JP2007101864A - Charging component and electrophotographic system - Google Patents

Charging component and electrophotographic system Download PDF

Info

Publication number
JP2007101864A
JP2007101864A JP2005291140A JP2005291140A JP2007101864A JP 2007101864 A JP2007101864 A JP 2007101864A JP 2005291140 A JP2005291140 A JP 2005291140A JP 2005291140 A JP2005291140 A JP 2005291140A JP 2007101864 A JP2007101864 A JP 2007101864A
Authority
JP
Japan
Prior art keywords
charging
surface layer
resin particles
charging member
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291140A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
寛 池田
Hisanari Sawada
弥斉 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2005291140A priority Critical patent/JP2007101864A/en
Publication of JP2007101864A publication Critical patent/JP2007101864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent charging component and an electrophotographic system which can reduce the amount of used materials without using expensive materials and maintain uniform charging over a long time even when applying a dc voltage only. <P>SOLUTION: This charging component has a conductive support, a conductive elastic layer formed on this conductive support, an underlayer formed on this conductive elastic layer, and a surface layer having resin particles and formed on this underlayer. When the thickness of this surface layer is represented by A, the mean particle diameter of the resin particles by B, and the average of the surface roughness (Rz) measured at ten points on this underlayer by C, they satisfy relations C<A<B and B<2A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機やプリンター等、静電潜像プロセスに用いられる感光体等の潜像保持体を帯電させる帯電部材及びこれを用いた電子写真装置に関する。   The present invention relates to a charging member for charging a latent image holding member such as a photosensitive member used in an electrostatic latent image process, such as a copying machine or a printer, and an electrophotographic apparatus using the charging member.

従来、電子写真プロセスにおける帯電プロセスは、金属ワイヤーに高電圧(直流電圧6〜8kV)を印加して発生するコロナシャワーにより被帯電体である電子写真感光体面を所定の極性・電位に一様に帯電させるコロナ帯電器が広く利用されていた。しかし、高圧電源を必要としたり、比較的多量のオゾンが発生する等の問題があった。   Conventionally, the charging process in the electrophotographic process is such that the surface of the electrophotographic photosensitive member as a charged body is uniformly set to a predetermined polarity and potential by a corona shower generated by applying a high voltage (DC voltage 6 to 8 kV) to a metal wire. Corona chargers for charging have been widely used. However, there are problems such as requiring a high-voltage power supply and generating a relatively large amount of ozone.

これに対して、導電性部材を感光体に接触させながら電圧を印加して、感光体表面を帯電させる接触帯電方式が実用化されている。この方式は、感光体に、電荷供給部材としてローラ型、ブレード型、ブラシ型及び磁気ブラシ型等の導電性部材(帯電部材)を接触させ、この接触帯電部材に所定の帯電バイアスを印加して感光体面を所定の極性・電位に一様に帯電させるものである。   On the other hand, a contact charging method in which a voltage is applied while a conductive member is in contact with the photosensitive member to charge the surface of the photosensitive member has been put into practical use. In this method, a conductive member (charging member) such as a roller type, a blade type, a brush type, or a magnetic brush type is brought into contact with the photosensitive member as a charge supply member, and a predetermined charging bias is applied to the contact charging member. The photosensitive member surface is uniformly charged to a predetermined polarity and potential.

この帯電方式は、電源の低電圧化とオゾンの発生量が少ないという利点を有する。なかでも、特に接触帯電部材として導電性ローラを用いたローラ帯電方式は、帯電の安定性という観点から好ましく用いられている。しかしながら、帯電の均一性に関してはコロナ帯電器と比較してやや不利であった。   This charging method has the advantages of lowering the voltage of the power supply and generating less ozone. In particular, a roller charging method using a conductive roller as a contact charging member is preferably used from the viewpoint of charging stability. However, the uniformity of charging is slightly disadvantageous compared to the corona charger.

帯電均一性を改善するために、所望の被帯電体表面電位Vdに相当する直流電流に帯電開始電圧(Vth)の2倍以上のピーク間電圧を持つ交流電圧成分(AC電圧成分)を重畳した電圧(脈流電圧;時間とともに電圧値が周期的に変化する電圧)を接触帯電部材に印加する「AC帯電方式」が用いられている。   In order to improve the charging uniformity, an AC voltage component (AC voltage component) having a peak-to-peak voltage more than twice the charging start voltage (Vth) is superimposed on a direct current corresponding to the desired charged object surface potential Vd. An “AC charging method” is used in which a voltage (pulsating voltage; a voltage whose voltage value periodically changes with time) is applied to the contact charging member.

これは、AC電圧による電位の均し効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央である電位Vdに収束し、環境等の外乱に影響されることがなく、接触帯電方式として優れた方法である。   This is intended to equalize the potential by the AC voltage, and the potential of the charged object converges to the potential Vd which is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment. It is an excellent method as a contact charging method.

しかしながら、AC帯電方式は、直流電圧印加時における放電開始電圧(Vth)の2倍以上のピーク間電圧である高圧の交流電圧を重畳させるため、直流電源とは別に交流電源が必要となり、装置自体のコストアップを招く。更に、AC帯電方式は、交流電流を多量に消費することにより、帯電ローラ及び感光体の耐久性が低下し易いという問題があった。   However, the AC charging method superimposes a high-voltage AC voltage that is a peak-to-peak voltage more than twice the discharge start voltage (Vth) when a DC voltage is applied, so an AC power supply is required separately from the DC power supply, and the device itself Incurs an increase in costs. Further, the AC charging method has a problem that durability of the charging roller and the photosensitive member is liable to be reduced by consuming a large amount of alternating current.

これらの問題は、帯電ローラに直流電圧のみを印加して帯電を行うことにより解消されるものの、帯電ローラに直流電圧のみを印加すると、以下に示すような問題点があった。   Although these problems can be solved by applying only a DC voltage to the charging roller and charging, there is a problem as shown below when only the DC voltage is applied to the charging roller.

つまり、従来の帯電部材に直流電圧のみを印加すると、感光体等の被帯電体表面が所望の帯電電位以上に帯電された場合や電位が不足した場合、帯電ムラが発生する。特に、一次帯電前に感光体上の電位を消去する前露光を行わない電子写真プロセスでは、帯電ムラは、ハーフトーン画像領域の電位部に発生しやすい。   That is, when only a DC voltage is applied to a conventional charging member, uneven charging occurs when the surface of a charged body such as a photoconductor is charged to a desired charging potential or more or when the potential is insufficient. In particular, in an electrophotographic process in which pre-exposure for erasing the potential on the photoreceptor before primary charging is not performed, uneven charging tends to occur in the potential portion of the halftone image area.

このように、従来の帯電ローラを用いて、例えば、反転現像方式でハーフトーン画像を出力すると、上述の帯電ムラは、画像上で、部分的に白スジ、白ポチ、黒スジ又は黒ポチや、がさついたハーフトーン画像面となって現われ、画像品質が低下する問題があった。   As described above, when a halftone image is output by a reversal development method using a conventional charging roller, for example, the above-described charging unevenness is partially white streaks, white spots, black streaks or black spots on the image. , Appearing as a half-tone image surface, and there is a problem that the image quality deteriorates.

この帯電ムラを抑制する手段として、抵抗分布の均一化や、表面性向上が検討されてきた。例えば、前者については、表面層中の導電性物質の分散性を向上させたり、体積抵抗値が比較的低い樹脂を表面層に用いる技術が提案されている。また、後者については、表面層にレベリング剤を添加したり、弾性層の表面性を向上させる等の方法が提案されている。   As means for suppressing this charging unevenness, uniform resistance distribution and surface property improvement have been studied. For example, as for the former, a technique for improving the dispersibility of the conductive substance in the surface layer or using a resin having a relatively low volume resistance value for the surface layer has been proposed. For the latter, methods such as adding a leveling agent to the surface layer and improving the surface property of the elastic layer have been proposed.

このうち表面性に関しては、表面層中に大粒子径及び小粒子径の2種類の粒子を添加した帯電部材を用いて、直流電圧のみを印加して被帯電体を均一に帯電させることが提案されている(特許文献1参照)。しかしながら、大粒子径及び小粒子径の2種類の粒子を添加するため、製造において管理(取り扱い、ロット差等)が困難になったり、コストアップ等の問題が発生する。実際に大量に製造していくことを考慮すると、多くの種類の材料を含むよりも、なるべく少ない種類の材料で、帯電均一性を長期にわたり維持できるような帯電部材が必要である。   Among these, regarding surface properties, it is proposed to apply a direct current voltage to uniformly charge the object to be charged using a charging member in which two types of particles having a large particle size and a small particle size are added to the surface layer. (See Patent Document 1). However, since two types of particles having a large particle size and a small particle size are added, management (handling, lot difference, etc.) becomes difficult in production, and problems such as an increase in cost occur. In consideration of actual mass production, there is a need for a charging member that can maintain charging uniformity over a long period of time with as few types of materials as possible rather than including many types of materials.

また、表面性の制御手段として、最外層の表面近傍に粒子径30μmの不溶性フッ素樹脂を配置することによって、表面粗さの確保と表面粗さが大きいことによる汚れ付着の防止を両立できることが提案されている(特許文献2参照)。しかしながら、この手段は、一般的に高価な不溶性フッ素樹脂を使用するため、他の材質の樹脂粒子を使用した場合と比較して、コスト的に不利である。また、フッ素樹脂を使用すると、塗料とのなじみも悪くなり、ユズ肌等の外観不良も発生しやすくなる。できるだけコストのかからない材料を使用し、安価に安定生産でき、さらに、帯電部材としての性能を満足させることが必要である。
特開2003−316111号公報 特開平8−123143号公報
In addition, as a means of controlling the surface property, it is proposed that an insoluble fluororesin having a particle diameter of 30 μm is arranged near the surface of the outermost layer, thereby ensuring both surface roughness and prevention of contamination due to large surface roughness. (See Patent Document 2). However, since this means generally uses an expensive insoluble fluororesin, it is disadvantageous in terms of cost compared to the case where resin particles of other materials are used. In addition, when a fluororesin is used, the familiarity with the paint deteriorates, and appearance defects such as a dirty skin tend to occur. It is necessary to use a material that is as inexpensive as possible, stably produce at low cost, and satisfy the performance as a charging member.
JP 2003-316111 A JP-A-8-123143

本発明は、上述の問題に鑑みてなされたものであり、高価な材料を使用することなく、材料の使用量をも低減させ、直流電圧のみを印加する場合でも長期にわたり帯電均一性に優れた帯電部材及びこれを備えた電子写真装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and without using an expensive material, reduces the amount of material used, and is excellent in charging uniformity over a long period even when only a DC voltage is applied. It is an object of the present invention to provide a charging member and an electrophotographic apparatus including the charging member.

本発明による帯電部材は:
導電性支持部材と、該導電性支持部材上に形成された導電性弾性層と、該導電性弾性層上に形成された下地層と、該下地層上に形成され樹脂粒子を有する表面層とを備えた帯電部材であって、
該表面層の膜厚をA、該樹脂粒子の平均粒子径をB、該下地層の十点平均表面粗さ(Rz)をCとした時、
C<A<Bであり、且つB<2Aであることを特徴とする。
The charging member according to the present invention is:
A conductive support member; a conductive elastic layer formed on the conductive support member; a base layer formed on the conductive elastic layer; and a surface layer formed on the base layer and having resin particles; A charging member comprising:
When the film thickness of the surface layer is A, the average particle diameter of the resin particles is B, and the ten-point average surface roughness (Rz) of the base layer is C,
C <A <B and B <2A.

また、本発明による電子写真装置は、上述の帯電部材を有することを特徴とする。   In addition, an electrophotographic apparatus according to the present invention includes the above-described charging member.

本発明によれば、高価な材料を使用することなく、材料の使用量をも低減させ、直流電圧のみを印加する場合でも長期にわたり優れた帯電均一性が得られる。   According to the present invention, it is possible to reduce the amount of material used without using an expensive material, and to obtain excellent charging uniformity over a long period even when only a DC voltage is applied.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(本発明による帯電部材)
本発明者らは、最外層である表面層に、この膜厚以上の平均粒子径を有する樹脂粒子を含有させることにより、直流電圧のみを印加する場合の帯電均一性を充分に向上できることを見出した。つまり、本発明による帯電部材は、導電性支持部材と、該導電性支持部材上に形成された導電性弾性層と、該導電性弾性層上に形成された下地層と、該下地層上に形成され樹脂粒子を有する表面層とを備えた帯電部材であって、該表面層の膜厚をA、該樹脂粒子の平均粒子径をB、該下地層の十点平均表面粗さ(Rz)をCとした時、C<A<Bであり、且つB<2Aであることを特徴とする。
(Charging member according to the present invention)
The present inventors have found that the charging uniformity when only a DC voltage is applied can be sufficiently improved by incorporating resin particles having an average particle diameter equal to or greater than this film thickness into the outermost surface layer. It was. That is, the charging member according to the present invention includes a conductive support member, a conductive elastic layer formed on the conductive support member, a base layer formed on the conductive elastic layer, and a base layer on the base layer. A charging member having a surface layer formed with resin particles, wherein the film thickness of the surface layer is A, the average particle diameter of the resin particles is B, and the ten-point average surface roughness (Rz) of the base layer When C is C, C <A <B and B <2A.

なお、本発明において、表面層の膜厚とは、表面層に含有される樹脂粒子で形成された表面近傍の形状が変化している位置(山部)以外の位置、すなわち、図1において1cで示した表面層の膜厚測定位置で任意に10点測定した平均値とする。   In the present invention, the film thickness of the surface layer is a position other than the position (mountain portion) where the shape in the vicinity of the surface formed by the resin particles contained in the surface layer is changed, that is, 1c in FIG. The average value obtained by arbitrarily measuring 10 points at the film thickness measurement position of the surface layer indicated by.

図1は、本発明による帯電部材の構成の概念断面図である。本発明による帯電部材において、表面層1aの膜厚より樹脂粒子の平均粒子径が大きいため、図1に示すように、樹脂粒子は一様にひと粒ずつ表面層中に配列されることにより、少量の配合量で適正な表面粗さの制御が可能になった為であると考えられる。   FIG. 1 is a conceptual cross-sectional view of the configuration of a charging member according to the present invention. In the charging member according to the present invention, since the average particle diameter of the resin particles is larger than the film thickness of the surface layer 1a, the resin particles are uniformly arranged in the surface layer one by one as shown in FIG. This is thought to be due to the fact that it is possible to control the surface roughness appropriately with the blending amount.

本発明による帯電部材は、表面層の膜厚A、樹脂粒子の平均粒子径B及び下地層の十点平均表面粗さ(Rz)Cに関し、C<A<Bであり、且つB<2Aの関係を満たす。一般的な帯電部材では、樹脂粒子の平均粒子径よりも大きい膜厚を有する表面層が採用されているが、この場合、図2に示すような状態であると考えられ、表面性を均一に制御することが困難になると考えられる。つまり、A≧Bであると、表面性を均一に制御することが困難になり、安定した帯電均一性を発揮することが出来ない。それに加え、樹脂粒子の存在形態が図2のようになっているとすれば、樹脂粒子が非常に無駄に配列されていると考えられ、コスト的にも不利である。   The charging member according to the present invention relates to the film thickness A of the surface layer, the average particle diameter B of the resin particles, and the ten-point average surface roughness (Rz) C of the base layer, C <A <B and B <2A. Satisfy the relationship. In a general charging member, a surface layer having a film thickness larger than the average particle diameter of resin particles is employed. In this case, it is considered that the surface layer is in a state as shown in FIG. It will be difficult to control. That is, when A ≧ B, it is difficult to control the surface property uniformly, and stable charging uniformity cannot be exhibited. In addition, if the existence form of the resin particles is as shown in FIG. 2, it is considered that the resin particles are arranged in a very wasteful manner, which is disadvantageous in terms of cost.

また、本発明による帯電部材において、表面層の膜厚の2倍以上の平均粒子径を有する樹脂粒子を表面層1aに含有させると、帯電部材の動作中に樹脂粒子が脱落してしまう現象や、必要以上の表面の凹凸を形成してしまうことに起因した汚れの付着が発生してしまう。つまり、B≧2Aであると、長期間の使用に伴ない、樹脂粒子が脱落し性能の劣化につながる。   In addition, in the charging member according to the present invention, if the surface layer 1a contains resin particles having an average particle diameter that is twice or more the film thickness of the surface layer, the phenomenon that the resin particles fall off during the operation of the charging member, As a result, adhesion of dirt due to the formation of surface irregularities more than necessary occurs. That is, when B ≧ 2A, the resin particles fall off with long-term use, leading to deterioration of performance.

さらに、本発明による帯電部材において、下地層の十点平均表面粗さ(Rz)が表面層の膜厚より大きい場合は、下地層の形状の影響を受け、図1に示すような樹脂粒子による均一な表面性の制御が困難になり、帯電均一性を充分に向上させることが出来ない。つまり、C≧Aであると、樹脂粒子による表面性の制御が困難になり、帯電均一性を充分に向上させることが出来ない。   Further, in the charging member according to the present invention, when the ten-point average surface roughness (Rz) of the underlayer is larger than the film thickness of the surface layer, it is influenced by the shape of the underlayer, and the resin particles as shown in FIG. It becomes difficult to control the uniform surface property, and the charging uniformity cannot be sufficiently improved. That is, when C ≧ A, it becomes difficult to control the surface properties by the resin particles, and the charging uniformity cannot be sufficiently improved.

次に、本発明による帯電部材の具体的な構成例を図3及び図4に示す。図3は、本発明による帯電部材の構成を示す横断面図であり、図4は、本発明による帯電部材の構成を示す縦断面図である。本発明による帯電部材は、導電性支持部材2aと、その外周に形成された導電性弾性層2bと、その外周に形成された下地層2cと、下地層2c上に形成され、最外層をなす表面層2dとを有する。   Next, a specific configuration example of the charging member according to the present invention is shown in FIGS. FIG. 3 is a cross-sectional view showing the configuration of the charging member according to the present invention, and FIG. 4 is a vertical cross-sectional view showing the configuration of the charging member according to the present invention. The charging member according to the present invention is formed on the conductive support member 2a, the conductive elastic layer 2b formed on the outer periphery thereof, the base layer 2c formed on the outer periphery thereof, and the base layer 2c, and forms the outermost layer. And a surface layer 2d.

本発明で使用する導電性支持部材2aは、導電性を有するものであれば、特に制限されないが、例えば、鉄、アルミニウム、チタン、銅及びニッケルなどの金属、これらの金属を含むステンレス、ジュラルミン、真鍮及び青銅などの合金、更に、カーボンブラックや炭素繊維をプラスチックで固めた複合材料など、剛直で導電性を示す公知の材料が挙げられる。また、導電性支持部材2aの形状は、円柱形状の他に、中心部分を空洞とした円筒形状であってもよい。また、導電性支持部材2aの表面は、防錆や耐傷性付与等を目的として、メッキなどの表面処理を施されてもよい。   The conductive support member 2a used in the present invention is not particularly limited as long as it has conductivity. For example, metals such as iron, aluminum, titanium, copper and nickel, stainless steel containing these metals, duralumin, There are known materials showing rigidity and conductivity, such as alloys such as brass and bronze, and composite materials in which carbon black and carbon fibers are hardened with plastic. In addition to the columnar shape, the conductive support member 2a may have a cylindrical shape having a hollow central portion. In addition, the surface of the conductive support member 2a may be subjected to a surface treatment such as plating for the purpose of providing rust prevention or scratch resistance.

本発明による帯電部材において、導電性弾性層2bは、導電性と弾性特性とを有する材料であれば特に制限されないが、例えば、弾性材料としては、天然ゴム、クロロプレンゴム(CR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、ウレタンゴム、エピクロルヒドリンゴム、エポキシゴム及びブチルゴム等のゴムまたはスポンジなどが挙げられる。導電性弾性層2bは、これらの弾性材料に、カーボンブラック、グラファイト及び導電性金属酸化物等の電子導電性を有する導電剤や、アルカリ金属塩や四級アンモニウム塩等のイオン導電機構を有する導電剤を適宜添加すればよい。   In the charging member according to the present invention, the conductive elastic layer 2b is not particularly limited as long as it is a material having conductivity and elastic characteristics. For example, as the elastic material, natural rubber, chloroprene rubber (CR), isoprene rubber ( IR), ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), urethane rubber, epichlorohydrin rubber, epoxy rubber and butyl rubber, or sponges. The conductive elastic layer 2b is a conductive agent having an electronic conductivity such as carbon black, graphite, and conductive metal oxide, or a conductive material having an ion conductive mechanism such as an alkali metal salt or a quaternary ammonium salt. What is necessary is just to add an agent suitably.

本発明による帯電部材において、下地層2cとしては、オレフィン系(TPO)、スチレン系(TPS)、ウレタン系(TPU)、エステル系(TPEE)、アミド系(TPA)、塩化ビニル(PVC)系などの熱可塑性エラストマーが挙げられる。   In the charging member according to the present invention, the base layer 2c includes olefin (TPO), styrene (TPS), urethane (TPU), ester (TPEE), amide (TPA), vinyl chloride (PVC), and the like. These thermoplastic elastomers can be mentioned.

下地層2cの製造方法としては、まず、上述の熱可塑性エラストマーと、カーボンブラック等の導電剤とを必要な添加剤とともに混練し、続いてペレット化する。次に、得たペレットを押出し成形機により、シームレスチューブなどの所望の形状を有する下地層用部材とする。そして、成形加工されたシームレスチューブなどの下地層用部材を導電性支持部材に被覆して製造する方法などが挙げられる。また、下地層2cは、多層を有する同時成形チューブであってもよい。   As a manufacturing method of the foundation layer 2c, first, the above-mentioned thermoplastic elastomer and a conductive agent such as carbon black are kneaded together with necessary additives, and then pelletized. Next, the obtained pellet is formed into an underlayer member having a desired shape such as a seamless tube by an extrusion molding machine. And the method etc. etc. which coat | cover and manufacture the member for base layers, such as a molded seamless tube, on an electroconductive support member, etc. are mentioned. The underlayer 2c may be a simultaneously formed tube having multiple layers.

本発明による帯電部材において、表面層2dは、帯電部材の表面を構成し、被帯電体である電子写真感光体と直接接触する。表面層2dとしては、被帯電体への帯電を適切に付与し得る材料であれば特に制約はない。例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリルウレタン樹脂、ポリアミド樹脂、エポキシ樹脂、ポリビニルアセタール樹脂、塩化ビニリデン樹脂、フッ素樹脂及びシリコーン樹脂等が挙げられ、水系、有機系等いずれのものも使用できる。更に、表面層2dは、必要に応じて、架橋剤等の添加剤を適量有してもよい。この場合、架橋剤としては、所望の架橋効果が得られるものであればいずれのものでもよい。例えば、エポキシ系、オキサゾリン系、メラニン系、イソシアネート系及びフェノール系の架橋剤が挙げられる。また、表面層2dには、導電剤を添加して導電性を付与又は調整してもよく、この場合、導電剤としては、特に限定されるものではないが、ケッチェンブラックEC、アセチレンブラック等の導電性カーボン、SAF、ISAF、HAF、FEP、GPF、SRF、FT、MT等のゴム用カーボン、酸化処理を施したカラーインク用カーボン、熱分解カーボン、天然グラファイト、人造グラファイト、アンチモンドープの酸化スズ、酸化チタン、酸化亜鉛、ニッケル、銅、銀、ゲルマニウム等の金属又は金属酸化物等を用いることができる。これら導電剤の表面は、チタンカップリング剤若しくはアルコキシシランカップリング剤等のカップリング剤、フルオロアルキルアルコキシシランカップリング剤などのカップリング剤(珪素、チタン、アルミニウム、ジルコニウムなど中心金属は特に選ばない)、オイル、ワニス又は有機化合物等で表面処理されてもよい。また、上記導電剤の添加量は、所望する抵抗が得られるように適宜調整することができる。この場合、表面層の抵抗は、体積抵抗率10〜1015Ω・cmが好ましく、10〜1014Ω・cmとすることがさらに好ましい。 In the charging member according to the present invention, the surface layer 2d constitutes the surface of the charging member and is in direct contact with the electrophotographic photosensitive member which is a member to be charged. The surface layer 2d is not particularly limited as long as the surface layer 2d is a material that can appropriately impart charge to the member to be charged. For example, polyester resin, acrylic resin, urethane resin, acrylic urethane resin, polyamide resin, epoxy resin, polyvinyl acetal resin, vinylidene chloride resin, fluororesin, and silicone resin can be used. . Furthermore, the surface layer 2d may have an appropriate amount of an additive such as a crosslinking agent, if necessary. In this case, any crosslinking agent may be used as long as a desired crosslinking effect can be obtained. For example, an epoxy type, an oxazoline type, a melanin type, an isocyanate type, and a phenol type crosslinking agent are mentioned. In addition, the surface layer 2d may be imparted or adjusted by adding a conductive agent. In this case, the conductive agent is not particularly limited, but ketjen black EC, acetylene black, etc. Conductive carbon, SAF, ISAF, HAF, FEP, GPF, SRF, FT, MT and other rubber carbon, oxidized color ink carbon, pyrolytic carbon, natural graphite, artificial graphite, antimony-doped oxidation Metals such as tin, titanium oxide, zinc oxide, nickel, copper, silver, germanium, or metal oxides can be used. For the surface of these conductive agents, a coupling agent such as a titanium coupling agent or an alkoxysilane coupling agent, a coupling agent such as a fluoroalkylalkoxysilane coupling agent (a central metal such as silicon, titanium, aluminum, and zirconium is not particularly selected. ), Surface treatment with oil, varnish, organic compound or the like. Moreover, the addition amount of the said electrically conductive agent can be suitably adjusted so that desired resistance may be obtained. In this case, the resistance of the surface layer is preferably 10 3 to 10 15 Ω · cm, more preferably 10 5 to 10 14 Ω · cm.

表面層2d中に添加される樹脂粒子は、絶縁性の有機粒子として、アクリル樹脂、アクリル/スチレンの共重合体樹脂、ポリアミド樹脂、シリコーンゴム樹脂、エポキシ樹脂等が挙げられる。樹脂粒子の粒子径は、1μm以上50μm以下であることが好ましく、より好ましくは、5μm以上30μm以下である。樹脂粒子の粒子径が50μmを超えると、画像上にガサツキや黒ポチが発生する。さらに、樹脂粒子の粒子径が50μm以上であると、凝集等も引き起こし易くなるため好ましくない。   Examples of the resin particles added to the surface layer 2d include insulative organic particles such as acrylic resin, acrylic / styrene copolymer resin, polyamide resin, silicone rubber resin, and epoxy resin. The particle diameter of the resin particles is preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 30 μm or less. If the particle diameter of the resin particles exceeds 50 μm, rust or black spots occur on the image. Furthermore, if the particle diameter of the resin particles is 50 μm or more, aggregation is likely to occur, which is not preferable.

また、本発明による帯電部材において、表面層中に含有される樹脂粒子は、表面層の質量に対して、10質量%以上30質量%以下含有されていることが好ましい。30質量%よりも大きい場合、表面層に対し、樹脂粒子の含有量が多くなりすぎる為、図1に示すような表面層への樹脂粒子の存在状態を形成することが困難になり、10質量%未満であると、樹脂粒子同士の存在間隔が大きくなりすぎ帯電均一性が劣ってしまう。   In the charging member according to the present invention, the resin particles contained in the surface layer are preferably contained in an amount of 10% by mass to 30% by mass with respect to the mass of the surface layer. When the content is larger than 30% by mass, the resin particle content is excessively large with respect to the surface layer, so that it is difficult to form the presence state of the resin particles in the surface layer as shown in FIG. If it is less than%, the existence interval between the resin particles becomes too large, resulting in poor charging uniformity.

表面層の成形方法としては、まず、表面層を構成する上述の材料を、サンドミル、ペイントシェーカー、ダイノミル、パールミル等のビーズを利用した従来公知の分散装置を用いて公知の方法により分散させる。得た表面層形成用の樹脂塗料を、ディッピング法やスプレーコート法により、導電性シームレスチューブなどの下地層上に塗工する。表面層の成形方法は、表面層塗料の利用効率の点で、ディッピング法が好ましい。表面層の成形にディッピング法を用いる場合、表面層形成用塗料中の樹脂量と塗工引き上げ速度とを調整/制御して、表面層膜厚を調整する。表面層塗料中の樹脂量を多くすると表面層の膜厚が大きくなり、樹脂量を少なくすると膜厚も小さくなる。また、引き上げ速度を低下させると、膜厚は大きくなり、引き上げ速度を上昇させると、膜厚は小さくなる。   As a method for forming the surface layer, first, the above-described materials constituting the surface layer are dispersed by a known method using a conventionally known dispersion apparatus using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill. The obtained resin coating for forming the surface layer is applied on a base layer such as a conductive seamless tube by dipping or spray coating. As the method for forming the surface layer, the dipping method is preferable from the viewpoint of the utilization efficiency of the surface layer paint. When the dipping method is used for forming the surface layer, the surface layer film thickness is adjusted by adjusting / controlling the amount of resin in the coating material for forming the surface layer and the coating lifting speed. Increasing the amount of resin in the surface layer paint increases the film thickness of the surface layer, and decreasing the amount of resin decreases the film thickness. Further, when the pulling speed is decreased, the film thickness is increased, and when the pulling speed is increased, the film thickness is decreased.

(本発明による電子写真装置)
次に、本発明による電子写真装置について説明する。
(Electrophotographic apparatus according to the present invention)
Next, an electrophotographic apparatus according to the present invention will be described.

図5は、本発明による帯電部材を有する電子写真装置の一例の概略構成図である。本発明による電子写真装置は、上述の帯電部材を有すれば、その他の構成は特に限定されない。一例として、図5によると、本発明による電子写真装置において、像担持体としての回転ドラム型の電子写真感光体21は、図中の矢印が示す方向に所定の周速度(プロセススピード)で回転駆動する。電子写真感光体21には、例えばロール状の導電性支持体とこの支持体上に無機感光材料又は有機感光材料を含有する感光層とを少なくとも有する公知の感光体等を採用すればよい。また、電子写真感光体21は、感光体表面を所定の極性や電位に帯電させるための電荷注入層を更に有してもよい。帯電部材としての帯電ローラ(導電性ローラ)22は、帯電ローラ22に帯電バイアスを印加する帯電バイアス印加電源S1と組み合わされて、帯電手段を構成する。帯電ローラ22は、電子写真感光体21に所定の押圧力で接触され、電子写真感光体21の回転に対して回転駆動する。図5の例では、帯電ローラ22は、電子写真感光体21の回転に対して順方向に回転駆動するように、示されている。帯電ローラ22は、帯電バイアス印加電源S1から所定の直流電圧(本例では−1200Vとする)が印加されて、接触帯電方式のなかでもDC帯電方式にて、電子写真感光体21の表面を所定の極性電位(本例では暗部電位−600Vとする)に一様に帯電処理する。露光手段23は、公知の手段を利用すればよく、例えばレーザービームスキャナー等が好ましい。露光手段23は、目的の画像情報に対応した露光Lを電子写真感光体21の帯電処理面に露光して、電子写真感光体の帯電面の露光明部の電位(本例では明部電位−350Vとする)を選択的に低下(減衰)させて、電子写真感光体21に静電潜像を形成させる。現像手段24としては公知の手段を利用することができる。例えば、現像手段24は、トナーを収容する現像容器の開口部に配設されてトナーを担持搬送するトナー担持体24aと、収容するトナーを攪拌する攪拌部材24bと、トナー担持体24aのトナーの担持量(トナー層厚)を規制するトナー規制部材24cとを有してもよい。現像手段24は、電子写真感光体21表面の静電潜像の露光明部に、電子写真感光体21の帯電極性と同極性に帯電(本例では現像バイアス−350Vとする)されたトナー(ネガトナー)を選択的に付着させて、静電潜像をトナー像として可視化する。現像方式としては特に制限はなく、既存の方法すべてを用いることができ、例えば、ジャンピング現像方式、接触現像方式及び磁気ブラシ方式等が挙げられる。特に、カラー画像を出力する電子写真装置では、トナーの飛散性改善等の点で、接触現像方式が好ましい。転写手段である転写ローラ25は、公知の手段を利用することができ、例えば、金属等の導電性支持体上に中抵抗に調整された弾性樹脂層を被覆してなる転写ローラ等が挙げられる。転写ローラ25は、電子写真感光体21に所定の押圧力で接触させて転写ニップ部を形成させてあり、電子写真感光体21の回転と順方向に電子写真感光体21の回転周速度とほぼ同じ周速度で回転する。また、転写ローラ25は、転写バイアス印加電源S2からトナーの帯電特性とは逆極性の転写電圧が印加される。転写ニップ部に対して給紙機構部(図示せず)から転写材Pが所定のタイミングで給紙される。転写材Pの裏面は、転写電圧が印加された転写ローラ25により、トナーの帯電極性とは逆極性に帯電される。これにより、電子写真感光体21面側のトナー画像は、転写ニップ部において転写材Pの表面側に静電転写される。転写ニップ部でトナー画像の転写を受けた転写材Pは、電子写真感光体面から分離して、トナー画像定着手段(図示せず)へ導入されて、トナー画像の定着を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合、この画像形成物は、再循環搬送機機構(図示せず)に導入されて、転写ニップ部へ再導入される。転写残余トナー等の電子写真感光体21上の残留物は、ブレード型等のクリーニング手段26により、感光体上より回収される。また、電子写真感光体21に残留電荷が残るような場合、帯電ローラ22による一次帯電を行う前に、前露光手段27によって電子写真感光体21の残留電荷を除去することが好ましい。   FIG. 5 is a schematic configuration diagram of an example of an electrophotographic apparatus having a charging member according to the present invention. As long as the electrophotographic apparatus according to the present invention has the above-described charging member, other configurations are not particularly limited. As an example, according to FIG. 5, in the electrophotographic apparatus according to the present invention, the rotating drum type electrophotographic photosensitive member 21 as the image carrier rotates at a predetermined peripheral speed (process speed) in the direction indicated by the arrow in the figure. To drive. The electrophotographic photoreceptor 21 may be, for example, a known photoreceptor having at least a roll-like conductive support and a photosensitive layer containing an inorganic photosensitive material or an organic photosensitive material on the support. The electrophotographic photosensitive member 21 may further include a charge injection layer for charging the surface of the photosensitive member to a predetermined polarity or potential. A charging roller (conductive roller) 22 as a charging member is combined with a charging bias application power source S1 for applying a charging bias to the charging roller 22 to constitute a charging unit. The charging roller 22 is brought into contact with the electrophotographic photosensitive member 21 with a predetermined pressing force, and is driven to rotate with respect to the rotation of the electrophotographic photosensitive member 21. In the example of FIG. 5, the charging roller 22 is shown to be driven to rotate in the forward direction with respect to the rotation of the electrophotographic photosensitive member 21. The charging roller 22 is applied with a predetermined DC voltage (in this example, −1200 V) from the charging bias application power source S1, and the surface of the electrophotographic photosensitive member 21 is predetermined by the DC charging method among the contact charging methods. Is uniformly charged to a polar potential (in this example, a dark portion potential of −600 V). The exposure means 23 may use a known means, and for example, a laser beam scanner or the like is preferable. The exposure means 23 exposes the exposure processing surface of the electrophotographic photosensitive member 21 with the exposure L corresponding to the target image information, and the potential of the exposure bright portion of the charging surface of the electrophotographic photosensitive member (in this example, the bright portion potential −). 350V) is selectively lowered (attenuated) to form an electrostatic latent image on the electrophotographic photosensitive member 21. A known means can be used as the developing means 24. For example, the developing unit 24 includes a toner carrying member 24a that is disposed in an opening of a developing container that contains toner and carries and conveys the toner, a stirring member 24b that stirs the contained toner, and the toner of the toner carrying member 24a. And a toner regulating member 24c that regulates the carrying amount (toner layer thickness). The developing means 24 is a toner (with a developing bias of −350 V in this example) charged to the exposed bright portion of the electrostatic latent image on the surface of the electrophotographic photosensitive member 21 with the same polarity as the charging polarity of the electrophotographic photosensitive member 21 (in this example, the developing bias is −350 V). Negative toner) is selectively attached to visualize the electrostatic latent image as a toner image. There is no particular limitation on the development method, and all existing methods can be used, and examples thereof include a jumping development method, a contact development method, and a magnetic brush method. In particular, in an electrophotographic apparatus that outputs a color image, the contact development method is preferable from the viewpoint of improving toner scattering properties. As the transfer roller 25 which is a transfer means, a known means can be used, for example, a transfer roller formed by coating a conductive support such as metal with an elastic resin layer adjusted to a medium resistance. . The transfer roller 25 is brought into contact with the electrophotographic photosensitive member 21 with a predetermined pressing force to form a transfer nip portion, and is approximately equal to the rotational peripheral speed of the electrophotographic photosensitive member 21 in the forward direction with the rotation of the electrophotographic photosensitive member 21. Rotates at the same peripheral speed. The transfer roller 25 is applied with a transfer voltage having a polarity opposite to the charging characteristics of the toner from the transfer bias application power source S2. The transfer material P is fed to the transfer nip portion at a predetermined timing from a paper feed mechanism portion (not shown). The back surface of the transfer material P is charged to a polarity opposite to the charging polarity of the toner by the transfer roller 25 to which a transfer voltage is applied. As a result, the toner image on the surface of the electrophotographic photosensitive member 21 is electrostatically transferred to the surface side of the transfer material P at the transfer nip portion. The transfer material P that has received the transfer of the toner image at the transfer nip portion is separated from the surface of the electrophotographic photosensitive member and is introduced into a toner image fixing means (not shown). Is output. In the case of the double-sided image forming mode or the multiple image forming mode, this image formed product is introduced into a recirculation conveyance mechanism (not shown) and reintroduced into the transfer nip portion. Residues on the electrophotographic photosensitive member 21 such as transfer residual toner are collected from the photosensitive member by a cleaning means 26 such as a blade type. Further, when residual charge remains on the electrophotographic photosensitive member 21, it is preferable to remove the residual charge of the electrophotographic photosensitive member 21 by the pre-exposure means 27 before performing the primary charging by the charging roller 22.

以下に、具体的な実施例により、本発明をさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の「部」は質量部を示す。   Hereinafter, the present invention will be described in more detail by way of specific examples. However, the present invention is not limited to these. In addition, "part" in an Example shows a mass part.

(実施例1)
〔導電性弾性体層の作製〕
以下の成分を2本ロールで20分間混合し、コンパウンドを作製した。
EPDM 100部
酸化亜鉛 5部
高級脂肪酸 1部
導電性カーボンブラック 5部
パラフィンオイル 10部
硫黄 2部
加硫促進剤(MBT) 1部
加硫促進剤(TMTD) 1部
加硫促進剤(ZnMDC) 1.5部
発泡剤(重炭酸ナトリウム) 10部
これを、ゴム押し出し機を使用して、外径10mm、内径5.5mmの円筒形に押し出し、250mmの長さに裁断し、加硫缶を使用して、160℃の水蒸気中で40分間1次加硫し、導電性弾性体層ゴム1次加硫チューブを得た。次に、直径6mm、長さ256mmの円柱形の導電性支持部材(鋼製、表面工業ニッケルメッキ)の円柱面の軸方向中央部231mmに金属とゴムとの熱硬化性接着剤(商品名:メタロックU−20((株)東洋化学研究所社製))を塗布した。塗布後、80℃で30分乾燥した後、120℃で1時間乾燥した。この導電性支持部材を、上述の導電性弾性体層ゴム1次加硫チューブに挿入し、その後、電気オーブンの中で160℃で2時間、2次加硫と接着剤の硬化とを行い、未研磨層を得た。この未研磨層のうちゴム部分の両端部を突っ切り、ゴム部分の長さを231mmとした後、ゴム部分を回転砥石で研磨し、端部直径8.00mm、中央部直径8.10mmのクラウン形状の導電性弾性体層を有する発泡ローラを得た。
Example 1
[Preparation of conductive elastic layer]
The following components were mixed with two rolls for 20 minutes to produce a compound.
EPDM 100 parts Zinc oxide 5 parts Higher fatty acid 1 part Conductive carbon black 5 parts Paraffin oil 10 parts Sulfur 2 parts Vulcanization accelerator (MBT) 1 part Vulcanization accelerator (TMTD) 1 part Vulcanization accelerator (ZnMDC) 1 .5 parts Foaming agent (sodium bicarbonate) 10 parts This is extruded into a cylindrical shape with an outer diameter of 10 mm and an inner diameter of 5.5 mm using a rubber extruder, cut into a length of 250 mm, and a vulcanized can is used. Then, primary vulcanization was performed in water vapor at 160 ° C. for 40 minutes to obtain a conductive elastic body layer rubber primary vulcanization tube. Next, a thermosetting adhesive (trade name: metal and rubber) is attached to the central portion 231 mm in the axial direction of the cylindrical surface of a cylindrical conductive support member (steel, surface industrial nickel plating) having a diameter of 6 mm and a length of 256 mm. Metalloc U-20 (manufactured by Toyo Chemical Laboratory Co., Ltd.) was applied. After coating, the film was dried at 80 ° C. for 30 minutes and then dried at 120 ° C. for 1 hour. This conductive support member is inserted into the above-described conductive elastic layer rubber primary vulcanization tube, and then subjected to secondary vulcanization and curing of the adhesive in an electric oven at 160 ° C. for 2 hours, An unpolished layer was obtained. In this unpolished layer, both ends of the rubber part are cut off and the length of the rubber part is set to 231 mm, and then the rubber part is polished with a rotating grindstone to form a crown shape having an end diameter of 8.00 mm and a central part diameter of 8.10 mm. A foaming roller having a conductive elastic layer was obtained.

〔下地層の作成〕
上述の発泡ローラ上に形成する導電性シームレスチューブ用として、熱可塑性ポリウレタンエラストマー(TPU)100部に、ケッチェンブラックEC16部、酸化マグネシウム10部及びステアリン酸カルシウム1部を添加した。これを、加圧式ニーダーを用いて、180℃で15分間混練し、冷却粉砕後造粒用押し出し機によりペレット化した。このペレットを用いて、外径φ11.85mmのポイントと内径φ12.75mmの鏡面ダイスとを備えた押し出し機で押し出し成形した。その後、サイジング、冷却工程を経て、外径φ8.5mm、内径φ7.9mm、厚さ300μmのシームレスチューブに成形加工し、300mmの長さに裁断した。得たシームレスチューブを、上述の導電性弾性体層を有する発泡ローラに被覆し、両端部を突っ切り、シームレスチューブ部分の長さを234mmとした。これにより、端部直径8.45mm、中央部直径8.50mmのクラウン形状の下地層を有する導電性ローラを得た。
[Creation of underlayer]
For the conductive seamless tube formed on the above-mentioned foaming roller, 16 parts of ketjen black EC, 10 parts of magnesium oxide and 1 part of calcium stearate were added to 100 parts of thermoplastic polyurethane elastomer (TPU). This was kneaded at 180 ° C. for 15 minutes using a pressure kneader, cooled and pulverized, and pelletized by a granulating extruder. The pellets were extruded using an extruder equipped with a point having an outer diameter of φ11.85 mm and a mirror die having an inner diameter of φ12.75 mm. After that, through a sizing and cooling process, a seamless tube having an outer diameter of φ8.5 mm, an inner diameter of φ7.9 mm, and a thickness of 300 μm was formed and cut into a length of 300 mm. The obtained seamless tube was covered with the foaming roller having the conductive elastic body layer described above, both ends were cut off, and the length of the seamless tube portion was 234 mm. As a result, a conductive roller having a crown-shaped underlayer with an end diameter of 8.45 mm and a center diameter of 8.50 mm was obtained.

〔表面層の作成〕
上述の導電性ローラ上に以下に示す表面層を被覆形成した。
(Creation of surface layer)
The following surface layer was formed on the conductive roller described above.

表面層の材料として、ラクトン変性アクリルポリオール(商品名「プラクセルDC2016」:ダイセル化学工業(株)製)100部を、メチルイソブチルケトン250部に溶解した。これに、以下の各成分を配合し、ペイントシェイカーを使用して6時間分散し浸漬塗工用塗料を作製した。
ブロックイソシアネート(IPDI)
(商品名「デュラネートMF−K60X」:旭化成ケミカルズ(株)製)
92.14部
カーボンブラック
(商品名「MA100」:三菱化学(株)製) 20.02部
変性ジメチルシリコーンオイル
(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)
0.1部
ポリメチルメタクリレート(PMMA)粒子
(商品名「テクポリマー」(平均粒子径5μm):積水化成品工業(株)製)
20部
この表面層塗料を、ディッピング法により上述の導電性ローラの表面に塗工した。30分間風乾した後、110℃で60分間焼結乾燥した。こうして表面層を被覆形成したローラ形状の帯電部材を得た。
As a material for the surface layer, 100 parts of lactone-modified acrylic polyol (trade name “Placcel DC2016” manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 250 parts of methyl isobutyl ketone. The following components were blended and dispersed for 6 hours using a paint shaker to prepare a dip coating paint.
Block isocyanate (IPDI)
(Product name “Duranate MF-K60X”: manufactured by Asahi Kasei Chemicals Corporation)
92.14 parts carbon black (trade name “MA100” manufactured by Mitsubishi Chemical Corporation) 20.02 parts modified dimethyl silicone oil (trade name “SH-28PA” manufactured by Toray Dow Corning Silicone Co., Ltd.)
0.1 part polymethyl methacrylate (PMMA) particles (trade name “Techpolymer” (average particle size 5 μm): Sekisui Plastics Co., Ltd.)
20 parts of this surface layer coating was applied to the surface of the conductive roller by dipping. After air drying for 30 minutes, it was sintered and dried at 110 ° C. for 60 minutes. Thus, a roller-shaped charging member having a surface layer formed thereon was obtained.

<下地層の十点平均表面粗さ(Rz)測定>
上述の通り得たシームレスチューブを用いて、十点平均表面粗さ(Rz)の測定を行った。測定は、小坂研究所製:表面粗度計SE−3300Hを用い、測定条件としてはカットオフ0.8mm、測定距離8mm、送り速度0.5mm/秒にて、導電性ローラ中央部3箇所(任意の場所を起点にして120°刻み)のRz平均値を求めた。その結果を表1に示す。
<Measurement of 10-point average surface roughness (Rz) of underlayer>
Using the seamless tube obtained as described above, ten-point average surface roughness (Rz) was measured. The measurement is made by Kosaka Laboratory: Surface roughness meter SE-3300H, and the measurement conditions are cut-off 0.8 mm, measurement distance 8 mm, feed rate 0.5 mm / second, and three conductive roller central portions ( The Rz average value of 120 ° increments from any place was determined. The results are shown in Table 1.

<表面層の膜厚測定>
上述の通り得た帯電部材を用いて、表面層膜厚の測定を行った。測定は、ローラ中央部表面層の断面が見えるように切り出し、SEM(走査型電子顕微鏡)を用い、上述の通り、表面層の膜厚測定位置1cに対応する任意の10点を測定し平均値を求めた。その結果を表1に示す。
<Measurement of surface layer thickness>
Using the charging member obtained as described above, the surface layer thickness was measured. The measurement is performed so that the cross section of the surface layer of the roller center portion can be seen, and using an SEM (scanning electron microscope), as described above, arbitrary 10 points corresponding to the film thickness measurement position 1c of the surface layer are measured and averaged. Asked. The results are shown in Table 1.

<帯電ローラに直流電圧のみを印加したときの連続複数枚数画像出し耐久試験>
上述の通り得た帯電部材をプリンターに装着し、温度23℃、湿度55%雰囲気下において、連続複数枚数画像出し耐久試験を行った。初期と20,000枚とにおいて、モノカラーハーフトーン印刷を行った。得た画像を目視にて観察して評価を行った。結果を表1に示す。
<Endurance test for continuous image output when only DC voltage is applied to the charging roller>
The charging member obtained as described above was mounted on a printer, and a continuous plural-sheet image endurance test was performed in an atmosphere of a temperature of 23 ° C. and a humidity of 55%. Monocolor halftone printing was performed on the initial and 20,000 sheets. The obtained image was visually observed and evaluated. The results are shown in Table 1.

表中の「◎」、「〇」、「△」、「×」、「××」は、帯電ムラの発生について画像品質を5段階にランク分けしたものである。なお、「◎」を帯電ムラが全くないレベルとし、「〇」までを良しとした。「△」、「×」は、製品としては見劣りする画像問題部を多少とも有するものであるため、NGとした。更に「××」は帯電ムラが目立つため、不良レベルとした。その結果を表1に示す。   “◎”, “◯”, “Δ”, “×”, and “XX” in the table are the image quality rankings in five levels for the occurrence of charging unevenness. In addition, “」 ”is a level where there is no charging unevenness, and“ ◯ ”is good. “△” and “×” are judged as NG because they have some image problem parts which are inferior as a product. Furthermore, “XX” was determined to be a defective level because of uneven charging. The results are shown in Table 1.

実施例1の帯電部材は、耐久前後での帯電ムラの発生がなく、耐久後も良好な帯電均一性を保持していた。   The charging member of Example 1 did not cause uneven charging before and after endurance, and maintained good charging uniformity even after endurance.

(実施例2)
実施例1の表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径8μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Example 2)
In the production of the surface layer of Example 1, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 8 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例2の帯電部材は、耐久前後での帯電ムラの発生がなく、耐久後も良好な帯電均一性を保持していた。   The charging member of Example 2 did not cause uneven charging before and after endurance, and maintained good charging uniformity even after endurance.

(実施例3)
実施例1の表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径15μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。また、メチルイソブチルケトンの配合量を250部から200部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Example 3)
In the preparation of the surface layer of Example 1, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 15 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Further, the amount of methyl isobutyl ketone was changed from 250 parts to 200 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例3の帯電部材は、耐久前後での帯電ムラの発生がなく、耐久後も良好な帯電均一性を保持していた。   The charging member of Example 3 did not cause uneven charging before and after endurance, and maintained good charging uniformity even after endurance.

(実施例4)
実施例1の表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径30μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。また、メチルイソブチルケトンの配合量を250部から150部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
Example 4
In the production of the surface layer of Example 1, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 30 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Further, the amount of methyl isobutyl ketone was changed from 250 parts to 150 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例4の帯電部材は、耐久前後での帯電ムラの発生がなく、耐久後も良好な帯電均一性を保持していた。   The charging member of Example 4 did not cause uneven charging before and after durability, and maintained good charging uniformity even after durability.

(実施例5)
実施例1の下地層の作製において、鏡面ダイスの代わりに、粗しダイスを使用した。また、表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径30μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。さらに、メチルイソブチルケトンの配合量を250部から150部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Example 5)
In preparation of the underlayer of Example 1, a roughing die was used instead of the mirror die. In the preparation of the surface layer, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 30 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Further, the amount of methyl isobutyl ketone was changed from 250 parts to 150 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例5の帯電部材は、耐久前後での帯電ムラの発生がなく、耐久後も良好な帯電均一性を保持していた。   The charging member of Example 5 was free from uneven charging before and after endurance and maintained good charging uniformity after endurance.

(実施例6)
実施例1の下地層の作製において、鏡面ダイスの代わりに、粗しダイスを使用した。また、表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径40μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。さらに、メチルイソブチルケトンの配合量を250部から150部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Example 6)
In preparation of the underlayer of Example 1, a roughing die was used instead of the mirror die. In the preparation of the surface layer, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 40 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Further, the amount of methyl isobutyl ketone was changed from 250 parts to 150 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例6の帯電部材は、耐久前では帯電ムラの発生がなく、耐久後は汚れに起因する軽微な帯電ムラが発生していたが、実用上は問題の無い画質であった。   The charging member of Example 6 had no charging unevenness before the endurance, and slight charging unevenness due to the stain occurred after the endurance, but the image quality had no problem in practical use.

(実施例7)
実施例1の下地層の作製において、鏡面ダイスの代わりに、粗しダイスを使用した。また、表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径50μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。さらに、メチルイソブチルケトンの配合量を250部から150部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Example 7)
In preparation of the underlayer of Example 1, a roughing die was used instead of the mirror die. In the preparation of the surface layer, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 50 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Further, the amount of methyl isobutyl ketone was changed from 250 parts to 150 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例7の帯電部材は、耐久前では粒子径の大きさ要因と思われる軽微な帯電ムラが発生しており、耐久後は汚れに起因する軽微な帯電ムラが発生していたが、実用上は問題の無い画質であった。   In the charging member of Example 7, slight charging unevenness that seems to be a factor of the particle diameter occurred before the endurance, and after charging, the slight charging unevenness due to the stain occurred. The image quality was satisfactory.

(比較例1)
実施例1の表面層の作製において、メチルイソブチルケトンの配合量を250部から200部へ変更した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 1)
In preparation of the surface layer of Example 1, the amount of methyl isobutyl ketone was changed from 250 parts to 200 parts. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例1の帯電部材は、耐久前では樹脂粒子径よりも膜厚が大きいために帯電ムラが発生しており、耐久後はさらに悪化した。   Since the charging member of Comparative Example 1 had a film thickness larger than the resin particle diameter before endurance, uneven charging occurred, and the endurance deteriorated further after endurance.

(比較例2)
実施例1の下地層の作製において、鏡面ダイスの代わりに、粗しダイスを使用した。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 2)
In preparation of the underlayer of Example 1, a roughing die was used instead of the mirror die. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例2の帯電部材は、耐久前では下地層の表面粗さ要因と思われる帯電ムラが発生しており、耐久後もこの帯電ムラの発生は無くならなかった。   The charging member of Comparative Example 2 had charging unevenness that seemed to be a cause of the surface roughness of the underlayer before endurance, and the occurrence of this charging unevenness did not disappear even after endurance.

(比較例3)
実施例1の表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径15μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 3)
In the preparation of the surface layer of Example 1, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 15 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例3の帯電部材は、耐久前では帯電ムラの発生がなく良好な画質であったが、耐久後は樹脂粒子の脱落要因と思われる帯電ムラが発生した。   The charging member of Comparative Example 3 had good image quality with no occurrence of charging unevenness before endurance, but after the endurance, charging unevenness that was considered to be a cause of dropping of resin particles occurred.

(比較例4)
実施例1の表面層の作製において、平均粒子径5μmのポリメチルメタクリレート(PMMA)樹脂粒子の代わりに、平均粒子径30μmのポリメチルメタクリレート(PMMA)樹脂粒子を用いた。他は実施例1と同様にして帯電部材を得、実施例1と同様に評価した。その結果を表1に示す。
(Comparative Example 4)
In the production of the surface layer of Example 1, polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 30 μm were used instead of polymethyl methacrylate (PMMA) resin particles having an average particle diameter of 5 μm. Others were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例4の帯電部材は、耐久前では膜厚に対する粒子径の大きさ要因と思われる帯電ムラが発生しており、耐久後は樹脂粒子の脱落要因と思われる帯電ムラが発生した。   The charging member of Comparative Example 4 had charging unevenness that seemed to be a factor of the particle diameter with respect to the film thickness before the endurance, and after the endurance, charging unevenness that seemed to be a cause of dropping of the resin particles occurred.

Figure 2007101864
Figure 2007101864

本発明による帯電部材の構成の概念断面図である。1 is a conceptual cross-sectional view of a configuration of a charging member according to the present invention. 従来の帯電部材の構成の概念断面図である。It is a conceptual sectional view of the configuration of a conventional charging member. 本発明による帯電部材の構成を示す横断面図である。It is a cross-sectional view which shows the structure of the charging member by this invention. 本発明による帯電部材の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the charging member by this invention. 本発明による帯電部材を有する電子写真装置の一例の概略構成図である。1 is a schematic configuration diagram of an example of an electrophotographic apparatus having a charging member according to the present invention.

符号の説明Explanation of symbols

1a 表面層
1b 樹脂粒子
1c 表面層の膜厚測定位置
1d 表面層の膜厚測定位置
1e 下地層
2a 導電性支持部材
2b 導電性弾性層
2c 下地層
2d 表面層
21 電子写真感光体
22 帯電ローラ
23 露光手段
24 現像手段
24a トナー担持体
24b 攪拌部材
24c トナー規制部材
25 転写ローラ
26 クリーニング手段
27 前露光手段
P 転写材
L レーザー光
S1 バイアス印加電源
S2 バイアス印加電源
S3 バイアス印加電源
DESCRIPTION OF SYMBOLS 1a Surface layer 1b Resin particle 1c Surface layer film thickness measurement position 1d Surface layer film thickness measurement position 1e Underlayer 2a Conductive support member 2b Conductive elastic layer 2c Underlayer 2d Surface layer 21 Electrophotographic photosensitive member 22 Charging roller 23 Exposure means 24 Developing means 24a Toner carrier 24b Stirring member 24c Toner regulating member 25 Transfer roller 26 Cleaning means 27 Pre-exposure means P Transfer material L Laser light S1 Bias application power source S2 Bias application power source S3 Bias application power source

Claims (7)

導電性支持部材と、該導電性支持部材上に形成された導電性弾性層と、該導電性弾性層上に形成された下地層と、該下地層上に形成され樹脂粒子を有する表面層とを備えた帯電部材であって、
該表面層の膜厚をA、該樹脂粒子の平均粒子径をB、該下地層の十点平均表面粗さ(Rz)をCとした時、
C<A<Bであり、且つB<2Aであることを特徴とする帯電部材。
A conductive support member; a conductive elastic layer formed on the conductive support member; a base layer formed on the conductive elastic layer; and a surface layer formed on the base layer and having resin particles; A charging member comprising:
When the film thickness of the surface layer is A, the average particle diameter of the resin particles is B, and the ten-point average surface roughness (Rz) of the base layer is C,
A charging member, wherein C <A <B and B <2A.
前記樹脂粒子の平均粒子径は、1μm以上50μm以下である、請求項1に記載の帯電部材。   The charging member according to claim 1, wherein an average particle diameter of the resin particles is 1 μm or more and 50 μm or less. 前記表面層は、10質量%以上30質量%以下で前記樹脂粒子を有する、請求項1又は2に記載の帯電部材。   The charging member according to claim 1, wherein the surface layer has the resin particles at 10 mass% or more and 30 mass% or less. 前記下地層の十点平均表面粗さ(Rz)が2μm以上15μm以下である、請求項1乃至3のいずれか一項に記載の帯電部材。   The charging member according to claim 1, wherein the underlayer has a ten-point average surface roughness (Rz) of 2 μm or more and 15 μm or less. 前記下地層は、シームレスチューブである、請求項1乃至4のいずれか一項に記載の帯電部材。   The charging member according to claim 1, wherein the underlayer is a seamless tube. 該表面層が、ラクトン変性アクリルポリオールがイソシアネート架橋されたアクリルウレタン樹脂を主成分とする表面層である、請求項1乃至5のいずれか一項に記載の帯電部材。   The charging member according to any one of claims 1 to 5, wherein the surface layer is a surface layer mainly composed of an acrylurethane resin in which a lactone-modified acrylic polyol is isocyanate-crosslinked. 請求項1乃至6のいずれか一項に記載の帯電部材を有することを特徴とする電子写真装置。   An electrophotographic apparatus comprising the charging member according to claim 1.
JP2005291140A 2005-10-04 2005-10-04 Charging component and electrophotographic system Pending JP2007101864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291140A JP2007101864A (en) 2005-10-04 2005-10-04 Charging component and electrophotographic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291140A JP2007101864A (en) 2005-10-04 2005-10-04 Charging component and electrophotographic system

Publications (1)

Publication Number Publication Date
JP2007101864A true JP2007101864A (en) 2007-04-19

Family

ID=38028873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291140A Pending JP2007101864A (en) 2005-10-04 2005-10-04 Charging component and electrophotographic system

Country Status (1)

Country Link
JP (1) JP2007101864A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943870A (en) * 2009-07-02 2011-01-12 富士施乐株式会社 Conductive rollers, charging device, handle box and image forming apparatus
US8437663B2 (en) 2009-03-27 2013-05-07 Fuji Xerox Co., Ltd. Charging member, process cartridge and image forming apparatus
US8725043B2 (en) 2011-02-17 2014-05-13 Fuji Xerox Co., Ltd. Charging member, charging device, process cartridge, and image forming apparatus
JP2015090454A (en) * 2013-11-06 2015-05-11 富士ゼロックス株式会社 Charging member, charging apparatus, process cartridge, and image forming apparatus
JP2015121769A (en) * 2013-11-21 2015-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Charge member
US9618870B1 (en) 2015-09-24 2017-04-11 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160959A (en) * 1997-11-28 1999-06-18 Canon Chemicals Inc Electrifying member, process cartridge and image forming device
JP2003316112A (en) * 2002-04-19 2003-11-06 Canon Inc Electrostatic charging member, image forming device, and process cartridge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160959A (en) * 1997-11-28 1999-06-18 Canon Chemicals Inc Electrifying member, process cartridge and image forming device
JP2003316112A (en) * 2002-04-19 2003-11-06 Canon Inc Electrostatic charging member, image forming device, and process cartridge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437663B2 (en) 2009-03-27 2013-05-07 Fuji Xerox Co., Ltd. Charging member, process cartridge and image forming apparatus
CN101943870A (en) * 2009-07-02 2011-01-12 富士施乐株式会社 Conductive rollers, charging device, handle box and image forming apparatus
JP2011013495A (en) * 2009-07-02 2011-01-20 Fuji Xerox Co Ltd Electroconductive roll, charging device, process cartridge, and image forming apparatus
US8725043B2 (en) 2011-02-17 2014-05-13 Fuji Xerox Co., Ltd. Charging member, charging device, process cartridge, and image forming apparatus
JP2015090454A (en) * 2013-11-06 2015-05-11 富士ゼロックス株式会社 Charging member, charging apparatus, process cartridge, and image forming apparatus
JP2015121769A (en) * 2013-11-21 2015-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Charge member
US9703226B2 (en) 2013-11-21 2017-07-11 S-Printing Solution Co., Ltd. Charging member
US9618870B1 (en) 2015-09-24 2017-04-11 Fuji Xerox Co., Ltd. Charging member, process cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4047057B2 (en) Method for manufacturing charging member
JP2007127849A (en) Image forming apparatus
JP2007101864A (en) Charging component and electrophotographic system
JP5110985B2 (en) Contact charging member, process cartridge, and electrophotographic image forming apparatus
JP2007065469A (en) Charging member
JP7034813B2 (en) Image forming device, charging member, cartridge, manufacturing method of charging member
JP2007264254A (en) Charging member and electrophotographic apparatus
JP2019197164A (en) Electrostatic roller, cartridge, and image forming device
JP4262000B2 (en) Conductive roller, conductive roller manufacturing method, and electrophotographic apparatus
JP2007292298A (en) Method for producing charging member
JP2001166563A (en) Conductive member, process cartridge and image forming device
JP2019197162A (en) Electrostatic roller, cartridge, and image forming device
JP2009009029A (en) Charging member for electrophotography, process cartridge and electrophotographic apparatus
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP2014137453A (en) Charging device, assembly, and image forming apparatus
JP2004157384A (en) Electrifying member, process cartridge, and electrophotographic device
JP5998999B2 (en) Charging device, assembly, and image forming apparatus.
JP4371833B2 (en) Charging member, image forming apparatus, charging method, and process cartridge
JP2009156904A (en) Charging device, process cartridge and image forming apparatus
JP4727244B2 (en) Method for manufacturing conductive member
JP2006065059A (en) Conductive member
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP2004294849A (en) Electrifying member
JP4289928B2 (en) Method for manufacturing conductive member
JP2005292633A (en) Charging roller, process cartridge and electrophotographic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

RD04 Notification of resignation of power of attorney

Effective date: 20090218

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090402

RD02 Notification of acceptance of power of attorney

Effective date: 20090402

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927