JP4411432B2 - Method and apparatus for purifying exhaust gas using low temperature plasma - Google Patents

Method and apparatus for purifying exhaust gas using low temperature plasma Download PDF

Info

Publication number
JP4411432B2
JP4411432B2 JP2004040534A JP2004040534A JP4411432B2 JP 4411432 B2 JP4411432 B2 JP 4411432B2 JP 2004040534 A JP2004040534 A JP 2004040534A JP 2004040534 A JP2004040534 A JP 2004040534A JP 4411432 B2 JP4411432 B2 JP 4411432B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
low
adsorbent
metal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004040534A
Other languages
Japanese (ja)
Other versions
JP2005230627A (en
Inventor
賢夏 金
敦 尾形
森 二タ村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004040534A priority Critical patent/JP4411432B2/en
Publication of JP2005230627A publication Critical patent/JP2005230627A/en
Application granted granted Critical
Publication of JP4411432B2 publication Critical patent/JP4411432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、低温プラズマを利用して有害な有機物質を含む排ガスを浄化する方法及びその方法に用いる排ガス浄化装置に関するものである。   The present invention relates to a method for purifying exhaust gas containing harmful organic substances using low-temperature plasma, and an exhaust gas purification device used in the method.

有害排ガスの浄化法としては、燃焼法、触媒法、吸着法、湿式吸収法及びバイオリアクターなどが知られている。これらの技術は、排ガスの流量、組成、濃度などの諸条件により最適な適用方法が異なるため、適切な処理法を選定するには十分な注意を必要としている。例えば、バイオリアクターでは、排ガスの量と濃度が一定である必要があるため、変動の大きい条件に使用することは困難である。また、燃焼法は高濃度の排ガス処理には適しているものの、低濃度の排ガスを処理するには補助燃料を要することから、運転コストが高くなるという欠点がある。また、吸着法は流量、濃度などが変化する条件にもある程度対応できるが、吸着により飽和した吸着剤の再生に問題がある。   Known purification methods for harmful exhaust gas include combustion methods, catalyst methods, adsorption methods, wet absorption methods, bioreactors, and the like. Since these techniques differ in the optimal application method according to various conditions such as the flow rate, composition, and concentration of exhaust gas, sufficient care is required to select an appropriate treatment method. For example, in a bioreactor, since the amount and concentration of exhaust gas need to be constant, it is difficult to use in conditions with large fluctuations. In addition, although the combustion method is suitable for the treatment of high-concentration exhaust gas, it requires a supplementary fuel to treat the low-concentration exhaust gas. Further, the adsorption method can cope to some extent with conditions in which the flow rate, concentration and the like change, but there is a problem in the regeneration of the adsorbent saturated by adsorption.

低温プラズマを用いる排ガス浄化法は、装置が簡単であり常温・大気圧で動作するとともに、反応性に富んだ活性種を利用する化学反応であるため反応が瞬時に進行するなどの利点を有している(例えば、非特許文献1参照)。また、低温プラズマは、他の技術との複合が容易であるため様々な形態の複合プロセスの採用が可能であることも知られている。しかし、低温プラズマによる排ガス除去を実用化するためにはエネルギー消費を削減すること及び副生成物を抑制することが求められる。このような課題を解決する方法として、低温プラズマと触媒、吸着剤、強誘電体などと複合化する方法(例えば、特許文献1〜3参照)が注目を集めている状況にある。 The exhaust gas purification method using low-temperature plasma has the advantages that the equipment is simple and operates at room temperature and atmospheric pressure, and that the reaction proceeds instantaneously because it is a chemical reaction that uses active species rich in reactivity. (For example, refer nonpatent literature 1). It is also known that low-temperature plasma can easily be combined with other technologies, so that various forms of combined processes can be employed. However, in order to put the exhaust gas removal by low-temperature plasma into practical use, it is required to reduce energy consumption and suppress by-products. As a method for solving such a problem, a method of combining low-temperature plasma with a catalyst, an adsorbent, a ferroelectric, and the like (see, for example, Patent Documents 1 to 3) is attracting attention.

“Nonthermal plasma desorption for NOx control” Trans.On the Institute of Fluid−Flow Machinery, No.107(2000)p111〜120“Nomal plasma description for NOx control” Trans. On the Institute of Fluid-Flow Machinery, No. 1 107 (2000) p111-120 特開2002−273156号公報JP 2002-273156 A 特開2001−149918号公報JP 2001-149918 A 特開2003−164728号公報JP 2003-164728 A

ところで、低温プラズマを用いたガス処理法において、ガス分解効率を向上させるにはプラズマ反応器に多量のエネルギーを投入する必要があるうえに、エネルギーを多量に投与すると空気から窒素酸化物が生成するという問題が発生する。また、低温プラズマと触媒を併用した場合でも、使用時間の経過につれて表面に反応中間体が蓄積し触媒活性が低下することから定期的なクリーニングが不可欠である。
また、吸着によるガス浄化法でも短時間で吸着剤を再生させることが必要であって、従来の吸着剤の再生には水蒸気による脱着、加熱脱着、電気加熱脱着などがある。ところが、水蒸気による脱着法では排水処理が必要となるとともに水溶性のガスには使用できないという問題がある。また、加熱による脱着法は吸着剤の耐熱性が求められるとともに加温―冷却に時間を要するという問題がある。
By the way, in the gas treatment method using low temperature plasma, it is necessary to input a large amount of energy into the plasma reactor in order to improve the gas decomposition efficiency, and nitrogen oxide is generated from the air when a large amount of energy is administered. The problem occurs. Even when a low-temperature plasma and a catalyst are used in combination, periodic cleaning is indispensable because reaction intermediates accumulate on the surface and the catalytic activity decreases as the usage time elapses.
Further, even in the gas purification method by adsorption, it is necessary to regenerate the adsorbent in a short time, and regeneration of the conventional adsorbent includes desorption with water vapor, heat desorption, electric heat desorption and the like. However, the desorption method using steam requires a wastewater treatment and cannot be used for a water-soluble gas. Further, the desorption method by heating has a problem that heat resistance of the adsorbent is required and time is required for heating and cooling.

本発明は、従来の技術における上記した問題を解決するためになされたものである。すなわち、本発明の目的は、排ガス中に低濃度で含まれる揮発性の有害な有機物質を浄化処理するに当たり、窒素酸化物を副性させることなく、常温において、低エネルギーかつ短時間で効率的に分解処理できる排ガスの浄化方法を提供することにある。
また、本発明の他の目的は、排ガス中に低濃度で含まれる揮発性の有害な有機物質の分解浄化装置であって、窒素酸化物を発生させることなく、常温において低エネルギーかつ短時間で効率的に分解処理できるものであり、特に長時間にわたり連続的に操作できる排ガス浄化装置を提供することにある。
The present invention has been made to solve the above-described problems in the prior art. That is, an object of the present invention is to efficiently perform low energy and short time at room temperature without purifying nitrogen oxides when purifying volatile harmful organic substances contained in exhaust gas at a low concentration. Another object of the present invention is to provide a method for purifying exhaust gas that can be decomposed.
Another object of the present invention is an apparatus for decomposing and purifying volatile harmful organic substances contained in exhaust gas at a low concentration without generating nitrogen oxides and at low energy and in a short time. An object of the present invention is to provide an exhaust gas purification device that can be efficiently decomposed and that can be operated continuously for a long time.

本発明における排ガスの浄化方法は、揮発性有害有機物質を含む排ガスを、金属触媒機能を付与した吸着剤に吸着させた後、酸素雰囲気下に低温プラズマ処理して揮発性有害有機物質を分解除去させることを特徴とする。
本発明における金属触媒機能を付与した吸着剤の再生方法は、排ガス中の揮発性有害有機物質を吸着飽和している金属触媒機能を付与した吸着剤を、酸素雰囲気下に低温プラズマ処理することを特徴とする。
In the exhaust gas purification method of the present invention, exhaust gas containing a volatile harmful organic substance is adsorbed to an adsorbent having a metal catalyst function, and then subjected to low-temperature plasma treatment in an oxygen atmosphere to decompose and remove the volatile harmful organic substance. It is characterized by making it.
The method for regenerating an adsorbent imparted with a metal catalyst function according to the present invention comprises subjecting an adsorbent imparted with a metal catalyst function that adsorbs and saturates volatile harmful organic substances in exhaust gas to low temperature plasma treatment in an oxygen atmosphere. Features.

また、本発明の排ガス浄化装置は、揮発性有害有機物質を含む排ガスを反応器に供給する手段と、酸素を反応器に供給する手段と、揮発性有害有機物質を吸着する金属触媒機能を付与した吸着剤を内部に充填し、低温でプラズマを発生する低温プラズマ反応器と、該反応器に電圧を印加する高電圧電源と、低温プラズマ反応器で分解処理されたガスを放出する手段とを備えたことを特徴とする。 Further, the exhaust gas purification apparatus of the present invention provides means for supplying exhaust gas containing volatile harmful organic substances to the reactor, means for supplying oxygen to the reactor, and a metal catalyst function for adsorbing volatile harmful organic substances. A low-temperature plasma reactor that fills the adsorbent and generates a plasma at a low temperature, a high-voltage power source that applies a voltage to the reactor, and a means for releasing gas decomposed in the low-temperature plasma reactor It is characterized by having.

さらに、本発明の排ガス浄化装置は、揮発性有害有機物質を吸着する金属触媒機能を付与した吸着剤を内部に充填し、低温でプラズマを発生する複数の低温プラズマ反応器を並列に配置し、その各反応器に連結している,揮発性有害有機物質を含む排ガスを反応器に供給する手段、酸素を反応器に供給する手段及び各反応器に低温でプラズマを発生する手段、各反応器に電圧を印加する高電圧電源及び分解処理されたガスを放出する手段及び複数の反応器を揮発性有害有機物質の吸着及び分解と金属触媒機能を付与した吸着剤の再生とを交互に切換えて操作する手段を備えてなり、排ガス中の揮発性有害有機物質を連続的に分解除去することを特徴とする。また、その低温プラズマ反応器の後方に、該反応器で分解処理されたガスを再び分解処理する金属触媒機能を付与した吸着剤を内部に充填した低温プラズマ反応器を設けることが好ましい。 Furthermore, the exhaust gas purifying apparatus of the present invention is filled with an adsorbent imparted with a metal catalyst function for adsorbing volatile harmful organic substances, and a plurality of low-temperature plasma reactors that generate plasma at a low temperature are arranged in parallel. Means for supplying exhaust gas containing volatile harmful organic substances to the reactor, means for supplying oxygen to the reactor, means for generating plasma at a low temperature in each reactor, and each reactor connected to each reactor A high-voltage power source for applying a voltage, a means for releasing decomposed gas, and a plurality of reactors are alternately switched between adsorption and decomposition of volatile harmful organic substances and regeneration of an adsorbent with a metal catalyst function. It comprises a means for operating, and is characterized by continuously decomposing and removing volatile harmful organic substances in the exhaust gas. Further, it is preferable to provide a low-temperature plasma reactor in which an adsorbent having a metal catalyst function for re-decomposing the gas decomposed in the reactor is filled inside the low-temperature plasma reactor.

本発明は、吸着による排ガス浄化法における吸着剤の再生には殆ど適応可能な方法及び装置であって、水溶性の有無などガスの種類による影響の少ないものであり、純酸素あるいは酸素リッチの条件下で動作するため、プラズマ処理から窒素酸化物が生成しないという利点がある。また、酸素ガス雰囲気で反応させるため触媒表面に吸着された有機性ガス成分の分解が促進されて、二酸化炭素まで完全な酸化反応が達成できるため副生成物の生成を低減できる。また、ガス分解処理に必要な電力消費を低減できること及び触媒・吸着剤を短時間で再生させて繰り返し連続操作できるという利点がある。 The present invention is a method and apparatus almost applicable to the regeneration of an adsorbent in an exhaust gas purification method by adsorption, which is less influenced by the type of gas such as the presence or absence of water solubility, and is a condition of pure oxygen or oxygen-rich Since it operates below, there is an advantage that nitrogen oxides are not generated from the plasma treatment. Further, since the reaction is performed in an oxygen gas atmosphere, the decomposition of the organic gas component adsorbed on the catalyst surface is promoted, and a complete oxidation reaction up to carbon dioxide can be achieved, thereby reducing the generation of by-products. Further, there are advantages that it is possible to reduce the power consumption required for the gas decomposition treatment and that the catalyst / adsorbent can be regenerated in a short time and repeatedly operated.

本発明は、揮発性有害有機物質を含む排ガスを浄化させる際、低温プラズマと吸着・触媒による分解を1段で行うものであり、その装置の運転条件を純酸素あるいは酸素リッチ条件とすることにより、ガス分解が促進されると共に吸着剤と触媒の高速再生が可能になるものである。特に、再生させる際、触媒・吸着層にプラズマを印加すると脱離による高濃度ガスが排出されるものであり、この排出ガスは高濃度であるという問題があるためプロセス効率を考慮する上では極力低減させることが求められる。 In the present invention, when purifying exhaust gas containing volatile harmful organic substances, decomposition by low temperature plasma and adsorption / catalyst is performed in one stage, and the operating condition of the apparatus is made pure oxygen or oxygen rich condition. The gas decomposition is promoted and the adsorbent and the catalyst can be rapidly regenerated. In particular, when plasma is applied to the catalyst / adsorption layer during regeneration, high-concentration gas due to desorption is discharged, and this exhaust gas has a problem of high concentration. Reduction is required.

本発明においては、低温プラズマ反応器内に吸着剤・触媒を直接に挿入した1段式の反応器を用いて吸着された有害ガスを低温プラズマにより分解再生する。特に、再生時には反応器の後段に他の一段のプラズマ駆動触媒反応器を設けることにより、プラズマ脱離により排出される高濃度のガスを後段の反応器で処理すると共に一段目の反応器で生成したCOの酸化が促進される。また、低温プラズマによる再生プロセスでは反応器内を純酸素あるいは酸素リッチの条件に設定することで窒素酸化物が全く生成しない分解再生が可能となる。低温でプラズマを使用し吸着剤・触媒を加熱しないため、従来の加熱法に比べて再生時間を大幅に短縮できる。また、プラズマへのエネルギー投入量が多くなっても窒素酸化物の生成が無いため、エネルギー投入量を調節し分解再生に要する時間を自由に変更することが可能である。 In the present invention, harmful gas adsorbed is decomposed and regenerated by low-temperature plasma using a single-stage reactor in which an adsorbent and a catalyst are directly inserted into a low-temperature plasma reactor. In particular, at the time of regeneration, by providing another one-stage plasma-driven catalytic reactor after the reactor, the high-concentration gas discharged by plasma desorption is treated in the latter reactor and produced in the first reactor. The oxidation of oxidized CO is promoted. Further, in the regeneration process using low temperature plasma, decomposition and regeneration in which nitrogen oxides are not generated at all can be performed by setting the inside of the reactor to pure oxygen or oxygen-rich conditions. Since plasma is used at a low temperature and the adsorbent / catalyst is not heated, the regeneration time can be greatly reduced as compared with the conventional heating method. Further, since nitrogen oxide is not generated even when the amount of energy input to the plasma increases, it is possible to freely change the time required for decomposition and regeneration by adjusting the amount of energy input.

本発明において、分解除去の対象とする排ガス中に含まれる揮発性有害有機物質としては、環境汚染を引き起こしたり人体に悪影響を及ぼす揮発性の有機物質及び/又は悪臭物質であるが、揮発性有機物質(VOCs)としては、ベンゼン、キシレン、トルエン、スチレン、トリクロロエチレン、アセトン、ホルムアルデヒド、アセトアルデヒドなどが挙げられる。また、悪臭物質としては、メチルメルカプタン、トリメチルアミン、メタノール、イソブタノールなどが挙げられる。これらの排ガス中の濃度は1000ppm以下の希薄なガスであることが好ましい。 In the present invention, the volatile harmful organic substances contained in the exhaust gas to be decomposed and removed are volatile organic substances and / or odorous substances that cause environmental pollution or have an adverse effect on the human body. Examples of the substance (VOCs) include benzene, xylene, toluene, styrene, trichloroethylene, acetone, formaldehyde, acetaldehyde and the like. Examples of malodorous substances include methyl mercaptan, trimethylamine, methanol, and isobutanol. The concentration of these exhaust gases is preferably a rare gas having a concentration of 1000 ppm or less.

本発明の低温プラズマ反応器には、金属触媒機能を付与した吸着剤が充填される。その金属触媒機能を付与した吸着剤としては、高比面積を持つ多孔質無機材料であって、非導電物質であることが好ましく、例えば、酸化チタン、γ−アルミナなどのアルミナ、シリカ、モレキュラーシーブを含むゼオライト類(X型、Y型、A型など)、酸化亜鉛、酸化セリウム、酸化マグネシウムなどを用いることができ、またその金属触媒としては、有機物質の分解能に優れた金属を前記無機材料に担持させることが好ましく、その金属としてはAg、Pt、Ni、Co、Fe、Mn、Mg、Zn、Seなどから選ばれる1種または2種以上が用いられる。なかでも、酸化チタンにAgを担持させたものを用いることが好ましい。この吸着剤は、通常ペレットあるいはハニカム型として用いるが、ペレットの場合その粒径は1〜5mmのものが好ましい。 The low temperature plasma reactor of the present invention is filled with an adsorbent imparted with a metal catalyst function. The adsorbent imparted with the metal catalyst function is a porous inorganic material having a high specific area and is preferably a non-conductive substance. For example, alumina such as titanium oxide and γ-alumina, silica, molecular sieve Zeolites (X-type, Y-type, A-type, etc.), zinc oxide, cerium oxide, magnesium oxide, etc. can be used as the metal catalyst. The metal is preferably one or more selected from Ag, Pt, Ni, Co, Fe, Mn, Mg, Zn, Se and the like. Among these, it is preferable to use a material in which Ag is supported on titanium oxide. This adsorbent is usually used as a pellet or a honeycomb type. In the case of a pellet, the particle diameter is preferably 1 to 5 mm.

低温プラズマ装置としては、従来公知の常温で放電するいずれのプラズマ装置も使用可能であって、AC高電圧、パルス高電圧、マイクロウエーブなどの高電圧電源により電圧印加電極と接地電極の間に印加する電圧は、処理対象とする排ガス中の揮発性有害有機物質の濃度などにより変動するが、通常1〜50KV、好ましくは10〜35KVであり、またその周波数は数百乃至数KHzのものである。 As the low-temperature plasma apparatus, any conventionally known plasma apparatus that discharges at room temperature can be used, and it is applied between the voltage application electrode and the ground electrode by a high-voltage power source such as an AC high voltage, a pulse high voltage, or a microwave. The voltage to be changed varies depending on the concentration of volatile harmful organic substances in the exhaust gas to be treated, but is usually 1 to 50 KV, preferably 10 to 35 KV, and the frequency is several hundred to several KHz. .

また、本発明の有機物質の分解処理及び金属触媒機能を付与した吸着剤の再生には、純酸素或いは酸素リッチ条件という酸素雰囲気下で行うことが必要である。酸素雰囲気のもとで行うことにより、有機物質の分解が促進されるとともに、吸着剤の再生及び触媒の再賦活化を容易に達成できる。 In addition, the organic substance decomposition treatment and regeneration of the adsorbent imparted with the metal catalyst function of the present invention must be performed in an oxygen atmosphere of pure oxygen or oxygen-rich conditions. By performing the reaction under an oxygen atmosphere, the decomposition of the organic substance is promoted, and the regeneration of the adsorbent and the reactivation of the catalyst can be easily achieved.

本発明に用いられる低温プラズマと金属触媒機能を付与した吸着剤による分解及びその吸着剤の再生を1段で行う低温プラズマ反応器において、電極の設置方法及び金属触媒機能を付与した吸着剤の充填方法には、各種の態様のものが使用可能であるが、例えば、図1(a)〜(c)に示すものなどが挙げられる。また、反応器の材質としては、セラミックス,石英,ガラスなどの誘電体を用い、スパークを起こさない構造からなるものである。誘電体の外側に取り付ける接地電極は、銀、銅などの導電性のペーストを塗布したものとし、誘電体と電極の間に極力隙間が無い構造が望ましい。 In a low-temperature plasma reactor that performs decomposition and regeneration of the adsorbent in a single stage using the low-temperature plasma and the metal catalyst function used in the present invention, the electrode installation method and the filling of the adsorbent with the metal catalyst function Various methods can be used as the method, and examples thereof include those shown in FIGS. 1 (a) to 1 (c). The reactor is made of a dielectric material such as ceramic, quartz, glass, etc., and has a structure that does not cause sparks. The ground electrode attached to the outside of the dielectric is preferably a structure in which a conductive paste such as silver or copper is applied, and has a structure with no gap between the dielectric and the electrode as much as possible.

排ガス中の有害有機物質の分解処理は、有機物質の濃度が100ppm以下の低濃度であれば、図2に示すような構成の装置を用いて連続的に分解処理することができ、また図3に示すように電源とプラズマ反応器との間にスイッチを設けたバッチ式で分解処理しても良い。また、金属触媒機能を付与した吸着剤に付着した有機物質の分解及び金属触媒機能を付与した吸着剤の再生を行う場合には、図4に示すようにして行われる。 The decomposition process of the harmful organic substance in the exhaust gas can be continuously decomposed using an apparatus having a configuration as shown in FIG. 2 if the concentration of the organic substance is a low concentration of 100 ppm or less. As shown in FIG. 4, the decomposition may be performed by a batch method in which a switch is provided between the power source and the plasma reactor. Moreover, when decomposing | disassembling the organic substance adhering to the adsorbent which provided the metal catalyst function, and reproducing | regenerating the adsorbent which provided the metal catalyst function, it carries out as shown in FIG.

本発明において、100〜1000ppmの有害有機物質を含む排ガスの分解処理には、図5に示す連続分解処理装置を用いることが好ましい。図5において、1は排ガスの流路を代えるバルブ、2a、2bは低温プラズマ反応器、3は酸素供給装置、4は低温プラズマ反応器、5は高電圧電源であって、1に流入した排ガスをプラズマ反応器2aに導入して吸着させ、3から導入される酸素の存在下に5からの印加電圧によるプラズマを発生させて有機物質を分解させ、その後、流出する排ガスを、有害物質を含まない場合にはそのまま系外に放出させるが、COなどの有害物質が含まれている場合にはプラズマ反応器4に導入して再度分解除去させた後、系外に放出させる。   In the present invention, it is preferable to use a continuous decomposition treatment apparatus shown in FIG. 5 for the decomposition treatment of exhaust gas containing 100 to 1000 ppm of harmful organic substances. In FIG. 5, 1 is a valve for changing the flow path of exhaust gas, 2a and 2b are low-temperature plasma reactors, 3 is an oxygen supply device, 4 is a low-temperature plasma reactor, 5 is a high-voltage power supply, and exhaust gas that has flowed into 1 Is introduced into the plasma reactor 2a and adsorbed to generate a plasma with an applied voltage from 5 in the presence of oxygen introduced from 3 to decompose organic substances, and then the exhaust gas flowing out contains harmful substances. If no harmful substance such as CO is contained, it is introduced into the plasma reactor 4 and again decomposed and removed, and then released outside the system.

次に、プラズマ反応器2a内部の充填した触媒を担持した吸着剤が吸着能或いは触媒能が一定以下に低下した場合には、バルブ1を切換えて排ガスを低温プラズマ反応器2aと並列に配置したプラズマ反応器2bに導入して吸着させ、その間、反応器2a内部の吸着剤の再生処理を行う。この操作を交互に繰り返すことにより排ガスの分解処理操作を連続的に行うことができる。
また、低温プラズマ反応器2a、2bの後方に、さらに金属触媒機能を付与した吸着剤を内部に充填した他の低温プラズマ反応器4を設けて、その反応器2aまたは2bで分解処理されたガスを低温プラズマ反応器4に通して再び分解処理することによりNOxの無い排ガス浄化処理を行うことができる。
Next, when the adsorbent carrying the packed catalyst inside the plasma reactor 2a has a lowering of adsorption capacity or catalytic capacity below a certain level, the valve 1 is switched to arrange the exhaust gas in parallel with the low temperature plasma reactor 2a. Introduced into the plasma reactor 2b and adsorbed, the adsorbent inside the reactor 2a is regenerated. By repeating this operation alternately, the exhaust gas decomposition treatment operation can be performed continuously.
Further, another low temperature plasma reactor 4 filled with an adsorbent having a metal catalyst function is provided behind the low temperature plasma reactors 2a and 2b, and the gas decomposed in the reactor 2a or 2b. Is passed through the low-temperature plasma reactor 4 and decomposed again to perform exhaust gas purification treatment without NOx.

実施例
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

Ag1.0重量%を担持した酸化チタンペレット(平均粒径1.8mm)23gを内部に装填した石英管反応器(長さ20cm、内径13mm)の一方の口から、ベンゼン205ppmを含む空気を流速4L/分で流通させると共に、酸素を供給して酸素濃度を徐々に増加させながら、高電圧電源より28kVの電圧を印加し、プラズマエネルギー160J/Lを投与し、常温で分解反応を行った。そのときの温度は100℃であった。その結果について、空気中の酸素濃度とベンゼン分解率との関係を図6に示す。
図6に見られるように、酸素濃度を増加させると比投入エネルギーは一定であるにもかかわらず、ベンゼン分解率は酸素濃度に比例して向上した。ベンゼン分解率は酸素濃度20%では78%程度であったが、酸素濃度40%では99%に向上した。
Air containing 205 ppm of benzene was flowed from one port of a quartz tube reactor (length: 20 cm, inner diameter: 13 mm) in which 23 g of titanium oxide pellets (average particle size: 1.8 mm) supporting 1.0% by weight of Ag was loaded. While circulating at 4 L / min and gradually increasing the oxygen concentration by supplying oxygen, a voltage of 28 kV was applied from a high voltage power source, plasma energy of 160 J / L was administered, and a decomposition reaction was performed at room temperature. The temperature at that time was 100 ° C. The relationship between the oxygen concentration in the air and the benzene decomposition rate is shown in FIG.
As shown in FIG. 6, when the oxygen concentration was increased, the benzene decomposition rate improved in proportion to the oxygen concentration, although the specific input energy was constant. The benzene decomposition rate was about 78% at an oxygen concentration of 20%, but improved to 99% at an oxygen concentration of 40%.

実施例1に用いた反応器中に、ベンゼン200ppmを含む空気を、室温で流量3L/分で流通させて吸着平衡となって時点で、ガスを酸素に切り替えると共に、印加電圧を付与してプラズマを発生させる操作を繰り返し、吸着成分の分解及び吸着剤の再生を行った。プラズマ発生条件は、印加電圧 AC28KV(ピークからピーク)、周波数600Hz、放電電力18〜21Wであった。その吸着と再生を繰り返したときのガス中のベンゼン濃度の変化、COとCO濃度の変化を図7に示す。再生が開始されると吸着したベンゼンの分解反応が起こりCOとCOが生成したが、プラズマ印加直後には脱離により高濃度ベンゼンのピークが現れた。 In the reactor used in Example 1, air containing 200 ppm of benzene was allowed to flow at a flow rate of 3 L / min at room temperature to reach adsorption equilibrium, and the gas was switched to oxygen and an applied voltage was applied to generate plasma. The operation for generating the gas was repeated to decompose the adsorbed component and regenerate the adsorbent. Plasma generation conditions were an applied voltage of AC 28 KV (peak to peak), a frequency of 600 Hz, and a discharge power of 18 to 21 W. FIG. 7 shows changes in the benzene concentration in the gas and changes in the CO and CO 2 concentrations when the adsorption and regeneration are repeated. When regeneration was started, the adsorbed benzene decomposed to generate CO 2 and CO, but immediately after plasma application, a peak of high concentration benzene appeared due to desorption.

2個の反応器(実施例1に用いたと同じ反応器)を直列に接続して、2段で吸着剤の再生を行った。図8は、図5に示す連続分解処理装置を用い吸着平衡となった反応器2aの再生時に反応器4を付けて2段で再生を行った結果を示す。この場合、プラズマを発生させた電圧印加直後に脱離したベンゼンが、後続の反応器4により分解され高濃度ベンゼンのピークがなくなると共にCO2の収率が向上した。これと同時にCOの生成量も低減したため、ベンゼンをCO2まで完全に分解除去できた。また、再生を酸素中で行ったため窒素酸化物の生成が全く無かった。 Two reactors (the same reactor as used in Example 1) were connected in series, and the adsorbent was regenerated in two stages. FIG. 8 shows the results of regeneration in two stages with the reactor 4 attached when the reactor 2a in adsorption equilibrium is regenerated using the continuous decomposition apparatus shown in FIG. In this case, the benzene desorbed immediately after the application of the voltage for generating the plasma was decomposed by the subsequent reactor 4 and the peak of high concentration benzene disappeared and the yield of CO 2 was improved. At the same time, the amount of CO produced was reduced, so that benzene could be completely decomposed and removed to CO 2 . Further, since the regeneration was performed in oxygen, there was no formation of nitrogen oxides.

反応器に設ける接地電極の形状や材質が、ベンゼンの分解に及ぼす影響を調べた。その結果を図9に示す。電極を銀ペースト電極のように隙間が無いよう完全密着したものは、同量のエネルギーを投与したとき、ベンゼンの分解効率はアルミテープ及びメッシュ電極に比べて格段に向上することが分かった。誘電体と接地電極の間に隙間があるとこの微小所空間で発生する部分放電がエネルギーを消費する。これは処理ガスが流れる外側に発生するため反応には全く寄与しない無駄なエネルギー消費となる。銀ペーストを塗布した電極構造では、異常放電が低減できるためエネルギー効率が向上した。   The influence of the shape and material of the ground electrode provided in the reactor on the decomposition of benzene was investigated. The result is shown in FIG. It was found that when the electrode was completely adhered so that there was no gap like the silver paste electrode, the decomposition efficiency of benzene was remarkably improved compared to the aluminum tape and mesh electrode when the same amount of energy was administered. If there is a gap between the dielectric and the ground electrode, the partial discharge generated in this minute space consumes energy. Since this occurs outside the flow of the processing gas, it is a wasteful energy consumption that does not contribute to the reaction at all. In the electrode structure coated with silver paste, energy efficiency was improved because abnormal discharge could be reduced.

低濃度の場合、図5に示す連続分解処理装置を用い、反応器2aによる連続プロセスとして使用することもできる。ベンゼン濃度が110ppmの場合、125J/L程度で完全分解できたが、さらに低濃度の60ppmの場合は60J/Lで完全分解できた。また、投入エネルギーが150J/L以下では、窒素酸化物の生成が少ないため、一段式反応器単独による連続処理が可能であった。その結果を図10に示す。 In the case of a low concentration, it can be used as a continuous process by the reactor 2a using the continuous decomposition treatment apparatus shown in FIG. When the benzene concentration was 110 ppm, complete decomposition was possible at about 125 J / L. However, when the concentration was 60 ppm at a lower concentration, complete decomposition was possible at 60 J / L. Further, when the input energy was 150 J / L or less, the generation of nitrogen oxides was small, so that continuous treatment with a single-stage reactor alone was possible. The result is shown in FIG.

本発明は、化学工場、廃棄物処理工場または塗装工場などの産業施設から排出される有機性の環境汚染物質を低濃度で含む排ガスの分解浄化を低コストで効率的に行うことができるものであり、工業的実施に有用である。   The present invention can efficiently decompose and purify exhaust gas containing organic environmental pollutants at low concentrations discharged from industrial facilities such as chemical factories, waste disposal factories or paint factories at low cost. Yes, useful for industrial implementation.

本発明に用いられる低温プラズマ反応器の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the low temperature plasma reactor used for this invention. 本発明における排ガス浄化の連続プロセスを示す概念図である。It is a conceptual diagram which shows the continuous process of exhaust gas purification in this invention. 本発明における排ガス浄化のバッチ式プロセスを示す概念図である。It is a conceptual diagram which shows the batch type process of exhaust gas purification in this invention. 本発明における金属触媒機能を付与した吸着剤の再生プロセスを示す概念図である。It is a conceptual diagram which shows the regeneration process of the adsorbent which provided the metal catalyst function in this invention. 本発明における排ガスの連続分解処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the continuous decomposition processing apparatus of the waste gas in this invention. 実施例1で得られた空気中の酸素濃度とベンゼン分解率との関係を示すグラフである。4 is a graph showing the relationship between the oxygen concentration in air obtained in Example 1 and the benzene decomposition rate. 実施例2において、1段反応器を用いてベンゼンの吸着と金属触媒機能を付与した吸着剤の再生とを繰り返し行った処理時間とベンゼン濃度との関係を示すグラフである。In Example 2, it is a graph which shows the relationship between the processing time which repeated adsorption | suction of benzene, and reproduction | regeneration of the adsorption agent which provided the metal catalyst function using the 1 step | paragraph reactor, and benzene concentration. 本発明の連続分解処理装置を用い吸着平衡となった1段反応器の再生時に、2段反応器を付けて2段で再生を行った処理時間とベンゼン濃度との関係を示すグラフである。It is a graph which shows the relationship between the processing time and the benzene density | concentration which performed the reproduction | regeneration in 2 steps | paragraphs by attaching a 2 step | paragraph reactor at the time of reproduction | regeneration of the 1 step | paragraph reactor which became adsorption equilibrium using the continuous decomposition processing apparatus of this invention. 反応器に設ける接地電極の形状及び材質が低濃度ベンゼンの分解に及ぼす影響を示すグラフである。It is a graph which shows the influence which the shape and material of a ground electrode provided in a reactor exert on decomposition of low concentration benzene. 低濃度ベンゼンの分解とエネルギーの投入量との関係を示すグラフである。It is a graph which shows the relationship between decomposition | disassembly of low concentration benzene, and the input amount of energy.

符号の説明Explanation of symbols

1 バルブ
2 低級プラズマ反応器
3 酸素供給装置
4 低温プラズマ反応器
5 低温プラズマ反応器


1 Valve 2 Lower plasma reactor 3 Oxygen supply device 4 Low temperature plasma reactor 5 Low temperature plasma reactor


Claims (10)

揮発性有害有機物質を含む排ガスを、金属触媒機能を付与した吸着剤に吸着させた後、酸素雰囲気下に低温プラズマ処理して揮発性有害有機物質を分解除去させることを特徴とする排ガスの浄化方法。 Exhaust gas purification, characterized in that exhaust gas containing volatile toxic organic substances is adsorbed on an adsorbent with a metal catalyst function, and is then subjected to low-temperature plasma treatment in an oxygen atmosphere to decompose and remove volatile toxic organic substances. Method. 揮発性有害有機物質が、有機物質及び/又は悪臭物質である請求項1に記載の排ガスの浄化方法。 The exhaust gas purification method according to claim 1, wherein the volatile harmful organic substance is an organic substance and / or a malodorous substance. 排ガス中の揮発性有害有機物質の濃度が、1000ppm以下である請求項1または2に記載の排ガスの浄化方法。 The exhaust gas purification method according to claim 1 or 2, wherein the concentration of the volatile harmful organic substance in the exhaust gas is 1000 ppm or less. 排ガス中の揮発性有害有機物質を吸着飽和している金属触媒機能を付与した吸着剤を、酸素雰囲気下に低温プラズマ処理することを特徴とする金属触媒機能を付与した吸着剤の再生方法。 A method for regenerating an adsorbent with a metal catalyst function, characterized by subjecting an adsorbent with a metal catalyst function that adsorbs and saturates volatile harmful organic substances in exhaust gas to low temperature plasma treatment in an oxygen atmosphere. 金属触媒機能を付与した吸着剤が、酸化チタンに銀を担持させたものである請求項4に記載の金属触媒機能を付与した吸着剤の再生方法。 The method for regenerating an adsorbent imparted with a metal catalyst function according to claim 4, wherein the adsorbent imparted with the metal catalyst function is obtained by supporting silver on titanium oxide. 揮発性有害有機物質を含む排ガスを反応器に供給する手段と、酸素を反応器に供給する手段と、揮発性有害有機物質を吸着する金属触媒機能を付与した吸着剤を内部に充填し、低温でプラズマを発生する低温プラズマ反応器と、該反応器に電圧を印加する高電圧電源と、低温プラズマ反応器で分解処理されたガスを放出する手段とを備えたことを特徴とする排ガス浄化装置。 A means for supplying exhaust gas containing volatile harmful organic substances to the reactor, a means for supplying oxygen to the reactor, and an adsorbent with a metal catalyst function for adsorbing volatile harmful organic substances are filled inside, and the temperature is low. An exhaust gas purification apparatus comprising: a low-temperature plasma reactor for generating plasma at a high temperature; a high-voltage power source for applying a voltage to the reactor; and a means for releasing gas decomposed in the low-temperature plasma reactor . 低温プラズマ反応器は、電圧印加電極及び接地電極を具備するものである請求項6に記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to claim 6, wherein the low temperature plasma reactor includes a voltage application electrode and a ground electrode. プラズマ発生装置の電極は、誘電体と金属の間に隙間がないように取付けられている請求項6または7に記載の排ガス浄化装置。 The exhaust gas purification apparatus according to claim 6 or 7, wherein the electrode of the plasma generator is attached so that there is no gap between the dielectric and the metal. 揮発性有害有機物質を吸着する金属触媒機能を付与した吸着剤を内部に充填し、低温でプラズマを発生する複数の低温プラズマ反応器を並列に配置し、その各反応器に連結している,揮発性有害有機物質を含む排ガスを反応器に供給する手段、酸素を反応器に供給する手段及び各反応器に低温でプラズマを発生する手段、各反応器に電圧を印加する高電圧電源及び分解処理されたガスを放出する手段及び複数の反応器を揮発性有害有機物質の吸着及び分解と金属触媒機能を付与した吸着剤の再生とを交互に切換えて操作する手段を備えてなり、排ガス中の揮発性有害有機物質を連続的に分解除去することを特徴とする排ガス浄化装置。 A plurality of low-temperature plasma reactors, which are filled with an adsorbent with a metal catalyst function to adsorb volatile harmful organic substances and generate plasma at low temperatures, are connected in parallel. Means for supplying exhaust gas containing volatile harmful organic substances to the reactor, means for supplying oxygen to the reactor, means for generating plasma at a low temperature in each reactor, high voltage power source for applying voltage to each reactor and decomposition A means for releasing the treated gas and a means for operating a plurality of reactors by alternately switching the adsorption and decomposition of volatile harmful organic substances and the regeneration of the adsorbent with a metal catalyst function in the exhaust gas. An exhaust gas purification device that continuously decomposes and removes volatile harmful organic substances. 前記低温プラズマ反応器の後方に、該反応器で分解処理されたガスを再び分解処理する金属触媒機能を付与した吸着剤を内部に充填した低温プラズマ反応器を備えたことを特徴とする請求項9に記載の排ガス浄化装置。

The low-temperature plasma reactor is provided behind the low-temperature plasma reactor, and is filled with an adsorbent having a metal catalyst function for re-decomposing the gas decomposed in the reactor. The exhaust gas purification apparatus according to 9.

JP2004040534A 2004-02-17 2004-02-17 Method and apparatus for purifying exhaust gas using low temperature plasma Expired - Lifetime JP4411432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040534A JP4411432B2 (en) 2004-02-17 2004-02-17 Method and apparatus for purifying exhaust gas using low temperature plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040534A JP4411432B2 (en) 2004-02-17 2004-02-17 Method and apparatus for purifying exhaust gas using low temperature plasma

Publications (2)

Publication Number Publication Date
JP2005230627A JP2005230627A (en) 2005-09-02
JP4411432B2 true JP4411432B2 (en) 2010-02-10

Family

ID=35014129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040534A Expired - Lifetime JP4411432B2 (en) 2004-02-17 2004-02-17 Method and apparatus for purifying exhaust gas using low temperature plasma

Country Status (1)

Country Link
JP (1) JP4411432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056721A (en) * 2015-07-24 2015-11-18 安徽红太阳新材料有限公司 Novel waste rubber desulphurization waste gas three-stage energy-saving green treatment process method
CN105457489A (en) * 2016-01-11 2016-04-06 重庆净空居环保科技有限公司 Casting waste gas treatment method and device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682363B2 (en) * 2006-08-25 2011-05-11 独立行政法人産業技術総合研究所 Method and apparatus for regenerating noble metal supported catalyst
JP4631861B2 (en) * 2007-02-21 2011-02-16 三菱電機株式会社 Air purification device
JP5358899B2 (en) * 2007-06-11 2013-12-04 三菱電機株式会社 Apparatus for treating volatile organic compound and method for treating volatile organic compound
WO2010024216A1 (en) * 2008-08-29 2010-03-04 公立大学法人大阪府立大学 Method and apparatus for processing exhaust gas
JP6111198B2 (en) 2011-09-21 2017-04-05 株式会社Nbcメッシュテック Gas processing apparatus and method using low temperature plasma and catalyst body
KR101714617B1 (en) * 2015-05-20 2017-03-10 주식회사 라이트브릿지 Continuous processing type deodorization system
CN105477987A (en) * 2015-12-25 2016-04-13 广东浚丰华科技有限公司 Organic waste gas purification device and purification method aiming at shoe production plant
CN105983295A (en) * 2016-01-15 2016-10-05 中国科学院等离子体物理研究所 Low-temperature plasma synergistic adsorption type industrial waste gas treatment method
WO2017183326A1 (en) * 2016-04-20 2017-10-26 日産自動車株式会社 Deodorizing device
KR102122253B1 (en) * 2017-01-25 2020-06-12 엘지전자 주식회사 Apparatus for treating exhaust gas
CN107721034A (en) * 2017-10-20 2018-02-23 复旦大学 A kind of wastewater treatment equipment of low temperature plasma combined catalyst and adsorbent
CN109865426A (en) * 2017-12-05 2019-06-11 南京苏曼等离子科技有限公司 Big flow low-temperature plasma flow bed emission-control equipment and its application method
CN110270193A (en) * 2018-03-15 2019-09-24 苏州迈沃环保工程有限公司 A kind of VOCs exhaust gas deep-purifying method and system
CN109046019B (en) * 2018-10-22 2024-01-02 上海纳晶科技有限公司 Low-energy-consumption organic volatile gas treatment device and method
CN111167535A (en) * 2018-11-13 2020-05-19 上海重智科技发展有限公司 Volatile gas automatic purification experiment table
CN110302667A (en) * 2019-07-25 2019-10-08 江苏中科睿赛环境工程有限公司 A kind of efficient renewable adsorption photochemical catalysis reaction module and its working method removing VOCs
CN111389196B (en) * 2020-03-24 2022-02-15 安吉旺能再生资源利用有限公司 Flue gas low-temperature plasma co-processing method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056721A (en) * 2015-07-24 2015-11-18 安徽红太阳新材料有限公司 Novel waste rubber desulphurization waste gas three-stage energy-saving green treatment process method
CN105457489A (en) * 2016-01-11 2016-04-06 重庆净空居环保科技有限公司 Casting waste gas treatment method and device

Also Published As

Publication number Publication date
JP2005230627A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
KR100434940B1 (en) Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof
CN104906951A (en) Method and device for removing volatile organic compounds by photo-production ozone catalytic oxidation
KR102075490B1 (en) Apparatus for decomposition of volatile organic compounds and decomposing method using it
KR101468634B1 (en) Removal System of Volatile Organic Compounds and Odor Using Electrostatic Precipitator and adsorptive low temperature catalyst
CN108452646B (en) Device and method for catalytically treating VOCs (volatile organic compounds) by cooperation of plasma and electric heating cylinder net
CN107413175B (en) Method and device for purifying indoor volatile organic compounds through high-efficiency low-energy-consumption secondary-pollution-free low-temperature plasma concerted catalysis
JP5881872B1 (en) Decomposing apparatus and operating method thereof
WO2010024216A1 (en) Method and apparatus for processing exhaust gas
KR100623995B1 (en) Hybrid voc purification apparatus using non-thermal plasma photo-catalyst and thermal catalytic converter
KR101508833B1 (en) Volatile orgarnic compound―disposal system using plasma and catalyst
CN101785951A (en) Purification method for organic waste gas
KR20040092811A (en) Air filtration system and method of the same
CN112316679B (en) Low-temperature plasma VOCs purification device and method
CN206823546U (en) A kind of plasma-catalytic purification gas processing unit
JP2007000733A (en) Treatment method and treatment apparatus of gas
CN111467954A (en) Device and method for catalyzing and degrading VOCs (volatile organic compounds) by low-temperature plasma and ultraviolet light
KR101817907B1 (en) Apparatus for eliminating stink and harzardous gas
CN110292854A (en) A kind of pulse plasma couples the apparatus and method of double-fluidized-bed catalytic degradation VOCs
Yamamoto et al. Novel $\hbox {NO} _ {\rm x} $ and VOC Treatment Using Concentration and Plasma Decomposition
CN209771789U (en) Electrochemical synergistic photocatalytic organic waste gas treatment device
CN112973436A (en) Device and process for in-situ degradation of VOCs (volatile organic compounds) by cooperation of rotating wheel adsorption concentration and high-energy ionization and photocatalysis
JP2003112010A (en) Deodorization apparatus
JP4828056B2 (en) Reduction device and denitration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350