よう化白金酸、硝酸白金、酸化白金、塩化白金、
シアン化白金、よう化白金、或いは酢酸パラジウムやパ
ラジウムアセチルアセトン等の分子内錯体、或いは予め
調製された白金カーボン触媒やパラジウムカーボン触媒
、或いは触媒第3成分との間に形成されるセレン化パラ
ジウムやテルル化ロジウム等の化合物が挙げられるが、
特に、塩化パラジウム、塩化白金酸、予め調製した白金
カーボン触媒、パラジウムカーボン触媒がよい。
Raw materials for the first catalyst component include palladium chloride, palladium iodide, palladium nitrate, palladium oxide, chloroplatinic acid, iodoplatinic acid, platinum nitrate, platinum oxide, platinum chloride,
Platinum cyanide, platinum iodide, or intramolecular complexes such as palladium acetate or palladium acetylacetone, or palladium selenide or tellurium formed between a pre-prepared platinum carbon catalyst, palladium carbon catalyst, or a third catalyst component. Examples include compounds such as rhodium chloride,
Particularly preferred are palladium chloride, chloroplatinic acid, pre-prepared platinum carbon catalysts, and palladium carbon catalysts.

また、塩化ルテニウムや塩化ロジウム、硝酸ロジウムも
触媒第1成分の原料となる。
Ruthenium chloride, rhodium chloride, and rhodium nitrate also serve as raw materials for the first catalyst component.

触媒第2成分の原料としては、四塩化スズ、四臭化スズ
、よう化スズ、酸化スズ、酸化アンチモン、アンチモン
オキシクロリド、五塩化アンチモン、塩化ビスマス、ビ
スマスオキシクロリド、ビスマスオキシプロミド、酒石
酸ビスマス、水酸化ビスマス、或いは触媒第3成分との
間に形成される化合物、例えばビスマスセレナイド、テ
ルルセレナイド等が挙げられる。
Raw materials for the second catalyst component include tin tetrachloride, tin tetrabromide, tin iodide, tin oxide, antimony oxide, antimony oxychloride, antimony pentachloride, bismuth chloride, bismuth oxychloride, bismuth oxypromide, and bismuth tartrate. , bismuth hydroxide, or compounds formed between the catalyst and the third component of the catalyst, such as bismuth selenide and tellurium selenide.

触媒第3成分の原料としては、三臭化テルル、二塩化テ
ルル、酸化テルル、四塩化テルル、四臭化テルル、四よ
う化テルル、テルル酸及びそのアルカリ金属塩、亜テル
ル酸及びそのアルカリ金属塩或いは酸化セレン、亜セレ
ン酸、セレン酸、塩化セレン、亜セレン酸又はセレン酸
のアルカリ金属塩、セレン化水素、或いは触媒第1成分
もしくは第2成分との間に形成される化合物、例えばセ
レン化ビスマス、テルル化ビスマス、セレン化パラジウ
ム、セレン化ロジウム、テルル化ロジウム、セレン化白
金等の化合物が挙げられる。
Raw materials for the third catalyst component include tellurium tribromide, tellurium dichloride, tellurium oxide, tellurium tetrachloride, tellurium tetrabromide, tellurium tetraiodide, telluric acid and its alkali metal salts, tellurite and its alkali metals. salts or selenium oxides, selenite, selenate, selenium chloride, alkali metal salts of selenite or selenate, hydrogen selenide, or compounds formed between the first or second catalyst component, e.g. Examples include compounds such as bismuth chloride, bismuth telluride, palladium selenide, rhodium selenide, rhodium telluride, and platinum selenide.

本発明の触媒は公知の方法で調製される。触媒の調製に
あたっては、触媒第1成分、第2成分及び第3成分の水
溶液を調製し、イオン交換水中で、例えば活性炭に吸着
させる。この際、触媒成分の水溶液が出来ない場合には
塩酸等で可溶化させて吸着させる。吸着後はホルマリン
、水素、ヒドラジン、ソジウムボロハイドライド等の還
元剤で触媒成分の還元処理を行う。還元後、触媒を水洗
し、濾別することにより本発明の触媒が得られる。触媒
は通常含水率が50〜60%であるが、乾燥することな
く酸化反応に使用することが出来る。本発明の他の触媒
も同様の方法で調製することが出来る。本発明の触媒は
再使用可能であるが、幾つかのものは再還元することに
より活性が高レベルに維持される場合がある。本発明の
酸化反応用触媒組成物は、特に−級水酸基又はアルデヒ
ド基を相当するカルボキシル基(又はカルボキシル基の
アルカリ金属塩)に酸化するのに有効であるが、イソプ
ロピルアルコール、シクロヘキサノール、乳酸塩等の脱
水素によるケトン類の合成にも有効である。
The catalyst of the present invention is prepared by known methods. In preparing the catalyst, an aqueous solution of the first, second and third components of the catalyst is prepared and adsorbed onto, for example, activated carbon in ion-exchanged water. At this time, if an aqueous solution of the catalyst component cannot be prepared, it is solubilized with hydrochloric acid or the like and adsorbed. After adsorption, the catalyst components are reduced using a reducing agent such as formalin, hydrogen, hydrazine, or sodium borohydride. After reduction, the catalyst of the present invention is obtained by washing the catalyst with water and separating it by filtration. Although the catalyst usually has a water content of 50 to 60%, it can be used in the oxidation reaction without drying. Other catalysts of the invention can be prepared in a similar manner. Although the catalysts of the present invention are reusable, some may be re-reduced to maintain high levels of activity. The catalyst composition for oxidation reactions of the present invention is particularly effective for oxidizing -grade hydroxyl groups or aldehyde groups to the corresponding carboxyl groups (or alkali metal salts of carboxyl groups). It is also effective in the synthesis of ketones by dehydrogenation such as

本発明を実施する際の被酸化物であるヒドロキシ化合物
又はアルデヒド化合物(但し、Ii類を除く)としては
、脂肪族1級又は2級アルコール、脂肪族アルデヒド、
ポリオキシアルキレンアルキルエーテル、ポリオキシア
ルキレンアルキルアリールエーテル、ポリオキシアリー
ルフェニルエーテル、ポリアルキレングリコール、エチ
レングリコール、ジエチレングリコール、グリセリン等
のポリオール、アミン又はアミドのアルキレンオキシド
付加物、ベンジルアルコール、アニスアルコール等の芳
香族アルコール、ベンズアルデヒド等の芳香族アルデヒ
ド、シクロヘキサノール等の脂環式アルコール、更に乳
酸などが挙げられる。これらの化合物に限定されるもの
でない。
Hydroxy compounds or aldehyde compounds to be oxidized in carrying out the present invention (excluding Group Ii) include aliphatic primary or secondary alcohols, aliphatic aldehydes,
Polyoxyalkylene alkyl ether, polyoxyalkylene alkylaryl ether, polyoxyarylphenyl ether, polyalkylene glycol, ethylene glycol, diethylene glycol, polyols such as glycerin, alkylene oxide adducts of amines or amides, aromas such as benzyl alcohol, anise alcohol, etc. Examples include group alcohols, aromatic aldehydes such as benzaldehyde, alicyclic alcohols such as cyclohexanol, and lactic acid. It is not limited to these compounds.

反応は、一般に水溶液系で行われるが、被酸化物が水不
溶性の場合、水溶性溶媒もしくは界面活性剤を添加する
ことにより、反応を促進し得る。
The reaction is generally carried out in an aqueous solution system, but if the oxidized substance is water-insoluble, the reaction can be promoted by adding a water-soluble solvent or a surfactant.

本発明の触媒を用いて酸化反応を行うにあたって、反応
温度は0〜100℃、好ましくは20〜80℃がよく、
反応圧は10気圧まで、特に常圧がよい。
When carrying out an oxidation reaction using the catalyst of the present invention, the reaction temperature is preferably 0 to 100°C, preferably 20 to 80°C.
The reaction pressure is preferably up to 10 atm, particularly normal pressure.

また、酸化反応特使用する酸化剤としては、酸素ガス、
あるいは空気等の酸素含有ガスが挙げられる。
In addition, the oxidizing agents used specifically for oxidation reactions include oxygen gas,
Alternatively, oxygen-containing gas such as air may be used.

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明の詳細な説明する。 The present invention will be explained in detail by giving examples below.

実施例1 (2χTe/4χBi/10χPd/C触媒の調製)8
.4gの活性炭を100mのイオン交換水に浸漬させて
お(。触媒第1成分の原料として1.66gの塩化パラ
ジウムを7%塩酸水溶液22−に溶解させる。触媒第2
成分の原料として0.6gの塩化ビスマスを12%塩酸
水溶液28+njに溶解させる。
Example 1 (Preparation of 2χTe/4χBi/10χPd/C catalyst) 8
.. 4 g of activated carbon is immersed in 100 m of ion-exchanged water (1.66 g of palladium chloride is dissolved in a 7% hydrochloric acid aqueous solution 22- as a raw material for the first catalyst component.
As a raw material for the component, 0.6 g of bismuth chloride is dissolved in a 12% aqueous hydrochloric acid solution 28+nj.

触媒第3成分の原料として0.25gの酸化テルルを3
6%塩酸水溶液361nlに溶解させる。
0.25g of tellurium oxide was added as a raw material for the third component of the catalyst.
Dissolve in 361 nl of 6% aqueous hydrochloric acid solution.

これら3種の触媒成分の塩酸溶液を先に調製した活性炭
中に添加し吸着処理を行う。その後、48%苛性ソーダ
48g 、37%ホルマリン水溶液24−を添加し触媒
成分の還元を行う。
A hydrochloric acid solution of these three catalyst components is added to the previously prepared activated carbon to perform an adsorption treatment. Thereafter, 48 g of 48% caustic soda and 24 g of a 37% formalin aqueous solution were added to reduce the catalyst components.

還元された触媒はイオン交換水で洗浄し、触媒を濾別す
る。得られた触媒は約50%の水を含有する2χTe/
4χBi/10χPd/C触媒である。触媒は乾燥する
ことなく酸化反応に使用することができる。
The reduced catalyst is washed with ion-exchanged water, and the catalyst is filtered off. The resulting catalyst was a 2χTe/
It is a 4χBi/10χPd/C catalyst. The catalyst can be used in the oxidation reaction without drying.

2χTe/4χ旧/10χPd/C触媒のR1は0.1
7、R2は0.20である。
R1 of 2χTe/4χ old/10χPd/C catalyst is 0.1
7. R2 is 0.20.

実施例2 (2XBi15χ5n15χPd/C触媒の調製)8.
8gの活性炭を100mZのイオン交換水に浸漬させて
おく。触媒第1成分の原料として0.83gの塩化パラ
ジウムを4%塩酸水溶液221117に溶解させる。触
媒第2成分の原料として0.3gの塩化ビスマスを10
%塩酸水溶液24m7に溶解させる。
Example 2 (Preparation of 2XBi15χ5n15χPd/C catalyst)8.
8 g of activated carbon is immersed in 100 mZ ion exchange water. As a raw material for the first catalyst component, 0.83 g of palladium chloride is dissolved in 4% aqueous hydrochloric acid solution 221117. 0.3g of bismuth chloride as a raw material for the second catalyst component
% aqueous hydrochloric acid solution (24 m7).

触媒第3成分の原料として1.1gの四塩化スズを20
v1のイオン交換水に溶解させる。
1.1g of tin tetrachloride was added to 20% of the raw material for the third component of the catalyst.
Dissolve in v1 ion exchange water.

これら3種の触媒成分の塩酸溶液を先に調製した活性炭
中に添加し吸着処理を行う。その後、48%苛性ソーダ
を24g 、 37%ホルマリン水溶液18n7を添加
し触媒成分の還元を行う。
A hydrochloric acid solution of these three catalyst components is added to the previously prepared activated carbon to perform an adsorption treatment. Thereafter, 24 g of 48% caustic soda and 18 n7 of a 37% formalin aqueous solution were added to reduce the catalyst components.

還元された触媒はイオン交換水で洗浄し、触媒を濾別す
る。得られた触媒は約50%の水を含有する2χB11
5χ5n15χPd/C触媒である。触媒は乾燥するこ
となく酸化反応に使用することができる。
The reduced catalyst is washed with ion-exchanged water, and the catalyst is filtered off. The resulting catalyst contains 2χB11 containing approximately 50% water.
5χ5n15χPd/C catalyst. The catalyst can be used in the oxidation reaction without drying.

2χB115χ5n15χPd/C触媒のR1は0.2
0、R2は0.90である。
2χB115χ5n15χPd/C catalyst R1 is 0.2
0, R2 is 0.90.

実施例3〜4 本発明のその他の触媒についても同様の方法で調製した
(表1)。
Examples 3-4 Other catalysts of the present invention were prepared in the same manner (Table 1).

拭腋■上 POII!(6) (酸化エチレン付加モル数6)のラ
ウリルアルコールの20%水溶液を被酸化物とし、本発
明の触媒と従来触媒の活性を比較した。
Wipe armpit ■POII! (6) A 20% aqueous solution of lauryl alcohol (number of moles of ethylene oxide added: 6) was used as the oxidized substance, and the activity of the catalyst of the present invention and the conventional catalyst were compared.

酸素ガス導入口、ガス出口、温度計、サンプリング口及
び攪拌器の付いた1!のフラスコに被酸化物の20%水
溶液500g、苛性ソーダ(被酸化物に対して1.05
倍モル)及び本発明の触媒10g(含水率50%)を仕
込み、攪拌下に75℃まで昇温する。75℃に達してか
ら常圧酸素ガスを31/時の流速でフラスコ内にバブリ
ング導入させる。反応中は適当に冷却しながら、反応温
度を安定化させる。3時間後、冷却し触媒を濾別する。
1 with oxygen gas inlet, gas outlet, thermometer, sampling port and stirrer! Into a flask, add 500 g of a 20% aqueous solution of the oxidizable material, and add caustic soda (1.05 g to the oxidizable material).
mol) and 10 g of the catalyst of the present invention (water content 50%) were charged, and the temperature was raised to 75° C. while stirring. After reaching 75° C., normal pressure oxygen gas is bubbled into the flask at a flow rate of 31/hour. During the reaction, the reaction temperature is stabilized with appropriate cooling. After 3 hours, it is cooled and the catalyst is filtered off.

酸化生成物である相当するカルボン酸ナトリウムは塩酸
で中和してフリーのカルボン酸とし、これをクロロホル
ムで抽出する。
The oxidation product, the corresponding sodium carboxylate, is neutralized with hydrochloric acid to give the free carboxylic acid, which is extracted with chloroform.

抽出物は溶媒を減圧除去し酸価と水酸基価を測定して収
率を求める。その結果を表1に示した。
The yield of the extract is determined by removing the solvent under reduced pressure and measuring the acid value and hydroxyl value. The results are shown in Table 1.

表  1 表1より本発明の触媒は、収率の点で既存のPd/C触
媒は勿論のこと、本発明者等が先に発表した2元触媒(
表1の触媒5)より優れていることが分る。
Table 1 From Table 1, the catalyst of the present invention is superior to the existing Pd/C catalyst in terms of yield as well as the two-way catalyst previously announced by the present inventors (
It can be seen that this catalyst is superior to catalyst 5) in Table 1.

又、Snを添加した場合(触媒2及び4)には、得られ
たカルボン酸塩の濾過速度(反応終了物500afを濾
過するに要する時間)が大であり、色相も良好であるこ
とが分る。
In addition, it was found that when Sn was added (catalysts 2 and 4), the filtration rate (time required to filter 500 af of the reaction product) of the obtained carboxylate was high and the hue was also good. Ru.

更に、未反応物も大幅に減少しており、触媒成分の多元
化の効果が出ていることが分る。このことは既述の酸素
による触媒の自己被毒が抑制されたことに基づくと解釈
している。
Furthermore, the amount of unreacted substances was also significantly reduced, indicating that the multiplicity of catalyst components was effective. This is interpreted to be based on the suppression of self-poisoning of the catalyst by oxygen as described above.

広狭IL 本発明の触媒を用いて表2に示した種々の化合物を酸化
した。但し、表2中Rは炭素数11の直鎖のアルキル基
、EOは酸化エチレン、nは5である。
Broad and narrow IL Various compounds shown in Table 2 were oxidized using the catalyst of the present invention. However, in Table 2, R is a linear alkyl group having 11 carbon atoms, EO is ethylene oxide, and n is 5.

苛性ソーダ添加量は各化合物とも1.05倍モル仕込み
、反応時間は5時間とした。その他の反応条件は試験例
1と全く同じである。
The amount of caustic soda added was 1.05 times the molar amount of each compound, and the reaction time was 5 hours. Other reaction conditions were exactly the same as in Test Example 1.

反応結果を表2に示したが、反応生成物は相当するカル
ボン酸のナトリウム塩である。但し、乳酸ナトリウムの
場合はピルビン酸ナトリウムとなる。表2より本発明の
触媒は極めて優れていることが分る。
The reaction results are shown in Table 2, and the reaction product is the corresponding sodium salt of the carboxylic acid. However, in the case of sodium lactate, it becomes sodium pyruvate. It can be seen from Table 2 that the catalyst of the present invention is extremely excellent.

表  2Table 2

Claims (1)

【特許請求の範囲】 1 触媒第1成分として、白金族元素(パラジウム、白
金、ルテニウム、ロジウム)から選ばれる1種以上の元
素、触媒第2成分として、スズ、ビスマス及びアンチモ
ンから成る群から選ばれる1種以上の元素、及び触媒第
3成分として、セレン、スズ及びテルルから選ばれる1
種以上の元素(但し、第2成分がスズの場合スズを除く
)を無機担体上に担持させてなり、該触媒第1成分と該
触媒第2成分の比率R1(第2成分/第1成分)が原子
比で0.01〜5.0であり、該触媒第1成分と該触媒
第3成分の比率R2(第3成分/第1成分)が原子比で
0.001〜5であることを特徴とするヒドロキシ化合
物又はアルデヒド化合物(但し、糖類を除く)を酸化し
てカルボキシル化合物又はケトン化合物を製造する際に
用いる酸化反応用触媒組成物。 2 触媒第1成分がパラジウムである特許請求の範囲第
1項記載の酸化反応用触媒組成物。 3 触媒組成物中の触媒第1成分の含有量が0.1〜2
0重量%である特許請求の範囲第1項記載の酸化反応用
触媒組成物。 4 触媒組成物中の触媒第2成分の含有量が0.1〜2
0重量%である特許請求の範囲第1項記載の酸化反応用
触媒組成物。 5 触媒組成物中の触媒第3成分の含有量が0.01〜
20重量%である特許請求の範囲第1項記載の酸化反応
用触媒組成物。
[Scope of Claims] 1 The first catalyst component is one or more elements selected from platinum group elements (palladium, platinum, ruthenium, rhodium), and the second catalyst component is selected from the group consisting of tin, bismuth, and antimony. one or more elements selected from selenium, tin, and tellurium as the third catalyst component;
The catalyst is made by supporting at least one element (excluding tin when the second component is tin) on an inorganic carrier, and the ratio R1 (second component/first component) of the first catalyst component and the second catalyst component is ) is 0.01 to 5.0 in atomic ratio, and the ratio R2 (third component/first component) of the first catalyst component to the third catalyst component is 0.001 to 5 in atomic ratio. A catalyst composition for an oxidation reaction used in producing a carboxyl compound or a ketone compound by oxidizing a hydroxy compound or an aldehyde compound (excluding sugars), characterized by: 2. The catalyst composition for oxidation reactions according to claim 1, wherein the first catalyst component is palladium. 3 Content of the first catalyst component in the catalyst composition is 0.1 to 2
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 0% by weight. 4 Content of the second catalyst component in the catalyst composition is 0.1 to 2
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 0% by weight. 5 Content of the third catalyst component in the catalyst composition is from 0.01 to
The catalyst composition for oxidation reactions according to claim 1, wherein the content is 20% by weight.
JP61111650A 1986-05-15 1986-05-15 Oxidation reaction catalyst composition Expired - Lifetime JPH0640961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111650A JPH0640961B2 (en) 1986-05-15 1986-05-15 Oxidation reaction catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111650A JPH0640961B2 (en) 1986-05-15 1986-05-15 Oxidation reaction catalyst composition

Publications (2)

Publication Number Publication Date
JPS62269749A true JPS62269749A (en) 1987-11-24
JPH0640961B2 JPH0640961B2 (en) 1994-06-01

Family

ID=14566702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111650A Expired - Lifetime JPH0640961B2 (en) 1986-05-15 1986-05-15 Oxidation reaction catalyst composition

Country Status (1)

Country Link
JP (1) JPH0640961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, method of manufacturing same, membrane-electrode assembly for fuel cell including it, and fuel cell system
US7455927B2 (en) 2002-07-29 2008-11-25 Cornell Research Foundation, Inc. Intermetallic compounds for use as catalysts and catalytic systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656257B2 (en) 2015-01-21 2017-05-23 Umm Al-Qura University Metal oxide supported palladium catalyst for hydrocarbon oxidation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132523A (en) * 1978-04-04 1979-10-15 Mitsui Toatsu Chem Inc Production of pyruvic acid
JPS54138514A (en) * 1978-04-17 1979-10-27 Mitsui Toatsu Chem Inc Preparation of pyruvic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132523A (en) * 1978-04-04 1979-10-15 Mitsui Toatsu Chem Inc Production of pyruvic acid
JPS54138514A (en) * 1978-04-17 1979-10-27 Mitsui Toatsu Chem Inc Preparation of pyruvic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455927B2 (en) 2002-07-29 2008-11-25 Cornell Research Foundation, Inc. Intermetallic compounds for use as catalysts and catalytic systems
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, method of manufacturing same, membrane-electrode assembly for fuel cell including it, and fuel cell system
US7923171B2 (en) 2006-01-18 2011-04-12 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system including same
JP4745988B2 (en) * 2006-01-18 2011-08-10 三星エスディアイ株式会社 FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM

Also Published As

Publication number Publication date
JPH0640961B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US5132452A (en) Method for preparation of gluconic acid by catalytic oxidation of glucose
CN106946894B (en) Application of the Pd radicel duplex metal catalyst in HBIW catalytic hydrogenolytic cleavage
CA2207027C (en) Process for producing tenside-stabilized colloids of mono- and bimetals of the group viii and ib of the periodic system in the form of precursors for catalysts which are isolable and water soluble at high concentration
CN105921166B (en) Mesoporous molecular sieve catalyst for catalytic dehydrogenation of alkane and preparation method and application thereof
CA1292243C (en) Process for the oxidation aldoses, catalyst used in said process and products thus obtained
US3534110A (en) Production of phenol by the catalytic dehydrogenation of cyclohexanol and/or cyclohexanone
EP0057007B1 (en) Process for the production of glycollic acid esters
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
US6583084B2 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
CN104039441A (en) A catalyst for direct synthesis of hydrogen peroxide
CN101284774B (en) Process for preparing glyceric acid by one-step of direct catalytic oxidation with oxygen
CN114054041A (en) Dimethyl oxalate hydrogenation catalyst, preparation method and application thereof
JPS62269746A (en) Catalyst composition for oxidation reaction
JPS62269749A (en) Catalyst composition for oxidation reaction
EP3323801B1 (en) Methods of preparing cyclohexanone and derivatives
JP3510405B2 (en) Methanol synthesis catalyst
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JP3748588B2 (en) Method for producing glycolic acid
JP3510406B2 (en) Methanol synthesis catalyst
FR2784605A1 (en) Material comprising ultrafine metals and metal oxide particles and their preparation for use as catalysts in the hydrogenation of olefins or in coupling reactions
JP3510404B2 (en) Methanol synthesis catalyst
JP4092538B2 (en) Method for producing hydrogen-containing gas
JPS63174950A (en) Production of aromatic ester
EP0376182A1 (en) Process for preparing glycol aldehyde
CN116262235A (en) Catalyst, preparation method thereof and application of catalyst in cyclopentanol dehydrogenation to prepare cyclopentanone