JP2005305218A - Method and apparatus for leveling gas component concentration and gas component treatment apparatus - Google Patents

Method and apparatus for leveling gas component concentration and gas component treatment apparatus Download PDF

Info

Publication number
JP2005305218A
JP2005305218A JP2004122253A JP2004122253A JP2005305218A JP 2005305218 A JP2005305218 A JP 2005305218A JP 2004122253 A JP2004122253 A JP 2004122253A JP 2004122253 A JP2004122253 A JP 2004122253A JP 2005305218 A JP2005305218 A JP 2005305218A
Authority
JP
Japan
Prior art keywords
gas component
concentration
gas
adsorbent layer
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122253A
Other languages
Japanese (ja)
Inventor
Kozo Mori
耕三 森
Hisaji Matsui
久次 松井
Yoshiteru Nakagawa
喜照 中川
Naoki Yamaguchi
直樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004122253A priority Critical patent/JP2005305218A/en
Publication of JP2005305218A publication Critical patent/JP2005305218A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for leveling a gas component concentration and a gas component treatment apparatus and more particularly to provide a method and an apparatus for leveling the concentration of a gas component contained in an gas stream and a treatment apparatus for treating a gas component contained in a gas stream with a treating agent and for easily leveling the gas component concentration of a gas stream. <P>SOLUTION: The apparatus 1 for leveling the gas component concentration comprises a vessel 2 having a gas stream inlet 3 and a gas stream exit 4, and an adsorbent layer 5 comprising an adsorbent capable of adsorbing the gas component and disposed in the vessel 2. The gas stream which enters the vessel 2 through the inlet 3 passes the adsorbent layer 5 and is then discharged from the exit 4. In the meanwhile, the gas component contained in the gas stream moves through the adsorbent layer 5 while it is repeatedly adsorbed and desorbed in the adsorbent layer 5. When the adsorbent layer 5 reaches the state in which a zone of the equilibrated adsorption of the gas component is formed, the gas concentration of the gas stream discharged from the exit 4 is leveled at a constant level regardless of the level of the gas component concentration of the gas stream entering the vessel 2 through the inlet 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガス成分濃度の平準化方法および平準化装置並びにガス成分処理装置、特に、気流に含まれるガス成分の濃度を平準化するための平準化方法および平準化装置並びに気流に含まれるガス成分を処理材により処理するための処理装置に関する。   The present invention relates to a gas component concentration leveling method and leveling device, and a gas component processing device, and more particularly to a leveling method and leveling device for leveling the concentration of a gas component contained in an air stream and a gas contained in the air stream. The present invention relates to a processing apparatus for processing a component with a processing material.

廃棄物焼却施設においては、廃棄物の焼却過程等でダイオキシン類が発生し、これが排気ガス中に含まれる場合がある。このため、焼却炉からの排気ガスは、例えば、バグフイルター等の除塵装置による除塵処理が施された後、触媒を用いてガス状のダイオキシン類が分解処理されている。ところが、焼却炉から排出される排気ガスは、焼却炉の運転立ち上げ時においてダイオキシン類濃度が非常に高く、また、その後においても、廃棄物の種類や量に応じてダイオキシン類濃度が大幅に変動する可能性がある。そこで、大気へ放出する排気ガス中のダイオキシン類濃度を一定の規制値以下に抑制するためには、焼却炉からの排気ガスに含まれるダイオキシン類濃度の最大値を予想し、当該最大値を基準にして触媒量を決定する必要がある。例えば、触媒によるダイオキシン類の分解反応は、通常、ダイオキシン類濃度の一次式として示されるため、ダイオキシン類濃度の最大値が平均濃度の100倍になると予想される場合、必要触媒量は、平均濃度のダイオキシン類を処理する場合に必要な触媒量の3倍になる。   In a waste incineration facility, dioxins are generated during the incineration process of waste, and this may be contained in exhaust gas. For this reason, the exhaust gas from the incinerator is subjected to a dust removing process using a dust removing device such as a bag filter, for example, and then gaseous dioxins are decomposed using a catalyst. However, the exhaust gas discharged from the incinerator has a very high dioxin concentration at the start-up of the incinerator, and the dioxin concentration fluctuates greatly depending on the type and amount of waste. there's a possibility that. Therefore, in order to suppress the dioxin concentration in the exhaust gas released to the atmosphere below a certain regulation value, the maximum value of the dioxin concentration contained in the exhaust gas from the incinerator is predicted, and the maximum value is used as a standard. Thus, it is necessary to determine the catalyst amount. For example, since the decomposition reaction of dioxins by a catalyst is usually shown as a linear expression of the dioxins concentration, when the maximum value of the dioxins concentration is expected to be 100 times the average concentration, the required amount of catalyst is the average concentration. 3 times the amount of catalyst required for treating dioxins.

また、実験スケールの流通系で実施する触媒の活性評価試験では、不活性ガスにより希釈した所要のガス成分を、一定の供給速度と一定の濃度で、試験装置の反応容器内に充填した触媒に供給する必要がある。ここでは、予めガス成分濃度を調整したガスボンベからのガス、不活性ガス中にマイクロシリンジポンプ等の定量ポンプでガス成分を注入して得られたガス若しくはバブリング装置を用いて不活性ガス中にガス成分を発生させて得られたガスを反応容器内の触媒に対して供給するが、不活性ガス中のガス成分濃度が脈動(ハンチング)しながら変動する場合があり、触媒活性を正確に評価しにくい。   In addition, in a catalyst activity evaluation test carried out in an experimental scale distribution system, a required gas component diluted with an inert gas is applied to a catalyst filled in a reaction vessel of a test apparatus at a constant supply rate and a constant concentration. It is necessary to supply. Here, gas from a gas cylinder whose gas component concentration is adjusted in advance, gas obtained by injecting a gas component into an inert gas with a metering pump such as a micro syringe pump, or gas in the inert gas using a bubbling device The gas obtained by generating the components is supplied to the catalyst in the reaction vessel, but the concentration of the gas components in the inert gas may fluctuate while pulsating (hunting). Hateful.

そこで、排気ガス等の気流に含まれるガス成分濃度を平準化する必要があり、そのための方法の例が特許文献1および2に記載されている。特許文献1に記載の方法は、低沸点溶剤含有ガス発生源から排出される濃度の変動する低沸点溶剤含有ガス(被処理ガス)を、一旦粒状活性炭及び粒状ゼオライトから選ばれた吸着材を有する吸着ダム機構に吸着させる。そして、吸着ダム機構を通過後の被処理ガスの濃度をガス濃度検知機構で検知し、この検知結果を温度調節機構にフィードバックして吸着ダム機構に供給される被処理ガスを加熱または冷却すると、被処理ガスにおけるガス濃度を平準化することができる。   Therefore, it is necessary to level the concentration of gas components contained in the airflow such as exhaust gas, and Patent Documents 1 and 2 describe examples of methods for that purpose. The method described in Patent Document 1 has a low-boiling-point solvent-containing gas (treated gas) whose concentration is discharged from a low-boiling-point solvent-containing gas generation source, and has an adsorbent once selected from granular activated carbon and granular zeolite. Adsorb to the adsorption dam mechanism. Then, the concentration of the gas to be processed after passing through the adsorption dam mechanism is detected by the gas concentration detection mechanism, and when the gas to be processed supplied to the adsorption dam mechanism is heated or cooled by feeding back the detection result to the temperature adjustment mechanism, The gas concentration in the gas to be processed can be leveled.

一方、特許文献2に記載の方法は、排ガス中の窒素酸化物を除去する脱硝方法に関するものであり、短時間で排ガスの窒素酸化物濃度が変動する場合、特に、排ガスの窒素酸化物濃度が高濃度と低濃度との間で交互に大きく変動する場合において、排ガスを窒素酸化物吸着剤と接触させて窒素酸化物濃度の平準化を図り、脱硝設備の負荷軽減を図ろうとするものである。   On the other hand, the method described in Patent Document 2 relates to a denitration method for removing nitrogen oxides in exhaust gas. When the nitrogen oxide concentration of exhaust gas fluctuates in a short time, the nitrogen oxide concentration of exhaust gas is particularly high. In the case of large fluctuations alternately between high and low concentrations, the exhaust gas is brought into contact with the nitrogen oxide adsorbent to attempt to level the nitrogen oxide concentration and reduce the load on the denitration equipment. .

特許文献1に記載の方法は、吸着材に対し、低温で低濃度ガスを吸着させ、また、吸着したガスを高温で脱着させるTSA(Thermal Swing Adsorption)技術を応用したものであるため、上述のようなガス濃度検知機構と温度調節機構とによる被処理ガスの複雑な温度管理が必要になる。このため、この方法は、実施設備が複雑になり、実施が容易ではない。   Since the method described in Patent Document 1 applies TSA (Thermal Swing Adsorption) technology that adsorbs a low-concentration gas at a low temperature and desorbs the adsorbed gas at a high temperature with respect to an adsorbent. Such a gas concentration detection mechanism and a temperature adjustment mechanism require complicated temperature management of the gas to be processed. For this reason, this method is complicated to implement and is not easy to implement.

一方、特許文献2に記載の方法は、窒素酸化物吸着剤に対して排ガスを単純に接触させているだけであるため、その平準化効果は、排ガスの窒素酸化物濃度が比較的高濃度の場合は窒素酸化物吸着剤における窒素酸化物の吸着量が多くなり、また、排ガスの窒素酸化物濃度が比較的低濃度の場合は窒素酸化物吸着剤における窒素酸化物の吸着量が少なくなるという現象により、窒素酸化物濃度の変動幅を抑制できるに止まる。すなわち、排ガスの窒素酸化物濃度変動形態が略等時間毎に高濃度と低濃度との間で変動する対称サイクルの場合において、排ガスの窒素酸化物濃度は変動幅が小さくなるだけで変動していることには変わりがなく(特許文献2の図2および図3参照)、実質的な平準化効果とはいい難い。また、排ガスの窒素酸化物濃度変動形態が高濃度時の時間と低濃度時の時間とが大きく異なる非対称サイクルの場合においてこの方法を適用しても、窒素酸化物濃度の変動幅が抑制されるだけであって非対称サイクルと相似のサイクルによる濃度変動は起こることになると予想されるので、実質的な平準化は達成されない。したがって、特許文献2の方法では、依然として、窒素酸化物の濃度変動幅、特に、窒素酸化物の最大濃度を考慮して脱硝設備を設計する必要がある。   On the other hand, since the method described in Patent Document 2 merely makes the exhaust gas contact the nitrogen oxide adsorbent, the leveling effect is that the nitrogen oxide concentration of the exhaust gas is relatively high. In this case, the amount of nitrogen oxide adsorbed in the nitrogen oxide adsorbent increases, and when the concentration of nitrogen oxide in the exhaust gas is relatively low, the amount of nitrogen oxide adsorbed in the nitrogen oxide adsorbent decreases. Due to the phenomenon, the fluctuation range of the nitrogen oxide concentration can be suppressed. That is, in the case of a symmetrical cycle in which the exhaust gas nitrogen oxide concentration fluctuation pattern fluctuates between a high concentration and a low concentration at approximately equal time intervals, the exhaust gas nitrogen oxide concentration fluctuates with only a small fluctuation range. (See FIG. 2 and FIG. 3 of Patent Document 2), and it is difficult to say that this is a substantial leveling effect. Moreover, even if this method is applied in the case of an asymmetric cycle in which the nitrogen oxide concentration fluctuation form of the exhaust gas is greatly different from the time at the high concentration and the time at the low concentration, the fluctuation range of the nitrogen oxide concentration is suppressed. However, since it is expected that concentration fluctuations due to asymmetric and similar cycles will occur, substantial leveling is not achieved. Therefore, in the method of Patent Document 2, it is still necessary to design a denitration facility in consideration of the concentration fluctuation range of nitrogen oxides, particularly the maximum concentration of nitrogen oxides.

特開平11−114364号公報Japanese Patent Application Laid-Open No. 11-114364 特開2000−93740公報JP 2000-93740 A

本発明の目的は、気流のガス成分濃度を容易に平準化することにある。   An object of the present invention is to easily level the gas component concentration of the airflow.

本発明に係るガス成分濃度の平準化方法は、気流に含まれるガス成分の濃度を平準化するための方法であり、ガス成分を吸着可能な吸着材層においてガス成分の平衡吸着帯が生じるよう、吸着材層に気流を通過させる工程を含んでいる。この方法において用いられる吸着材層は、例えば、炭素系吸着材からなる。   The leveling method of the gas component concentration according to the present invention is a method for leveling the concentration of the gas component contained in the airflow, so that an equilibrium adsorption band of the gas component is generated in the adsorbent layer capable of adsorbing the gas component. , Including a step of passing an air stream through the adsorbent layer. The adsorbent layer used in this method is made of, for example, a carbon-based adsorbent.

本発明者等は、ガス成分を吸着可能な吸着材層に対してガス成分濃度が変動する気流を通過させた場合、吸着材層において、ガス成分の吸着と脱着とが繰り返され、一定時間経過後に吸着材層の出口側でガス成分の吸脱着が平衡に達するという現象を見出した。また、気流は、ガス成分の吸脱着が平衡に達した吸着材層を通過する際に、ガス成分濃度が平準化されるという現象を併せて見出した。したがって、本発明に係るガス成分濃度の平準化方法において、吸着材層に気流を通過させると、当該気流に含まれるガス成分は、吸着材層において吸着と脱着とを繰り返しながら吸着材層を移動し、吸着材層の出口側で吸脱着が平衡になる。すなわち、吸着材層には、ガス成分の平衡吸着帯が生じる。そして、ガス成分の平衡吸着帯が生じた吸着材層を通過後の気流のガス成分濃度は、当該吸着材層を通過する前の気流のガス成分濃度の高低に拘わらず、一定のレベルに平準化される。   When the present inventors pass an air stream whose gas component concentration fluctuates with respect to an adsorbent layer capable of adsorbing a gas component, adsorption and desorption of the gas component are repeated in the adsorbent layer, and a predetermined time has elapsed. Later, a phenomenon was found in which adsorption / desorption of gas components reached equilibrium at the outlet side of the adsorbent layer. Further, the present inventors also found a phenomenon in which the gas component concentration is leveled when the airflow passes through the adsorbent layer in which the adsorption and desorption of the gas component has reached equilibrium. Therefore, in the gas component concentration leveling method according to the present invention, when an air stream is passed through the adsorbent layer, the gas component contained in the air stream moves through the adsorbent layer while repeating adsorption and desorption in the adsorbent layer. Thus, adsorption / desorption is balanced at the outlet side of the adsorbent layer. That is, an equilibrium adsorption band of gas components is generated in the adsorbent layer. The gas component concentration of the airflow after passing through the adsorbent layer where the equilibrium adsorption band of the gas component has occurred is leveled to a constant level regardless of the gas component concentration of the airflow before passing through the adsorbent layer. It becomes.

本発明に係るガス成分濃度の平準化装置は、気流に含まれるガス成分の濃度を平準化するためのものであり、気流の流入部と排出部とを有する容器と、当該容器内に配置された、ガス成分を吸着可能な吸着材層とを備えている。ここで、吸着材層は、ガス成分の平衡吸着帯が生じた状態に設定されている。   A gas component concentration leveling apparatus according to the present invention is for leveling the concentration of a gas component contained in an air stream, and is disposed in a container having an inflow part and an exhaust part of the air stream, and the container. And an adsorbent layer capable of adsorbing gas components. Here, the adsorbent layer is set in a state where an equilibrium adsorption band of gas components is generated.

このガス成分濃度の平準化装置において、流入部から容器内に流入する気流は、容器内に配置された吸着材層を通過し、排出部から排出される。この際、気流に含まれるガス成分は、吸着材層において吸着と脱着とを繰り返しながら吸着材層を通過する。ここで、吸着材層は、ガス成分の平衡吸着帯が生じた状態に設定されているため、排出部から排出される気流のガス成分濃度は、流入部から容器内に流入する気流のガス成分濃度の高低に拘わらず、一定のレベルに平準化される。   In this gas component concentration leveling apparatus, the airflow flowing into the container from the inflow portion passes through the adsorbent layer disposed in the container and is discharged from the discharge portion. At this time, the gas component contained in the airflow passes through the adsorbent layer while repeating adsorption and desorption in the adsorbent layer. Here, since the adsorbent layer is set in a state where an equilibrium adsorption band of gas components is generated, the gas component concentration of the airflow discharged from the discharge portion is the gas component of the airflow flowing into the container from the inflow portion. It is leveled to a certain level regardless of the density.

本発明に係るガス成分処理装置は、気流に含まれるガス成分を処理材により処理するためのものであり、気流の第一流入部と第一排出部とを有し、かつ、内部にガス成分を吸着可能な吸着材層が配置された第一容器と、第一排出部から排出される気流の第二流入部と第二排出部とを有し、かつ、内部に処理材が充填された第二容器とを備えている。ここで、吸着材層は、ガス成分の平衡吸着帯が生じた状態に設定されている。このガス成分処理装置において用いられる処理材は、例えば、ガス成分の分解触媒若しくは吸着材である。   A gas component processing apparatus according to the present invention is for processing a gas component contained in an airflow with a processing material, and has a first inflow portion and a first discharge portion of the airflow, and has a gas component therein. A first container in which an adsorbent layer capable of adsorbing is disposed, a second inflow portion and a second exhaust portion of the airflow discharged from the first discharge portion, and filled with a treatment material therein And a second container. Here, the adsorbent layer is set in a state where an equilibrium adsorption band of gas components is generated. The treatment material used in this gas component treatment apparatus is, for example, a gas component decomposition catalyst or an adsorbent.

このガス成分処理装置において、第一流入部から第一容器内に流入する気流は、第一容器内に配置された吸着材層を通過し、第一排出部から排出される。そして、第一排出部から排出された気流は、第二流入部から第二容器内に流入し、第二容器に充填された処理材を通過した後、第二排出部から排出される。この際、第一流入部から第一容器内に流入する気流に含まれるガス成分は、吸着材層において吸着と脱着とを繰り返しながら吸着材層を通過する。ここで、吸着材層は、ガス成分の平衡吸着帯が生じた状態に設定されているため、第一排出部から第二流入部へ排出される気流のガス成分濃度は、第一流入部から第一容器内に流入する気流のガス成分濃度の高低に拘わらず、一定のレベルに平準化される。したがって、第二容器には、第二流入部からガス成分濃度が平準化された気流が流入する。この結果、第二流入部から第二容器内に流入する気流に含まれるガス成分は、処理材に対して過剰な負荷を与えずに、安定に処理される。例えば、処理材として分解触媒を用いる場合、ガス成分は、当該分解触媒により安定に分解処理される。また、処理材として吸着材を用いる場合、ガス成分は、当該吸着材に対して吸着されやすくなる。そして、ガス成分が処理材により処理された気流は、第二排出部から排出される。   In this gas component processing apparatus, the airflow flowing into the first container from the first inflow part passes through the adsorbent layer disposed in the first container and is discharged from the first discharge part. And the airflow discharged | emitted from the 1st discharge part flows in into a 2nd container from a 2nd inflow part, and passes through the processing material with which the 2nd container was filled, Then, it is discharged | emitted from a 2nd discharge part. At this time, the gas component contained in the airflow flowing into the first container from the first inflow portion passes through the adsorbent layer while repeating adsorption and desorption in the adsorbent layer. Here, since the adsorbent layer is set in a state where an equilibrium adsorption band of gas components is generated, the gas component concentration of the airflow discharged from the first discharge part to the second inflow part is from the first inflow part. Regardless of the gas component concentration of the airflow flowing into the first container, it is leveled to a certain level. Therefore, the air flow in which the gas component concentration is leveled flows into the second container from the second inflow portion. As a result, the gas component contained in the airflow flowing into the second container from the second inflow portion is stably processed without applying an excessive load to the processing material. For example, when a decomposition catalyst is used as the treatment material, the gas component is stably decomposed by the decomposition catalyst. Further, when an adsorbent is used as the treatment material, the gas component is easily adsorbed to the adsorbent. And the airflow by which the gas component was processed with the processing material is discharged | emitted from a 2nd discharge part.

本発明に係るガス成分濃度の平準化方法は、吸着材層においてガス成分の平衡吸着帯が生じるよう、吸着材層に気流を通過させる工程を含んでいるため、当該気流を温度調節して吸着材層に対してガス成分を強制的に吸着および脱着させなくても、当該気流に含まれるガス成分濃度を容易に平準化することができる。   The gas component concentration leveling method according to the present invention includes a step of passing an air flow through the adsorbent layer so that an equilibrium adsorption band of the gas component is generated in the adsorbent layer. Even if the gas component is not forcedly adsorbed and desorbed from the material layer, the concentration of the gas component contained in the airflow can be easily leveled.

本発明に係るガス成分濃度の平準化装置は、容器内に配置された吸着材層がガス成分の平衡吸着帯を生じた状態に設定されているため、流入部から容器へ流入する気流を温度調節して吸着材層に対してガス成分を強制的に吸着および脱着させなくても、ガス成分濃度が平準化された気流を排出部から排出することができる。   The gas component concentration leveling apparatus according to the present invention is set in a state in which the adsorbent layer disposed in the container generates an equilibrium adsorption band of the gas component, so that the temperature of the airflow flowing into the container from the inflow portion is increased. Even if the gas component is not forcibly adsorbed and desorbed to the adsorbent layer by adjusting, the air flow in which the gas component concentration is leveled can be discharged from the discharge portion.

本発明に係るガス成分処理装置は、第一容器内に配置された吸着材層がガス成分の平衡吸着帯を生じた状態に設定されているため、第一流入部から第一容器へ流入する気流を温度調節して吸着材層に対してガス成分を強制的に吸着および脱着させなくても、ガス成分濃度が平準化された気流を第二容器に充填された処理材に対して供給することができ、当該気流に含まれるガス成分を処理材により安定に処理することができる。   In the gas component processing apparatus according to the present invention, the adsorbent layer disposed in the first container is set in a state where an equilibrium adsorption zone of the gas component is generated, and therefore flows into the first container from the first inflow portion. Even if the gas component is not adsorbed and desorbed from the adsorbent layer forcibly by adjusting the temperature of the air flow, the gas component concentration is supplied to the treatment material filled in the second container. And the gas component contained in the airflow can be stably treated with the treatment material.

図1を参照して、本発明の実施の一形態に係るガス成分濃度の平準化装置を説明する。図において、平準化装置1は、気流に含まれる所定の吸着ガス成分(以下、単にガス成分という)の濃度を平準化するためのものであり、容器2を主に備えている。容器2は、気流の流入部3と排出部4とを有しており、また、内部に吸着材層5が配置されている。   A gas component concentration leveling apparatus according to an embodiment of the present invention will be described with reference to FIG. In the figure, a leveling device 1 is for leveling a concentration of a predetermined adsorbed gas component (hereinafter simply referred to as a gas component) contained in an air stream, and mainly includes a container 2. The container 2 has an inflow portion 3 and a discharge portion 4 for airflow, and an adsorbent layer 5 is disposed inside.

吸着材層5は、容器2内に充填された吸着材、若しくは、容器2内に配置された、通気性を有する吸着材の成形体(例えば、ハニカム状物)からなるものである。ここで用いられる吸着材は、気流に含まれるガス成分を物理吸着可能なものであれば、その種類が特に限定されるものではないが、例えば、活性炭や活性コークス等の炭素系吸着材、ゼオライト、酸性処理粘土、活性アルミナ、モレキュラーシーブ、ボーンチャー、白土、酸化鉄、マグネシアおよびシリカゲルなどを用いることができる。これらの吸着材は、2種以上のものが併用されてもよい。また、吸着材は、形状が限定されるものではなく、例えば、粒状のもの(例えば、粒状活性炭)、繊維状のもの(例えば、繊維状活性炭)若しくはこれらの混合物であってもよい。なお、吸着材は、ガス成分の吸脱着能が大きい炭素系吸着材、特に活性炭を用いるのが好ましいが、その中でも、ガス成分の吸着容量が大きく、吸着速度が大きな繊維状活性炭を用いるのが特に好ましい。   The adsorbent layer 5 is made of an adsorbent filled in the container 2 or a molded article (for example, a honeycomb-shaped article) of an adsorbent having air permeability disposed in the container 2. The adsorbent used here is not particularly limited as long as it can physically adsorb the gas component contained in the airflow, but for example, carbon-based adsorbent such as activated carbon and activated coke, zeolite Acid-treated clay, activated alumina, molecular sieve, bone char, clay, iron oxide, magnesia, silica gel and the like can be used. Two or more of these adsorbents may be used in combination. The shape of the adsorbent is not limited, and may be, for example, granular (for example, granular activated carbon), fibrous (for example, fibrous activated carbon), or a mixture thereof. As the adsorbent, it is preferable to use a carbon-based adsorbent having a large gas component adsorption / desorption capability, particularly activated carbon. Among them, it is preferable to use fibrous activated carbon having a large adsorption capacity of the gas component and a large adsorption rate. Particularly preferred.

また、吸着材層5は、ガス成分の平衡吸着帯を生じた状態に設定されたものである。固定層吸着操作においては、通常、吸着材の固定層へ一定濃度の吸着質を含む流体を供給すると、吸着材の固定層内の長さ方向に入口側から出口側にかけて、順に、入口濃度に平衡な吸着量を示す部分、吸着帯および未吸着部からなる吸着量分布が生じ、通ガス時間の経過に伴い吸着帯が出口側に移動し、破過に達する。一方、本発明者らが見出したように、吸着材の固定層へ吸着質濃度が高濃度と低濃度との間で周期的に変動する流体を供給すると、高濃度の時間と低濃度の時間とが等しくない場合を含めて、一定の通ガス時間が経過した時点で、吸着材の固定層の出口側端部において、入口側のガス成分濃度を時間平均した濃度に平衡な吸着量を示す部分が生じる。この部分では、吸着質の時間当り吸着量若しくは吸着速度と脱着量若しくは脱着速度とが実質的に等しい。したがって、吸着材層5、特に、少なくとも吸着材層5の排出部4側端部(すなわち、吸着材層5の気流排出部側端部)において、ガス成分の吸着と脱着とが等速度で同時に進行している部分が生じる。ここでは、このような部分が生じた状態を平衡吸着帯が生じた状態という。   The adsorbent layer 5 is set in a state where an equilibrium adsorption band of gas components is generated. In the fixed bed adsorption operation, usually, when a fluid containing a certain concentration of adsorbate is supplied to the fixed layer of the adsorbent, the inlet concentration is increased in order from the inlet side to the outlet side in the length direction in the fixed layer of the adsorbent. An adsorption amount distribution consisting of a portion showing an equilibrium adsorption amount, an adsorption zone, and a non-adsorption zone occurs, and the adsorption zone moves to the outlet side as the gas passing time elapses and reaches breakthrough. On the other hand, as the present inventors found, when a fluid in which the adsorbate concentration periodically fluctuates between a high concentration and a low concentration is supplied to the fixed layer of the adsorbent, the high concentration time and the low concentration time are supplied. When a certain gas passage time has passed, including the case where the gas flow is not equal to each other, the amount of adsorption adsorbed at the time-averaged concentration of the gas component concentration at the inlet side is shown at the outlet side end of the adsorbent fixed layer. A part arises. In this portion, the adsorption amount or adsorption rate per hour of the adsorbate is substantially equal to the desorption amount or desorption rate. Therefore, the adsorption and desorption of the gas component are simultaneously performed at the same speed at the adsorbent layer 5, particularly at least the end portion on the discharge portion 4 side of the adsorbent layer 5 (that is, the end portion on the airflow discharge portion side of the adsorbent layer 5). The part which is progressing arises. Here, the state in which such a portion is generated is referred to as a state in which an equilibrium adsorption band is generated.

具体的には、吸着材層5が配置された容器2の流入部3から排出部4に向けて、ガス成分濃度が高濃度と低濃度との間で周期的に変動する気流を連続的に通過させた場合、気流の通過開始当初は、図2の(A)に示すように、吸着材層5の流入部3側において、ガス成分濃度が高濃度の場合はガス成分が吸着され、また、ガス成分濃度が低濃度の場合はガス成分が脱着および吸着されるが、吸着材層5の排出部4側においては、ガス成分の吸脱着が生じない。したがって、排出部4から排出される気流のガス成分濃度は、実質的にゼロになる。この状態で時間が経過すると、図2の(B)に示すように、吸着材層5の流入部3側から排出部4側にかけて、ガス成分濃度が高濃度の場合はガス成分が吸着材層5に対して吸着、平衡(すなわち、吸着量若しくは吸着速度と脱着量若しくは脱着速度とが実質的に等しい状態)、吸着の順で挙動するが、ガス成分濃度が低濃度の場合はガス成分が吸着材層5に対して脱着、平衡、吸着の順で挙動するようになる。この結果、排出部4から排出される気流のガス成分濃度は、流入部3から流入する気流のガス成分濃度の高低に拘わらず、上述の実質的にゼロの状態から徐々に上昇し始める。そして、さらに時間が経過すると、図2の(C)に示すように、吸着材層5の流入部3側から排出部4側にかけて、ガス成分は、吸着材層5に対して吸着若しくは脱着またはこれらの繰り返しおよび平衡の順で挙動するようになる。このように、吸着材層5が配置された容器2の流入部3から排出部4に向けて、ガス成分濃度が高濃度と低濃度との間で周期的に変動する気流を通過させ始めて一定時間が経過すると、吸着材層5の排出部4側において、気流中のガス成分は、吸着材層5に対して高濃度であるか低濃度であるかに拘わらず平衡状態になる。すなわち、吸着材層5は、排出部4側端部において、流入部3から流入する気流のガス成分濃度を時間平均した濃度に平衡な吸着量の平衡吸着帯が生じた状態になる。   Specifically, an air flow in which the gas component concentration periodically varies between a high concentration and a low concentration is continuously generated from the inflow portion 3 to the discharge portion 4 of the container 2 in which the adsorbent layer 5 is disposed. When it is allowed to pass, at the beginning of the passage of the air flow, as shown in FIG. 2A, the gas component is adsorbed on the inflow portion 3 side of the adsorbent layer 5 when the gas component concentration is high, and When the gas component concentration is low, the gas component is desorbed and adsorbed, but no adsorption or desorption of the gas component occurs on the discharge part 4 side of the adsorbent layer 5. Therefore, the gas component concentration of the airflow discharged from the discharge unit 4 is substantially zero. When time elapses in this state, as shown in FIG. 2B, when the gas component concentration is high from the inflow portion 3 side to the discharge portion 4 side of the adsorbent layer 5, the gas component is adsorbent layer. 5 in the order of adsorption, equilibrium (that is, a state where the adsorption amount or adsorption rate is substantially equal to the desorption amount or desorption rate), and adsorption, but if the gas component concentration is low, the gas component The adsorbent layer 5 behaves in the order of desorption, equilibrium, and adsorption. As a result, the gas component concentration of the airflow discharged from the discharge portion 4 starts to gradually increase from the substantially zero state described above regardless of the gas component concentration of the airflow flowing from the inflow portion 3. Then, when the time further elapses, as shown in FIG. 2C, the gas component is adsorbed or desorbed from the adsorbent layer 5 toward the discharge portion 4 side or adsorbed or desorbed from the adsorbent layer 5. It will behave in the order of these repetitions and equilibrium. In this way, the gas component concentration starts to pass through from the inflow portion 3 to the discharge portion 4 of the container 2 in which the adsorbent layer 5 is arranged, and starts to pass through the airflow periodically changing between a high concentration and a low concentration. When time elapses, the gas component in the airflow is in an equilibrium state regardless of whether the concentration is high or low with respect to the adsorbent layer 5 on the discharge portion 4 side of the adsorbent layer 5. That is, the adsorbent layer 5 is in a state in which an equilibrium adsorption band having an adsorption amount balanced with a concentration obtained by time-averaged the gas component concentration of the airflow flowing from the inflow portion 3 is generated at the end portion on the discharge portion 4 side.

吸着材層5がガス成分の平衡吸着帯を生じた状態は、ガス成分と吸着材層5を形成する吸着材との物質移動係数および吸着材層5の長さ(流入部3側端部から排出部4側端部までの長さ)を考慮し、吸着材層5に対して流入部3から排出部4に向けて流量を調節しながらガス成分を含む気流を通過させると、一定時間経過後に達成することができる。因みに、平衡吸着帯を生じた状態が達成されない場合は、気流の流速を小さくするか、若しくは、吸着材層5における吸着材量を増量すれば、当該状態を必ず達成することができる。   The state in which the adsorbent layer 5 has formed an equilibrium adsorption band of the gas component is that the mass transfer coefficient between the gas component and the adsorbent forming the adsorbent layer 5 and the length of the adsorbent layer 5 (from the end on the inflow portion 3 side). When the air flow containing the gas component is allowed to pass through the adsorbent layer 5 while adjusting the flow rate from the inflow portion 3 toward the discharge portion 4 in consideration of the length of the discharge portion 4 side end) Can be achieved later. Incidentally, when the state where the equilibrium adsorption zone is generated cannot be achieved, the state can be surely achieved by reducing the flow velocity of the air flow or increasing the amount of the adsorbent in the adsorbent layer 5.

上述の平準化装置1を用いたガス成分濃度の平準化方法では、流入部3から容器2内にガス成分を含む気流を導入する。気流に含まれるガス成分は、特に限定されるものではなく、ダイオキシン類やその前駆体およびその他の有機塩素化合物等の有機質ガス成分であってもよいし、酸素、二酸化炭素および窒素酸化物等の無機質ガス成分であってもよい。   In the gas component concentration leveling method using the leveling device 1 described above, an air flow containing a gas component is introduced into the container 2 from the inflow portion 3. The gas component contained in the airflow is not particularly limited, and may be an organic gas component such as dioxins, precursors thereof, and other organic chlorine compounds, or oxygen, carbon dioxide, nitrogen oxides, and the like. It may be an inorganic gas component.

なお、容器2内に導入する気流は、吸着材層5に対してガス成分を強制的に吸着および脱着させるための加熱や冷却による温度調節を必要としない。   Note that the airflow introduced into the container 2 does not require temperature adjustment by heating or cooling for forcibly adsorbing and desorbing the gas component on the adsorbent layer 5.

流入部3から容器2内に導入された気流は、吸着材層5を通過し、排出部4から容器2の外部へ排出される。この際、気流に含まれるガス成分は、吸着材層5において吸着と脱着とを繰り返しながら吸着材層5を移動し、図2の(C)で示すように吸着材層5の排出部4側端部において平衡吸着帯が生じた状態になる。この結果、吸着材層5を通過後の気流のガス成分濃度、すなわち、排出部4から排出される気流のガス成分濃度は、流入部3から容器2内に流入する気流のガス成分濃度を時間平均した濃度(以下、時間平均濃度という)に平準化される。具体的には、流入部3から流入する気流のガス成分濃度が時間平均濃度よりも大きい場合、排出部4から排出される気流のガス成分濃度は、時間平均濃度まで低下する。逆に、流入部3から流入する気流のガス成分濃度が時間平均濃度よりも小さい場合、排出部4から排出される気流のガス成分濃度は、時間平均濃度まで上昇する。より具体的には、図3に示すように、流入部3から流入する気流のガス成分濃度が図に破線で示すように短時間サイクルで脈動していても、排出部4から排出される気流のガス成分濃度は、図に実線で示すように時間平均濃度に平準化される。また、図4に示すように、流入部3から流入する気流のガス成分濃度が図に破線で示すように長周期的に変動する場合であっても、排出部4から排出される気流のガス成分濃度は、図に実線で示すように時間平均濃度に平準化される。   The airflow introduced from the inflow part 3 into the container 2 passes through the adsorbent layer 5 and is discharged from the discharge part 4 to the outside of the container 2. At this time, the gas component contained in the air stream moves through the adsorbent layer 5 while repeating adsorption and desorption in the adsorbent layer 5, and as shown in FIG. An equilibrium adsorption band is produced at the end. As a result, the gas component concentration of the airflow after passing through the adsorbent layer 5, that is, the gas component concentration of the airflow discharged from the discharge portion 4, is the time of the gas component concentration of the airflow flowing into the container 2 from the inflow portion 3. The averaged density (hereinafter referred to as time average density) is leveled. Specifically, when the gas component concentration of the airflow flowing in from the inflow portion 3 is larger than the time average concentration, the gas component concentration of the airflow discharged from the discharge portion 4 is reduced to the time average concentration. On the contrary, when the gas component concentration of the airflow flowing in from the inflow portion 3 is smaller than the time average concentration, the gas component concentration of the airflow discharged from the discharge portion 4 rises to the time average concentration. More specifically, as shown in FIG. 3, even if the gas component concentration of the airflow flowing in from the inflow portion 3 pulsates in a short cycle as shown by the broken line in the figure, the airflow discharged from the discharge portion 4 The gas component concentration is leveled to the time average concentration as shown by the solid line in the figure. Further, as shown in FIG. 4, even if the gas component concentration of the airflow flowing in from the inflow portion 3 fluctuates over a long period as shown by the broken line in the figure, the gas of the airflow discharged from the discharge portion 4 The component concentration is leveled to the time average concentration as shown by the solid line in the figure.

上述の平準化方法において、気流は、吸着材層5において平衡吸着帯が維持される流量で流入部3から吸着材層5に対して導入するのが好ましい。気流の流量が当該流量を超える場合は、排出部4から排出される気流において、ガス成分濃度の平準化効果が得られにくい場合がある。   In the above-described leveling method, the airflow is preferably introduced from the inflow portion 3 to the adsorbent layer 5 at a flow rate at which an equilibrium adsorption band is maintained in the adsorbent layer 5. When the flow rate of the air flow exceeds the flow rate, the gas component concentration leveling effect may be difficult to obtain in the air flow discharged from the discharge unit 4.

この平準化装置1は、例えば、触媒の活性評価試験において用いることができる。例えば、不活性ガスにより希釈した所要のガス成分を反応容器内に充填した触媒に供給し、触媒活性を評価する場合、不活性ガス中のガス成分濃度が脈動(ハンチング)しながら変動する場合があるが、この平準化装置1を用いれば、反応容器の触媒に対して供給する不活性ガス中のガス成分濃度を平準化させることができるので、触媒活性を正確に評価することができる。   The leveling device 1 can be used, for example, in a catalyst activity evaluation test. For example, when a required gas component diluted with an inert gas is supplied to a catalyst filled in a reaction vessel and the catalytic activity is evaluated, the concentration of the gas component in the inert gas may fluctuate while pulsating (hunting). However, if this leveling device 1 is used, the gas component concentration in the inert gas supplied to the catalyst in the reaction vessel can be leveled, so that the catalyst activity can be accurately evaluated.

次に、図5を参照して、上述の平準化装置1を採用したガス成分処理装置の一例を説明する。図において、ガス成分処理装置10は、気流に含まれるガス成分を処理材を用いて処理するためのものであり、濃度調節部11と処理部12とを主に備えている。濃度調節部11は、上述のように構成された平準化装置1である。一方、処理部12は、容器20を主に備えている。容器20は、気流の流入部21(第二流入部の一例)と排出部22(第二排出部の一例)とを有しており、また、内部に処理材層23を有している。処理部12は、流入部21が濃度調節部11の排出部4(第一排出部の一例)に接続されている。この結果、ガス成分処理装置10では、濃度調節部11の流入部3(第一流入部の一例)から処理部12の排出部22に至る、一連の気流の流路が形成されている。   Next, with reference to FIG. 5, an example of the gas component processing apparatus that employs the leveling apparatus 1 described above will be described. In the figure, a gas component processing apparatus 10 is for processing a gas component contained in an air flow using a processing material, and mainly includes a concentration adjusting unit 11 and a processing unit 12. The density adjusting unit 11 is the leveling device 1 configured as described above. On the other hand, the processing unit 12 mainly includes a container 20. The container 20 includes an airflow inflow portion 21 (an example of a second inflow portion) and a discharge portion 22 (an example of a second discharge portion), and also includes a treatment material layer 23 therein. In the processing unit 12, the inflow unit 21 is connected to the discharge unit 4 (an example of the first discharge unit) of the concentration adjusting unit 11. As a result, in the gas component processing apparatus 10, a series of airflow channels are formed from the inflow portion 3 (an example of the first inflow portion) of the concentration adjusting unit 11 to the discharge unit 22 of the processing unit 12.

処理材層23は、容器20内に充填された処理材からなるものである。ここで用いられる処理材は、目的に応じて気流に含まれるガス成分を処理可能な各種のものであり、例えば、ガス成分を分解するための各種の金属系等の分解触媒やガス成分を吸着するための吸着材である。吸着材を用いる場合、その種類は、濃度調節部11(すなわち平準化装置1)において用いられる吸着材と同種のものであってもよいし、異なる種類のものであってもよい。但し、この吸着材からなる処理材層23は、濃度調節部11において用いられる吸着材層5とは異なり、ガス成分濃度を時間平均濃度に平準化するものではない。   The treatment material layer 23 is made of a treatment material filled in the container 20. The treatment materials used here are various materials that can treat the gas components contained in the airflow according to the purpose. For example, various metal-based decomposition catalysts for decomposing the gas components and gas components are adsorbed. It is an adsorbent for When the adsorbent is used, the type thereof may be the same as that of the adsorbent used in the concentration controller 11 (that is, the leveling device 1), or may be a different type. However, the treatment material layer 23 made of this adsorbent is different from the adsorbent layer 5 used in the concentration adjusting unit 11 and does not equalize the gas component concentration to the time average concentration.

このガス成分処理装置10において、濃度調節部11の流入部3から容器2内に流入した気流は、吸着材層5を通過した後に排出部4から排出され、続けて処理部12へ供給される。ここで、排出部4から排出された気流は、流入部21から容器20内に流入し、処理材層23を通過した後、排出部22から容器20の外部へ排出される。この際、気流に含まれるガス成分は、処理材層23の処理材により、処理材の機能に応じた処理が施される。例えば、処理材として分解触媒を用いている場合は、分解触媒の作用によりガス成分が分解される。また、処理材として吸着材が用いられている場合は、ガス成分が吸着材に吸着し、気流から除去される。したがって、これらの場合、処理部12の排出部22から排出される気流は、実質的にガス成分を含まないか、或いは、ガス成分濃度が大幅に低下した状態になる。   In this gas component processing apparatus 10, the airflow that has flowed into the container 2 from the inflow portion 3 of the concentration adjusting section 11 is discharged from the discharge section 4 after passing through the adsorbent layer 5, and subsequently supplied to the processing section 12. . Here, the airflow discharged from the discharge part 4 flows into the container 20 from the inflow part 21, passes through the treatment material layer 23, and is then discharged from the discharge part 22 to the outside of the container 20. At this time, the gas component contained in the airflow is processed according to the function of the processing material by the processing material of the processing material layer 23. For example, when a decomposition catalyst is used as the treatment material, the gas component is decomposed by the action of the decomposition catalyst. When an adsorbent is used as the treatment material, the gas component is adsorbed on the adsorbent and removed from the airflow. Therefore, in these cases, the airflow discharged from the discharge unit 22 of the processing unit 12 does not substantially contain a gas component, or the gas component concentration is greatly reduced.

ここで、濃度調節部11の流入部3へ供給される気流のガス成分濃度が変動するような場合、当該気流に含まれるガス成分の濃度は、濃度調節部11において既述のような作用により平準化される。したがって、濃度調節部11から処理部12へ供給される気流のガス成分濃度は、平準化された状態になる。このため、処理部12では、濃度調節部11において設定される、平準化された一定レベルの濃度のガス成分を十分に処理可能な程度の量の処理材により処理材層23を形成すれば、濃度調節部11の流入部3へ供給される気流のガス成分濃度の高低に拘わらず、安定して気流に含まれるガス成分を処理することができる。換言すると、処理部12では、気流のガス成分濃度が一時的に大幅に高まる場合を想定して処理材層23の処理材量を多目に設定する必要がなく、必要最低限量の処理材により、安定して気流に含まれるガス成分を処理することができる。   Here, when the gas component concentration of the airflow supplied to the inflow portion 3 of the concentration adjusting unit 11 fluctuates, the concentration of the gas component contained in the airflow is caused by the action described above in the concentration adjusting unit 11. Leveled. Therefore, the gas component concentration of the airflow supplied from the concentration adjusting unit 11 to the processing unit 12 is leveled. For this reason, in the processing unit 12, if the processing material layer 23 is formed with an amount of processing material that is set in the concentration adjusting unit 11 and that can sufficiently process the gas component having a uniform level at a certain level, Regardless of the gas component concentration of the airflow supplied to the inflow portion 3 of the concentration adjusting unit 11, the gas component contained in the airflow can be stably processed. In other words, in the processing unit 12, it is not necessary to set the processing material amount of the processing material layer 23 on the assumption that the gas component concentration of the air flow is significantly significantly increased, and the minimum necessary amount of processing material is used. The gas component contained in the airflow can be stably processed.

上述のガス成分処理装置10は、例えば、産業廃棄物や一般家庭ゴミ等の廃棄物焼却施設において、焼却炉から延びる排気流路に組込むことができる。ここでは、通常、排気流路をガス成分処理装置10の濃度調節部11側の流入部3に接続し、また、ガス成分処理装置10の処理部12側の排出部22に排気ガスを大気へ放出するための煙突を接続する。この場合、焼却炉から排出される、ガス状態のダイオキシン類を含む排気ガスは、濃度調節部11において、ダイオキシン類濃度が一定レベルに平準化される。そして、濃度が一定レベルに平準化されたダイオキシン類を含む排気ガスは、処理部12において処理材の種類に応じて処理され、実質的にダイオキシン類が除去された状態で煙突から大気へ放出される。ここで、焼却炉からの排気ガスは、焼却炉の運転立ち上げ時や焼却処理中の廃棄物の種類や量に応じ、一時的にダイオキシン類濃度が高まる場合があるが、そのような排気ガスは、濃度調節装置11においてダイオキシン類濃度が一定レベルに平準化されるため(すなわち、排気ガスのダイオキシン類濃度は、一定レベルまで低下するため)、処理部12の処理材層23に処理能力を超える負荷を与えることがなく、当該処理材層23により安定に処理され得る。   The gas component processing apparatus 10 described above can be incorporated into an exhaust passage extending from an incinerator in a waste incineration facility such as industrial waste or general household waste. Here, normally, the exhaust flow path is connected to the inflow portion 3 on the concentration adjustment unit 11 side of the gas component processing apparatus 10, and the exhaust gas is sent to the atmosphere at the discharge unit 22 on the processing unit 12 side of the gas component processing apparatus 10. Connect the chimney for discharge. In this case, the exhaust gas containing dioxins in a gas state discharged from the incinerator is leveled at a constant level in the concentration control unit 11. Then, the exhaust gas containing dioxins whose concentration is leveled to a certain level is processed according to the type of the processing material in the processing unit 12, and is released from the chimney to the atmosphere with the dioxins substantially removed. The Here, the exhaust gas from the incinerator may temporarily increase the concentration of dioxins depending on the type and amount of waste during start-up of the incinerator or during the incineration process. Because the dioxin concentration is leveled to a certain level in the concentration adjusting device 11 (that is, the dioxin concentration of the exhaust gas is lowered to a certain level), the processing material layer 23 of the processing unit 12 has a processing capability. It can be stably processed by the processing material layer 23 without applying an excessive load.

上述の実施の形態において説明した平準化装置1を製造した。ここでは、吸着材層5として、吸着材である繊維状活性炭のハニカム状成形品(大阪ガスケミカル株式会社の商品名“CH59”)を用いた。なお、繊維状活性炭は、平衡吸着帯が生じていない状態のものを用いた。また、吸着材層5の長さ(気流の通過長さ)は、40mmに設定した。   The leveling device 1 described in the above embodiment was manufactured. Here, as the adsorbent layer 5, a honeycomb-shaped molded product of fibrous activated carbon (trade name “CH59”, Osaka Gas Chemical Co., Ltd.), which is an adsorbent, was used. In addition, the fibrous activated carbon used the state in which the equilibrium adsorption zone has not arisen. Further, the length of the adsorbent layer 5 (the length of passage of airflow) was set to 40 mm.

この平準化装置1の流入部3に対し、クロロベンゼン濃度が変動する空気を供給した。この空気は、クロロベンゼン含有空気の2分間供給と、クロロベンゼンを含まない空気(清浄空気)の20分間供給とを1サイクルとし、このサイクルを繰り返すことによりクロロベンゼン濃度を変動させたものである。なお、クロロベンゼン含有空気のクロロベンゼン濃度は、2,550ppmである。また、吸着材層5における空気の線速度は、5cm/秒になるよう調節した。   Air in which the chlorobenzene concentration fluctuated was supplied to the inflow portion 3 of the leveling device 1. This air is a cycle in which the supply of chlorobenzene-containing air for 2 minutes and the supply of chlorobenzene-free air (clean air) for 20 minutes are made one cycle, and the chlorobenzene concentration is changed by repeating this cycle. The chlorobenzene concentration in the chlorobenzene-containing air is 2,550 ppm. The linear velocity of air in the adsorbent layer 5 was adjusted to 5 cm / second.

平準化装置1の排出部4から排出される空気のクロロベンゼン濃度を連続的に測定した結果を図6に示す。なお、排出部4から排出される空気中のクロロベンゼン濃度は、全炭化水素計により測定した。   The result of continuously measuring the chlorobenzene concentration of the air discharged from the discharge unit 4 of the leveling device 1 is shown in FIG. The chlorobenzene concentration in the air discharged from the discharge unit 4 was measured with a total hydrocarbon meter.

図6によると、流入部3に対して空気を供給し始めてから約20時間経過したときに吸着材層5が平衡吸着帯を生じた状態に達したが、その後、排出口4から排出される空気のクロロベンゼン濃度は略232ppmに平準化され、安定している。平準化後の濃度は、流入部3に供給される1サイクル当りの空気の総量に含まれるクロロベンゼン量の1サイクル当りの時間平均(2,550ppm×2分/22分=232ppm)に相当している。   According to FIG. 6, the adsorbent layer 5 has reached an equilibrium adsorption zone when about 20 hours have passed since the start of supplying air to the inflow portion 3, but is then discharged from the discharge port 4. The chlorobenzene concentration in the air is leveled to approximately 232 ppm and is stable. The concentration after leveling corresponds to the time average per cycle (2,550 ppm × 2 minutes / 22 minutes = 232 ppm) of the amount of chlorobenzene contained in the total amount of air per cycle supplied to the inlet 3. Yes.

本発明に係るガス成分濃度の平準化装置の実施の一形態の概略図。1 is a schematic diagram of an embodiment of a gas component concentration leveling apparatus according to the present invention. 前記実施の一形態において用いられる吸着材層が平衡吸着帯が生じた状態に達するまでの、当該吸着材層におけるガス成分の吸脱着挙動を示す模式図。The schematic diagram which shows the adsorption / desorption behavior of the gas component in the said adsorbent layer until the adsorbent layer used in the said embodiment reaches the state in which the equilibrium adsorption zone was produced. 前記実施の一形態によるガス濃度の平準化方法を適用前の気流のガス成分濃度と適用後の気流のガス成分濃度との関係の一例を示す概念図。The conceptual diagram which shows an example of the relationship between the gas component density | concentration of the airflow before applying the leveling method of the gas concentration by the said embodiment, and the gas component concentration of the airflow after application. 前記実施の一形態によるガス濃度の平準化方法を適用前の気流のガス成分濃度と適用後の気流のガス成分濃度との関係の他の例を示す概念図。The conceptual diagram which shows the other example of the relationship between the gas component density | concentration of the airflow before applying the gas concentration leveling method by the said embodiment, and the gas component concentration of the airflow after application. 本発明に係るガス成分処理装置の実施の一形態の概略図。The schematic of one Embodiment of the gas component processing apparatus which concerns on this invention. 実施例の結果を示す図。The figure which shows the result of an Example.

符号の説明Explanation of symbols

1 ガス成分濃度の平準化装置
2、20 容器
3、21 流入部
4、22 排出部
5 吸着材層
23 処理材層
1 Gas component concentration leveling device 2, 20 Container 3, 21 Inflow portion 4, 22 Discharge portion 5 Adsorbent layer 23 Treatment material layer

Claims (6)

気流に含まれるガス成分の濃度を平準化するための方法であって、
前記ガス成分を吸着可能な吸着材層において前記ガス成分の平衡吸着帯が生じるよう、前記吸着材層に前記気流を通過させる工程を含む、
ガス成分濃度の平準化方法。
A method for leveling the concentration of gas components contained in an air stream,
Including passing the air stream through the adsorbent layer so that an equilibrium adsorption band of the gas component is generated in the adsorbent layer capable of adsorbing the gas component.
A method for leveling gas component concentrations.
前記吸着材層が炭素系吸着材からなる、請求項1に記載のガス成分濃度の平準化方法。   The gas component concentration leveling method according to claim 1, wherein the adsorbent layer is made of a carbon-based adsorbent. 気流に含まれるガス成分の濃度を平準化するための装置であって、
前記気流の流入部と排出部とを有する容器と、
前記容器内に配置された、前記ガス成分を吸着可能な吸着材層とを備え、
前記吸着材層は、前記ガス成分の平衡吸着帯が生じた状態に設定されている、
ガス成分濃度の平準化装置。
An apparatus for leveling the concentration of gas components contained in an air stream,
A container having an inflow portion and a discharge portion for the airflow;
An adsorbent layer disposed in the container and capable of adsorbing the gas component;
The adsorbent layer is set in a state where an equilibrium adsorption band of the gas component has occurred,
Gas component concentration leveling device.
気流に含まれるガス成分を処理材により処理するための処理装置であって、
前記気流の第一流入部と第一排出部とを有し、かつ、前記ガス成分を吸着可能な吸着材層が内部に配置された第一容器と、
前記第一排出部から排出される前記気流の第二流入部と第二排出部とを有し、かつ、内部に前記処理材が充填された第二容器とを備え、
前記吸着材層は、前記ガス成分の平衡吸着帯が生じた状態に設定されている、
ガス成分処理装置。
A processing device for processing a gas component contained in an air stream with a processing material,
A first container having a first inflow portion and a first discharge portion of the air flow, and an adsorbent layer capable of adsorbing the gas component disposed therein;
A second inflow portion and a second discharge portion of the airflow discharged from the first discharge portion, and a second container filled with the processing material therein,
The adsorbent layer is set in a state where an equilibrium adsorption band of the gas component has occurred,
Gas component processing equipment.
前記処理材が前記ガス成分の分解触媒である、請求項4に記載のガス成分処理装置。   The gas component processing apparatus according to claim 4, wherein the treatment material is a decomposition catalyst for the gas component. 前記処理材が前記ガス成分の吸着材である、請求項4に記載のガス成分処理装置。   The gas component processing apparatus according to claim 4, wherein the processing material is an adsorbent for the gas component.
JP2004122253A 2004-04-16 2004-04-16 Method and apparatus for leveling gas component concentration and gas component treatment apparatus Pending JP2005305218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122253A JP2005305218A (en) 2004-04-16 2004-04-16 Method and apparatus for leveling gas component concentration and gas component treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122253A JP2005305218A (en) 2004-04-16 2004-04-16 Method and apparatus for leveling gas component concentration and gas component treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005305218A true JP2005305218A (en) 2005-11-04

Family

ID=35434595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122253A Pending JP2005305218A (en) 2004-04-16 2004-04-16 Method and apparatus for leveling gas component concentration and gas component treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005305218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082797A (en) * 2007-09-28 2009-04-23 Toyobo Co Ltd Organic solvent-containing gas treatment system
JP2013198845A (en) * 2012-03-23 2013-10-03 Kyuchaku Gijutsu Kogyo Kk Smoothing method of easily-adsorbable component concentration and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113360A (en) * 1976-03-19 1977-09-22 Toyobo Co Ltd Fluctuation equalization of fluid concentration
JPS57174120A (en) * 1981-04-17 1982-10-26 Toyobo Co Ltd Purifying method of waste gas
JPS5861822A (en) * 1981-10-09 1983-04-13 Mitsubishi Electric Corp Deodorizing device for gas
JP2000093740A (en) * 1998-09-24 2000-04-04 Mitsubishi Kakoki Kaisha Ltd Method for denitrating exhaust gas showing fluctuation of concentration of nitrogen oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113360A (en) * 1976-03-19 1977-09-22 Toyobo Co Ltd Fluctuation equalization of fluid concentration
JPS57174120A (en) * 1981-04-17 1982-10-26 Toyobo Co Ltd Purifying method of waste gas
JPS5861822A (en) * 1981-10-09 1983-04-13 Mitsubishi Electric Corp Deodorizing device for gas
JP2000093740A (en) * 1998-09-24 2000-04-04 Mitsubishi Kakoki Kaisha Ltd Method for denitrating exhaust gas showing fluctuation of concentration of nitrogen oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082797A (en) * 2007-09-28 2009-04-23 Toyobo Co Ltd Organic solvent-containing gas treatment system
JP2013198845A (en) * 2012-03-23 2013-10-03 Kyuchaku Gijutsu Kogyo Kk Smoothing method of easily-adsorbable component concentration and apparatus

Similar Documents

Publication Publication Date Title
KR100621275B1 (en) Process and apparatus for cleaning exhaust gas
JP5266758B2 (en) Volatile organic compound processing equipment
CN111841240B (en) Container and method for loading ammonia gas into adsorbent and/or absorbent
JP4234496B2 (en) Method and apparatus for regenerating activated carbon and air purification system incorporating the same
JP2006247595A (en) Apparatus for adsorption and concentration
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
KR100941399B1 (en) Apparatus and method for processing exhaust gas
JP2008188492A (en) Water treatment system
JP2008188493A (en) Water treatment apparatus
JP2010214285A (en) Gas treatment method
JP2005305218A (en) Method and apparatus for leveling gas component concentration and gas component treatment apparatus
JP2009125606A (en) Adsorbent regenerator used by being incorporated in waste gas treatment apparatus, waste gas treatment apparatus, and adsorbent regeneration method
TWI398292B (en) Gas purification apparatus and gas purification method
KR20190020084A (en) Method and system for controlling a substance for a flue gas purifying device
EP1029580A1 (en) Method for removing nitrogen oxides in exhaust gas
EP0604198B1 (en) Method for treating ammonia
Kubonova et al. Modelling of NO adsorption in fixed bed on activated carbon
JP2004249285A (en) Method of decomposing fluoride compound
JP4512994B2 (en) Water treatment system
JP2006272187A (en) Exhaust-gas treatment apparatus
JP2009082797A (en) Organic solvent-containing gas treatment system
JP2006055712A (en) Water treatment apparatus
Yamaguchi et al. Development of new hybrid VOCs treatment process using activated carbon and electrically heated alumite catalyst
KR102129988B1 (en) Apparatus for treating waste gas in producing semiconductor and method for treating waste gas
US20090107339A1 (en) Gas Treating Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601