JP2005300667A - Charging member and its manufacture method - Google Patents

Charging member and its manufacture method Download PDF

Info

Publication number
JP2005300667A
JP2005300667A JP2004113200A JP2004113200A JP2005300667A JP 2005300667 A JP2005300667 A JP 2005300667A JP 2004113200 A JP2004113200 A JP 2004113200A JP 2004113200 A JP2004113200 A JP 2004113200A JP 2005300667 A JP2005300667 A JP 2005300667A
Authority
JP
Japan
Prior art keywords
charging member
resistance layer
conductive
resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004113200A
Other languages
Japanese (ja)
Inventor
Hiroshi Mayuzumi
博志 黛
Hiroyuki Osada
弘行 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004113200A priority Critical patent/JP2005300667A/en
Publication of JP2005300667A publication Critical patent/JP2005300667A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging member capable of stably being manufactured with stable charging uniformity and leak resistance even in the case of the change of temperature/humidity avoiding a harmful influence caused by the excessive flow of a current such as overdischarge and also obtaining an excellent image even when it is assembled in an electrophotographic device realizing high-speed operation, high gradation and high definition, and to provide a manufacturing method of the charging member. <P>SOLUTION: In the charging member having a structure where a conductive base substance is covered with a resistance layer or the resistance layer is supported on the conductive base substance, the resistance layer contains conductive material and non-conductive particles, wherein the non-conductive particles are contained much more in the vicinity of the surface side than in the vicinity of the inner surface side near to the conductive base substance. The manufacturing method of the charging member is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複写機やレーザープリンター等に用いられる帯電部材及びその製造方法に関する。   The present invention relates to a charging member used for a copying machine, a laser printer, and the like, and a manufacturing method thereof.

従来の電子写真装置において、感光体表面を均一に帯電するための帯電装置としては、タングステン等の細いワイヤーに高電圧を印加し、その結果発生するコロナ放電を利用したコロトロン帯電器等が一般的であった。しかし、コロナ放電を利用した方法では高圧電源を必要とすることや、発生するオゾンによる強酸化作用のために感光体の劣化等の悪影響を招く等の欠点があった。そのため従来より数多くのオゾンレス帯電方式が提案されているが、それらは主に被帯電体である感光体に導電性の帯電部材から直接電荷を供給することにより放電電流を極力減少させ、結果として放電に際してオゾンの発生量を減少させるものであった。   In a conventional electrophotographic apparatus, as a charging apparatus for uniformly charging the surface of a photoreceptor, a corotron charger using a corona discharge generated as a result of applying a high voltage to a thin wire such as tungsten is generally used. Met. However, the method using corona discharge has drawbacks such as requiring a high-voltage power source and causing adverse effects such as deterioration of the photoreceptor due to the strong oxidizing action by the generated ozone. Therefore, many ozone-less charging methods have been proposed in the past, but they reduce the discharge current as much as possible by supplying electric charge directly from the conductive charging member to the photosensitive member, which is the object to be charged, and as a result At this time, the amount of ozone generated was reduced.

オゾンレス帯電の形態を簡単に分類すると、弾性ローラや弾性ブレード等を用いた方式、ファーブラシを用いた方式及び固体放電素子を用いた方式等がある。また、放電電界の形成方式については、直流電圧を帯電部材に印加する方式、交流電圧と直流電圧を同時に印加する方式がある。   The forms of ozone-less charging are simply classified into a method using an elastic roller and an elastic blade, a method using a fur brush, a method using a solid discharge element, and the like. As a method for forming the discharge electric field, there are a method in which a DC voltage is applied to the charging member and a method in which an AC voltage and a DC voltage are simultaneously applied.

導電性を有する帯電部材の構成として、鉄やステンレス等の導電性基体上に抵抗層を被覆したものが広く使用されている。抵抗層は、被帯電面とのニップ巾を適正にするために、ゴムや樹脂等の弾性体中に、オイルや可塑剤等の軟化剤が添加させて構成されるとともに、導電性カーボンブラックや金属紛等の導電性材料が添加されて導電性を有する。   As a configuration of a charging member having conductivity, a material in which a resistance layer is coated on a conductive substrate such as iron or stainless steel is widely used. The resistance layer is formed by adding a softening agent such as oil or plasticizer to an elastic body such as rubber or resin in order to make the nip width with the surface to be charged appropriate. Conductive material such as metal powder is added to have conductivity.

帯電部材の導電特性として、一般に体積抵抗が高過ぎると感光体の帯電ムラや帯電不良による異常画像(砂地画像)が発生する。逆に低過ぎると感光体表面に製造上又は取り扱い上等の原因でピンホールが生じた場合、そのピンホール部に対応する画像上に反転現像の時に菱形状の異常画像が発生(リーク性)する等、帯電部材の抵抗には適正な領域が存在する。   In general, if the volume resistance is too high as the conductive property of the charging member, an abnormal image (sand image) due to uneven charging or poor charging of the photoconductor occurs. On the other hand, if the surface is too low, if a pinhole occurs on the surface of the photoreceptor due to manufacturing or handling, a rhombus-shaped abnormal image is generated on the image corresponding to the pinhole portion during reversal development (leakage) For example, there is an appropriate region for the resistance of the charging member.

そこで必要に応じて、抵抗層を2層以上の多層構成とし、被覆層にアクリル、ウレタン、アクリルウレタン、ヒドリンやポリアミド等の高分子材料、導電性カーボンブラック等の導電材料を分散させた抵抗調整層を設けて、被帯電体への帯電の均一性と、耐リーク性を図ることが試みられている。   Therefore, if necessary, the resistance layer has a multi-layer structure of two or more layers, and the resistance is adjusted by dispersing a polymer material such as acrylic, urethane, acrylic urethane, hydrin or polyamide, or a conductive material such as conductive carbon black in the coating layer. Attempts have been made to provide a layer to achieve uniformity of charging of the member to be charged and leakage resistance.

被帯電体に対する耐リーク性を向上させるため、特許文献1では、単体構造からなる抵抗体の内部に導電材料の分布密度差を設けるもので、被帯電体等の被接触体との接触側で導電材料の分布密度を他の部分より小さく又は実質的に零にすることが指示されている。この方法では、抵抗体の抵抗を表面側(被接触体との接触側)で増加させることができるため、耐リーク性を向上させることはできる。しかし抵抗体表面を均一に覆う、導電剤の分布が小さい又は実質的に零の部分の抵抗は高く、使用するゴムや樹脂等の抵抗に近いため、温度や湿度に対してゴムや樹脂等が持つ変動を大きく受けることから、抵抗は温度や湿度により大きく変動することになる。そのため帯電部材として使用した場合、低温・低湿度下と高温・高湿度下とでは一定した帯電均一性と耐リーク性を得ることが困難であるといった問題があった。また、使用するゴムや樹脂等の他に少量の導電剤が抵抗体の抵抗を左右することになるため、導電剤の含有量により抵抗値が急激に変動してしまい、安定して製造できないといった課題があった。   In order to improve the leakage resistance with respect to the object to be charged, Patent Document 1 provides a distribution density difference of the conductive material inside the resistor having a single structure, on the contact side with the object to be contacted such as the object to be charged. It is indicated that the distribution density of the conductive material is smaller or substantially zero than the other parts. In this method, the resistance of the resistor can be increased on the surface side (contact side with the contacted body), so that the leak resistance can be improved. However, the resistance of the conductive material that uniformly covers the surface of the resistor, where the distribution of the conductive agent is small or substantially zero, is high and close to the resistance of the rubber or resin used. Since resistance is greatly affected, the resistance greatly varies depending on temperature and humidity. For this reason, when used as a charging member, there is a problem that it is difficult to obtain uniform charging uniformity and leakage resistance under low temperature / low humidity and high temperature / high humidity. In addition to the rubber and resin used, a small amount of the conductive agent affects the resistance of the resistor, so that the resistance value abruptly fluctuates depending on the content of the conductive agent. There was a problem.

被帯電体に対する帯電均一性を向上させる目的で、特許文献2では帯電部材表面の最大粗さRmaxが0.01〜0.5mmと記載されている。従来より帯電部材表面の表面粗さを任意の範囲内に制御することで帯電の均一性を向上させる手法がとられている。帯電部材表面の表面粗さを制御する方法として、特許文献3では、5〜30μmの平均粒径を有する非導電性粒子を抵抗層内に分散させてRzが7〜14μmにした帯電部材が記載されている。このように抵抗層内に非導電性粒子を均一に分散させる製造方法では、帯電部材の表面粗さを制御できるものの、抵抗層内部や下面側にも非導電性粒子が存在することになるため大量の非導電性粒子を抵抗層内に添加する必要があるため、結果として抵抗層の抵抗が増加することになる。そのため帯電部材の抵抗を所定の値にするため導電性材料の添加量を増加させなければならず、抵抗層中で非導電性粒子を除く部分には導電性材料が大量に存在するため、過放電等の過剰な電流が流れることによる弊害が発生する場合があった。また、帯電部材の表面粗さは添加する非導電性粒子の粒子径に大きく制御されるが、市販されている非導電性粒子が持つ粒子径は所望の粒子径と異なる場合が多く、そのため特別に非導電性粒子を製造する場合には製造コストを上昇させる原因となっていた。   In order to improve the charging uniformity with respect to the object to be charged, Patent Document 2 describes that the maximum roughness Rmax of the charging member surface is 0.01 to 0.5 mm. Conventionally, a method for improving the uniformity of charging by controlling the surface roughness of the charging member surface within an arbitrary range has been employed. As a method for controlling the surface roughness of the charging member surface, Patent Document 3 describes a charging member in which non-conductive particles having an average particle diameter of 5 to 30 μm are dispersed in a resistance layer so that Rz is 7 to 14 μm. Has been. As described above, in the manufacturing method in which the nonconductive particles are uniformly dispersed in the resistance layer, although the surface roughness of the charging member can be controlled, the nonconductive particles are also present in the resistance layer and on the lower surface side. Since a large amount of non-conductive particles need to be added into the resistance layer, the resistance of the resistance layer increases as a result. Therefore, the amount of conductive material added must be increased in order to set the resistance of the charging member to a predetermined value, and a large amount of conductive material is present in the portion of the resistance layer excluding nonconductive particles. There is a case where an adverse effect due to an excessive current such as discharge occurs. In addition, the surface roughness of the charging member is largely controlled by the particle size of the non-conductive particles to be added, but the particle size of the non-conductive particles that are commercially available is often different from the desired particle size. In the case of producing non-conductive particles, the production cost is increased.

特許文献4には、表面から0.5μmまでの領域内を平均粒子径0.1μm以上の非粘着性微粒子が20体積%以上含有させた帯電部材が提示されている。本従来技術では、表面近傍における非粘着性粒子の存在割合を規定することで、低分子量成分の染み出しや被帯電体に対する付着性を低減させるもので、帯電均一性の向上と耐リーク性との両立という観点からは、従来の技術と何ら変わるものではない。   Patent Document 4 proposes a charging member in which 20 vol% or more non-adhesive fine particles having an average particle diameter of 0.1 μm or more are contained in a region from the surface to 0.5 μm. In this conventional technology, by regulating the existence ratio of non-adhesive particles in the vicinity of the surface, the low molecular weight component oozes out and adheres to the object to be charged. From the standpoint of achieving both, there is no difference from conventional technology.

昨今の電子写真装置は、高速化と共に高諧調化や高精細化が急速に進んでいる状況であり、帯電部材においても従来技術以上に帯電均一性の向上と、耐リーク性との両立が求められている。
特開2000−39755号公報 特開平7−281507号公報 特開平9−258523号公報 特許第2964853号公報
The current electrophotographic apparatus is in a situation where high-speed gradation and high-definition are rapidly progressing with high speed, and the charging member is required to have both improved charging uniformity and leakage resistance more than the conventional technology. It has been.
JP 2000-39755 A JP-A-7-281507 JP-A-9-258523 Japanese Patent No. 2996453

本発明の目的は、過放電等の過剰な電流が流れることによる弊害がなく、温度・湿度の変化に対しても安定した帯電均一性と耐リーク性を持つ帯電部材を安定して製造できると共に、高速化、高諧調化や高精細化した電子写真装置に組み込んだ場合においても常に良好な画像が得られる帯電部材、この帯電部材の製造方法を提供することである。   The object of the present invention is that there is no adverse effect caused by excessive electric current such as overdischarge, and it is possible to stably manufacture a charging member having stable charging uniformity and leakage resistance against changes in temperature and humidity. It is another object of the present invention to provide a charging member capable of always obtaining a good image even when incorporated in an electrophotographic apparatus with high speed, high gradation, and high definition, and a method for manufacturing the charging member.

本発明に従って、導電性基体上に抵抗層を被覆又は支持した構造を有する帯電部材において、該抵抗層が、導電性材料と非導電性粒子を含有し、該非導電性粒子を導電性基体に近い内面側近傍に比べて表面側近傍に多く含有することを特徴とする帯電部材が提供される。   According to the present invention, in a charging member having a structure in which a resistive layer is coated or supported on a conductive substrate, the resistive layer contains a conductive material and non-conductive particles, and the non-conductive particles are close to the conductive substrate. Provided is a charging member characterized by containing more in the vicinity of the surface side than in the vicinity of the inner surface side.

また、本発明に従って、非導電性粒子を表面側で多く含有した抵抗層を有する帯電部材の製造方法において、導電性基体又は導電性基体上に覆接した弾性層を、導電性材料、非導電性粒子及び結着材料を含有する抵抗層組成物に対して相対的に移動させて抵抗層組成物を塗工する工程を有する、ことを特徴とする帯電部材の製造方法が提供される。   According to the present invention, in the method of manufacturing a charging member having a resistance layer containing a large amount of nonconductive particles on the surface side, the conductive substrate or the elastic layer covered on the conductive substrate may be formed of a conductive material, a nonconductive material. There is provided a method for producing a charging member, comprising a step of coating the resistance layer composition by moving the resistance layer composition relative to the resistance layer composition containing the conductive particles and the binder material.

本発明によれば、導電性基体上に抵抗層を被覆した構造を有する帯電部材において、抵抗層が、導電性材料と非導電性粒子を含有し、非導電性粒子を導電性基体に近い内面側近傍に比べて表面側近傍に多く含有することで、帯電ムラや帯電不良により異常画像が発生する印加電圧と、ピンホールが存在する時の菱形状の異常画像が発生する印加電圧との電圧差を広げることができ、また温度や湿度によりそれらの印加電圧への影響が少なく、適正画像を得るのに必要な印加電圧の領域を広く確保できる。   According to the present invention, in a charging member having a structure in which a resistive layer is coated on a conductive substrate, the resistive layer contains a conductive material and non-conductive particles, and the non-conductive particles are close to the conductive substrate. The voltage between the applied voltage that generates an abnormal image due to uneven charging or defective charging and the applied voltage that generates a rhombus-shaped abnormal image when pinholes are present due to inclusion in the vicinity of the surface side more than the vicinity of the side The difference can be widened, and there is little influence on the applied voltage due to temperature and humidity, and a wide range of applied voltage necessary for obtaining a proper image can be secured.

また弾性層を、導電性材料、非導電性粒子及び結着材料を含有する抵抗層組成物に対して相対的に移動させて抵抗層組成物を塗工する工程を有する方法で製造することで、適正画像の得られる導電性部材を安定して供給することができる。   In addition, the elastic layer is manufactured by a method including a step of coating the resistive layer composition by moving the elastic layer relative to the resistive layer composition containing the conductive material, the nonconductive particles, and the binder material. It is possible to stably supply a conductive member that can obtain an appropriate image.

本発明による帯電部材は、導電性基体の外周に設けられた抵抗層が、導電性材料と非導電性粒子を含有し、抵抗層内で非導電性粒子を下面側に比べ表面近傍に多く含有することを特徴とする。非導電性粒子を下面側に比べ表面近傍で多く含有することで、帯電部材を所望の表面粗さに制御できることで帯電均一性を向上できると共に、抵抗層の抵抗値を著しく増加させること無く、抵抗層の表面近傍の抵抗を制御し耐リーク性を向上できる。また、非導電性粒子以外の箇所では、導電性材料が存在するため温度や湿度に対する抵抗の変動を抑制することができる。   In the charging member according to the present invention, the resistance layer provided on the outer periphery of the conductive substrate contains a conductive material and non-conductive particles, and the non-conductive particles are contained in the resistance layer near the surface more than the lower surface side. It is characterized by doing. By containing more non-conductive particles near the surface than on the lower surface side, the charging member can be controlled to the desired surface roughness, so that charging uniformity can be improved and without significantly increasing the resistance value of the resistance layer, The resistance near the surface of the resistance layer can be controlled to improve the leak resistance. Moreover, since a conductive material exists in places other than non-conductive particles, fluctuations in resistance to temperature and humidity can be suppressed.

本発明による帯電部材は、抵抗層内部において下面側から厚み10%の範囲に比べ、表面側から厚み10%の範囲に、1.1倍以上5倍以下の割合で分布していることが好ましい。抵抗層の表面側における非導電性粒子の分布状態を下面側に比べ1.1倍以上とすることで抵抗層の厚みが大きい場合や帯電部材に求められる抵抗が低い場合でも抵抗層の表面側の抵抗を所望の値に制御でき耐リーク性を向上できる。また、非導電性粒子の分布状態を5倍以下とすることで、表面側には適度に導電材料が存在するため帯電均一性を向上できると共に抵抗が温度・湿度の影響を受けず安定した特性を得ることができる。   The charging member according to the present invention is preferably distributed at a ratio of 1.1 times or more and 5 times or less in the range of 10% thickness from the surface side to the thickness range of 10% from the lower surface side in the resistance layer. . By making the distribution of non-conductive particles on the surface side of the resistance layer 1.1 times or more compared to the lower surface side, even when the resistance layer has a large thickness or the resistance required for the charging member is low, the resistance layer surface side The resistance can be controlled to a desired value, and leakage resistance can be improved. In addition, by making the distribution state of non-conductive particles 5 times or less, there is a conductive material on the surface side so that the charging uniformity can be improved and the resistance is not affected by temperature / humidity and stable characteristics. Can be obtained.

本発明による帯電部材は、非導電性粒子を傾斜して含有した抵抗層を有し、帯電部材の表面粗さRzが3μm以上15μm以下であることが好ましい。非導電性粒子を下面側に比べ表面近傍で多く含有する抵抗層を有し、帯電部材の表面粗さRzを3μm以上にすることで放電点が多量に存在し帯電均一性を向上できると共に被帯電体との接点が減少し接点間では空隙が存在するため耐リーク性を向上でき、また表面粗さを15μm以下にすることで、長期使用においても凹部に起因する帯電不良を抑制できる。   The charging member according to the present invention preferably has a resistance layer containing non-conductive particles in an inclined manner, and the charging member has a surface roughness Rz of 3 μm or more and 15 μm or less. It has a resistance layer containing more non-conductive particles near the surface than the lower surface side, and by setting the surface roughness Rz of the charging member to 3 μm or more, there are a large number of discharge points and the charging uniformity can be improved. Since the number of contacts with the charged body is reduced and there is a gap between the contacts, the leakage resistance can be improved, and by making the surface roughness 15 μm or less, charging defects caused by the recesses can be suppressed even in long-term use.

本発明よる帯電部材は、非導電性粒子の平均粒径をd、帯電部材の最外層の平均厚みをD、とした時、0.05×D≦d≦1.2×Dであることが好ましい。非導電性粒子の平均粒径dを抵抗層の平均厚みDに対して0.05×D≦dとすることで、非導電性粒子を過剰に添加することなく帯電部材の表面粗さを所望の値に制御することができる。またd≦1.2×Dにすることで、凹部の深さや幅広さを制御できるため長期使用においても帯電不良を抑制できる。   The charging member according to the present invention may satisfy 0.05 × D ≦ d ≦ 1.2 × D, where d is the average particle diameter of the non-conductive particles and D is the average thickness of the outermost layer of the charging member. preferable. By setting the average particle size d of the non-conductive particles to 0.05 × D ≦ d with respect to the average thickness D of the resistance layer, the surface roughness of the charging member is desired without adding excessive non-conductive particles. The value can be controlled. In addition, by setting d ≦ 1.2 × D, the depth and width of the recess can be controlled, so that charging failure can be suppressed even in long-term use.

本発明による帯電部材では、非導電性粒子を架橋した高分子化合物により構成することで、長期使用や被帯電体に対する長期の圧接状態においても初期に作製した表面状態を長期に亘って維持できる。   In the charging member according to the present invention, the surface state prepared in the initial stage can be maintained for a long period of time even in a long-term use or in a long-term pressure contact state with respect to an object to be charged by constituting the non-conductive particles with a crosslinked polymer compound.

本発明による帯電部材の製造方法によれば、基材として導電性基体又は導電性基体上に覆接した弾性層を、導電性材料、非導電性粒子及び結着材料を含有する抵抗層組成物に対して相対的に移動させて抵抗層組成物を塗工することで、非導電性粒子を内面側近傍に比べ表面側近傍に多く含有する抵抗層を成型できる。非導電性粒子が表面近傍に多く含有される作用機構として、抵抗層組成物に対して導電性基体又は導電性基体上に被覆した弾性層を移動させながら塗工すると、抵抗層の厚み方向での抵抗層組成物中のせん断応力の分布は異なり、抵抗層の内面側では基材の移動方向の向きに、また表面側では抵抗層組成物の移動方向の向きや重力の向きに応力が向くことになる。本発明に使用される抵抗層組成物のように粒子を含有する組成物の場合、組成物内部で粒子を除く部分と粒子とでは応力を加えたときに流動が異なり、特に非導電性粒子のような比較的粒子径の大きな粒子が影響を受け易く、非導電性粒子が表面近傍に多く含有されることになると考えられる。   According to the method for producing a charging member according to the present invention, a resistive layer composition containing a conductive substrate or an elastic layer covered on a conductive substrate as a substrate, a conductive material, non-conductive particles, and a binder material. By applying the resistance layer composition by moving the resist layer relative to the surface, a resistance layer containing more non-conductive particles in the vicinity of the surface side than in the vicinity of the inner surface side can be molded. As an action mechanism in which a large amount of non-conductive particles are contained in the vicinity of the surface, when the conductive layer or the elastic layer coated on the conductive substrate is applied to the resistive layer composition while moving, The distribution of shear stress in the resistance layer composition is different, and the stress is directed in the direction of movement of the substrate on the inner surface side of the resistance layer, and in the direction of movement of the resistance layer composition and the direction of gravity on the surface side. It will be. In the case of a composition containing particles such as the resistance layer composition used in the present invention, the flow is different when stress is applied between the portion excluding the particles inside the composition and the particles, and particularly the non-conductive particles. Such relatively large particles are likely to be affected, and many non-conductive particles are likely to be contained near the surface.

またそのためは、抵抗層組成物の粘度特性と含有される粒子径、及び抵抗層組成物に対しての導電性基体又は導電性基体上に被覆した弾性層の移動速度を適宜調節することで制御できることが判った。それにより非導電性粒子が表面近傍に多く含有される抵抗層を被覆できる。   For that purpose, the viscosity characteristics of the resistance layer composition, the particle size contained, and the resistance layer composition are controlled by appropriately adjusting the moving speed of the conductive substrate or the elastic layer coated on the conductive substrate. I found that I can do it. Thereby, the resistance layer containing a large amount of non-conductive particles in the vicinity of the surface can be coated.

本発明の製造方法により、基材に対して引上げ始め側端部に比べ引上げ終わり側端部の移動速度を遅くすることで、抵抗層内部の応力分布と引上げ始め側と終わり側で均一化することができる。   By the manufacturing method of the present invention, the stress distribution inside the resistance layer and the pulling start side and the end side are made uniform by slowing the moving speed of the pulling end side end compared to the pulling start side end with respect to the base material. be able to.

本発明の帯電部材は、導電性基体と、この導電性基体を被覆又は導電性基体に支持された抵抗層を有する帯電部材であり、ここで、被覆とはローラ状の導電性部材において、内面の層の外側に積層するのであり、支持とはブレード状の導電性部材において、内面の層の上に積層することをいう。   The charging member of the present invention is a charging member having a conductive substrate and a resistance layer that covers or is supported by the conductive substrate. Here, the coating is a roller-shaped conductive member that has an inner surface. The term “support” refers to the lamination on the inner layer of the blade-like conductive member.

以下本発明の実施例を図面に基づいて説明する。図1は本発明の帯電部材の一実施例を示す断面図であり、図2は帯電部材を画像形成装置に適用した例を示す断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the charging member of the present invention, and FIG. 2 is a cross-sectional view showing an example in which the charging member is applied to an image forming apparatus.

帯電部材2は、非導電性粒子100を含有する被覆層8と弾性層7からなる抵抗層6及び導電性基体5からなっている。   The charging member 2 includes a coating layer 8 containing non-conductive particles 100, a resistance layer 6 including an elastic layer 7, and a conductive substrate 5.

帯電装置1は、帯電部材2と電源3とから構成され、ドラム状の電子写真感光体10は、R方向に回動可能な接地されたドラム基体11に、OPC、アモルファスシリコン、セレン及び酸化亜鉛等の感光層12を覆設した構造をしている。   The charging device 1 includes a charging member 2 and a power source 3, and a drum-shaped electrophotographic photosensitive member 10 includes an OPC, amorphous silicon, selenium, and zinc oxide on a grounded drum base 11 that can rotate in the R direction. The photosensitive layer 12 is covered.

本発明を適用した帯電部材の一形態を以下に述べる。   One embodiment of the charging member to which the present invention is applied will be described below.

本発明において用いられる導電材料は、公知の導電材料が使用でき、アセチレンブラック、ケッチェンブラックの導電性カーボンブラックやグラファイト、金属粉や酸化チタン、酸化錫、酸化亜鉛等の金属酸化物、又は、適当な粒子の表面を酸化錫、酸化アンチモン、酸化インジウム、酸化モリブデン、亜鉛、アルミニウム、金、銀、鉄、銅、クロム、コバルト、鉛、白金又はロジウムを電解処理、スプレー塗工、混合振とうにより付着させたものでもよい。また、テトラエチルアンモニウム、テトラブチルアンモニウムスルホネイト等の4級アルキルアンモニウム塩やそのポリエチレンオキシド変性体、過塩素酸リチウム、臭素酸ナトリウム等の金属塩、又はエステル系可塑剤や界面活性剤等のイオン性導電剤を使用してもよい。また、これらは、適当なドーパントの選択、添加量を調節することで、公知のようにその体積固有抵抗を調節できる。導電材料の体積固有抵抗としては、局所的な過剰電流を防止するため1×10−2Ω・cm以上が好ましく、導電材料の大量添加によって強度等の膜特性の劣化を防止する観点から1×10Ω・cm以下が好ましい。 As the conductive material used in the present invention, a known conductive material can be used, acetylene black, conductive carbon black and graphite of ketjen black, metal oxide such as metal powder, titanium oxide, tin oxide, and zinc oxide, or Appropriate surface of tin oxide, antimony oxide, indium oxide, molybdenum oxide, zinc, aluminum, gold, silver, iron, copper, chromium, cobalt, lead, platinum or rhodium electrolytic treatment, spray coating, mixed shaking It may be attached by. In addition, quaternary alkylammonium salts such as tetraethylammonium and tetrabutylammonium sulfonate, polyethylene oxide modified products thereof, metal salts such as lithium perchlorate and sodium bromate, or ionic properties such as ester plasticizers and surfactants A conductive agent may be used. In addition, the volume resistivity can be adjusted as is known by adjusting the selection and addition amount of an appropriate dopant. The volume resistivity of the conductive material is preferably 1 × 10 −2 Ω · cm or more in order to prevent a local excess current. From the viewpoint of preventing deterioration of film properties such as strength by adding a large amount of conductive material, 1 × 10 5 Ω · cm or less is preferable.

本発明において用いられる非導電性粒子としては、抵抗層組成物を製造するときに溶媒等により溶解されないものであれば特に限定されず、ウレタンやアクリル、フッ素樹脂等の高分子重合体やシリカ、アルミナ、炭酸カルシウム、沈降性硫酸バリウム、クレイ、シラスバルーン、ベンゾクアナミン及びタルク等の無機紛体やガラス等を使用することができるが、平均粒径の制御や分散性が比較的容易であることから高分子重合体が好ましい。このような高分子重合体としては、ポリプラスチックス(株)よりジュラコンシリーズ、住友精化(株)よりフロービーズシリーズとして市販されている。   The non-conductive particles used in the present invention are not particularly limited as long as they are not dissolved by a solvent or the like when the resistance layer composition is produced, and polymers such as urethane, acrylic, fluororesin, silica, Alumina, calcium carbonate, precipitated barium sulfate, clay, shirasu balloon, benzoquamine, talc, and other inorganic powders and glass can be used, but the average particle size control and dispersibility are relatively easy. Molecular polymers are preferred. Such high molecular weight polymers are commercially available as Duracon series from Polyplastics Co., Ltd. and as flow beads series from Sumitomo Seika Co., Ltd.

非導電性粒子100の平均粒子径は、表面粗さを制御するために1μm以上が好ましく、被帯電体に対する接触状態を均一にするために30μm以下が好ましい。また添加量は、10質量部〜100質量部程度が好ましく、表面粗さを制御できると共に被帯電体への均一帯電を得られ易い。抵抗層内での非導電性粒子の分布状態は、電子顕微鏡により観察できる。非導電性粒子の体積抵抗は、抵抗層の抵抗を低下させない程度に導電性を有していても構わないが、温度・湿度により抵抗が変化する場合があるため、粉体の体積固有抵抗として1×10Ω・cm以上がより好ましい。 The average particle diameter of the non-conductive particles 100 is preferably 1 μm or more for controlling the surface roughness, and preferably 30 μm or less for making the contact state with the charged body uniform. The addition amount is preferably about 10 parts by mass to 100 parts by mass, and the surface roughness can be controlled and uniform charge to the charged body can be easily obtained. The distribution state of the nonconductive particles in the resistance layer can be observed with an electron microscope. The volume resistance of the non-conductive particles may be conductive so as not to decrease the resistance of the resistance layer, but the resistance may change depending on the temperature and humidity. 1 × 10 8 Ω · cm or more is more preferable.

抵抗層は、樹脂やゴム材で構成すればよい。抵抗層に用いる樹脂としては、例えば、ポリウレタン、ポリメチルメタクリレートやポリブチルメタクリレート等のアクリル樹脂、ポリビニルブチラール、ポリビニルアセタール、ポリアリレート、ポリカーボネート、ポリエステル、フェノキシ樹脂、ポリ酢酸ビニル、ポリアミド、ポリビニルピリジン及びセルロース系樹脂等を挙げられる。また、ゴム材としては、例えば、EPDM、ポリブタジエン、天然ゴム、ポリイソプレン、SBR(スチレンブタジエンゴム)、CR(クロロプレンゴム)、NBR(ニトリルブタジエンゴム)、シリコーンゴム、ウレタンゴム及びエピクロルヒドリンゴム等が挙げられる。分散手段としては、ロールニーダー、バンバリーミキサー、ボールミル、サンドグラインダー又はペイントシェイカー等を適宜利用すればよい。   The resistance layer may be made of resin or rubber material. Examples of the resin used for the resistance layer include polyurethane, acrylic resins such as polymethyl methacrylate and polybutyl methacrylate, polyvinyl butyral, polyvinyl acetal, polyarylate, polycarbonate, polyester, phenoxy resin, polyvinyl acetate, polyamide, polyvinyl pyridine, and cellulose. Based resins and the like. Examples of the rubber material include EPDM, polybutadiene, natural rubber, polyisoprene, SBR (styrene butadiene rubber), CR (chloroprene rubber), NBR (nitrile butadiene rubber), silicone rubber, urethane rubber, and epichlorohydrin rubber. It is done. As a dispersing means, a roll kneader, a Banbury mixer, a ball mill, a sand grinder, a paint shaker, or the like may be used as appropriate.

抵抗層組成物は、非導電性粒子の流動により帯電部材表面近傍に非導電性粒子を相対的に多く含有させる場合には、粘度として5mPa・s〜500mPa・sに希釈調節されていることが好ましい。   When the resistance layer composition contains a relatively large amount of non-conductive particles near the surface of the charging member due to the flow of non-conductive particles, the viscosity is adjusted to 5 mPa · s to 500 mPa · s. preferable.

抵抗層内での非導電性粒子の分布状態は、電子顕微鏡により断面における粒子の占有面積として観察できる。抵抗層の平均厚さは、特に限定されないが、通常、1μm〜100μm程度である。平均厚さは、切断した断面を電子顕微鏡により観察できる。表面の凹凸における平均厚さは、隣り合う凹部と凸部の頂点の中央値から求めた。本発明における厚み10%の範囲とは、平均厚さを求める凹部と凸部の中央値から厚み方向に膜厚の10%のところから凸部頂点までの領域を示す。   The distribution state of the non-conductive particles in the resistance layer can be observed as the occupied area of the particles in the cross section by an electron microscope. Although the average thickness of a resistance layer is not specifically limited, Usually, it is about 1 micrometer-100 micrometers. As for the average thickness, the cut section can be observed with an electron microscope. The average thickness of the surface irregularities was determined from the median value of the apexes of the adjacent concave and convex portions. The range of 10% thickness in the present invention indicates a region from the median value of the concave and convex portions for obtaining the average thickness to the top of the convex portion from 10% of the film thickness in the thickness direction.

抵抗層8の体積抵抗値は、被帯電体への過剰電流を防止する点で1×10Ω・cm以上が好ましく、また、被帯電体表面を帯電させるためには1×1013Ω・cm以下が好ましい。 The volume resistance value of the resistance layer 8 is preferably 1 × 10 4 Ω · cm or more from the viewpoint of preventing an excessive current to the member to be charged, and 1 × 10 13 Ω · cm for charging the surface of the member to be charged. cm or less is preferable.

帯電部材を2層以上の層から形成する場合、弾性層としては、上記抵抗層に使用できる材料を使用でき、その形態としては、ソリッドでも発泡体でもよく、またその表面は、ソリッド又は発泡体の研磨面でも、モールド内面が転写された面やスキン面でもよく、特に限定されるものではない。   When the charging member is formed of two or more layers, the elastic layer can be made of a material that can be used for the resistance layer, and the form thereof may be solid or foam, and the surface thereof is solid or foam. The polished surface may be a surface to which the inner surface of the mold is transferred or a skin surface, and is not particularly limited.

また、発泡剤を用いることで発泡体を製造する場合、発泡剤としては、A.D.C.A.(アゾジカルボナミド)系、D.P.T.(ジ−ニトロソペンタメチレンテトラミン)系、O.B.S.H.(4,4’−オキシビス−ベンゼンサルフオニル−ヒドラジド)系、T.S.H.(P−トリエンサルフオニルヒドラジド)系、A.I.B.N.(アゾビスイソブチロニトリル)系等を使用することができ、特にA.D.C.A.系、O.B.S.H.系のブレンド系では緻密な発泡体でかつ加硫のタイト(架橋密度が高い)な発泡体が得られる。   Moreover, when manufacturing a foam by using a foaming agent, as a foaming agent, A.I. D. C. A. (Azodicarbonamide) series, D.I. P. T.A. (Di-nitrosopentamethylenetetramine) system, O.D. B. S. H. (4,4'-oxybis-benzenesulfonyl-hydrazide) system, T.I. S. H. (P-trienesulfonyl hydrazide) system, A.I. I. B. N. (Azobisisobutyronitrile) and the like can be used. D. C. A. System, O.D. B. S. H. In the blend system, a dense foam and a vulcanized tight (high crosslink density) foam can be obtained.

また、弾性層7には、必要に応じて加硫剤を配合してもよい。加硫剤としては、イオウ、過酸化物及びオキシム等の公知の加硫剤を使用できる。なお、加硫剤の配合量は硬度等を調節するため適宜決めればよい。弾性層7には、この他に、加硫促進剤、老化防止剤、可塑剤等を添加してもよい。   Moreover, you may mix | blend a vulcanizing agent with the elastic layer 7 as needed. As the vulcanizing agent, known vulcanizing agents such as sulfur, peroxide and oxime can be used. In addition, what is necessary is just to determine the compounding quantity of a vulcanizing agent suitably in order to adjust hardness etc. In addition to this, a vulcanization accelerator, an anti-aging agent, a plasticizer, and the like may be added to the elastic layer 7.

このような弾性層7は、公知の方法により形成すればよい。例えば、発泡剤を混合した弾性体素材を押出成形し、これを加熱して発泡、加硫硬化する方法、弾性体素材を金型内に注入するインジェクションやトランスファー等が挙げられる。   Such an elastic layer 7 may be formed by a known method. Examples thereof include a method of extruding an elastic material mixed with a foaming agent and heating and foaming and vulcanizing and curing, and injection and transfer for injecting the elastic material into a mold.

弾性層7の体積抵抗値は、抵抗層に過剰な電圧印加が起こらないように、1×10Ω・cm以上が好ましく、また、被帯電体表面を帯電させるために、1×1013Ω・cm以下が好ましい。弾性層7の厚さは特に限定されないが、通常1mm以上10mm以下の程度である。 The volume resistance value of the elastic layer 7 is preferably 1 × 10 2 Ω · cm or more so that an excessive voltage is not applied to the resistance layer, and 1 × 10 13 Ω to charge the surface of the member to be charged. -Cm or less is preferable. The thickness of the elastic layer 7 is not particularly limited, but is usually about 1 mm to 10 mm.

導電性基体5(芯金)は特に限定されないが、基体としての強度があり、導電性を示すものが好適である。これらの材料としては鉄、ステンレス、アルミニウム及び導電性プラスチック等が挙げられる。   The conductive substrate 5 (core metal) is not particularly limited, but those having strength as a substrate and exhibiting conductivity are suitable. Examples of these materials include iron, stainless steel, aluminum, and conductive plastic.

本発明の帯電部材は、通常、導電性基体、弾性層及び抵抗層からなるが、その他にブリード防止層を設けてもよい。   The charging member of the present invention is usually composed of a conductive substrate, an elastic layer, and a resistance layer, but may further be provided with a bleed prevention layer.

感光ドラム10は、次のように構成される。感光層12は、感光ドラム基体11の上に設けられる。感光ドラム基体としては、基体自体が導電性をもつもの、例えばアルミニウム、アルミニウム合金、ステンレス、ニッケル等の金属を用いることができ、そのほかにアルミニウム、アルミニウム合金、酸化インジウム−酸化錫合金等を真空蒸着によって被膜形成された層を有するプラスチック、導電性粒子(例えばカーボンブラック、酸化錫粒子等)を適当なバインダーと共に金属やプラスチックに塗布した基体、導電性バインダーを有するプラスチック等を用いることができる。   The photosensitive drum 10 is configured as follows. The photosensitive layer 12 is provided on the photosensitive drum base 11. As the photosensitive drum substrate, a substrate having a conductive property such as aluminum, aluminum alloy, stainless steel, nickel or the like can be used. In addition, aluminum, aluminum alloy, indium oxide-tin oxide alloy, etc. are vacuum deposited. It is possible to use a plastic having a layer formed by coating, a substrate obtained by applying conductive particles (for example, carbon black, tin oxide particles, etc.) to a metal or plastic together with an appropriate binder, a plastic having a conductive binder, and the like.

導電性基体と感光層の中間に、バリヤー機能と接着機能をもつ下引層を設けることもできる。下引層は、カゼイン、ポリビニルアルコール、ニトロセルロース、エチレン−アクリル酸コポリマー、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン等)、ポリウレタン、ゼラチン、酸化アルミニウム等によって形成できる。下引層の膜厚は5μm以下が好ましく、より好ましくは0.5μm〜3μmが適当である。下引層はその機能を発揮するためには、1×10Ω・cm以上であることが好ましい。 An undercoat layer having a barrier function and an adhesive function may be provided between the conductive substrate and the photosensitive layer. The undercoat layer can be formed of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon 610, copolymer nylon, etc.), polyurethane, gelatin, aluminum oxide, or the like. The thickness of the undercoat layer is preferably 5 μm or less, more preferably 0.5 μm to 3 μm. The undercoat layer is preferably 1 × 10 7 Ω · cm or more in order to exhibit its function.

感光層12は、有機又は無機の光導電体を必要に応じてバインダー樹脂と共に塗工することで形成でき、また蒸着によっても形成することができる。感光層の形態としては、電荷発生層と電荷輸送層の機能分離型の積層感光層が好ましい。電荷発生層は、アゾ顔料、フタロシアニン顔料、キノン顔料及びペリレン顔料等の電荷発生材料を蒸着あるいは、適当なバインダー樹脂と共に(バインダーがなくても可)塗工することによって形成できる。電荷発生層の膜厚は、0.01μm〜5μmが好ましく、特には0.05μm〜2μmが好ましい。電荷輸送層は、ヒドラゾン化合物、スチリル化合物、オシサゾール化合物及びトリアリールアミン化合物等の電荷輸送材料を成膜性のあるバインダー樹脂に溶解させて形成することができる。電荷輸送層の膜厚は5μm〜50μmが好ましく、特には10μm〜30μmが好ましい。なお、紫外線等による劣化防止のために感光層の上に保護層を設けてもよい。   The photosensitive layer 12 can be formed by applying an organic or inorganic photoconductor together with a binder resin as necessary, and can also be formed by vapor deposition. As a form of the photosensitive layer, a function-separated type laminated photosensitive layer of a charge generation layer and a charge transport layer is preferable. The charge generation layer can be formed by depositing a charge generation material such as an azo pigment, a phthalocyanine pigment, a quinone pigment, or a perylene pigment, or by coating with a suitable binder resin (without a binder). The film thickness of the charge generation layer is preferably from 0.01 μm to 5 μm, particularly preferably from 0.05 μm to 2 μm. The charge transport layer can be formed by dissolving a charge transport material such as a hydrazone compound, a styryl compound, an osissazole compound, and a triarylamine compound in a binder resin having a film forming property. The film thickness of the charge transport layer is preferably 5 μm to 50 μm, particularly preferably 10 μm to 30 μm. A protective layer may be provided on the photosensitive layer to prevent deterioration due to ultraviolet rays or the like.

なお、前記感光体10はドラム状に限らずベルト状若しくは、シート状であってもよく、また帯電部材2としては、非回転ローラやブレード状のパッド部材等であってもよい。本実施例ではローラ形状のものを用いた。   The photosensitive member 10 is not limited to a drum shape, but may be a belt shape or a sheet shape, and the charging member 2 may be a non-rotating roller, a blade-shaped pad member, or the like. In this embodiment, a roller shape was used.

帯電部材2は感光体10に当接し、また電源3を介して感光体10と接続されて電気回路が構成されている。該電源3により、接触帯電装置2と感光体10とのニップ部13が帯電し、該ニップ部13が感光体10の動きにつれて移動するので感光体10表面全体が帯電される。その後、図3に示すように画像情報に応じてレーザー光Lで露光して潜像を形成し、次に現像器31でトナーにより現像し、転写部では転写部材32で転写材に転写し、定着器33で熱定着する。一方、感光体10は転写後クリーナ35でクリーニングされ、次回像形成に備える。   The charging member 2 abuts on the photoconductor 10 and is connected to the photoconductor 10 via the power source 3 to constitute an electric circuit. The power supply 3 charges the nip portion 13 between the contact charging device 2 and the photosensitive member 10, and the nip portion 13 moves as the photosensitive member 10 moves, so that the entire surface of the photosensitive member 10 is charged. Thereafter, as shown in FIG. 3, a latent image is formed by exposure with laser light L according to image information, and then developed with toner by a developing device 31, and transferred to a transfer material by a transfer member 32 in a transfer unit, Heat fixing is performed by the fixing device 33. On the other hand, the photoreceptor 10 is cleaned by a post-transfer cleaner 35 to prepare for the next image formation.

本実施例で使用した帯電部材は、以下のような方法で製造した。   The charging member used in this example was manufactured by the following method.

(実施例1)
原料ゴムとして、エチレン−プロピレン−ジエン3元共重合体(商品名:EPT4045 三井石油化学社製)100質量部、加工助剤としてステアリン酸1質量部、加硫促進助剤として酸化亜鉛5質量部、充填剤としてSRFカーボンブラック(商品名:旭#35 旭カーボン社製)50質量部、導電剤としてケッチェンブラック(商品名:ケッチェンブラックEC600JD ケッチェンブラックインターナショナル社製)7質量部、可塑剤としてパラフィンオイル(商品名:PW−380 出光興産社製)50質量部、架橋剤として硫黄0.5部、加硫促進剤として2−メルカプトベンゾチアゾール(MBT)2質量部、テトラメチルチウラムジスルフィド(TMTD)1部、ジブチルジチオカルバミン酸亜鉛(ZnBDC)1質量部をオープンロールにて混合し、未加硫ゴム組成物を得た。次に、未加硫ゴム組成物をチューブ状に成形するために、外径がφ5.0mmであるマンドレルと内径がφ12.5mmであるダイをセットした押し出し機を用いて、チューブ状に押し出した後、加圧蒸気により150℃で30分間の加硫反応を行い加硫チューブを得た。次に、導電性基体として直径がφ6mm、材質がスレンレスの芯金にオレフィン系接着剤(商品名:スーパークロン851L 日本製紙)を塗布した後、加硫チューブに挿入して130℃で30分間加熱接着を行い、直径φ11.8mm、長さ224mmに研磨して弾性体を得た。
(Example 1)
100 parts by mass of ethylene-propylene-diene terpolymer (trade name: EPT4045, manufactured by Mitsui Petrochemical Co., Ltd.) as raw rubber, 1 part by mass of stearic acid as processing aid, and 5 parts by mass of zinc oxide as vulcanization accelerator , 50 parts by mass of SRF carbon black (trade name: Asahi # 35, manufactured by Asahi Carbon Co., Ltd.) as a filler, 7 parts by mass of Ketjen black (product name: Ketjen Black EC600JD, manufactured by Ketchen Black International) as a conductive agent, plasticizer As paraffin oil (trade name: PW-380, manufactured by Idemitsu Kosan Co., Ltd.), sulfur as a crosslinking agent, 0.5 part as sulfur, 2-mercaptobenzothiazole (MBT) as 2 parts by weight, tetramethylthiuram disulfide ( TMTD) 1 part, zinc dibutyldithiocarbamate (ZnBDC) 1 part by weight The unvulcanized rubber composition was obtained by mixing with a bun roll. Next, in order to form the unvulcanized rubber composition into a tube shape, the tube was extruded into a tube shape using an extruder in which a mandrel having an outer diameter of φ5.0 mm and a die having an inner diameter of φ12.5 mm were set. Thereafter, a vulcanization reaction was performed at 150 ° C. for 30 minutes with pressurized steam to obtain a vulcanized tube. Next, after applying an olefin-based adhesive (trade name: Super Clon 851L Nippon Paper) to a core metal having a diameter of φ6 mm and a material as a conductive substrate, it is inserted into a vulcanizing tube and heated at 130 ° C. for 30 minutes. Adhesion was performed, and the elastic body was obtained by polishing to a diameter φ11.8 mm and a length 224 mm.

抵抗層用塗料として、ポリエステルポリオール(商品名:ニッポラン131 日本ポリウレタン工業株式会社)100質量部に対して、導電性材料として導電性酸化チタン(商品名:ET−500W 石原産業株式会社)15質量部、溶媒として酢酸エチル200質量部、非導電性粒子として平均粒径20μmの熱硬化性フェノール樹脂粒子(商品名:ベルパールR800 カネボウ)75質量部を混合し、ペイントシェイカーで10時間分散処理を行った。ついでイソシアネート樹脂(商品名:コロネートL 日本ポリウレタン工業株式会社)90質量部を添加して、粘度18mPa・sの抵抗層組成物とした。   As a resistance layer paint, 15 parts by mass of conductive titanium oxide (trade name: ET-500W Ishihara Sangyo Co., Ltd.) as a conductive material with respect to 100 parts by mass of polyester polyol (trade name: Nipponporan 131 Nippon Polyurethane Industry Co., Ltd.) In addition, 200 parts by mass of ethyl acetate as a solvent and 75 parts by mass of thermosetting phenol resin particles (trade name: Belpearl R800 Kanebo) having an average particle diameter of 20 μm as non-conductive particles were mixed and dispersed for 10 hours using a paint shaker. . Next, 90 parts by mass of an isocyanate resin (trade name: Coronate L Nippon Polyurethane Industry Co., Ltd.) was added to obtain a resistance layer composition having a viscosity of 18 mPa · s.

弾性体に、抵抗層組成物をディッピングにより塗工し、150℃で1時間加熱することで架橋反応を行い、帯電部材1を作製した。引き上げ速度(抵抗層組成物に対して弾性体の移動速度)は、上端部で20mm/s、下端部で5mm/sになるように制御した。帯電部材1の抵抗値は5×10Ωであった。 The resistance layer composition was applied to the elastic body by dipping and heated at 150 ° C. for 1 hour to carry out a crosslinking reaction, whereby the charging member 1 was produced. The pulling speed (moving speed of the elastic body with respect to the resistance layer composition) was controlled to be 20 mm / s at the upper end and 5 mm / s at the lower end. The resistance value of the charging member 1 was 5 × 10 7 Ω.

表1は、上記により作製した帯電部材1を接触帯電装置1に取り付け、使用初期条件での帯電不良による異常画像の発生が無くなる最低交流電圧(砂地電圧)と、ピンホールによる異常画像が発生する最低交流電圧(リーク電圧)と耐久試験として10000枚通紙した後の砂地電圧を15℃/15%RHの条件で測定した結果である。また、使用初期条件でのリーク電圧を35℃/90%RHにおいて測定した結果も併記する。   Table 1 shows that the charging member 1 produced as described above is attached to the contact charging device 1, and the lowest AC voltage (sand voltage) that eliminates the occurrence of abnormal images due to poor charging under the initial use conditions and abnormal images due to pinholes are generated. It is the result of having measured the sand ground voltage after passing 10,000 sheets as minimum AC voltage (leakage voltage) and a durability test on the conditions of 15 degreeC / 15% RH. The results of measuring the leakage voltage at the initial use conditions at 35 ° C./90% RH are also shown.

表1より帯電部材1は、初期の砂地電圧が15℃/15%RHで1.7kV、リーク電圧が2.6kVであり、10000枚通紙後の砂地電圧は2.0kV、35℃/90%RHでのリーク電圧は2.6kVであった。砂地電圧とリーク電圧の差が0.9kVであるが、使用上問題ないことが分かった。また、耐久試験後で表面粗さの変化は無く、砂地電圧で使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   From Table 1, the charging member 1 has an initial sand ground voltage of 1.7 kV at 15 ° C./15% RH and a leak voltage of 2.6 kV, and the sand ground voltage after passing 10,000 sheets is 2.0 kV, 35 ° C./90. The leak voltage at% RH was 2.6 kV. Although the difference between the sand ground voltage and the leakage voltage is 0.9 kV, it was found that there is no problem in use. Further, there was no change in the surface roughness after the durability test, and there was no problem in use at the sand ground voltage, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

帯電部材の抵抗値としては、発泡体を円柱状の金属ドラムに当接させ、回転させた状態で、導電性基体と金属ドラム間に直流100Vの電圧を印加し、金属ドラムと直列に接続した抵抗体にかかる電圧を測定することにより求めた。   As the resistance value of the charging member, a voltage of DC 100 V was applied between the conductive substrate and the metal drum in a state where the foam was brought into contact with the cylindrical metal drum and rotated, and connected to the metal drum in series. It was determined by measuring the voltage applied to the resistor.

接触帯電装置1は、帯電部材1と電源3から構成され、またドラム状の電子写真感光体10は、R方向に回転可能な感光ドラム基体11に、OPC、アモルファスシリコン、セレン及び酸化亜鉛等の感光層を覆接した構造のいずれでもよく、本実施例ではOPCの感光層12を覆接した感光ドラムを使用した。その形状はドラム状に限らず、ベルト状若しくは、シート状であってもよい。帯電ローラ1は感光体10に当接し、また電源3を介して感光体10と接続された電気回路が構成されている。また、−670Vの直流電圧に、920Hzの交流電圧を変化させながら重畳したものを印加し、OPC感光体ドラムの周速度を100mm/secとした。ピンホールによる異常画像発生の評価に際してはOPC感光体の表面には、約0.3[mmφ]のピンホールが人為的に設けられている。   The contact charging device 1 includes a charging member 1 and a power source 3. A drum-shaped electrophotographic photosensitive member 10 is formed on a photosensitive drum base 11 that can be rotated in the R direction, such as OPC, amorphous silicon, selenium, and zinc oxide. Any structure in which the photosensitive layer is covered may be used. In this embodiment, a photosensitive drum covering the OPC photosensitive layer 12 is used. The shape is not limited to a drum shape, but may be a belt shape or a sheet shape. The charging roller 1 is in contact with the photoconductor 10 and constitutes an electric circuit connected to the photoconductor 10 via the power source 3. In addition, a DC voltage of −670 V superimposed on a 920 Hz alternating voltage was applied, and the peripheral speed of the OPC photosensitive drum was set to 100 mm / sec. When evaluating the occurrence of abnormal images due to pinholes, a pinhole of about 0.3 [mmφ] is artificially provided on the surface of the OPC photoreceptor.

最外層である抵抗層の平均膜厚は、電子顕微鏡で観察し、隣り合う凹と凸の平均高さを結ぶことで求めた。また、表面近傍及び下面近傍の平均高さから10%における粒子の含有率を、断面の非導電性粒子の占有面積を求めることで算出した。抵抗層用組成物の粘度は、B型粘度計を用い、60rpmで測定した。表面粗さは、表面粗さ測定器(商品名:サーフコーダーSE−30H、小坂研究所製)を使用し、JISB0601に準じて十点平均粗さ(Rz)を測定した。   The average film thickness of the resistance layer, which is the outermost layer, was obtained by observing with an electron microscope and connecting the average heights of adjacent concave and convex. Moreover, the content rate of the particle | grains in 10% from the average height of the surface vicinity and the lower surface vicinity was computed by calculating | requiring the occupation area of the nonelectroconductive particle of a cross section. The viscosity of the resistance layer composition was measured at 60 rpm using a B-type viscometer. For the surface roughness, a 10-point average roughness (Rz) was measured according to JISB0601, using a surface roughness measuring instrument (trade name: Surfcoder SE-30H, manufactured by Kosaka Laboratory).

(実施例2)
非導電性粒子として平均粒径12μmの熱可塑性ポリエチレン粒子(商品名:フロービーズ 住友精化株式会社)を25質量部添加し、溶媒の酢酸エチルで粘度20mPa・sとした以外は、実施例1と同様にして抵抗層用組成物を作製した。
(Example 2)
Example 1 except that 25 parts by mass of thermoplastic polyethylene particles (trade name: Flow Beads Sumitomo Seika Co., Ltd.) having an average particle diameter of 12 μm were added as non-conductive particles and the viscosity was adjusted to 20 mPa · s with ethyl acetate as a solvent. In the same manner as above, a composition for a resistance layer was produced.

実施例1と同様にして作製した弾性体に、上端部での引上げ速度40mm/s、下端部で20mm/sになるように抵抗層用組成物を塗工し、帯電部材2を作製した。帯電部材2の抵抗値は5×10Ωであった。 The resistance member composition was applied to the elastic body produced in the same manner as in Example 1 so that the pulling speed at the upper end was 40 mm / s and the lower end was 20 mm / s, and the charging member 2 was produced. The resistance value of the charging member 2 was 5 × 10 6 Ω.

表1より帯電部材2は、初期の砂地電圧が15℃/15%で1.5kV、リーク電圧が2.6kVであり、10000枚通紙後の砂地電圧は1.9kV、35℃/90%でのリーク電圧は2.6kVであった。   From Table 1, the charging member 2 has an initial sand ground voltage of 15 kC / 15% at 1.5 kV and a leakage voltage of 2.6 kV, and the sand ground voltage after passing 10,000 sheets is 1.9 kV at 35 ° C./90%. The leakage voltage at 2.6 kV was 2.6 kV.

砂地電圧とリーク電圧の差が1.1kVであるが、使用上問題ないことが分かった。また、耐久試験後で表面粗さが2μm低下したが、砂地電圧は使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   The difference between the sand ground voltage and the leak voltage was 1.1 kV, but it was found that there was no problem in use. Further, the surface roughness decreased by 2 μm after the durability test, but the sand voltage had no problem in use, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

(実施例3)
非導電性粒子として平均粒径1μmの熱硬化性アクリル粒子(商品名:エボスター 日本触媒株式会社)を75質量部添加し、溶媒の酢酸エチルで粘度25mPa・sとした以外は、実施例1として同様に抵抗層用組成物を作製した。
(Example 3)
Example 1 except that 75 parts by mass of thermosetting acrylic particles (trade name: Evostar Nippon Shokubai Co., Ltd.) having an average particle diameter of 1 μm were added as non-conductive particles and the viscosity was 25 mPa · s with ethyl acetate as a solvent. Similarly, a composition for a resistance layer was produced.

実施例1と同様にして作製した弾性体に、上端部での引上げ速度20mm/s、下端部で10mm/sになるように抵抗層用組成物を塗工し、帯電部材3を作製した。帯電部材3の抵抗値は7×10Ωであった。 The composition for a resistance layer was applied to the elastic body produced in the same manner as in Example 1 so that the pulling speed at the upper end was 20 mm / s and the lower end was 10 mm / s, and the charging member 3 was produced. The resistance value of the charging member 3 was 7 × 10 7 Ω.

表1より帯電部材3は、初期の砂地電圧が15℃/15%で1.7kV、リーク電圧が3.0kVであり、10000枚通紙後の砂地電圧は1.9kV、35℃/90%でのリーク電圧は3.0kVであった。砂地電圧とリーク電圧の差が1.3kVであるが、使用上問題ないことが分かった。また、耐久試験後で表面粗さが低下せず、また砂地電圧は使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   From Table 1, the charging member 3 has an initial sand ground voltage of 15 kC / 15% at 1.7 kV and a leak voltage of 3.0 kV, and the sand ground voltage after passing 10,000 sheets is 1.9 kV at 35 ° C./90%. The leakage voltage at 3.0 kV was 3.0 kV. Although the difference between the sand ground voltage and the leakage voltage is 1.3 kV, it was found that there is no problem in use. Moreover, the surface roughness did not decrease after the durability test, the sand ground voltage had no problem in use, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

(実施例4)
非導電性粒子として平均粒径10μmの熱硬化性フェノール樹脂(商品名:ベルパールR600 カネボウ)を50質量部添加し、溶媒の酢酸エチルで粘度10mPa・sとした以外は、実施例1と同様にして抵抗層用組成物を作製した。
Example 4
As in Example 1, except that 50 parts by mass of thermosetting phenol resin (trade name: Belpearl R600 Kanebo) having an average particle size of 10 μm was added as non-conductive particles and the viscosity was adjusted to 10 mPa · s with ethyl acetate as a solvent. Thus, a composition for the resistance layer was produced.

実施例1と同様にして作製した弾性体に、上端部での引上げ速度20mm/s、下端部で10mm/sになるように抵抗層用組成物を塗工し、帯電部材4を作製した。帯電部材4の抵抗値は8×10Ωであった。 The resistance member composition was applied to the elastic body produced in the same manner as in Example 1 so that the pulling speed at the upper end was 20 mm / s and the lower end was 10 mm / s, and the charging member 4 was produced. The resistance value of the charging member 4 was 8 × 10 6 Ω.

表1より帯電部材4は、初期の砂地電圧が15℃/15%で1.5kV、リーク電圧が2.8kVであり、10000枚通紙後の砂地電圧は1.7kV、35℃/90%でのリーク電圧は2.8kVであった。砂地電圧とリーク電圧の差が1.3kVであり、使用上問題ないことが分かった。また、耐久試験後で表面粗さが低下せず、また砂地電圧は使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   From Table 1, the charging member 4 has an initial sand voltage of 1.5 kV at 15 ° C./15% and a leak voltage of 2.8 kV, and the sand voltage after passing 10,000 sheets is 1.7 kV, 35 ° C./90%. The leakage voltage at 2.8 kV was 2.8 kV. The difference between the sand ground voltage and the leakage voltage was 1.3 kV, and it was found that there was no problem in use. Moreover, the surface roughness did not decrease after the durability test, the sand ground voltage had no problem in use, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

(実施例5)
非導電性粒子として平均粒径21μmのシリカ粒子(商品名:トスパール120 GE東芝シリコーン)を15質量部添加し、溶媒の酢酸エチルで粘度25mPa・sとした以外は、実施例1と同様にして抵抗層用組成物を作製した。
(Example 5)
Except for adding 15 parts by mass of silica particles (trade name: Tospearl 120 GE Toshiba Silicone) having an average particle diameter of 21 μm as non-conductive particles and setting the viscosity to 25 mPa · s with ethyl acetate as a solvent, the same as in Example 1. A composition for a resistance layer was prepared.

実施例1と同様にして作製した弾性体に、上端部での引上げ速度40mm/s、下端部で10mm/sになるよう抵抗層組成物を塗工し、帯電部材5を作製した。帯電部材5の抵抗値は1×10Ωであった。 The resistance layer composition was applied to the elastic body produced in the same manner as in Example 1 so that the pulling speed at the upper end was 40 mm / s and the lower end was 10 mm / s, and the charging member 5 was produced. The resistance value of the charging member 5 was 1 × 10 7 Ω.

表1より帯電部材5は、初期の砂地電圧が15℃/15%で1.5kV、リーク電圧が3.0kVであり、10000枚通紙後の砂地電圧は1.5kV、35℃/90%でのリーク電圧は3.0kVであった。砂地電圧とリーク電圧の差が1.5kVであり、使用上問題ないことが分かった。また、耐久試験後で表面粗さが低下せず、また砂地電圧は使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   From Table 1, the charging member 5 has an initial sand voltage of 1.5 kV at 15 ° C./15% and a leak voltage of 3.0 kV. The sand voltage after passing 10,000 sheets is 1.5 kV, 35 ° C./90%. The leakage voltage at 3.0 kV was 3.0 kV. The difference between the sand ground voltage and the leakage voltage was 1.5 kV, and it was found that there was no problem in use. Moreover, the surface roughness did not decrease after the durability test, the sand ground voltage had no problem in use, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

(実施例6)
非導電性粒子を30質量部添加し、溶媒の酢酸エチルで粘度22mPa・sとした以外は、実施例4と同様にして抵抗層用組成物を作製した。
(Example 6)
A composition for a resistance layer was prepared in the same manner as in Example 4 except that 30 parts by mass of non-conductive particles were added and the viscosity was 22 mPa · s with a solvent ethyl acetate.

実施例1と同様に作製した弾性体に、上端部での引上げ速度20mm/s、下端部で10mm/sになるように抵抗層用組成物を塗工し、帯電部材6を作製した。帯電部材6の抵抗値は3×10Ωであった。 The resistance member composition was applied to the elastic body produced in the same manner as in Example 1 so that the pulling speed at the upper end was 20 mm / s and the lower end was 10 mm / s, and the charging member 6 was produced. The resistance value of the charging member 6 was 3 × 10 7 Ω.

表1より帯電部材6は、初期の砂地電圧が15℃/15%で1.5kV、リーク電圧が3.0kVであり、10000枚通紙後の砂地電圧は1.5kV、35℃/90%でのリーク電圧は3.0kVであった。砂地電圧とリーク電圧の差が1.5kVであるが、使用上問題ないことが分かった。また、耐久試験後で表面粗さが低下せず、また砂地電圧は使用上問題なく、15℃/15%と35℃/90%でのリーク電圧への影響は観測されなかった。   From Table 1, the charging member 6 has an initial sand ground voltage of 15 kC / 15% at 1.5 kV and a leakage voltage of 3.0 kV, and the sand ground voltage after passing 10,000 sheets is 1.5 kV, 35 ° C./90%. The leakage voltage at 3.0 kV was 3.0 kV. Although the difference between the sand ground voltage and the leakage voltage is 1.5 kV, it was found that there is no problem in use. Moreover, the surface roughness did not decrease after the durability test, the sand ground voltage had no problem in use, and no influence on the leakage voltage at 15 ° C./15% and 35 ° C./90% was observed.

(比較例1)
非導電性粒子を10質量部添加し、溶媒の酢酸エチルで粘度20mPa・sとした以外は、実施例4と同様にして抵抗層用組成物を作製した。
(Comparative Example 1)
A composition for a resistance layer was prepared in the same manner as in Example 4 except that 10 parts by mass of non-conductive particles were added and the viscosity was 20 mPa · s with a solvent ethyl acetate.

実施例1と同様にして作製した弾性体に、引上げ速度を5mm/sでのディッピング塗工を、1度づつ上下反転させながら4度行い、帯電部材7を作製した。帯電部材7の抵抗値は5×10Ωであった。 The charging member 7 was manufactured by performing dipping coating at a pulling speed of 5 mm / s on the elastic body manufactured in the same manner as in Example 1 four times while turning it upside down once. The resistance value of the charging member 7 was 5 × 10 6 Ω.

表1より帯電部材7は、初期の砂地電圧が15℃/15%で1.7kV、リーク電圧が2.2kVであり、10000枚通紙後の砂地電圧は2.0kV、35℃/90%でのリーク電圧は2.2kVであった。砂地電圧とリーク電圧の差が0.5kVであり、使用上の電圧範囲として狭く問題があることが判った。   According to Table 1, the charging member 7 has an initial sand ground voltage of 1.7 kV at 15 ° C./15% and a leak voltage of 2.2 kV, and the sand ground voltage after passing 10,000 sheets is 2.0 kV, 35 ° C./90%. The leakage voltage at 2.2 kV was 2.2 kV. The difference between the sand ground voltage and the leak voltage was 0.5 kV, and it was found that the voltage range in use was narrow and problematic.

(比較例2)
非導電性粒子を添加せずに、溶媒の酢酸エチルで粘度200mPa・sとした以外は、実施例1と同様にして抵抗層用組成物を作製した。抵抗層用組成物を、3500rpmで回転させたφ100mmの遠心成型機に注入し、減圧により厚さ30μmの未硬化膜を作製した。ついで実施例1と同様にして作製した弾性体に巻きつけ、150℃で1時間加熱することで架橋反応を行い、帯電部材8を作製した。帯電部材8の抵抗値は5×10Ωであった。
(Comparative Example 2)
A composition for a resistance layer was prepared in the same manner as in Example 1 except that the viscosity was 200 mPa · s with ethyl acetate as a solvent without adding non-conductive particles. The composition for the resistance layer was injected into a φ100 mm centrifugal molding machine rotated at 3500 rpm, and an uncured film having a thickness of 30 μm was produced by decompression. Subsequently, it was wound around an elastic body produced in the same manner as in Example 1 and heated at 150 ° C. for 1 hour to carry out a crosslinking reaction, whereby a charging member 8 was produced. The resistance value of the charging member 8 was 5 × 10 7 Ω.

表1より帯電部材8は、初期の砂地電圧が15℃/15%で2.0kV、リーク電圧が3.0kVであったが、35℃/90%でのリーク電圧が2.2kVであり、低温低湿度下と高温高湿度下での特性に開きがあり、また高温高湿度下での使用上の電圧範囲として狭く問題があることが判った。   From Table 1, the charging member 8 had an initial sand voltage of 2.0 kV at 15 ° C./15% and a leakage voltage of 3.0 kV, but the leakage voltage at 35 ° C./90% was 2.2 kV, It has been found that there is a difference in characteristics between low temperature and low humidity and high temperature and high humidity, and that the voltage range in use under high temperature and high humidity is narrow.

Figure 2005300667
Figure 2005300667

本発明の帯電部材の断面概念図である。It is a cross-sectional conceptual diagram of the charging member of the present invention. 本発明の帯電部材が適用される画像形成装置の帯電部分の概略図である。1 is a schematic view of a charging portion of an image forming apparatus to which a charging member of the present invention is applied. 本発明の帯電部材が適用される画像形成装置の概略図である。1 is a schematic view of an image forming apparatus to which a charging member of the present invention is applied.

符号の説明Explanation of symbols

1 接触帯電装置
2 帯電部材
3 電源
4 画像形成装置
5 導電性基体
6 抵抗層
7 弾性体
8 被覆層
10 感光体
11 感光体基体
12 感光層
13 ニップ部
100 非導電性粒子
DESCRIPTION OF SYMBOLS 1 Contact charging device 2 Charging member 3 Power supply 4 Image forming apparatus 5 Conductive substrate 6 Resistive layer 7 Elastic body 8 Covering layer 10 Photoconductor 11 Photoconductor substrate 12 Photosensitive layer 13 Nip part 100 Nonconductive particle

Claims (7)

導電性基体上に抵抗層を被覆又は支持した構造を有する帯電部材において、該抵抗層が、導電性材料と非導電性粒子を含有し、該非導電性粒子を導電性基体に近い内面側近傍に比べて表面側近傍に多く含有することを特徴とする帯電部材。   In a charging member having a structure in which a resistance layer is coated or supported on a conductive substrate, the resistance layer contains a conductive material and non-conductive particles, and the non-conductive particles are placed near the inner surface near the conductive substrate. A charging member characterized by containing a larger amount in the vicinity of the surface side than the surface side. 前記抵抗層内において、非導電性粒子が、下面側の厚み10%の範囲に比べ、表面側の面から厚み10%の範囲以内に、1.1倍以上5倍以下の割合で分布している請求項1に記載の帯電部材。   In the resistance layer, the non-conductive particles are distributed at a ratio of 1.1 times to 5 times within the range of 10% of the thickness from the surface side compared to the range of the thickness of 10% on the lower surface side. The charging member according to claim 1. 非導電性粒子を表面側で多く含有した抵抗層を有し、かつ帯電部材の表面粗さRzが3μm以上15μm以下である請求項1又は2に記載の帯電部材。   The charging member according to claim 1, wherein the charging member has a resistance layer containing a large amount of non-conductive particles on the surface side, and the charging member has a surface roughness Rz of 3 μm or more and 15 μm or less. 非導電性粒子の平均粒径をd、帯電部材の最外層の平均厚みをDとしたとき、
0.05×D≦d≦1.2×D
を満たす請求項1〜3のいずれかに記載の帯電部材。
When the average particle diameter of the non-conductive particles is d and the average thickness of the outermost layer of the charging member is D,
0.05 × D ≦ d ≦ 1.2 × D
The charging member according to claim 1, wherein:
非導電性粒子が架橋した高分子化合物からなる請求項1〜4のいずれかに記載の帯電部材。   The charging member according to claim 1, wherein the nonconductive particles are made of a crosslinked polymer compound. 非導電性粒子を表面側で多く含有した抵抗層を有する請求項1〜5のいずれかに記載された帯電部材の製造方法において、導電性基体又は導電性基体上に覆接した弾性層を、導電性材料、非導電性粒子及び結着材料を含有する抵抗層組成物に対して相対的に移動させて抵抗層組成物を塗工する工程を有する、ことを特徴とする帯電部材の製造方法。   In the method for producing a charging member according to any one of claims 1 to 5, which has a resistance layer containing a large amount of non-conductive particles on the surface side, an electrically conductive substrate or an elastic layer covered on the electrically conductive substrate, A method for producing a charging member, comprising a step of coating the resistance layer composition by moving the resistance layer composition relative to the resistance layer composition containing the conductive material, the nonconductive particles, and the binder material. . 導電性基体又は導電性基体上に覆接した弾性層を抵抗層組成物に対して相対的に移動させる工程において、塗工工程がディッピング法であり、移動速度を引上げ始め側端部に比べ引上げ終わり側端部で遅くした請求項6に記載の帯電部材の製造方法。   In the process of moving the conductive substrate or the elastic layer covered on the conductive substrate relative to the resistive layer composition, the coating process is a dipping method, and the moving speed is increased compared to the end of the starting side. The method of manufacturing a charging member according to claim 6, wherein the charging member is delayed at the end on the end side.
JP2004113200A 2004-04-07 2004-04-07 Charging member and its manufacture method Pending JP2005300667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113200A JP2005300667A (en) 2004-04-07 2004-04-07 Charging member and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113200A JP2005300667A (en) 2004-04-07 2004-04-07 Charging member and its manufacture method

Publications (1)

Publication Number Publication Date
JP2005300667A true JP2005300667A (en) 2005-10-27

Family

ID=35332304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113200A Pending JP2005300667A (en) 2004-04-07 2004-04-07 Charging member and its manufacture method

Country Status (1)

Country Link
JP (1) JP2005300667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276020A (en) * 2007-05-01 2008-11-13 Canon Inc Electrifying member, process cartridge and electrophotographic device
US8193780B2 (en) 2006-02-16 2012-06-05 Summit Microelectronics, Inc. System and method of charging a battery using a switching regulator
WO2013094089A1 (en) * 2011-12-22 2013-06-27 キヤノン株式会社 Charging member and method for producing same, and electrographic device
JP2015011131A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Process cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193780B2 (en) 2006-02-16 2012-06-05 Summit Microelectronics, Inc. System and method of charging a battery using a switching regulator
JP2008276020A (en) * 2007-05-01 2008-11-13 Canon Inc Electrifying member, process cartridge and electrophotographic device
WO2013094089A1 (en) * 2011-12-22 2013-06-27 キヤノン株式会社 Charging member and method for producing same, and electrographic device
JP2013148876A (en) * 2011-12-22 2013-08-01 Canon Inc Charging member and method for producing the same, and electrographic device
US8991053B2 (en) 2011-12-22 2015-03-31 Canon Kabushiki Kaisha Charging member, process for its production, and electrophotographic apparatus
JP2015011131A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Process cartridge

Similar Documents

Publication Publication Date Title
JP5504713B2 (en) Conductive roll, charging device, process cartridge, and image forming apparatus
JP2006154442A (en) Electrifying member and electrifying device
JP6303573B2 (en) Charging device, process cartridge, and image forming apparatus
JP5625307B2 (en) Image forming apparatus
JP2008276021A (en) Charging member, process cartridge, and electrophotographic apparatus
JP2007101864A (en) Charging component and electrophotographic system
JP4262000B2 (en) Conductive roller, conductive roller manufacturing method, and electrophotographic apparatus
JP4534693B2 (en) Semiconductive member and image forming apparatus
JP2005300667A (en) Charging member and its manufacture method
JP2017062435A (en) Image forming apparatus and process cartridge
JPH1017718A (en) Semi-electroconductive elastic material and its production
JP2007163574A (en) Conductive rubber roller
JP3070556B2 (en) Conductive roll
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP2010048869A (en) Roller, process cartridge and electrophotographic equipment
JP2017058642A (en) Charging member, charging device, image forming apparatus, and process cartridge
JP4371833B2 (en) Charging member, image forming apparatus, charging method, and process cartridge
JP2016080986A (en) Charging roll, charging device, process cartridge, and image forming apparatus
JP2000206779A (en) Toner carrier and image forming device
JP2005148488A (en) Component of image forming apparatus
JPH1077358A (en) Semiconductive foam
JP2007199598A (en) Electrifying member, manufacturing method for electrifying member and contact electrifying apparatus
JP3584986B2 (en) Inspection method for toner carrier
JP6801197B2 (en) Charging member, charging device, process cartridge, and image forming device
JP3907592B2 (en) Method for manufacturing charging member