KR100434940B1 - Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof - Google Patents

Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof Download PDF

Info

Publication number
KR100434940B1
KR100434940B1 KR10-2000-0075601A KR20000075601A KR100434940B1 KR 100434940 B1 KR100434940 B1 KR 100434940B1 KR 20000075601 A KR20000075601 A KR 20000075601A KR 100434940 B1 KR100434940 B1 KR 100434940B1
Authority
KR
South Korea
Prior art keywords
reactor
plate
temperature plasma
treating
dielectric
Prior art date
Application number
KR10-2000-0075601A
Other languages
Korean (ko)
Other versions
KR20020046093A (en
Inventor
송영훈
차민석
이재옥
최연석
신완호
김관태
김석준
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR10-2000-0075601A priority Critical patent/KR100434940B1/en
Priority to JP2001274881A priority patent/JP3711052B2/en
Priority to US09/965,696 priority patent/US20020070127A1/en
Publication of KR20020046093A publication Critical patent/KR20020046093A/en
Application granted granted Critical
Publication of KR100434940B1 publication Critical patent/KR100434940B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2467Additional heat exchange means, e.g. electric resistance heaters, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2487Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2488Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

본 발명은 저온 플라즈마에 의한 유전열 및 촉매를 동시에 사용하여 유해가스 제거율 및 반응공정의 선택성을 향상시킬 수 있는 유해가스 처리용 반응기 및 그 처리방법을 제공한다. 그 반응기는 소정의 내부용적을 갖는 몸체; 그 몸체에 일정 간격으로 병렬 배치되는 평판전극으로서, 연속 반복적으로 하나의 평판전극들에는 교류전원이 연결되고 이웃하는 다른 하나의 평판전극들에는 접지에 연결되는 다수의 평판전극; 및 상기 각각의 평판전극들에 교류 주파수의 전압을 인가하기 위한 전원장치로 구성된다. 이 반응기를 이용한 유해가스 처리방법은 반응기를 유해가스 처리장치에 준비시키는 단계; 반응기의 각각의 판형 전극에 교류주파수의 교류전압을 인가하여 저온플라즈마 및 유전열을 발생시키는 단계; 반응기의 내부에 유해가스를 공급하는 단계; 및 유해가스에 대한 플라즈마 반응 및 촉매반응을 동시에 행하는 단계를 포함한다.The present invention provides a reactor for treating harmful gases and a method of treating the same, which can improve the removal rate of harmful gases and the selectivity of a reaction process by simultaneously using a dielectric heat and a catalyst by low temperature plasma. The reactor includes a body having a predetermined internal volume; A flat plate electrode disposed in parallel at regular intervals in a body thereof, the plurality of flat plate electrodes being connected to an AC power source to one flat plate electrode repeatedly and the other flat plate electrodes adjacent to ground; And a power supply device for applying an AC frequency voltage to each of the flat plate electrodes. Hazardous gas treatment method using this reactor comprises the steps of preparing a reactor in a hazardous gas treatment device; Applying an alternating current voltage of alternating current frequency to each plate-shaped electrode of the reactor to generate low temperature plasma and dielectric heat; Supplying harmful gas to the inside of the reactor; And simultaneously performing a plasma reaction and a catalytic reaction on the noxious gas.

Description

저온 플라즈마 및 유전열을 이용하여 유해가스를 처리하기 위한 촉매 반응기 및 그 처리방법{Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof}Catalytic Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating Technical Field

본 발명은 저온 플라즈마 및 유전열을 이용하여 유해가스를 처리하기 위한 반응기 및 그 방법에 관한 것으로서, 보다 상세하게는 저온 플라즈마 및 촉매를 동시에 사용하는 유해가스 처리공정에서 저온플라즈마에 의한 유전열 및 촉매를 동시적으로 사용하여 유해가스 제거율 및 반응공정의 선택성을 향상시킬 수 있는 유해가스 처리용 반응기 및 그 처리방법에 관한 것이다.The present invention relates to a reactor for treating noxious gases using low temperature plasma and dielectric heat, and more particularly, to a dielectric heat and catalyst by low temperature plasma in a noxious gas treatment process using both low temperature plasma and a catalyst simultaneously. The present invention relates to a reactor for treating harmful gases and a method of treating the same, which can improve the removal rate of harmful gases and the selectivity of the reaction process by using the same.

일반적으로, 산업공정에서 필연적으로 배출되는 휘발성 유기물질(Volatile Organic Compounds: VOCs)의 대부분은 인체에 유해할 뿐만 아니라 대기 중에서 광 스모그를 일으키는 원인 물질이므로, 각 국에서는 이를 강력하게 규제하고 있다. 한편, 국제협약에 의해 지구온난화 물질인 PFC(Perfluorocarbons)및 CFC(Chlorofluorocarbons)의 배출규제가 단계적으로 강화되고 있으며, 예컨대 2002년부터는 이들의 총량규제가 실시될 예정에 있다. 이에 따라, 이 같은 유해물질 또는 가스를 처리하기 위한 기술개발에 많은 노력을 기울이고 있는 바, 일반화된 처리기술로서는 소각공법, 촉매공법, 흡착 또는 생물학적 여과공정 등이 있다. 그러나, 이 같은 종래의 방식으로는 향후 강화될 유해 가스에 대한 배출규제를 충분히 만족시킬 수 없는 것으로 알려져 있다. 예컨대, 소각 및 촉매를 이용하는 방식에서는 필수적으로 고온의 열원이 요구되지만, 유해가스가 간헐적으로 배출되는 초 청정 반도체 공정과 같은 사업공정에서는 고온의 열원을 지속적으로 유지할 수 없으며 이를 유지하기 위해서는 고비용이 소모되는 문제점이 있다.In general, most of the volatile organic compounds (VOCs) that are inevitably emitted from industrial processes are not only harmful to the human body but also cause light smog in the atmosphere, and thus, countries have strict regulations on them. Meanwhile, international agreements are stepping up restrictions on emissions of global warming materials, perfluorocarbons (PFCs) and chlorofluorocarbons (CFCs), which are expected to be implemented in 2002, for example. Accordingly, many efforts have been made to develop technologies for treating such harmful substances or gases, and generalized treatment techniques include incineration, catalytic, adsorption, or biological filtration. However, it is known that such a conventional method cannot sufficiently satisfy emission regulations for harmful gases which will be strengthened in the future. For example, incineration and catalysts require a high temperature heat source, but in a business process such as an ultra clean semiconductor process in which harmful gases are intermittently discharged, a high temperature heat source cannot be continuously maintained and high costs are required to maintain it. There is a problem.

한편, 고온의 열원을 이용하지 않고 유해가스를 분해하거나 산화처리하기 위한 기술로서 저온 플라즈마를 이용하는 유해가스 처리방식이 있다. 이 유해가스 처리방식 중 하나가 미국특허 제5,236,627호에 개시되어 있다. 이 특허에 따르면, 상압조건에서 전자와 이온으로 구성된 저온 플라즈마는 직경이 수mm인 전기적 유전체 및 강유전체 펠렛(pellets) 또는 비드(bead)가 충진된 플라즈마 반응기내에 고전압 교류전력을 가함으로써 발생되며, 여기서 발생된 일부의 에너지를 이용하여 높은 전자들을 이용한 화학반응을 통해 유해가스를 처리한다. 그러나, 이 같은 유해가스 처리방식은 그 처리공정에 필요한 전력비용이 크며, 그 처리공정 중에 발생된 에어로졸 형태의 부산물이 반응기에서 막힘 현상을 초래하거나 전기적 특성을 악화시켜 공정의 연속운전을 방해하므로 실제적인 실용화 및 상용화가 곤란한 문제점이 있다.On the other hand, there is a harmful gas treatment method using a low-temperature plasma as a technique for decomposing or oxidizing harmful gas without using a high temperature heat source. One such hazardous gas treatment is disclosed in US Pat. No. 5,236,627. According to this patent, a low-temperature plasma composed of electrons and ions under atmospheric pressure is generated by applying high voltage alternating current in a plasma reactor filled with electrical dielectric and ferroelectric pellets or beads of several mm in diameter, where Some of the energy generated is used to treat harmful gases through chemical reactions using high electrons. However, such a noxious gas treatment method has a high power cost required for the treatment process, and the aerosol-type by-products generated during the treatment process may cause clogging in the reactor or worsen the electrical characteristics, thereby preventing continuous operation of the process. There is a problem that the practical practical use and commercialization is difficult.

또한, 상기 미국특허 제5,236,672호와 유사한 것으로서, 미국특허 제4,954,320호는 반응기에 귀금속 촉매구슬, 알루미나 구슬 또는 흡착물질을 충진하여 저온 플라즈마와의 흡착 또는 촉매반응을 동시에 발생시키는 유해가스 처리방식을 개시하고 있다. 그리고, 미국특허 제5,843,288호에는 상기와 같은 특허에 개시된 반응기 및 교류전원 장치에서 기체상태의 부산물이 감소될 수 있도록 강유전체 구슬표면에 전이족 금속촉매인 납(Pt), 팔라듐(Pd), 코발트(Co), 니켈(Ni) 등을 코팅하는 기술이 제안되어 있다.In addition, similar to the US Patent No. 5,236,672, US Patent No. 4,954,320 discloses a noxious gas treatment method for filling a reactor with precious metal catalyst beads, alumina beads or adsorbents to simultaneously adsorb or catalyze a low temperature plasma. Doing. In addition, US Pat. No. 5,843,288 discloses transition metal catalysts such as lead (Pt), palladium (Pd), and cobalt (Pt) on the surface of ferroelectric beads to reduce gaseous by-products in reactors and alternating current power devices disclosed in such patents. Co), nickel (Ni) and the like has been proposed a technique for coating.

상술된 바와 같이, 현재까지의 저온 플라즈마를 이용하여 유해가스를 처리하는 반응기는 튜브형(tube type) 몸체에 유전체 성질을 갖는 펠렛 또는 비드를 충진한 구조 또는 형상을 기본으로 하고 있으며, 촉매공정을 저온 플라즈마와 동시에이용할 경우에는 반응기에 충진된 유전체 펠렛 또는 비드 표면에 촉매를 코팅하는 형태를 이루고 있다. 그러나, 이 같은 방법들을 실제로 유해가스를 배출하는 공정에 적용할 경우 반응기에 충진된 유전체로 인해 압력손실이 발생하고, 배출가스에 입자상 물질(particulate materials)이 존재할 경우 반응기가 쉽게 막힐 수 있으며, 이 반응기를 필연적으로 진동이 발생되는 수송용 엔진에 적용할 경우 펠렛 또는 구슬간의 접촉면이 갈려나갈 수 있으며, 대용량의 배출가스를 처리하기 위해서는 여러 개의 튜브형 반응기를 다발로 또는 집합적으로 묶어야하기 때문에 전체적인 유해가스 처리시스템의 규모가 과대하게 커지는 등의 문제점이 있다.As described above, the reactor for treating noxious gases using low temperature plasma to date is based on a structure or shape in which a tube or body is filled with pellets or beads having dielectric properties, and the catalytic process is performed at a low temperature. When used simultaneously with the plasma forms a catalyst coating on the surface of the dielectric pellets or beads filled in the reactor. However, when these methods are applied to a process that actually emits harmful gases, pressure loss occurs due to the dielectric filled in the reactor, and the presence of particulate materials in the exhaust gas can easily clog the reactor. If the reactor is inevitably applied to a transport engine that generates vibration, the contact surface between pellets or beads may be grounded, and in order to process a large amount of exhaust gas, it is necessary to bundle or collectively bundle several tubular reactors. There are problems such as excessively large scale of the gas treatment system.

특히, 반응기의 용적 또는 부피가 커지면 단순히 실용성에 문제가 될 뿐 아니라 교류전원에 의해 발생된 유전열이 반응공간에 집중되지 못하고 분산되기 때문에 열에 의해 활성화되는 촉매의 성능을 기대할 수 없으므로 전체적인 공정의 에너지 효율이 현저하게 저하되는 문제점이 있다.In particular, if the volume or volume of the reactor is large, it is not only a practical problem but also the performance of the catalyst activated by the heat cannot be expected because the dielectric heat generated by the AC power is not concentrated in the reaction space. There is a problem that the efficiency is significantly reduced.

따라서, 저온 플라즈마를 발생시킬 때 생성되는 유전열을 보다 효과적으로 활용할 수 있는 작은 체적의 반응기 구조를 가지면서도 가스의 흐름을 방해하지 않는 기술의 개발이 저온 플라즈마와 촉매공정을 동시에 활용하는 공정에서 중요한 해결과제로 제기되고 있다.Therefore, the development of a technology that does not disturb the flow of gas while having a small-volume reactor structure that can effectively utilize the dielectric heat generated when generating low temperature plasma is an important solution in the process using both low temperature plasma and catalytic process simultaneously. It is raised as a task.

이에 본 발명은 상술된 문제점 및 과제를 해결하기 위해 발명된 것으로서, 본 발명의 목적은 압력손실 및 막힘이 방지되는 저온플라즈마 및 유전열을 이용한 유해가스 처리용 반응기를 제공하는데 있다.Accordingly, the present invention has been made to solve the above problems and problems, it is an object of the present invention to provide a reactor for treating harmful gases using low-temperature plasma and dielectric heat to prevent pressure loss and clogging.

본 발명의 다른 목적은, 펠렛 또는 비드를 사용하지 않으며 전체적인 체적을 축소시킬 수 있는 저온플라즈마 및 유전열을 이용한 유해가스 처리용 반응기를 제공하는데 있다.Another object of the present invention is to provide a reactor for treating harmful gases using low temperature plasma and dielectric heat, which can reduce the overall volume without using pellets or beads.

본 발명의 또 다른 목적은, 작은 공간에서 다량의 가스를 처리할 수 있는 유해가스 처리용 반응기를 제공하는데 있다.Still another object of the present invention is to provide a reactor for treating harmful gases capable of treating a large amount of gas in a small space.

본 발명의 또 다른 목적은, 플라즈마 발생에 의해 발생된 열을 좁은 공간에 집중시킬 수 있어 전극표면에 코팅된 촉매가 효과적으로 열에 의해 활성화됨으로서 운전전력을 절감시킬 수 있고 또한 액체상태 및 고체상태의 부산물의 발생을 억제시킬 수 있는 유해가스 처리용 반응기를 제공하는데 있다.It is still another object of the present invention to concentrate heat generated by plasma generation in a narrow space so that the catalyst coated on the electrode surface can be effectively activated by heat, thereby reducing operating power and by-products in liquid and solid state. It is to provide a reactor for treating harmful gases that can suppress the occurrence of.

본 발명의 다른 하나의 주요 목적은 전술된 반응기를 이용하여 유해가스를 처리하기 위한 방법을 제공하는데 있다.Another main object of the present invention is to provide a method for treating noxious gas using the reactor described above.

본 발명에 의하면, 휘발성 유기물(VOCs: Volatile Organic Compounds), PFC(perfluorocarbons), CFC(chlorofluorocarbons), 다이옥신 그리고 기타 무기물의 유해가스를 처리하기 위해 저온 플라즈마 및 촉매를 동시에 사용하는 유해가스 처리장치에 사용하기 위한 반응기 및 그 제조방법에 관한 것으로, 종래에는 저온 플라즈마 반응기에 이용되지 않았던 유전열 및 촉매를 효과적으로 반응공정에 활용하여 운전에 소요되는 전력을 절감할 수 있으며, 액상 및 고상의 부산물 발생을 억제할 수 있는 것이다.According to the present invention, the volatile organic compounds (VOCs), perfluorocarbons (PFCs), chlorofluorocarbons (CFCs), dioxins and other inorganic gases used in a hazardous gas treatment system using a low-temperature plasma and a catalyst simultaneously to treat harmful gases. The present invention relates to a reactor and a method for manufacturing the same, which can effectively reduce power required for operation by effectively utilizing a dielectric heat and a catalyst, which was not conventionally used in a low temperature plasma reactor, in a reaction process, and suppress generation of by-products in liquid and solid phases. You can do it.

도 1은 본 발명에 따른 저온 플라즈마를 이용한 유해가스 처리용 반응기를 개략적으로 보여주는 사시도;1 is a perspective view schematically showing a reactor for treating harmful gases using a low temperature plasma according to the present invention;

도 2는 도 1의 반응기에서의 평판전극의 배열상태를 보여주는 구성도;2 is a block diagram showing the arrangement of the plate electrode in the reactor of FIG.

도 3은 도 2의 전극의 구성을 상세하게 보여주는 사시도; 및3 is a perspective view showing the configuration of the electrode of FIG. 2 in detail; And

도 3은 본 발명에 따른 반응기에서의 저온 플라즈마 및 촉매의 효율의 결과를 보여주는 그래프.3 is a graph showing the results of the efficiency of low temperature plasma and catalyst in a reactor according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: 몸체 14: 유동분배기10: body 14: flow distributor

16: 평판전극 18: 유전체 플레이트16: Plate Electrode 18: Dielectric Plate

20: 금속박막 22: 촉매20: thin metal film 22: catalyst

24: 교류전원 26: 접지24: AC power supply 26: ground

28: 전원장치28: power supply

이 같은 목적들은 저온플라즈마와 그 저온플라즈마의 발생시 발생되는 유전열을 이용하여 유해가스를 처리하기 위한 반응기에 있어서, 소정의 내부용적을 갖는 몸체; 상기 몸체에 일정 간격으로 병렬 배치되는 평판전극으로서, 연속 반복적으로 하나의 평판전극들에는 교류전원이 연결되고 이웃하는 다른 하나의 평판전극들에는 접지에 연결되는 다수의 평판전극; 및 상기 교류전원에 연결된 각각의 평판전극들에 교류 주파수의 전압을 인가하기 위한 전원장치를 포함하는 것을 특징으로 하는 저온플라즈마 및 유전열을 이용한 유해가스 처리용 반응기에 의해 달성될 수 있다.Such objects include a low temperature plasma and a reactor for treating noxious gases using dielectric heat generated when the low temperature plasma is generated, the body having a predetermined internal volume; A plurality of flat plate electrodes arranged in parallel on the body at regular intervals, the plurality of flat plate electrodes being connected to the ground to one of the plate electrodes continuously connected to an AC power source, and to another adjacent plate electrode; And a power supply device for applying a voltage of an AC frequency to each of the plate electrodes connected to the AC power source.

본 발명에 따른 목적들은 또한 반응기를 유해가스 처리장치에 준비시키는 단계; 상기 반응기의 각각의 판형 전극에 교류주파수의 교류전압을 인가하여 저온플라즈마 및 유전열을 발생시키는 단계; 상기 반응기의 내부에 유해가스를 공급하는 단계; 및 상기 유해가스에 대한 플라즈마 반응 및 촉매반응을 동시에 행하는 단계를 포함하는 것을 특징으로 하는 유해가스 처리방법에 의해 달성될 수 있다.Objects according to the invention also include the steps of preparing a reactor in a noxious gas treatment device; Generating a low temperature plasma and dielectric heat by applying an alternating current voltage of alternating current frequency to each plate-shaped electrode of the reactor; Supplying harmful gas to the inside of the reactor; And it can be achieved by a harmful gas treatment method comprising the step of performing a plasma reaction and a catalytic reaction for the harmful gas at the same time.

이하, 본 발명에 따른 저온플라즈마 및 유전열을 이용한 유해가스 처리장치용 반응기 및 그 반응기를 이용한 유해가스 처리장치의 바람직한 실시예를 첨부도면을 참조로 하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a reactor for a noxious gas treatment apparatus using a low temperature plasma and dielectric heat and a noxious gas treatment apparatus using the reactor according to the present invention will be described in detail.

도 1 및 도 2를 참조하면, 본 발명에 따른 저온플라즈마 및 유전열을 이용한 유해가스 처리장치용 반응기는 기본적으로 장방형 도는 정방형과 같이 소정의 공간을 갖는 입방체형의 몸체(10)를 구비한다. 그 몸체(10)의 전방에는 유해가스를 몸체(10)내로 유입시키기 위한 유입구(12)를 구비한 유동 분배기(14)가 설치된다.1 and 2, a reactor for a noxious gas treatment apparatus using low temperature plasma and dielectric heat according to the present invention basically includes a cube-shaped body 10 having a predetermined space, such as a rectangle or a square. In front of the body 10 is a flow distributor 14 having an inlet 12 for introducing harmful gas into the body 10.

특히, 몸체(10)에는 하나 또는 다수의 평판전극(16)을 포함한다. 각각의 평판전극(16)은 장방형 또는 정방형으로 형성되는 것이 바람직하다. 또한, 도 3에 도시된 바와 같이, 평판전극(16)은 전기적 절연성 및 유전성을 동시에 갖는 세라믹, 유리, 석영과 같은 재질로 형성되는 2개의 유전체 플레이트(18)를 구비한다. 이들 각각의 유전체 플레이트(18)는 예컨대 0.1 내지 2mm의 두께로 될 수 있다. 또한, 각각의 유전체 플레이트(18)의 크기는 반응기 전체의 용량에 따라 임의로 설정될 수 있는 바, 예컨대, 세로변 및 가로변의 크기는 각각 수mm에서 수백mm로 될 수 있다.In particular, the body 10 includes one or a plurality of plate electrodes 16. Each plate electrode 16 is preferably formed in a rectangle or a square. In addition, as shown in FIG. 3, the plate electrode 16 includes two dielectric plates 18 formed of a material such as ceramic, glass, and quartz having both electrical insulation and dielectric properties. Each of these dielectric plates 18 may be, for example, 0.1 to 2 mm thick. In addition, the size of each dielectric plate 18 may be arbitrarily set according to the capacity of the entire reactor, for example, the lengths of the vertical and horizontal sides may be several mm to several hundred mm, respectively.

각각의 유전체 플레이트(18)의 일 측면에는 전기가 통할 수 있도록 금속 코팅재 또는 금속박막(20)이 도포 되는 반면, 타측면에는 촉매(22) 또는 흡착제가 코팅되는 것이 바람직하다.One side of each dielectric plate 18 is coated with a metal coating material or a metal thin film 20 so as to allow electricity, while the other side is preferably coated with a catalyst 22 or an adsorbent.

한편, 각각의 평판전극(16)은 2개의 유전체 플레이트(18)를 상호 밀착시킴으로써 완성되는 것이다. 즉, 하나의 유전체 플레이트(18)의 금속박막(20)이 도포된 일측면과, 또한 다른 하나의 유전체 플레이트(18)의 금속박막(20)이 도포된 일측면을 상호 접착시킴으로써, 하나의 평판전극(16)이 완성되는 것이다.On the other hand, each flat electrode 16 is completed by bringing the two dielectric plates 18 into close contact with each other. That is, by adhering one side on which the metal thin film 20 of one dielectric plate 18 is applied and one side on which the metal thin film 20 of the other dielectric plate 18 is applied to each other, The electrode 16 is completed.

선택적으로, 평판전극은 2개의 유전체 플레이트 사이에 금속박막이 이 삽입되어 형성될 수도 있는 바, 이 경우에는 각각의 유전체 플레이트의 상호 접합면 모두에 금속박막이 도포될 필요는 없다.Alternatively, the plate electrode may be formed by inserting a metal thin film between two dielectric plates, in which case it is not necessary to apply the metal thin film to all of the mutual bonding surfaces of the respective dielectric plates.

이와 같이 완성된 각각의 평판전극(16)들은, 도 2에 도시된 바와 같이, 반응기의 몸체 내에 병렬로 배치된다. 도면에는 단지 7개의 평판전극이 도시되어 있으나, 반응기의 용량 또는 체적에 따라 그 개수를 임의로 설정할 수 있음은 물론이다. 이와 같이 병렬로 배치된 상태에서 하나는 교류전원(24)에 연결하고 다른 하나는 접지(26)에 연결하는 방식으로 연속 반복시켜 배치한다. 이때, 각각의 전극간의 거리는 약 1 내지 6mm로 유지되는 것이 바람직하다. 또한, 평판전극(16)은 처리할 가스의 유량 또는 반응기의 용량에 따라 수 개의 쌍 내지 수 십, 수 백 개의 쌍으로 병렬 배치될 수 있다. 도면에 도시되지는 않았지만, 반응기의 외형을 이루는 몸체는 전기 절연성을 지님은 물론, 고온에도 견딜 수 있도록 세라믹과 같은 재질로 형성되는 것이 바람직하다.Each of the plate electrodes 16 thus completed is arranged in parallel in the body of the reactor, as shown in FIG. Although only seven flat electrodes are shown in the figure, the number can be arbitrarily set according to the capacity or volume of the reactor. In this way arranged in parallel, one is connected to the AC power source 24 and the other is connected to the ground in a continuous repeating arrangement. At this time, the distance between each electrode is preferably maintained to about 1 to 6mm. In addition, the plate electrodes 16 may be arranged in parallel in several pairs, tens, or hundreds, depending on the flow rate of the gas to be treated or the capacity of the reactor. Although not shown in the drawings, it is preferable that the body forming the outer shape of the reactor is formed of a material such as ceramic to have electrical insulation and withstand high temperatures.

물론, 반응기의 각각의 평판전극(16)들에 연결되는 전원장치(28)는 5kV 내지 20kV에 이르는 교류전압을, 예컨대 수십 내지 수만 Hz의 특정 주파수로 공급하며, 반응기와의 임피던스 매칭(impedance matching)을 위해 그 전원장치와 반응기 사이에는 인덕턴스 및 충전회로(도시되지 않음)가 설치되는 것이 바람직하다.Of course, the power supply 28 connected to each of the plate electrodes 16 of the reactor supplies an alternating voltage of 5 kV to 20 kV at a specific frequency of, for example, several tens to tens of thousands of Hz, and impedance matching with the reactor. Inductance and charging circuits (not shown) are preferably installed between the power supply and the reactor.

또한, 각각의 유전체 플레이트(18)에 코팅된 촉매는 열에 의해 촉매의 활성화가 발생되는 것으로 알려진 Pt, Rd, Pd 등의 귀금속 촉매뿐 아니라 Ni, Cu, Co 등의 금속촉매들 중 하나 또는 그 이상이 선택되어 사용될 수 있다. 또한, 이들 각각의 금속 촉매는 반응기체와의 접촉면적을 증대시킬 수 있도록, 먼저 유전체 플레이트(18)의 매끈한 세라믹 평판에 표면적이 큰 γ-알루미나, 실리카, 또는 제올라이트를 코팅한 다음 이 코팅면 위에 코팅되는 것이 바람직하다.In addition, the catalyst coated on each dielectric plate 18 is one or more of metal catalysts such as Ni, Cu, Co, as well as precious metal catalysts such as Pt, Rd, and Pd, which are known to be activated by heat. Can be selected and used. In addition, each of these metal catalysts is first coated with a γ-alumina, silica, or zeolite with a large surface area on a smooth ceramic plate of the dielectric plate 18 so as to increase the contact area with the reactant body, and then on the coated surface. It is preferred to be coated.

또, 유전체 플레이트(18)에 코팅된 흡착제는 γ-알루미나 또는 제올라이트로 될 수 있다. 여기서, 제올라이트는 분자체(Molecular Sieve(MS)) 3A 또는 5A인 것이 바람직하며, 이들 분자체에 알카리 금속인 알카리 토금속이 치환된 촉매를 사용하는 것이 보다 뛰어난 성능을 발휘할 수 있는 것으로 나타났다.In addition, the adsorbent coated on the dielectric plate 18 may be γ-alumina or zeolite. Here, the zeolite is preferably a molecular sieve (Molecular Sieve (MS)) 3A or 5A, it was shown that it is possible to use a catalyst in which the alkaline earth metal, which is an alkali metal, is substituted for these molecular sieves.

이와 같이 구성된 반응기의 반응공정에 의하면, 먼저 반응기에 전원장치(28)를 작동시켜 전력을 가하면 각각의 평판전극(16)사이에 전기적 방전이 일어나 전자 및 이온이 발생된다. 여기서 발생된 전자는 처리하고자 하는 가스분자를 직접 분해하거나, 또는 처리 대상인 유해가스와 함께 공급된 공기 또는 첨가된 가스분자가 전자와의 충돌로 인해 발생된 O, OH, HO2, N 래디칼(radical) 또는 이온에 의해 산화 혹은 환원반응을 거치게 된다. 이상과 같은 반응공정은, 일반적인 저온 플라즈마를 이용한 공정 원리이다.According to the reaction process of the reactor configured as described above, first, when the power source device 28 is operated to apply electric power to the reactor, electric discharge occurs between the plate electrodes 16 to generate electrons and ions. The electrons generated here are O, OH, HO 2 , N radicals generated by directly decomposing the gas molecules to be treated, or by the air supplied with the harmful gas to be treated or the added gas molecules collide with the electrons. Or oxidized or reduced by ions. The above reaction process is a process principle using a general low temperature plasma.

이에 더불어, 본 발명에 따른 반응기는 유전가열을 이용하여 반응기내의 온도를 상승시켜 원하는 반응이 보다 용이하게 달성될 수 있으며, 유전가열을 통해 상승된 반응기내의 고온을 촉매를 활성화시키는데 사용함으로서 저온 플라즈마 반응과 촉매반응의 복합효과를 획득할 수 있는 것이다. 예컨대, 저온 플라즈마 반응과 촉매반응의 복합효과를 기존의 저온 플라즈마 또는 촉매공정과 비교할 때 다음과 같은 기술적인 장점이 있는 것으로 나타났다.In addition, the reactor according to the present invention can be easily achieved by increasing the temperature in the reactor using the dielectric heating, low temperature plasma reaction by using the elevated temperature in the reactor to activate the catalyst through the dielectric heating It is possible to obtain the combined effect of the catalytic reaction. For example, when the combined effect of low temperature plasma reaction and catalysis is compared with the existing low temperature plasma or catalytic process, the following technical advantages have been shown.

즉, 종래와 같이 촉매를 통해 유해가스를 산화시킬 경우 특정한 온도 이상으로 촉매를 가열할 필요성이 있으나, 본 발명과 같이 저온 플라즈마와 촉매를 동시에 사용할 경우 촉매가 활성화될 수 있는 온도가 저하되어 낮은 온도에서도 공정의 실행이 가능하다. 이는, 저온 플라즈마공간 속에서 유해가스 또는 산화제(예컨대, 산소, 수분 또는 첨가제)가 반응이 일어나기 쉬운 상태로 변환되기 때문인 것으로이해된다.That is, when oxidizing noxious gas through a catalyst as in the prior art, it is necessary to heat the catalyst above a certain temperature. However, when the low temperature plasma and the catalyst are used simultaneously as in the present invention, the temperature at which the catalyst can be activated is lowered due to the low temperature. The execution of the process is also possible. This is because the harmful gas or the oxidizing agent (for example, oxygen, moisture or additives) is converted into a state where a reaction is likely to occur in the low temperature plasma space.

또한, 종래와 같이 저온 플라즈마 반응은 특정한 반응이 선택적으로 나타날 수 있는 가능성은 적지만, 본 발명과 같이 촉매를 저온 플라즈마와 함께 사용할 경우 반응에서의 선택성이 증가될 수 있다. 예컨대, 저온 플라즈마만의 반응으로 톨루엔을 제거할 경우 절반이상의 톨루엔은 중합반응을 일으켜 에어로졸 형태로 변환되며 이 물질들이 전극표면에 달라붙어 장기적인 운전을 방해하거나 반응기내의 막힘 현상을 초래할 수 있으나, 유전열에 의해 활성화된 촉매를 사용할 경우 최종 산출물이 이산화탄소와 수분으로 되는 산화반응으로 보다 쉽게 진행될 수 있는 것이다.In addition, as in the conventional low temperature plasma reaction, although a particular reaction is less likely to occur selectively, selectivity in the reaction may be increased when the catalyst is used together with the low temperature plasma as in the present invention. For example, when toluene is removed by only low-temperature plasma, more than half of toluene is polymerized and converted into an aerosol form, and these materials may adhere to the surface of the electrode, preventing long-term operation or clogging in the reactor. When activated by the catalyst, the final output can be more easily proceeded to the oxidation reaction of carbon dioxide and water.

이하, 본 발명에 따른 구체적인 실시예의 작용모드 및 그 작용효과를 상세하게 설명할 것이다.Hereinafter, the mode of operation and the effect of the specific embodiment according to the present invention will be described in detail.

실시예 1Example 1

평판전극(16)의 크기는 76mm ×76mm ×1mm 이고, 내부 금속박막(20)의 크기는 60mm ×60mm ×0.1mm 이며, 평판전극(16)의 개수는 15개이고, 각각의 평판전극(16)간의 거리는 2mm로 설정되어 있으며, 반응유동 단면적 60mm ×60mm에는 14단의 반응공간이 형성되어 있다. 그리고, 반응기에 평균전압 11 kV 및 주파수 60 Hz인 교류전력을 공급하여 저온 플라즈마를 발생시켰다. 이때, 전력공급이 5 내지 6 시간이 지속되고 또한 반복실험을 10여 차례 수행하였으나 반응기내에서 절연파괴로 인한 치명적인 손상이 발견되지 않았다. 한편, 이때 사용된 평판전극의 유전체 플레이트로서는 알파-알루미나 플레이트, 알파-알루미나 플레이트에 감마-알루미나 및 백금을 코팅하여 형성한 플레이트, 알파-알루미나 플레이트에 제올라이트를 코팅하여 형성한 플레이트, 석영플레이트 등 다양한 재질이 선택되어 이용될 수 있다.The size of the plate electrodes 16 is 76mm × 76mm × 1mm, the size of the inner metal thin film 20 is 60mm × 60mm × 0.1mm, the number of the plate electrodes 16 is 15, and each of the plate electrodes 16 The distance between the two is set to 2mm, 14 stages reaction space is formed in the reaction flow cross-sectional area 60mm × 60mm. Then, AC power with an average voltage of 11 kV and a frequency of 60 Hz was supplied to the reactor to generate a low temperature plasma. At this time, the power supply lasted for 5 to 6 hours and repeated experiments were performed 10 times, but no fatal damage due to dielectric breakdown was found in the reactor. Meanwhile, as the dielectric plate of the plate electrode used at this time, a plate formed by coating a gamma-alumina and platinum on an alpha-alumina plate, an alpha-alumina plate, a plate formed by coating a zeolite on an alpha-alumina plate, a quartz plate, etc. Material may be selected and used.

실시예 2Example 2

실시예 1과 같이 구성된 반응기에 공기를 주입하여 유동시키고 전원장치의 주파수를 60Hz에서 10kHz까지 증가시켜 전력을 가하면, 주파수가 증가될수록 반응기에 투입되는 전력이 증가되면서 반응기 내의 온도 및 반응기 후단에서 배출되는 공기의 온도가 증가되는 것으로 나타났다. 한편, 반응기에서 저온 플라즈마가 발생되는 전극의 실제 총면적은 6 cm × 6 cm × 14 ×2= 1008㎠임에 반해 외부와의 접촉면적은 6 cm × 6 cm × 6 = 216 ㎠로 계산될 수 있다. 즉, 유전열이 발생되는 전극면적에 비해 열손실이 발생될 수 있는 외부와의 접촉면적이 현저히 작게되므로 발생된 열을 반응공정에 효과적으로 사용할 수 있는 것이다. 이에 비해 종래의 튜브형상의 반응기는 전극면적과 외부와의 접촉면적이 대등하기 때문에 열손실이 많이 발생되므로 반응에 필요한 열을 효과적으로 이용할 수 없었다.Injecting and flowing air into the reactor configured as in Example 1 and applying power by increasing the frequency of the power supply device from 60 Hz to 10 kHz, the power input to the reactor increases as the frequency is increased and discharged from the temperature in the reactor and the rear end of the reactor. It has been shown that the temperature of the air is increased. On the other hand, while the actual total area of the electrode where the low-temperature plasma is generated in the reactor is 6 cm × 6 cm × 14 × 2 = 1008 cm 2, the contact area with the outside can be calculated as 6 cm × 6 cm × 6 = 216 cm 2. . That is, the area of contact with the outside that can generate heat loss is significantly smaller than the area of the electrode where dielectric heat is generated, so that the generated heat can be effectively used in the reaction process. On the other hand, in the conventional tubular reactor, since the contact area between the electrode area and the outside is high, a lot of heat loss is generated, and thus the heat required for the reaction cannot be effectively used.

실시예 3Example 3

실시예 1과 같이 구성된 반응기에 공기를 주입하여 유동시키고 이 때 반응기의 전방단 및 후방단에서 압력손실을 측정해 본 결과, 기존의 튜브형 반응기에 촉매 비드 또는 펠렛을 충진하고 공기를 흘려주었을 경우에 비해 압력손실이 현저하게 감소되는 것으로 나타났다. 따라서, 본 발명에 따른 반응기는 유량이 큰 공정에 효과적으로 사용될 수 있으며, 반응공정 중에 입자상의 물질이 있거나 그 같은 입자가 발생할 경우에도 반응기내에서 막힘 현상이 발생되지 않는 것으로 나타났다.When the air is injected into the reactor configured as in Example 1 and flowed, and the pressure loss was measured at the front and rear ends of the reactor, when the catalyst beads or pellets were filled in the existing tubular reactor and flowed through the air, In comparison, the pressure loss was significantly reduced. Therefore, the reactor according to the present invention can be effectively used in a process having a high flow rate, and it has been shown that clogging does not occur even in the presence of particulate matter or such particles during the reaction process.

예컨대, 톨루엔을 수 십 내지 수 백 ppm 포함하고 있는 공기를 반응기에 공급하여 장시간 처리할 경우 일부 톨루엔은 산화공정을 거치는 것이 아니라 작은 입자상의 탄소화합물로 변하여 전극에 부착되는 현상이 발생된다. 이때 부착된 부산물은 전극의 전기적 특성을 변화시켜 전력공급에 문제를 일으키게 된다. 그러나, 본 발명과 같이 산화공정을 일으키는 백금촉매를 전극판에 코팅하면, 입자 및 액상의 부산물 발생이 현저하게 감소됨은 물론 일정 시간이 지난 후에는 주기적으로 공기만을 주입하여 부착된 탄소화합물을 제거할 수 있는 것으로 나타났다.For example, when the air containing tens to hundreds of ppm of toluene is supplied to the reactor for a long time, some of the toluene is transformed into small particulate carbon compounds instead of undergoing an oxidation process, and is attached to the electrode. At this time, the attached by-products cause problems in power supply by changing the electrical characteristics of the electrodes. However, when the platinum catalyst causing the oxidation process is coated on the electrode plate as in the present invention, the generation of by-products of particles and liquids is significantly reduced, and after a certain time, only the air is periodically injected to remove the attached carbon compound. It turns out that you can.

비교실시예 1Comparative Example 1

유해가스를 실제로 처리하는데 있어 촉매 및 열이 제거성능에 미치는 영향을 살펴보기 위해 유해가스로서 300ppm의 톨루엔을 공기와 함께 반응기에 공급하였으며, 이후 즉시, 60 Hz의 주파수로 11kV의 교류전력을 반응기에 가한 다음 반응기 후단에서 배출되는 톨루엔의 농도를 측정하였다. 여기서, 비교의 명확성을 위해 1) 알파-알루미나판을 이용한 평판전극인 경우, 2) 알파-알루미나판에 감마-알루미나를 코팅한 평판전극인 경우, 3) 알파-알루미나판에 감마-알루미나 및 백금을 코팅한 평판전극인 경우로 구분하여 비교실험을 실행하였다. 또한, 톨루엔과 같은 휘발성 유기화합물의 산화공정에서 온도상승이 반응공정에 어떠한 효과를 미치는가를 살펴보기 위해, 각각의 평판전극에 대한 비교실험의 운전온도(반응기에 공급되는 공기 및 반응기 주변온도)를 각각 상온, 60 ℃ 및 100 ℃로 설정하여 수행하였다.In order to examine the effect of catalyst and heat on the removal performance in the actual treatment of harmful gases, 300 ppm of toluene was supplied to the reactor together with air as a noxious gas, and immediately afterwards, 11kV of AC power was supplied to the reactor at a frequency of 60 Hz. After the addition, the concentration of toluene discharged from the rear end of the reactor was measured. Here, for clarity of comparison, 1) a flat electrode using alpha-alumina plate, 2) a flat electrode coated with gamma-alumina on alpha-alumina plate, 3) gamma-alumina and platinum on alpha-alumina plate Comparative experiments were carried out by dividing the case into a coated electrode. In addition, in order to examine how the temperature rise affects the reaction process in the oxidation process of volatile organic compounds such as toluene, the operation temperature (air supplied to the reactor and ambient temperature of the reactor) for each plate electrode It was performed by setting at room temperature, 60 ℃ and 100 ℃, respectively.

이와 같이 설정된 실험조건에서 실험한 결과가 도 4의 그래프로 도시되어 있다. 이 그래프에 의하면, 전원장치에서 동일하게 전력이 소비되고 있더라도 유해가스인 톨루엔의 제거율(초기농도에 대비한 제거된 농도)은 알파-알루미나, 감마-알루미나, 백금촉매 순으로 증가하였다. 한편, 각각의 경우에서 운전온도가 증가될 경우 공통적으로 톨루엔의 제거율은 상승하여 온도증가가 반응공정에 현저히 긍정적으로 작용하고 있는 것으로 나타나 있다.The results of the experiment under the set experimental conditions are shown in the graph of FIG. 4. According to this graph, although the power consumption was equally consumed, the removal rate of the toluene (the removed concentration relative to the initial concentration) of the harmful gas increased in the order of alpha-alumina, gamma-alumina, and platinum catalyst. On the other hand, in each case, when the operating temperature is increased, the removal rate of toluene increases in common, indicating that the increase in temperature has a significant positive effect on the reaction process.

비교 실시예 2Comparative Example 2

톨루엔을 포함하는 유해가스에 대해 PFCs인 NF3와 CF4를 본 발명에 따른 반응기로 처리하는 실험에 있어서, 이 같은 가스 또한 톨루엔과 마찬가지로 저온 플라즈마 공정에 부가하여 반응기내의 온도상승에 의한 제거율이 증가되는 것으로 관찰되었다. 특히 NF3는 반응기내의 온도가 400℃ 이상일 경우 단순히 열에 의해서도 분해되는 물질이기 때문에 본 반응기에 의한 제거율의 증가는 촉매공정이 함께 사용되지 않은 경우에도 관찰되었다.In experiments in which the PFCs NF 3 and CF 4 are treated with the reactor according to the present invention with respect to harmful gases containing toluene, these gases are added to the low temperature plasma process as well as toluene, and the removal rate by the temperature rise in the reactor is increased. Was observed. In particular, since NF 3 is a substance that is simply decomposed by heat when the temperature in the reactor is 400 ° C. or higher, an increase in the removal rate by the reactor was observed even when the catalytic process was not used together.

한편, CF4의 열분해는 1200℃ 내지 1800℃ 이상에만 가능하기 때문에 귀금속촉매인 백금이 코팅된 전극이 필요했으며, 이 같은 백금 촉매를 사용할 경우 반응기내의 온도가 300℃ 내지 400℃ 수준에서 유지되면서 저온 플라즈마가 발생할 경우 본격적인 CF4분해가 시작되었다.On the other hand, since pyrolysis of CF 4 is possible only at 1200 ° C to 1800 ° C or higher, a platinum-coated electrode, which is a noble metal catalyst, was required. When using such a platinum catalyst, the temperature in the reactor was maintained at a temperature of 300 ° C to 400 ° C at a low temperature. When plasma occurs, full-fledged CF 4 decomposition begins.

이 밖에 트리클로로에틸렌(TCE:trichloroethylene)과 같이 Cl이 포함된 유기물의 분해실험에서도 반응온도의 증가는 유해물질의 산화반응을 가속시키는 것으로 나타났다. 이에 따라, 본 발명에 따른 반응기에 의해 반응온도를 상승시키는 기술은 톨루엔과 같은 VOCs 뿐만 아니라 다이옥신, PFCs, CFCs, 및 질소산화물과 같은 무기물의 분해에도 광범위하게 적용될 수 있는 것으로 이해된다.In addition, even in the decomposition experiments of organic compounds containing Cl, such as trichloroethylene (TCE: trichloroethylene), increasing the reaction temperature was shown to accelerate the oxidation of harmful substances. Accordingly, it is understood that the technique of raising the reaction temperature by the reactor according to the present invention can be widely applied not only to VOCs such as toluene but also to decomposition of inorganic substances such as dioxins, PFCs, CFCs, and nitrogen oxides.

이상에서 설명된 바와 같이, 본 발명에 따른 저온플라즈마 및 유전열을 이용한 유해가스 처리용 반응기 및 그 처리방법에 의하면, 교류전원과 유전체 전극을 통해 저온 플라즈마를 발생시킬 때 발생하는 유전열을 반응공정에 촉매와 더불어 이용할 수 있어 반응효율이 향상되는 효과가 있다. 그리고, 반응기내에서의 압력손실이 감소되고, 전극의 청소 및 교환과 같은 유지보수가 간편하며, 반응기의 체적이 작아져 실용성이 향상되는 이점이 있다.As described above, according to the reactor for treating harmful gases using low temperature plasma and dielectric heat according to the present invention and a method of treating the same, the process of reacting dielectric heat generated when generating low temperature plasma through an AC power source and a dielectric electrode is performed. It can be used in conjunction with the catalyst has the effect of improving the reaction efficiency. In addition, the pressure loss in the reactor is reduced, maintenance such as cleaning and replacement of the electrode is easy, and the volume of the reactor is small, so that there is an advantage that the practicality is improved.

이상에서, 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 본 기술분야의 당업자라면 첨부된 특허청구범위를 벗어남이 없이 다양한 변형에 및 수정예를 실시할 수 있을 것으로 이해된다.In the above, preferred embodiments of the present invention have been described, but it will be understood by those skilled in the art that various modifications and changes can be made without departing from the scope of the appended claims.

Claims (8)

저온플라즈마와 그 저온플라즈마의 발생시 발생되는 유전열을 이용하여 유해기스를 처리하기 위한 반응기로서, 유해가스를 수용하기 위한 소정의 내부용적을 갖는 몸체와, 상기 몸체에 배치되는 다수의 평판전극과, 상기 각각의 평판전극들에 전압을 인가하기 위한 전원장치를 구비하는 저온플라즈마 및 유전열을 이용한 유해가스 처라용 반응기에 있어서,A reactor for processing harmful gases using low-temperature plasma and dielectric heat generated during the generation of low-temperature plasma, comprising: a body having a predetermined internal volume for accommodating noxious gas, a plurality of plate electrodes disposed on the body; In the reactor for the treatment of harmful gases using low-temperature plasma and dielectric heat having a power supply for applying a voltage to each of the plate electrodes, 상기 각각의 평판전극들은 병렬로 배치되고, 연속 반복적으로 하나의 평판전극들에는 교류전원이 연결되고 이웃하는 다른 하나의 평판전극들에는 접지가 연결되며; 상기 각각의 평판전극은 전기가 통할 수 있도록 일측면에는 금속박막이 도포되고 타측면에는 촉매가 도포되는 2개의 유전체 플레이트를 각각의 금속박막이 접하도록 각각의 일측면이 접합되어 형성되며; 상기 각각의 유전체 플레이트는 0.1mm 내지 2.0mm의 두께를 지니며, 유리, 세라믹, 석영 중 하나로 선택되며; 상기 촉매는 백금, Pd, V, Rh를 포함하는 금속성 촉매그룹 과 TiO2광촉매 그룹들 중 하나로 선택되는 것을 특징으로 하는 저온플라즈마 및 유전열을 이용한 유해가스 처리용 반응기.Each of the plate electrodes is disposed in parallel, and one plate electrode is continuously connected to an AC power source and the other plate plate electrode is connected to ground; Each of the plate electrodes is formed by bonding one side of each of the two thin plates to be in contact with each other so that the metal thin film is coated with a metal thin film on one side and a catalyst is applied on the other side to allow electricity to pass therethrough; Each dielectric plate has a thickness of 0.1 mm to 2.0 mm and is selected from one of glass, ceramic, and quartz; The catalyst is a reactor for the treatment of harmful gases using low-temperature plasma and dielectric heat, characterized in that one selected from the group of metallic catalysts including platinum, Pd, V, Rh and TiO 2 photocatalyst groups. 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 전원장치에 의해 상기 평판전극에 공급되는 전력은 50Hz 내지 100kHz 주파수의 1kV 내지 30 kV의 교류전압인 것을 특징으로 하는 유해가스 처리용 반응기.The reactor for treating noxious gas according to claim 1, wherein the power supplied to the plate electrode by the power supply device is an alternating voltage of 1 kV to 30 kV at a frequency of 50 Hz to 100 kHz. 제 1항 또는 5항에 따른 유해가스 처리용 반응기를 이용하여 VOCs (Volatile Organic Compounds), PFCs(Perfluorocarbons), CFCs(Chlorofluorocarbons), TCE(trichloroethylene), 다이옥신으로 이루어진 그룹으로부터 선택되는 하나 이상의 유해성분을 포함하는 유해가스를 처리하는 방법에 있어서,Using one or more hazardous gas treatment reactors according to claim 1 or 5, at least one harmful component selected from the group consisting of VOCs (Volatile Organic Compounds), PFCs (Perfluorocarbons), CFCs (Chlorofluorocarbons), TCE (trichloroethylene), Dioxin In the method of processing the harmful gas containing, 상기 반응기를 유해가스 처리장치에 준비시키는 단계;Preparing the reactor in a hazardous gas treating apparatus; 상기 반응기의 각각의 판형 전극에 교류주파수의 교류전압을 인가하여 저온플라즈마 및 유전열을 발생시키는 단계;Generating a low temperature plasma and dielectric heat by applying an alternating current voltage of alternating current frequency to each plate-shaped electrode of the reactor; 상기 반응기의 내부에 유해가스를 공급하는 단계; 및Supplying harmful gas to the inside of the reactor; And 상기 유해가스에 대한 플라즈마 반응 및 촉매반응을 동시에 행하는 단계를 포함하는 것을 특징으로 하는 유해가스 처리방법.Toxic gas treatment method comprising the step of performing a plasma reaction and a catalytic reaction to the harmful gas at the same time. 제 6항에 있어서, 반응기의 내부에 형성될 수 있는 고상 및 액상 부산물을제거하기 위해, 장시간 운전후 주기적으로 청정공기 또는 산소를 반응기에 공급하는 단계를 더 포함하는 것을 특징으로 하는 유해가스 처리방법.The method of claim 6, further comprising periodically supplying clean air or oxygen to the reactor after a long time in order to remove solid and liquid by-products that may be formed inside the reactor. . 삭제delete
KR10-2000-0075601A 2000-12-12 2000-12-12 Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof KR100434940B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2000-0075601A KR100434940B1 (en) 2000-12-12 2000-12-12 Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof
JP2001274881A JP3711052B2 (en) 2000-12-12 2001-09-11 Catalytic reactor for treating hazardous gases using low temperature plasma and dielectric heat
US09/965,696 US20020070127A1 (en) 2000-12-12 2001-09-27 Catalyst reactor for processing hazardous gas using non-thermal plasma and dielectric heat and method threreof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0075601A KR100434940B1 (en) 2000-12-12 2000-12-12 Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof

Publications (2)

Publication Number Publication Date
KR20020046093A KR20020046093A (en) 2002-06-20
KR100434940B1 true KR100434940B1 (en) 2004-06-10

Family

ID=19702987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0075601A KR100434940B1 (en) 2000-12-12 2000-12-12 Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof

Country Status (3)

Country Link
US (1) US20020070127A1 (en)
JP (1) JP3711052B2 (en)
KR (1) KR100434940B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511568B1 (en) * 2002-11-18 2005-09-02 한국에너지기술연구원 Plasma reactor with dielectric electrode united by catalyst in one body
KR20220115189A (en) 2021-02-10 2022-08-17 대한민국(국립재활원장) Foldable washstand which maximizes space utilization and usability

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023779A (en) * 2001-12-17 2002-03-29 김기호 the manufacturing method of the plasma occurrence unit.
KR100477060B1 (en) * 2001-12-24 2005-03-17 환경플라즈마(주) Air pollutant gas(Odor, VOC, PFC, Dioxin, Toxic gas) treating system with multiple plate nonthermal plasma reactor
KR100462505B1 (en) * 2002-06-17 2004-12-17 주식회사 블루플래닛 Plate-to-Plate Type Plasma Reactor Using Thin Ceramic Plates and Fabricating Method thereof
KR100461516B1 (en) * 2002-07-25 2004-12-13 사단법인 고등기술연구원 연구조합 multistage structured barrier plasma discharge apparatus with dielectric-embedded type electrodes
KR100462188B1 (en) * 2002-12-13 2004-12-17 주식회사 블루플래닛 Mass-producible, Multi-perpose Plate-to-Plate Type Plasma Reactor Using Thin Ceramic Plates and Fabricating Method thereof
KR100543529B1 (en) * 2003-04-29 2006-01-31 국방과학연구소 Air filtration system and method of the same
JP2005161216A (en) * 2003-12-03 2005-06-23 Japan Atom Energy Res Inst Method for purifying gas containing harmful organic matter by irradiation with electron beam
JP2005211704A (en) * 2004-01-27 2005-08-11 Koken Ltd Continuous air cleaning apparatus
KR100577960B1 (en) * 2004-07-08 2006-05-10 주식회사 효성 Process for refining nitrogen trifluoride gas using alkali earth metal impregnated zeolite 5A
JP4636930B2 (en) * 2005-04-28 2011-02-23 ミドリ安全株式会社 Catalyst holding device and gas removing device
US8105546B2 (en) * 2005-05-14 2012-01-31 Air Phaser Environmental Ltd. Apparatus and method for destroying volatile organic compounds and/or halogenic volatile organic compounds that may be odorous and/or organic particulate contaminants in commercial and industrial air and/or gas emissions
KR100614882B1 (en) * 2005-06-02 2006-08-25 제주대학교 산학협력단 Method of treating exhaust gas by using dielectric barrier discharge and reducing agents, and device for treating the method
JP5376618B2 (en) * 2005-11-30 2013-12-25 日本碍子株式会社 Electrode device for plasma discharge
KR100692141B1 (en) * 2005-12-09 2007-03-12 현대자동차주식회사 Plasma reactor and apparatus for decreasing exhausting gas of a vehicle including the same
WO2007081032A1 (en) * 2006-01-11 2007-07-19 Ngk Insulators, Ltd. Electrode device for plasma discharge
KR100776616B1 (en) * 2006-05-04 2007-11-15 한국기계연구원 Flat type Plasma Reactor
AU2006350546A1 (en) * 2006-11-08 2008-05-15 Air Phaser Environmental Ltd. Apparatus and method for destroying organic compounds in commercial and industrial large volume air emissions
KR100957286B1 (en) * 2007-01-15 2010-05-12 파나소닉 주식회사 Plasma display device
FR2918584A1 (en) * 2007-07-10 2009-01-16 Centre Nat Rech Scient Microreactor, useful for catalytic decomposition of volatile organic compounds, comprises heatable stack of silicon plates with grooves creating microchannels, coated with catalyst
FR2975018B1 (en) 2011-05-10 2016-11-25 Commissariat Energie Atomique DEVICE FOR THE TREATMENT OF GASES BY SURFACE PLASMA
KR101601805B1 (en) * 2011-11-14 2016-03-11 한국전자통신연구원 Apparatus and method fot providing mixed reality contents for virtual experience based on story
JP6315482B2 (en) * 2012-07-13 2018-04-25 エスピー テック Dielectric barrier discharge type plasma generating electrode structure having conductor protrusion on electrode
CN102755819B (en) * 2012-08-02 2014-04-16 桂林市世环废气处理设备有限公司 Low-temperature plasma oxidizer and low-temperature plasma deodorization system
EP3025891B1 (en) 2013-07-22 2020-10-07 HyTRIB Corporation GmbH Car run on hydrogen without hydrogen on board
CN103585863A (en) * 2013-09-09 2014-02-19 中船重工海博威(江苏)科技发展有限公司 Low-temperature plasma waste gas treatment system
CN103845995A (en) * 2014-03-24 2014-06-11 德清天皓环保科技有限公司 Organic waste gas plasma purifier
KR20170040654A (en) 2015-10-05 2017-04-13 주식회사 에프티넷 Hybrid dielectric barrier discharge electrode using surface discharge and volume discharge
US10194672B2 (en) 2015-10-23 2019-02-05 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
CN106215641A (en) * 2016-09-30 2016-12-14 苏州海思乐废气处理设备有限公司 A kind of plasma cleaning mechanism of high-temp waste gas
CN106215648A (en) * 2016-09-30 2016-12-14 苏州海思乐废气处理设备有限公司 A kind of waste gas purification apparatus of easy installation
CN106215659A (en) * 2016-09-30 2016-12-14 苏州海思乐废气处理设备有限公司 A kind of plasma exhaust processor
CN108355486B (en) * 2018-03-07 2020-12-15 广州握胜环保科技有限公司 Low-temperature plasma concerted catalysis device
WO2020141642A1 (en) * 2019-01-03 2020-07-09 주식회사 글로벌스탠다드테크놀로지 Hazardous gas treatment system based on plasma and dielectric heating catalyst
US10925144B2 (en) * 2019-06-14 2021-02-16 NanoGuard Technologies, LLC Electrode assembly, dielectric barrier discharge system and use thereof
KR102292828B1 (en) 2019-07-24 2021-08-25 주식회사 소로나 A cold plasma-catalyst scrubber installed at the front of a vacuum pump
CN110586077B (en) * 2019-08-15 2022-05-31 杭州电子科技大学 Method suitable for low-temperature plasma concerted catalysis denitration and preparation method of monolithic catalyst thereof
US11896731B2 (en) 2020-04-03 2024-02-13 NanoGuard Technologies, LLC Methods of disarming viruses using reactive gas
CN112316679B (en) * 2020-10-20 2022-02-25 中国科学院地球环境研究所 Low-temperature plasma VOCs purification device and method
CN113828151B (en) * 2021-10-09 2023-12-01 上海电力大学 Gas-solid two-phase photocatalytic reduction carbon dioxide reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275119A (en) * 1990-03-26 1991-12-05 Akira Mizuno Apparatus for treating exhaust gas with plasma
JPH04171022A (en) * 1990-11-01 1992-06-18 Mitsubishi Heavy Ind Ltd Waste gas cleaning method
JPH06106025A (en) * 1992-09-29 1994-04-19 Mitsui Eng & Shipbuild Co Ltd Plasma reaction vessel in nitrogen oxide decomposition device
KR20000044706A (en) * 1998-12-30 2000-07-15 김덕중 Exhaust gas dispersion pouring type multi-stage corona reactor
KR20000014271U (en) * 1998-12-30 2000-07-25 김덕중 Catalytic Integrated Multistage Corona Reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983021A (en) * 1971-06-09 1976-09-28 Monsanto Company Nitrogen oxide decomposition process
US5914015A (en) * 1996-07-15 1999-06-22 Battelle Memorial Institute Method and apparatus for processing exhaust gas with corona discharge
US6464945B1 (en) * 1999-03-11 2002-10-15 Delphi Technologies, Inc. Non-thermal plasma exhaust NOx reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275119A (en) * 1990-03-26 1991-12-05 Akira Mizuno Apparatus for treating exhaust gas with plasma
JPH04171022A (en) * 1990-11-01 1992-06-18 Mitsubishi Heavy Ind Ltd Waste gas cleaning method
JPH06106025A (en) * 1992-09-29 1994-04-19 Mitsui Eng & Shipbuild Co Ltd Plasma reaction vessel in nitrogen oxide decomposition device
KR20000044706A (en) * 1998-12-30 2000-07-15 김덕중 Exhaust gas dispersion pouring type multi-stage corona reactor
KR20000014271U (en) * 1998-12-30 2000-07-25 김덕중 Catalytic Integrated Multistage Corona Reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511568B1 (en) * 2002-11-18 2005-09-02 한국에너지기술연구원 Plasma reactor with dielectric electrode united by catalyst in one body
KR20220115189A (en) 2021-02-10 2022-08-17 대한민국(국립재활원장) Foldable washstand which maximizes space utilization and usability

Also Published As

Publication number Publication date
KR20020046093A (en) 2002-06-20
US20020070127A1 (en) 2002-06-13
JP3711052B2 (en) 2005-10-26
JP2002191964A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR100434940B1 (en) Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof
Li et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review
CN105864908A (en) Multistage plasma air purifier
KR102075490B1 (en) Apparatus for decomposition of volatile organic compounds and decomposing method using it
CN109046019B (en) Low-energy-consumption organic volatile gas treatment device and method
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
Hossain et al. Nonthermal plasma in practical-scale honeycomb catalysts for the removal of toluene
CN104069722A (en) Treatment device and method of trinity industrial source peculiar-smell waste gas
CN108452646B (en) Device and method for catalytically treating VOCs (volatile organic compounds) by cooperation of plasma and electric heating cylinder net
KR100477060B1 (en) Air pollutant gas(Odor, VOC, PFC, Dioxin, Toxic gas) treating system with multiple plate nonthermal plasma reactor
Vandenbroucke et al. Decomposition of Trichloroethylene with Plasma-catalysis: A review
JP2002336653A (en) Plasma catalytic reactor, air cleaning apparatus, nitrogen oxide cleaning apparatus, waste combustion gas cleaning apparatus, dioxine decomposing apparatus and fluorocarbon gas decomposing apparatus
KR100543529B1 (en) Air filtration system and method of the same
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
CN209917632U (en) Low concentration VOCs organic waste gas purifying equipment
KR100492475B1 (en) Low temperature plasma-catalysts system for VOC and odor treatment and method using thereof
US20040093853A1 (en) System and method for using nonthermal plasma reactors
US20060119278A1 (en) Gas decomposition apparatus and gas treatment cartridge
KR100451125B1 (en) noxious gas purification system using non-thermal plasma reactor and control method therefor
KR100365368B1 (en) Method for treating toxic compounds using non-thermal plasma
CN2351151Y (en) Bed type discharge plasma air purifier
JP2014514155A (en) Device for processing gases using surface plasma
Brandenburg et al. Plasma-based depollution of exhausts: principles, state of the art and future prospects
KR101118203B1 (en) The Apparatus and Method on The Treatment of Volatile Organic Compounds Using Gliding Arc Plasma-Catalyst Process
KR100503921B1 (en) Pollution gas disposer using low temp plasma and optic fiber catalyst filter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140310

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 17