JP2007292298A - Method for producing charging member - Google Patents

Method for producing charging member Download PDF

Info

Publication number
JP2007292298A
JP2007292298A JP2007076149A JP2007076149A JP2007292298A JP 2007292298 A JP2007292298 A JP 2007292298A JP 2007076149 A JP2007076149 A JP 2007076149A JP 2007076149 A JP2007076149 A JP 2007076149A JP 2007292298 A JP2007292298 A JP 2007292298A
Authority
JP
Japan
Prior art keywords
conductive
layer
charging member
conductive particles
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007076149A
Other languages
Japanese (ja)
Other versions
JP2007292298A5 (en
Inventor
Hisanari Sawada
弥斉 澤田
Toshihiro Otaka
利博 大高
Hideta Araki
秀太 荒木
Naoharu Nakatani
直治 中谷
Atsushi Ikeda
敦 池田
Seiji Tsuru
誠司 都留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2007076149A priority Critical patent/JP2007292298A/en
Publication of JP2007292298A publication Critical patent/JP2007292298A/en
Publication of JP2007292298A5 publication Critical patent/JP2007292298A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of secularly stably producing a conductive member which can output a satisfactory image free from image defect even in application to an electronic photographic device adapted to limit the voltage to be applied to a charging member to only DC voltage. <P>SOLUTION: As a conductive coating layer to be provided on a conductive support, a layer having conductive particles dispersed therein is formed, and stirring treatment of a layer forming mixture in the formation is performed by low-share multipass operation with high flow rate. A bead mill which can continuously perform the process for dispersing the conductive particles even in a dispersing machine and perform multipass circulation stirring treatment(circulating operation with high flow rate) with a low dispersion share is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は複写機やプリンター等において、静電潜像プロセスに用いられる感光体等の潜像保持体を帯電させる帯電部材の製造方法に関し、特に混合物中に導電性粒子を分散させる工程を有する帯電部材の製造方法に関する。   The present invention relates to a method for manufacturing a charging member for charging a latent image holding member such as a photosensitive member used in an electrostatic latent image process in a copying machine, a printer, and the like, and more particularly, a charging method including a step of dispersing conductive particles in a mixture. The present invention relates to a method for manufacturing a member.

電子写真方式を採用した画像形成装置、いわゆる電子写真装置は、電子写真感光体、帯電手段、露光手段、現像手段および転写手段を有するものが一般的である。   An image forming apparatus employing an electrophotographic system, that is, an electrophotographic apparatus, generally includes an electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit.

また、この帯電手段としては、電子写真感光体の表面に接触または近接配置された帯電部材に電圧(直流電圧のみの電圧または直流電圧に交流電圧を重畳した電圧)を印加することによって該電子写真感光体の表面を帯電する方式のものが多く採用されている。   Further, as this charging means, a voltage (a voltage of only DC voltage or a voltage obtained by superimposing an AC voltage on a DC voltage) is applied to a charging member that is in contact with or close to the surface of the electrophotographic photosensitive member. Many systems that charge the surface of the photoreceptor are used.

帯電部材に印加する電圧として、直流電圧に交流電圧を重畳した電圧を採用した場合、交流電源が必要となって電子写真装置の大型化やコストアップを招いたり、電力消費量が増加したりする。さらに、交流電源の使用によるオゾンなどの多量発生によって帯電部材や電子写真感光体の耐久性が低下したりするため、これらの観点からすると、帯電部材への印加電圧は直流電圧のみの電圧であることが好ましい。   When a voltage in which an AC voltage is superimposed on a DC voltage is used as the voltage applied to the charging member, an AC power supply is required, leading to an increase in size and cost of the electrophotographic apparatus, and an increase in power consumption. . Furthermore, since the durability of the charging member and the electrophotographic photosensitive member is reduced due to a large amount of ozone generated due to the use of an AC power source, from these viewpoints, the voltage applied to the charging member is a DC voltage only. It is preferable.

更には、帯電を安定におこなう、オゾンの発生を低減する、あるいは、低コストという観点から、接触式の帯電方法が好んで用いられている。   Furthermore, a contact-type charging method is preferably used from the viewpoint of stable charging, generation of ozone, or low cost.

帯電部材への印加電圧を直流電圧のみの電圧とした場合、帯電処理された被帯電体表面の帯電電位がムラになりやすく、また、微小のスジ状の画像欠陥が生じやすく、帯電の均一性が得られ難い場合がある。また、帯電部材が連続使用により通電劣化した場合には、帯電部材の抵抗が上昇(チャージアップ)しやすく、それに伴い帯電処理された被帯電体表面の帯電電位が低下するという問題がある。また、接触式の帯電方式を用いる画像形成装置においては、帯電部材の汚れ(現像剤の表面付着など)が生じた場合には、この汚れによる帯電不良により画像濃度ムラ等が生じるという問題がある。特に、帯電部材に直流電圧のみを印加する帯電方式の場合、帯電部材の汚れの影響が直流電圧に交流電圧を重畳した電圧を印加する帯電方式に比べ、画像不良として現われやすい傾向にある。   When the voltage applied to the charging member is a DC voltage only, the charged potential on the surface of the charged object is likely to be uneven, and minute streak-like image defects are likely to occur, and the charging uniformity. May be difficult to obtain. In addition, when the charging member is deteriorated due to continuous use, there is a problem that the resistance of the charging member is likely to increase (charge up), and the charged potential of the charged object surface is reduced accordingly. Further, in the image forming apparatus using the contact-type charging method, when the charging member is contaminated (development of the developer surface, etc.), there is a problem that image density unevenness is caused by the charging failure due to the contamination. . In particular, in the charging method in which only the DC voltage is applied to the charging member, the influence of contamination on the charging member tends to appear as an image defect compared to the charging method in which a voltage obtained by superimposing the AC voltage on the DC voltage is applied.

この問題に対して、帯電の均一性を得る事を目的として、導電性の粒子を用いることにより抵抗の均一性を得るという技術が開示されている(例えば、特許文献1)。   With respect to this problem, for the purpose of obtaining uniformity of charging, a technique of obtaining uniformity of resistance by using conductive particles is disclosed (for example, Patent Document 1).

しかし、粒径の小さい粒子は、表面エネルギーが大きいため、粒子同士の凝集力が強く、ストラクチャー構造などの2次凝集体を形成していることが多い。そのため、粒径の小さな導電性粒子を導電性部材中に均一に分散させることが容易ではなく、ミクロ的な抵抗ムラを生じやすく、抵抗の均一性が得られ難い場合がある。   However, particles having a small particle size have a large surface energy, so that the particles have a strong cohesive force and often form secondary aggregates such as a structure structure. For this reason, it is not easy to uniformly disperse the conductive particles having a small particle diameter in the conductive member, and micro resistance unevenness is likely to occur, and it may be difficult to obtain resistance uniformity.

これに対して、分散工程の分散機や工程を増やして、分散シェア及び分散効率を上げ、高分散性を得るという技術が開示されている(例えば、特許文献2,3)。   On the other hand, technologies for increasing the dispersion share and efficiency by increasing the number of dispersers and processes in the dispersion process and obtaining high dispersibility are disclosed (for example, Patent Documents 2 and 3).

特開平06−250494号公報Japanese Patent Laid-Open No. 06-250494 特開2003−207966号公報JP 2003-207966 A 特開平09−146342号公報JP 09-146342 A

しかしながら、高分散性を得ようと強いシェアにより分散処理を行なうと、分散工程が終了すると、急激にシェアから開放されるため、反発的に再凝集等が起こりる場合がある。このような場合には、導電粒子の分散状態が不安定化し、安定性が悪いという問題がある。   However, if dispersion processing is performed with a strong share so as to obtain high dispersibility, when the dispersion process is completed, the dispersion is suddenly released from the share, and reaggregation may occur repulsively. In such a case, there is a problem that the dispersed state of the conductive particles becomes unstable and the stability is poor.

また、帯電部材の被覆層の製造工程において、液体塗料中に顔料等をビーズミルやサンドミル等の分散装置を使用して、一般的な条件で分散処理をおこなうと、液体塗料中の顔料等の粒度分布がどうしても幅広い分布となる。このような液体塗料を帯電部材の被覆層として塗工すると、帯電特性上、特に凝集などによる比較的粗大な粒径の顔料の生成が問題となる。粗大な粒径の顔料が帯電部材中に存在すると、層内にミクロ的に見ると抵抗の高いところと低いところ即ち抵抗値ムラができてしまう。この抵抗値ムラにより帯電部材中に導電経路の片寄りが生じてしまう。   Also, in the manufacturing process of the coating layer of the charging member, if the dispersion process is performed under general conditions using a dispersing device such as a bead mill or a sand mill in the liquid paint, the particle size of the pigment etc. in the liquid paint The distribution is inevitably wide. When such a liquid paint is applied as a coating layer of the charging member, generation of a pigment having a relatively coarse particle diameter due to aggregation is a problem in terms of charging characteristics. When a pigment having a coarse particle size is present in the charging member, unevenness in resistance value is generated in the layer where the resistance is high and low, that is, in resistance value, when viewed microscopically. The unevenness of the resistance value causes a deviation of the conductive path in the charging member.

したがって、このような構成層を有する帯電部材を用いた電子写真装置では、被帯電体である感光体に所定の電位を乗せようとする場合、感光体上の電位に微小の帯電ムラが生じやすく、これが原因で画像上に斑点等の画像不良を起こすことがある。特にハーフトーン画像領域で顕著である。この現象は印加電圧が直流電圧のみの場合に現われやすい。これは、交流電圧のような振動電界による“ならし効果”がないためと考えられる。   Therefore, in an electrophotographic apparatus using a charging member having such a constituent layer, when a predetermined potential is placed on a photoreceptor to be charged, minute charging unevenness tends to occur in the potential on the photoreceptor. This may cause image defects such as spots on the image. This is particularly noticeable in the halftone image area. This phenomenon tends to appear when the applied voltage is only a DC voltage. This is probably because there is no “run-in effect” due to an oscillating electric field such as an alternating voltage.

本発明の目的は、直流電圧を印加して、被接触物を帯電させるための帯電部材として、導電性粒子の分散性が良好であり、抵抗の均一性が確保された帯電部材を製造できる方法を提供することにある。本発明の他の目的は、導電性粒子の分散性が良好で、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られている導電性被覆層を有し、帯電不良や画像欠陥の発生が改善され、かつ、長期にわたって抵抗均一性を有する直流印加用の帯電部材の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a charging member having good dispersibility of conductive particles and ensuring uniformity of resistance as a charging member for charging a contacted object by applying a DC voltage. Is to provide. Another object of the present invention is to have a conductive coating layer that has good dispersibility of conductive particles, does not cause microscopic resistance unevenness, and has uniform resistance, and is free from charging defects and image defects. It is an object of the present invention to provide a method for manufacturing a charging member for direct current application that has improved generation and uniform resistance over a long period of time.

本発明にかかる帯電部材の製造方法は、導電性支持体上に、弾性体層を有し、導電性粒子を含む導電性被覆層を少なくとも有する帯電部材の製造方法において、
該導電性被覆層の層形成用材料と導電性粒子とを少なくとも含む混合物の調製工程と、該混合物を撹拌して該混合物中に導電性粒子を分散させる分散工程と、該分散工程で得られた分散液を該弾性体層上に塗工する塗工工程と、該塗工後に乾燥し該導電性被覆層とする乾燥工程、を含む工程により行われ、
該分散工程が、下記式条件のビーズミル循環撹拌手段であることを特徴とする帯電部材の製造方法である。
πr3gv2<20
L<6x
L<xy/50
r:ビーズ半径(mm)
g:ビーズ密度(g/cm3
v:ディスク周速(m/s)
L:仕込み量(ml)
x:処理速度(ml/min)
y:分散時間(min)
The method for producing a charging member according to the present invention includes a method for producing a charging member having an elastic layer on a conductive support and at least a conductive coating layer containing conductive particles.
A step of preparing a mixture containing at least the layer forming material of the conductive coating layer and conductive particles, a dispersion step of stirring the mixture to disperse the conductive particles in the mixture, and the dispersion step. A coating step of applying the dispersion liquid on the elastic body layer, and a drying step of drying after the coating to form the conductive coating layer.
The method for producing a charging member is characterized in that the dispersing step is a bead mill circulating stirring unit having the following conditions.
πr 3 gv 2 <20
L <6x
L <xy / 50
r: radius of bead (mm)
g: Bead density (g / cm 3 )
v: Disk peripheral speed (m / s)
L: Preparation amount (ml)
x: Processing speed (ml / min)
y: Dispersion time (min)

本発明によれば、表面層として、導電性粒子を分散させた導電性の被覆層を有する帯電部材であっても、粒子の粒度分布を非常にシャープで均一に分散させることができ、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られる。よって、電子写真装置の接触帯電部材として、帯電不良が発生しにくく、画像欠陥のない良好な画像出力を可能とし、かつ、接触帯電部材の長期にわたって抵抗の均一性を維持することが可能な接触帯電部材を提供することができる。   According to the present invention, even if the charging member has a conductive coating layer in which conductive particles are dispersed as a surface layer, the particle size distribution of the particles can be dispersed very sharply and uniformly. Resistance uniformity does not occur and resistance uniformity is obtained. Therefore, as a contact charging member of an electrophotographic apparatus, a contact that is unlikely to cause a charging failure, can output a good image without image defects, and can maintain the uniformity of resistance over a long period of time. A charging member can be provided.

本発明は導電性支持体上に、弾性体層を有し、導電性粒子を含む導電性被覆層を少なくとも有する帯電部材の製造方法において、
該導電性被覆層の層形成用材料と導電性粒子とを少なくとも含む混合物の調製工程と、該混合物を撹拌して該混合物中に導電性粒子を分散させる分散工程と、該分散工程で得られた分散液を該弾性体層上に塗工する塗工工程と、該塗工後に乾燥し該導電性被覆層とする乾燥工程、を含む工程により行われ、
該分散工程が、下記式条件のビーズミル循環撹拌手段であることを特徴とする帯電部材の製造方法である。
πr3gv2<20
L<6x
L<xy/50
r:ビーズ半径(mm)
g:ビーズ密度(g/cm3
v:ディスク周速(m/s)
L:仕込み量(ml)
x:処理速度(ml/min)
y:分散時間(min)
The present invention provides a method for producing a charging member having an elastic layer on a conductive support and having at least a conductive coating layer containing conductive particles.
A step of preparing a mixture containing at least the layer forming material of the conductive coating layer and conductive particles, a dispersion step of stirring the mixture to disperse the conductive particles in the mixture, and the dispersion step. A coating step of applying the dispersion liquid on the elastic body layer, and a drying step of drying after the coating to form the conductive coating layer.
The method for producing a charging member is characterized in that the dispersing step is a bead mill circulating stirring unit having the following conditions.
πr 3 gv 2 <20
L <6x
L <xy / 50
r: radius of bead (mm)
g: Bead density (g / cm 3 )
v: Disk peripheral speed (m / s)
L: Preparation amount (ml)
x: Processing speed (ml / min)
y: Dispersion time (min)

本発明の製造方法を用いて作製した帯電部材の構成の一例を図2及び3に示す。図2に示す帯電部材はローラ形状であり、導電性支持体2aと被覆層として、その外周に一体に形成された弾性層2bから構成されている。帯電部材の他の構成(被覆層が複層構成)を図3に示す。図3に示すように帯電部材は、被覆層が弾性層2bと表面層(最外層)2cからなる2層であってもよい。また、弾性層2b及び抵抗層2dと表面層2cからなる3層及び、抵抗層2dと表面層2cの間に第2の抵抗層2eを設けた、4層以上を導電性支持体2aの上に形成した構成としてもよい。   An example of the structure of the charging member manufactured using the manufacturing method of the present invention is shown in FIGS. The charging member shown in FIG. 2 has a roller shape, and includes a conductive support 2a and an elastic layer 2b integrally formed on the outer periphery thereof as a coating layer. FIG. 3 shows another configuration of the charging member (the coating layer has a multilayer configuration). As shown in FIG. 3, the charging member may be a two-layered coating layer composed of an elastic layer 2b and a surface layer (outermost layer) 2c. In addition, the elastic layer 2b, the resistance layer 2d and the surface layer 2c, and the second resistance layer 2e are provided between the resistance layer 2d and the surface layer 2c, and four or more layers are provided on the conductive support 2a. It is good also as a structure formed in.

導電性支持体2aは、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施しても構わないが、導電性を損なわないことが必要である。   As the conductive support 2a, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel can be used. Furthermore, these metal surfaces may be plated for the purpose of providing rust prevention and scratch resistance, but it is necessary not to impair the conductivity.

上記の構成の帯電ローラにおいて、弾性層2bは被帯電体としての電子写真感光体に対する給電や、電子写真感光体に対する良好な均一密着性を確保するために適当な導電性と弾性を持たせてある。また、帯電ローラと電子写真感光体の均一密着性を確保するために弾性層2bを研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。一般的な電子写真装置の構造では、帯電ローラ2が、支持体2aの両端部に所定の押圧力を与えて電子写真感光体と当接されているので、中央部の押圧力が小さく、両端部ほど大きくなっている。このため、帯電ローラの真直度が十分であれば問題ないが、十分でない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを防止するために形成する。   In the charging roller having the above configuration, the elastic layer 2b has appropriate conductivity and elasticity to supply power to the electrophotographic photosensitive member as a member to be charged and to ensure good uniform adhesion to the electrophotographic photosensitive member. is there. In order to ensure uniform adhesion between the charging roller and the electrophotographic photosensitive member, it is preferable to form the elastic layer 2b in a so-called crown shape by polishing so that the central portion is thickest and narrows toward both ends. In the structure of a general electrophotographic apparatus, the charging roller 2 applies a predetermined pressing force to both ends of the support 2a and is in contact with the electrophotographic photosensitive member. The part is getting bigger. For this reason, there is no problem if the straightness of the charging roller is sufficient, but if it is not sufficient, density unevenness may occur in the images corresponding to the center and both ends. The crown shape is formed to prevent this.

弾性層2bの導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等から選択された電子伝導機構を有する導電剤、及びアルカリ金属塩や四級アンモニウム塩等のイオン伝導機構を有する導電剤を、適宜添加することにより1010Ωcm未満に調整されるのがよい。 The conductivity of the elastic layer 2b is a conductive agent having an electron conduction mechanism selected from carbon black, graphite and a conductive metal oxide in an elastic material such as rubber, and ions such as alkali metal salts and quaternary ammonium salts. It is preferable to adjust to less than 10 10 Ωcm by appropriately adding a conductive agent having a conduction mechanism.

弾性層2bを形成するための層形成用材料としての具体的な弾性材料としては、例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコンーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等も挙げられる。   Specific elastic materials as a layer forming material for forming the elastic layer 2b include, for example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicone rubber, urethane rubber, epichlorohydrin rubber, isoprene. Synthetic rubbers such as rubber (IR), butadiene rubber (BR), nitrile butadiene rubber (NBR), and chloroprene rubber (CR), as well as polyamide resins, polyurethane resins, and silicone resins are also included.

直流電圧のみを印加して、被帯電体の帯電処理を行なう帯電部材においては、帯電均一性を達成するために、特に中抵抗の極性ゴム(例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等)やポリウレタン樹脂を弾性材料として用いるのが好ましい。これらの極性ゴムやポリウレタン樹脂は、ゴムや樹脂中の水分や不純物がキャリアとなり、僅かではあるが導電性をもつと考えられ、これらの導電機構はイオン伝導であると考えられる。但し、これらの極性ゴムやポリウレタン樹脂に導電剤を全く添加しないで弾性層を作製し、得られた帯電部材は低温低湿環境(L/L)において、抵抗値が高くなり1010Ωcm以上となってしまうものもあるため帯電部材に高電圧を印加しなければならなくなる。 In a charging member that applies a DC voltage only to charge the object to be charged, in order to achieve charging uniformity, particularly a moderate resistance polar rubber (for example, epichlorohydrin rubber, NBR, CR, urethane rubber, etc.) It is preferable to use polyurethane resin as an elastic material. These polar rubbers and polyurethane resins are considered to have a slight conductivity due to moisture and impurities in the rubber and resin as carriers, and these conduction mechanisms are considered to be ionic conduction. However, an elastic layer is prepared without adding a conductive agent to these polar rubbers and polyurethane resins, and the obtained charging member has a high resistance value of 10 10 Ωcm or more in a low temperature and low humidity environment (L / L). Therefore, a high voltage must be applied to the charging member.

そこで、L/L環境で帯電部材の抵抗値が1010Ωcm未満になるように、前述した電子導電機構を有する導電剤やイオン導電機構を有する導電剤を適宜添加して調整するのが好ましい。しかしながら、イオン導電機構を有する導電剤は抵抗値を低くする効果が小さく、特にL/L環境でその効果が小さい。そのため、イオン導電機構を有する導電剤の添加と併せて電子導電機構を有する導電剤を補助的に添加して抵抗調整を行ってもよい。 Therefore, it is preferable to adjust the conductive member having the above-described electronic conductive mechanism and the conductive agent having the ionic conductive mechanism by appropriately adding so that the resistance value of the charging member is less than 10 10 Ωcm in the L / L environment. However, the conductive agent having an ionic conduction mechanism has a small effect of lowering the resistance value, and particularly in the L / L environment. Therefore, the resistance adjustment may be performed by supplementarily adding a conductive agent having an electronic conductive mechanism in addition to the addition of a conductive agent having an ionic conductive mechanism.

また、弾性層2bはこれらの弾性材料を発泡成型した発泡体であってもよい。   The elastic layer 2b may be a foam obtained by foaming these elastic materials.

弾性層の厚さは、好ましくは0.5乃至20mm、特には1乃至10mmであることが好ましい。   The thickness of the elastic layer is preferably 0.5 to 20 mm, particularly 1 to 10 mm.

表面層2cは、帯電部材の表面を構成し、被帯電体である感光体と接触するため感光体を汚染してしまう材料構成では好ましくない。また、表面離型性のよいものが好ましいといえる。従って、表面層を形成するための層形成用材料(結着材料)としては、樹脂を用いるのが好ましいといえる。   The surface layer 2c constitutes the surface of the charging member, and is not preferable in a material configuration that contaminates the photoconductor because it contacts the photoconductor that is the object to be charged. Moreover, it can be said that the thing with surface releasability is preferable. Therefore, it can be said that it is preferable to use a resin as the layer forming material (binding material) for forming the surface layer.

表面層2cの結着樹脂材料としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等を用いることが好ましい。この表面層2cを本発明の製造方法にかかる被覆層形成工程によって形成する場合は、フッ素樹脂、アクリル樹脂及びシリコーン樹脂等が特に好ましい。   As the binder resin material for the surface layer 2c, fluorine resin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC), and olefin-ethylene-butylene-olefin It is preferable to use a copolymer (CEBC) or the like. When the surface layer 2c is formed by the coating layer forming step according to the production method of the present invention, a fluororesin, an acrylic resin, a silicone resin, and the like are particularly preferable.

これらの結着樹脂に静摩擦係数を小さくする目的で、グラファイト、雲母、二硫化モリブテン及びフッ素樹脂粉末等の固体潤滑剤、あるいはフッ素系界面活性剤、あるいはワックス、及びシリコーンオイル等を添加してもよい。   For the purpose of reducing the static friction coefficient to these binder resins, solid lubricants such as graphite, mica, molybdenum disulfide and fluororesin powder, or fluorosurfactants, wax, silicone oil, etc. may be added. Good.

表面層2cには、各種導電性粒子を適宜用いる。導電性粒子としては、金属酸化物系導電性粒子、金属系導電性粒子、カーボンブラック、カーボン系導電性粒子等を挙げることができ、本発明においては、所望の電気抵抗を得るためには、該各種導電性粒子を2種以上併用してもよい。   Various conductive particles are appropriately used for the surface layer 2c. Examples of the conductive particles include metal oxide-based conductive particles, metal-based conductive particles, carbon black, and carbon-based conductive particles. In the present invention, in order to obtain a desired electric resistance, Two or more kinds of the various conductive particles may be used in combination.

金属酸化物系導電性粒子としては、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)、酸化鉄、酸化アルミニウム等が挙げられる。前記金属酸化物系導電性粒子はそれのみで十分な導電性を示すものもあるがそうでないものも存在する。粒子の導電性を十分なものとするため、これらの粒子に、ドーパントを添加しても良い。一般的に金属酸化物格子欠陥の存在により、余剰電子が生成し、導電性を示すと考えられ、ドーパント添加によって格子欠陥の形成が促進され、十分な導電性を得ることができるのである。例えば、酸化亜鉛のドーパントとしてはアルミニウム、酸化錫のドーパントとしてはアンチモン、酸化インジウムのドーパントとしては錫などが使用される。また、酸化チタンの導電性を得る場合は、酸化チタンに導電性酸化錫を被覆したものなども挙げることができる。さらには、シリカ等の金属酸化物からなる基体の表面に、カーボンブラックを含む層を被覆したものなども挙げられる。   Examples of the metal oxide conductive particles include zinc oxide, tin oxide, indium oxide, titanium oxide (such as titanium dioxide and titanium monoxide), iron oxide, and aluminum oxide. Some of the metal oxide-based conductive particles show sufficient conductivity by themselves, but some of them do not. In order to make the conductivity of the particles sufficient, a dopant may be added to these particles. In general, it is considered that surplus electrons are generated due to the presence of metal oxide lattice defects and show conductivity, and formation of lattice defects is promoted by addition of a dopant, and sufficient conductivity can be obtained. For example, aluminum is used as a dopant for zinc oxide, antimony is used as a dopant for tin oxide, and tin is used as a dopant for indium oxide. Moreover, when obtaining the electroconductivity of titanium oxide, what coated electroconductive tin oxide on titanium oxide etc. can be mentioned. Furthermore, the thing which coat | covered the layer containing carbon black on the surface of the base | substrate which consists of metal oxides, such as a silica, etc. are mentioned.

金属系導電性粒子としては、銀、銅、ニッケル、亜鉛等が挙げられる。   Examples of the metal conductive particles include silver, copper, nickel, and zinc.

カーボンブラックとしては、アセチレンブラック、ファーネスブラック、チャンネルブラック等が挙げられる。   Examples of carbon black include acetylene black, furnace black, and channel black.

カーボン系導電性粒子としては、グラファイト、カーボンファイバー、活性炭、木炭等を挙げることができる。   Examples of the carbon conductive particles include graphite, carbon fiber, activated carbon, charcoal and the like.

導電性粒子の粒径は平均粒径で1.0μm未満であることが好ましい。平均粒径が1.0μmを超えると感光ドラム上にピンホールが存在した場合、ピンホールリークが発生する場合がある。また、導電性粒子の比重が重い場合は平均粒径が1.0μmを超えると塗布液中で導電性粒子が沈降しやすくなり、塗布液の分散安定性が悪くなる場合がある。   The average particle size of the conductive particles is preferably less than 1.0 μm. If the average particle size exceeds 1.0 μm, pinhole leakage may occur if pinholes exist on the photosensitive drum. When the specific gravity of the conductive particles is heavy, if the average particle diameter exceeds 1.0 μm, the conductive particles are likely to settle in the coating solution, and the dispersion stability of the coating solution may be deteriorated.

導電性粒子の比重は、好ましくは0.8乃至8.0、特には1.0乃至7.0であることが好ましい。   The specific gravity of the conductive particles is preferably 0.8 to 8.0, particularly 1.0 to 7.0.

これらの粒子は、表面処理、変性、官能基の導入、コートなどを施したものでもよい。   These particles may be subjected to surface treatment, modification, introduction of functional groups, coating, and the like.

また、本発明の帯電部材の製造方法において、我々の鋭意検討の結果、新たに以下のような傾向があることを見いだした。   Moreover, in the manufacturing method of the charging member of this invention, as a result of our earnest examination, it discovered that there existed the following new trends.

前記層形成用材料の主成分である樹脂の水酸基価(mgKOH/g)αと、導電性粒子の酸性度(pH)βが下記式範囲を満たすことが好ましい。
12<α/β<30
It is preferable that the hydroxyl value (mgKOH / g) α of the resin, which is the main component of the layer forming material, and the acidity (pH) β of the conductive particles satisfy the following formula range.
12 <α / β <30

本発明の帯電部材の製造方法において、α/βの値が30以上の場合、分散の進行が急激に進み、帯電ローラとしての所望の抵抗値を精度よく得ることが困難になる傾向がある。また、急激に分散が進行したため、経時安定性も悪くなる傾向がある。   In the method for manufacturing a charging member of the present invention, when the value of α / β is 30 or more, the progress of dispersion rapidly proceeds, and it tends to be difficult to accurately obtain a desired resistance value as a charging roller. Further, since the dispersion has progressed rapidly, the temporal stability tends to deteriorate.

逆に、本発明の帯電部材の製造方法において、α/βの値が12以下の場合、分散の進行の速度が非常に遅くなり、帯電ローラとしての所望の抵抗値を得るまでに非常に長い時間が必要となり、生産性が低下してしまう。   On the contrary, in the method for manufacturing a charging member of the present invention, when the value of α / β is 12 or less, the speed of dispersion is very slow, and it is very long until a desired resistance value as a charging roller is obtained. Time is required and productivity is reduced.

更には、前記層形成用材料の主成分である樹脂の水酸基価(mgKOH/g)αは、75乃至85の範囲であることが好ましく、導電性粒子の酸性度(pH)βは、pH3乃至6の範囲であることが好ましい。   Furthermore, the hydroxyl value (mgKOH / g) α of the resin as the main component of the layer forming material is preferably in the range of 75 to 85, and the acidity (pH) β of the conductive particles is pH 3 to A range of 6 is preferable.

表面層の抵抗値は、104乃至1015Ωcmであることが好ましい。また、厚さは1乃至500μmであることが好ましい。特には1乃至50μmであることが好ましい。抵抗層の厚さについても、表面層と同等であることが好ましい。 The resistance value of the surface layer is preferably 10 4 to 10 15 Ωcm. The thickness is preferably 1 to 500 μm. In particular, the thickness is preferably 1 to 50 μm. The thickness of the resistance layer is also preferably the same as that of the surface layer.

上記の表面被覆層、弾性被覆層および抵抗層の形成は、例えば、あらかじめ所定の膜厚に形成されたシート形状またはチューブ形状の層を接着または被覆することによって行ってもよいし、静電スプレー塗布やディッピング塗布などの塗布法によって行ってもよい。また、押し出し成形によって大まかに層形成した後、研磨などによって層の形状を整える方法であってもよいし、型内で所定の形状に材料を硬化、成形する方法であってもよい。すなわち、予めシート状やチューブ状の層を形成して、この層を導電性支持体上に被覆して被覆層を形成する場合は、導電性粒子を分散状態で含む混合物から導電性層を形成する工程と、導電性層を導電性支持体上の被覆層とする工程とが別工程として行なわれる。塗布法のように導電性支持体上に直接導電性被覆層を設ける場合は、これらの工程が一工程として行なわれる。   The surface coating layer, the elastic coating layer, and the resistance layer may be formed by, for example, adhering or coating a sheet-shaped or tube-shaped layer formed in advance to a predetermined film thickness, or electrostatic spraying. The coating may be performed by a coating method such as coating or dipping. Moreover, after forming a layer roughly by extrusion molding, the method of adjusting the shape of a layer by grinding | polishing etc. may be used, and the method of hardening and shaping | molding material to a predetermined shape within a type | mold may be used. That is, when a sheet-like or tube-like layer is formed in advance and this layer is coated on a conductive support to form a coating layer, the conductive layer is formed from a mixture containing conductive particles in a dispersed state. And the step of making the conductive layer a coating layer on the conductive support are performed as separate steps. When the conductive coating layer is provided directly on the conductive support as in the coating method, these steps are performed as one step.

塗布法によって層を形成する場合、塗布液に用いられる溶剤としては、層形成用材料、例えば例えば結着材料やその他の被覆層形成に必要な材料を溶解または分散することができる溶剤であればよい。例えば、メタノール、エタノール、イソプロパノールなどのアルコール類や、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類や、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類や、ジメチルスルホキシドなどのスルホキシド類や、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテルなどのエーテル類や、酢酸メチル、酢酸エチルなどのエステル類や、クロロホルム、塩化エチレン、ジクロルエチレン、四塩化炭素、トリクロロエチレンなどの脂肪族ハロゲン化炭化水素や、ベンゼン、トルエン、キシレン、リグロイン、クロロベンゼン、ジクロロベンゼンなどの芳香族化合物などが挙げられる。   When a layer is formed by a coating method, the solvent used in the coating solution is a solvent that can dissolve or disperse a layer forming material, for example, a binding material or other materials necessary for forming a coating layer. Good. For example, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, , Ethers such as tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogenated hydrocarbons such as chloroform, ethylene chloride, dichloroethylene, carbon tetrachloride, trichloroethylene, Aromatic compounds such as benzene, toluene, xylene, ligroin, chlorobenzene, dichlorobenzene and the like can be mentioned.

導電性粒子と層形成用材料とを含む混合物中に導電性粒子を所望とする分散度に分散する方法としては、混合物を、リボンブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等に供給して撹拌混合する、あるいは、バンバリーミキサー、加圧ニーダー等で撹拌混合する等、既存の方法を用いることができる。塗布法による層形成には、溶剤、層形成用材料及び導電性粒子を混合し、ボールミル、サンドミル、ペイントシェーカー、ダイノミル及びパールミル等、従来公知の溶液分散手段を用いて、塗布液中に導電性粒子を分散させる。そうして得られた導電性粒子が分散状態にある塗布液を導電性支持体の所定位置に塗布し、必要に応じて乾燥処理を行なって導電性粒子の分散性が向上している被覆層を形成することができる。本発明においては、これらの分散機の中でも、導電性粒子を分散する工程が連続的に行なえ、分散シェアが低シェアで、かつ多重パス循環撹拌処理(大流量での循環運転)が可能なビーズミルを用いることを特徴とする。図5は本発明における分散機の概念図である。また、この分散機の概念図は一例であり、これに限定される物ではない。   As a method of dispersing the conductive particles in a desired dispersion degree in the mixture containing the conductive particles and the layer forming material, the mixture is supplied to a ribbon blender, a Nauter mixer, a Henschel mixer, a super mixer, etc. Existing methods such as stirring and mixing, or stirring and mixing with a Banbury mixer, a pressure kneader, or the like can be used. For the layer formation by the coating method, a solvent, a layer forming material and conductive particles are mixed, and the conductive liquid is mixed into the coating liquid using a conventionally known solution dispersing means such as a ball mill, a sand mill, a paint shaker, a dyno mill and a pearl mill. Disperse the particles. The coating layer in which the conductive particles obtained in this manner are coated in a dispersed state on a predetermined position of the conductive support and subjected to a drying treatment to improve the dispersibility of the conductive particles. Can be formed. In the present invention, among these dispersers, a bead mill capable of continuously performing a step of dispersing conductive particles, having a low dispersion share, and capable of a multi-pass circulation stirring process (circulation operation at a large flow rate). It is characterized by using. FIG. 5 is a conceptual diagram of the disperser in the present invention. Moreover, the conceptual diagram of this disperser is an example and is not limited to this.

なお、先に述べたとおり、混合物に含有させる層形成材料としては、導電性の弾性層(2b)の形成では、各種のゴム及び樹脂から選択されたものが使用され、必要に応じて、導電性等を制御するための各種の添加剤を更に添加することができる。また、表面層(2c)の形成では、結着材料、好ましくは結着樹脂が層形成用材料であり、この場合にも必要に応じて、導電性等を制御するための各種の添加剤を添加することができる。また、混合物には必要に応じて溶剤を添加できるが、塗布法による形成では溶媒が必須である。混合物の組成としては所望とする機能や特性を有する導電性被覆層を得るために必要な組成を選択すればよい。その際、結着材料と導電性粒子の比率は、結着樹脂:導電性粒子=1:0.2〜1:2.5であることが好ましく、また、塗布液中の導電材の含有量は1乃至20%、塗布液中の結着樹脂の含有量は5乃至40%であることが好ましい。   As described above, as the layer forming material to be included in the mixture, materials selected from various rubbers and resins are used in the formation of the conductive elastic layer (2b). Various additives for controlling properties and the like can be further added. In the formation of the surface layer (2c), a binder material, preferably a binder resin, is a layer forming material. In this case as well, various additives for controlling conductivity and the like are added as necessary. Can be added. Moreover, although a solvent can be added to a mixture as needed, a solvent is essential for formation by a coating method. What is necessary is just to select a composition required in order to obtain the electroconductive coating layer which has a desired function and characteristic as a composition of a mixture. In that case, the ratio of the binder material to the conductive particles is preferably binder resin: conductive particles = 1: 0.2 to 1: 2.5, and the content of the conductive material in the coating liquid Is preferably 1 to 20%, and the content of the binder resin in the coating solution is preferably 5 to 40%.

溶剤の含有量に関しては、塗布液の粘度が1乃至100mPa・s、さらに好ましくは5乃至50mPa・sになるように添加し、その含有量は好ましくは10乃至90質量%、特には30乃至80質量%であることが好ましい。   Regarding the content of the solvent, it is added so that the viscosity of the coating solution is 1 to 100 mPa · s, more preferably 5 to 50 mPa · s, and the content is preferably 10 to 90% by mass, particularly 30 to 80%. It is preferable that it is mass%.

本発明の製造方法における、
πr3gv2<20
L<6x
L<xy/50
r:ビーズ半径(mm)
g:ビーズ密度(g/cm3
v:ディスク周速(m/s)
L:仕込み量(ml)
x:処理速度(ml/min)
y:分散時間(min)
をすべて満たすビーズミル循環撹拌処理を設けることによって、導電性粒子の被覆層中での分散性が改善されるメカニズムは明らかになっていないが、本発明者等の鋭意検討により、以下のことは解明できた。
In the production method of the present invention,
πr 3 gv 2 <20
L <6x
L <xy / 50
r: radius of bead (mm)
g: Bead density (g / cm 3 )
v: Disk peripheral speed (m / s)
L: Preparation amount (ml)
x: Processing speed (ml / min)
y: Dispersion time (min)
The mechanism by which the dispersibility of the conductive particles in the coating layer is improved by providing a bead mill circulation stirring process that satisfies all of the above has not been clarified. did it.

部材の帯電の均一性は、帯電部材を構成する材料として用いられる導電剤や機能性粒子の分散性が寄与しているところが大きい。導電剤の分散性が劣る場合、抵抗の均一性が十分でないため、帯電の均一性が得られ難くなる。また、導電剤の通電劣化が起こりやすくなる。抵抗の均一性を得るため、導電剤として導電性の粒子を用いた場合、粒子同士の凝集力が強いため、1次粒径付近まで粒子を分散させるには、ある一定以上の強いシェアによって、強固な粒子の凝集体を崩すことが必要であることがわかった。また、導電性粒子の分散状態、導電性粒子同士の接触状態も通電による劣化には影響しているものと考えられている。導電性粒子の分散性が良くなれば、帯電部材を連続使用(連続通電)しても抵抗上昇しないものと考えられる。しかしながら、強いシェアにより分散処理を行なうと、分散工程が終了すると、急激にシェアから開放されるため、反発的に再凝集等が起こりやすく、導電性粒子の分散状態が不安定化し、安定性が悪くなってしまう。   The uniformity of charging of the member is largely due to the dispersibility of the conductive agent and functional particles used as the material constituting the charging member. When the dispersibility of the conductive agent is inferior, the uniformity of resistance is not sufficient, so that it is difficult to obtain the uniformity of charging. In addition, the conductive agent is likely to be deteriorated by energization. When conductive particles are used as the conductive agent in order to obtain uniformity of resistance, the cohesive force between the particles is strong, and in order to disperse the particles up to the vicinity of the primary particle size, It has been found necessary to break up the aggregates of strong particles. Moreover, it is thought that the dispersion | distribution state of electroconductive particle and the contact state of electroconductive particles are also affecting the deterioration by electricity supply. If the dispersibility of the conductive particles is improved, it is considered that the resistance does not increase even when the charging member is continuously used (continuous energization). However, if dispersion processing is performed with a strong share, when the dispersion process is completed, it is suddenly released from the share, so re-aggregation tends to occur repulsively, the dispersion state of the conductive particles becomes unstable, and stability is improved. It gets worse.

また、通常の一般的なパス回数での循環運転で分散処理を施した場合、帯電部材としての抵抗値は満たしているが、液体塗料中の導電性粒子の粒度分布がどうしても幅広い分布になってしまうという問題が生じる。このような液体塗料は、凝集等の発生がしやすいと考えられ、このような液体塗料を帯電部材の被覆層として塗工すると、比較的粗大な粒径の顔料の存在により、抵抗値ムラやポチ状の画像不良の原因となる。   In addition, when the dispersion process is performed by a circulation operation with a normal number of passes, the resistance value as the charging member is satisfied, but the particle size distribution of the conductive particles in the liquid paint is inevitably wide. Problem arises. Such a liquid paint is considered to be easily agglomerated and the like, and when such a liquid paint is applied as a coating layer of a charging member, resistance value unevenness and This will cause a point-like image defect.

そこで、本発明の
πr3gv2<20
L<6x
L<xy/50
r:ビーズ半径(mm)
g:ビーズ密度(g/cm3
v:ディスク周速(m/s)
L:仕込み量(ml)
x:処理速度(ml/min)
y:分散時間(min)
をすべて満たすビーズミル循環撹拌処理をおこなうことにより、導電性粒子にかかるエネルギーを弱い力で何度も加えることが可能となる。弱い力で分散が進行することにより、導電性粒子表面の活性化(表面エネルギーの増大)を抑えることができる。これは再凝集等の発生の抑制、即ち、塗料の安定化に有効である。更に、パス回数を非常に増やすことによってシャープな粒度分布の導電性粒子が得ることができる。これもまた、塗料の安定化に有効である。
Therefore, πr 3 gv 2 <20 of the present invention.
L <6x
L <xy / 50
r: radius of bead (mm)
g: Bead density (g / cm 3 )
v: Disk peripheral speed (m / s)
L: Preparation amount (ml)
x: Processing speed (ml / min)
y: Dispersion time (min)
By performing a bead mill circulation stirring process that satisfies all of the above, energy applied to the conductive particles can be applied many times with a weak force. When the dispersion proceeds with a weak force, activation of the surface of the conductive particles (increase in surface energy) can be suppressed. This is effective for suppressing the occurrence of re-aggregation and the like, that is, stabilizing the paint. Furthermore, by increasing the number of passes, conductive particles having a sharp particle size distribution can be obtained. This is also effective for stabilizing the paint.

撹拌型分散装置により分散する際の、ディスクの最大周速は2乃至8m/sが好ましく、特には4乃至6m/sが好ましい。ビーズ径はφ1.0mm以下が好ましく、特にはφ0.8mm以下が好ましい。ビーズの比重は特に制限はないが、3以下が好ましい。   The maximum peripheral speed of the disk when dispersing by the stirring type dispersing device is preferably 2 to 8 m / s, particularly 4 to 6 m / s. The bead diameter is preferably φ1.0 mm or less, particularly preferably φ0.8 mm or less. The specific gravity of the beads is not particularly limited, but is preferably 3 or less.

「πr3gv2<20」は、一個のビーズが与えるエネルギー量を規定したものであり、πr3gv2が20を超えるような条件を選択した場合、導電性粒子にかかるエネルギーが大きくなりすぎ、凝集等を起こしやすくなってしまう。 “Πr 3 gv 2 <20” defines the amount of energy given by one bead, and when a condition such that πr 3 gv 2 exceeds 20 is selected, the energy applied to the conductive particles becomes too large. , It tends to cause aggregation and the like.

「L<6x」は、塗料の処理速度を規定したものであるが、すなわち、一分間に全塗料量の1/6以上、即ち6分間で一パス以上の流量を確保することが必要であるということである。循環撹拌処理中のタンクでの滞留時間が長くなってしまうとその間に再凝集等の発生が起こりやすくなってしまい、分散時間が非常に長く必要になり、分散効率が著しく低下してしまう。   “L <6x” defines the paint processing speed, that is, it is necessary to secure a flow rate of 1/6 or more of the total paint amount per minute, that is, one pass or more in 6 minutes. That's what it means. If the residence time in the tank during the circulation stirring process becomes long, reagglomeration or the like easily occurs during that time, and the dispersion time becomes very long and the dispersion efficiency is remarkably lowered.

「L<xy/50」は仕込み量に対する処理速度と分散時間の関係を規定したものであるが、すなわち、最低50パス相当以上が好ましいということである。パス回数が50パス以下の場合、粒度分布が幅広くなってしまい、凝集等の発生が起こりやすくなってしまう。   “L <xy / 50” defines the relationship between the processing speed and the dispersion time with respect to the charged amount. That is, it is preferable that at least 50 passes or more is preferable. When the number of passes is 50 or less, the particle size distribution becomes wide, and aggregation or the like is likely to occur.

上記のような様々な検討により、被覆層に導電性粒子を含有してなる導電性部材の製造方法において、該導電性粒子を該被覆層中に分散する工程において、大流量での、低シェア、多重パス循環撹拌処理によっておこなうことにより、抵抗の均一性及び導電性粒子の均一な分散状態を長期的に維持できる導電性部材を製造できることに至ったものである。   Through various studies as described above, in the method for producing a conductive member containing conductive particles in the coating layer, in the step of dispersing the conductive particles in the coating layer, a low share at a large flow rate is obtained. By conducting the multipass circulation stirring process, it has been possible to produce a conductive member capable of maintaining the uniformity of resistance and the uniform dispersion state of conductive particles for a long period of time.

次に、本発明の電子写真装置の接触帯電部材(帯電ローラ)を用いた、画像形成装置の概略構成に基づいて説明する。   Next, a description will be given based on a schematic configuration of an image forming apparatus using a contact charging member (charging roller) of the electrophotographic apparatus of the present invention.

(1)画像形成装置
図1は、本発明のプロセスカートリッジを具備する画像形成装置例の概略構成図である。本例の画像形成装置は、転写式電子写真利用の反転現像方式、現像兼クリーニング方式(クリーナーレス)の装置である。プロセスカートリッジ6内には、像担持体としての回転ドラム型の電子写真感光体1が配置されており、矢印の方向に所定の周速度(プロセススピード)で回転駆動される。電子写真感光体1の周囲には、まず、帯電手段としての帯電ローラ2が、電子写真感光体1に所定の押圧力で接触した状態で配置されている。本例では帯電ローラ2を駆動し、電子写真感光体1と等速回転させる。この帯電ローラ2に対して帯電バイアス印加電源S1から所定の直流電圧(この場合−1180Vとした)が印加されることで電子写真感光体1の表面が所定の極性電位(暗部電位−400Vとした)に一様に接触帯電方式・DC帯電方式で帯電処理される。
(1) Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus provided with a process cartridge of the present invention. The image forming apparatus of this example is a reversal developing method using transfer type electrophotography, and a developing and cleaning method (cleanerless). A rotary drum type electrophotographic photosensitive member 1 as an image carrier is disposed in the process cartridge 6 and is driven to rotate at a predetermined peripheral speed (process speed) in the direction of the arrow. Around the electrophotographic photosensitive member 1, first, a charging roller 2 as a charging unit is disposed in a state of being in contact with the electrophotographic photosensitive member 1 with a predetermined pressing force. In this example, the charging roller 2 is driven to rotate at the same speed as the electrophotographic photosensitive member 1. A predetermined DC voltage (in this case, -1180 V) is applied to the charging roller 2 from the charging bias application power source S1, so that the surface of the electrophotographic photosensitive member 1 has a predetermined polarity potential (dark part potential -400 V). ) Is uniformly charged by a contact charging method or a DC charging method.

露光手段3は、例えばレーザービームスキャナーである。電子写真感光体1の帯電処理面に露光手段3により目的の画像情報に対応した露光Lがなされることにより、電子写真感光体1の表面電位が露光明部の電位(明部電位−120Vとした)に選択的に低下(減衰)して静電潜像が形成される。反転現像手段4により、電子写真感光体の静電潜像の露光明部に、電子写真感光体1の帯電極性と同極性に帯電(現像バイアス−350V)しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー画像として可視化する。図中、4aは現像ローラ、4bはトナー供給ローラ、4cはトナー層厚規制部材を示す。   The exposure unit 3 is, for example, a laser beam scanner. The exposure unit 3 performs exposure L corresponding to target image information on the charging surface of the electrophotographic photosensitive member 1, so that the surface potential of the electrophotographic photosensitive member 1 is changed to the potential of the exposure bright portion (bright portion potential −120 V The electrostatic latent image is formed by selectively decreasing (attenuating). The toner (negative toner) charged with the same polarity as the charging polarity of the electrophotographic photosensitive member 1 (developing bias −350 V) is selectively applied to the exposed bright portion of the electrostatic latent image of the electrophotographic photosensitive member by the reversal developing unit 4. And the electrostatic latent image is visualized as a toner image. In the figure, 4a is a developing roller, 4b is a toner supply roller, and 4c is a toner layer thickness regulating member.

転写手段としての転写ローラ5は、電子写真感光体1に所定の押圧力で接触した状態で配置されることで転写部を形成し、電子写真感光体1の回転と順方向に電子写真感光体1の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電極性とは逆極性の転写電圧が印加される。転写部に対して、不図示の給紙機構部から転写材Pが所定の制御タイミングで給紙される。その給紙された転写材Pの裏面が転写電圧を印加した転写ローラ5によりトナーの帯電極性とは逆極性に帯電されることにより、転写部において電子写真感光体1上のトナー画像が転写材Pに静電転写される。   The transfer roller 5 serving as a transfer unit is disposed in contact with the electrophotographic photosensitive member 1 with a predetermined pressing force to form a transfer portion, and the electrophotographic photosensitive member rotates in the forward direction with the rotation of the electrophotographic photosensitive member 1. It rotates at the same peripheral speed as the rotational peripheral speed of 1. Further, a transfer voltage having a polarity opposite to the charging polarity of the toner is applied from the transfer bias applying power source S2. The transfer material P is fed to the transfer portion from a paper feed mechanism portion (not shown) at a predetermined control timing. The back surface of the fed transfer material P is charged to a polarity opposite to the charging polarity of the toner by the transfer roller 5 to which a transfer voltage is applied, so that the toner image on the electrophotographic photosensitive member 1 is transferred to the transfer material at the transfer portion. Electrostatic transfer to P.

転写部でトナー画像の転写を受けた転写材は、電子写真感光体から分離されて、不図示のトナー画像定着手段へ導入されてトナー画像の定着処理を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機構に導入されて転写部へ再導入される。   The transfer material that has received the transfer of the toner image at the transfer portion is separated from the electrophotographic photosensitive member, introduced into a toner image fixing means (not shown), subjected to a toner image fixing process, and output as an image formed product. In the case of the double-sided image formation mode or the multiple image formation mode, this image formed product is introduced into a recirculation conveyance mechanism (not shown) and reintroduced into the transfer unit.

転写残余トナー等の電子写真感光体上の残留物は、帯電ローラ2により電子写真感光体の帯電極性と同極性に帯電される。そしてその転写残余トナーは、露光部を通って現像手段4に至って、バックコントラストにより電気的に現像装置内に回収され、現像兼クリーニング(クリーナーレス)が達成されている。   Residues on the electrophotographic photosensitive member such as transfer residual toner are charged to the same polarity as the charging polarity of the electrophotographic photosensitive member by the charging roller 2. Then, the transfer residual toner reaches the developing means 4 through the exposure portion, and is electrically collected in the developing device by the back contrast, thereby achieving development and cleaning (cleanerless).

本例では、電子写真感光体1、帯電ローラ2、現像手段4を一体に支持し、画像形成装置本体に着脱自在のプロセスカートリッジ6としている。この際現像手段4は別体としてもよい。   In this example, the electrophotographic photosensitive member 1, the charging roller 2, and the developing means 4 are integrally supported, and the process cartridge 6 is detachable from the main body of the image forming apparatus. At this time, the developing means 4 may be a separate body.

更に、本発明にかかる製造方法により得られた帯電部材が適用される電子写真装置は図1に示した構成に限定されない。少なくとも帯電部材と電子写真感光体とを有する図示した構成とは異なるプロセスカートリッジ(現像手段は本体側のものを使用するものや、クリーニング手段をトナー像の転写領域と帯電部材間に有するものなど)を用いた構成とすることができる。更に、プロセスカートリッジを用いずに、装置本体に必要な各部材を配置した構成としてもよい。   Furthermore, the electrophotographic apparatus to which the charging member obtained by the manufacturing method according to the present invention is applied is not limited to the configuration shown in FIG. Process cartridge different from the construction shown in the drawing having at least a charging member and an electrophotographic photosensitive member (such as a developing means using a main body side or a cleaning means between a toner image transfer region and a charging member) It can be set as the structure using. Furthermore, it is possible to employ a configuration in which each member necessary for the apparatus main body is arranged without using the process cartridge.

図1の装置の帯電部材2に直流電圧を印加すると、帯電部材と感光体との微少な空間で放電が起こって感光体1の表面が帯電される。本発明の製造方法により得られた導電性部材を帯電部材2として用いれば、帯電部材の帯電均一性を向上させることができるだけではなく、抵抗変化を抑えることができるため、非常に優れた画像を得ることができる。特に、図1のように現像、独立したクリーニング手段を有さず、転写後に感光体に残留したトナーを現像手段により回収する、いわゆる現像兼クリーニング(クリーナーレス)方式を採用した画像形成装置の複数枚プリントを可能にするのに極めて有効である。   When a DC voltage is applied to the charging member 2 of the apparatus shown in FIG. 1, a discharge occurs in a minute space between the charging member and the photosensitive member, and the surface of the photosensitive member 1 is charged. If the conductive member obtained by the production method of the present invention is used as the charging member 2, not only can the charging uniformity of the charging member be improved, but also the resistance change can be suppressed, so a very excellent image can be obtained. Obtainable. In particular, as shown in FIG. 1, a plurality of image forming apparatuses adopting a so-called developing and cleaning (cleanerless) system that does not have a developing and independent cleaning unit and collects toner remaining on the photosensitive member after transfer by the developing unit. It is extremely effective in enabling sheet printing.

以下、本発明を実施例を用いて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<実施例1>
下記の要領で本発明の帯電部材としての帯電ローラを作製した。
エピクロルヒドリンゴム: 100質量部
四級アンモニウム塩: 2質量部
炭酸カルシウム: 90質量部
酸化亜鉛: 5質量部
脂肪酸: 5質量部
以上の材料を60℃に調節した密閉型ミキサーにて10分間混練した後、エピクロルヒドリンゴム100質量部に対してエーテルエステル系可塑剤15質量部を加え、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーDM(ジベンゾチアジルスルフィド)1質量部及びノクセラーTS(テトラメチルチウラムモノスルフィド)0.5質量部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成型機にて成型し、加熱蒸気加硫した後、外径φ12mmになるように研磨処理して弾性層を得た。ローラ長は230mmとした。
<Example 1>
A charging roller as a charging member of the present invention was produced in the following manner.
Epichlorohydrin rubber: 100 parts by mass Quaternary ammonium salt: 2 parts by mass Calcium carbonate: 90 parts by mass Zinc oxide: 5 parts by mass Fatty acid: 5 parts by mass After kneading the above materials for 10 minutes in a closed mixer adjusted to 60 ° C. Then, 15 parts by mass of an ether ester plasticizer was added to 100 parts by mass of epichlorohydrin rubber, and the mixture was further kneaded with a closed mixer cooled to 20 ° C. for 20 minutes to prepare a raw material compound. To this compound, 100 parts by mass of epichlorohydrin rubber as a raw rubber, 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of noxeller DM (dibenzothiazyl sulfide) as a vulcanization accelerator, and noxeller TS (tetramethylthiuram monosulfide) 0.5 parts by mass was added and kneaded for 10 minutes in a two-roll mill cooled to 20 ° C. The resulting compound is molded by an extruder so as to form a roller around a φ6 mm stainless steel support, heated and steam vulcanized, and then polished to an outer diameter of φ12 mm to obtain an elastic layer. It was. The roller length was 230 mm.

続いて、以下に示す材料:
アクリルポリオール溶液(ダイセル化学社製:PLACCEL DC2016):100質量部;
イソシアネートA(IPDI)(デグサ社製:VESTANAT B1370):27質量部;
イソシアネートB(HDI)(旭化成ケミカルズ社製:DURANATE TPA−B80E):17質量部;
導電性粒子(戸田工業社製 CS−Bk100Y):13質量部;
変性ジメチルシリコーンオイル(東レ・ダウコーニング・シリコーン社製 SH28PA):0.3質量部;及び
メチルイソブチルケトン:300質量部
をミキサーを用いて撹拌し、混合溶液を作製した。上記アクリルポリオール溶液の水酸基価(α)は80.2mgKOH/g、上記導電性粒子の酸性度(β)はpH3.9であった(α/β=20.6)。次いでこの混合溶液を、平均粒径がφ0.8mmのガラスビーズ(半径0.4mm・密度2.5g/cm3)をメディアとしてベッセルの容積に対して80%の充填率で充填したビーズミル分散機(アシザワファインテック社製 スターミルLMZ−2)を用いて、ディスク周速4m/s、処理速度3000ml/min(全塗料量の1/4)で360分間(90パス相当)の循環運転を行い、12000mlの分散溶液を得た。この分散溶液を、ディッピング法にて塗布して、膜厚が15μmの表面層を被覆形成し、ローラ形状の帯電部材を得た。
Subsequently, the following materials:
Acrylic polyol solution (manufactured by Daicel Chemical Industries, Ltd .: PLACEL DC2016): 100 parts by mass;
Isocyanate A (IPDI) (manufactured by Degussa: VESTANAT B1370): 27 parts by mass;
Isocyanate B (HDI) (Asahi Kasei Chemicals Corporation: DURANATE TPA-B80E): 17 parts by mass;
Conductive particles (CS-Bk100Y manufactured by Toda Kogyo Co., Ltd.): 13 parts by mass;
Modified dimethyl silicone oil (SH28PA manufactured by Toray Dow Corning Silicone): 0.3 parts by mass; and methyl isobutyl ketone: 300 parts by mass were stirred using a mixer to prepare a mixed solution. The acrylic polyol solution had a hydroxyl value (α) of 80.2 mgKOH / g, and the conductive particles had an acidity (β) of pH 3.9 (α / β = 20.6). Next, a bead mill disperser in which the mixed solution was filled with glass beads having an average particle diameter of φ0.8 mm (radius 0.4 mm, density 2.5 g / cm 3 ) at a filling rate of 80% with respect to the volume of the vessel. (Ashizawa Finetech Co., Ltd. Star Mill LMZ-2) was used to perform a circulation operation for 360 minutes (equivalent to 90 passes) at a disk peripheral speed of 4 m / s and a processing speed of 3000 ml / min (1/4 of the total paint amount). 12000 ml of dispersion solution was obtained. This dispersion solution was applied by a dipping method to form a surface layer having a film thickness of 15 μm to obtain a roller-shaped charging member.

また、上記分散処理条件を一覧にしたものを表1、それぞれが本発明の条件を満たしているかどうかを示したものを表2にまとめた。後述の実施例、比較例についても表1と2にまとめて示してある。   Table 1 shows a list of the distributed processing conditions, and Table 2 shows whether each satisfies the conditions of the present invention. Tables 1 and 2 collectively show examples and comparative examples described later.

「ディッピング用塗布液の経時安定性評価」
上記方法にて作製したディッピング用塗布液の、作製初日と作製7日後の粘度測定を行った。粘度の測定には芝浦システム社製ビスメトロン粘度計(VDA−L型)にて、1号ローターを用いて60rpmで測定を行った。結果を表3に示す。作製後、分散性が低下していると思われる塗料は、粘度変化が大きくなっている。
“Evaluation of stability of dipping coating solution over time”
The viscosity of the coating solution for dipping produced by the above method was measured on the first day of production and 7 days after production. The viscosity was measured at 60 rpm with a No. 1 rotor using a Bismetron viscometer (VDA-L type) manufactured by Shibaura System. The results are shown in Table 3. After the production, the viscosity of the paint that is considered to have decreased dispersibility is large.

「帯電ローラに直流電圧のみを印加した時の画像評価」
図1に示す電子写真方式の画像形成装置に上記で得られた帯電ローラを取り付けて、L/L環境(温度15℃/湿度10%)において、ハーフトーン画像を出力し、目視にてその出力画像を評価した。結果を表4に示す。なお、帯電部材による帯電後の電子写真感光体の表面電位(暗部電位)VDは−400V付近となるように印加電圧(直流電圧のみ)を調節した。表中のAは得られた画像が非常に良い、Bは良い、Cはハーフトーン画像にわずかにスジ状の欠陥がある、Dはスジの画像欠陥が目立つ、ことを示す。
"Evaluation of image when only DC voltage is applied to charging roller"
The charging roller obtained above is attached to the electrophotographic image forming apparatus shown in FIG. 1, and a halftone image is output in an L / L environment (temperature 15 ° C./humidity 10%). Images were evaluated. The results are shown in Table 4. The applied voltage (DC voltage only) was adjusted so that the surface potential (dark portion potential) VD of the electrophotographic photosensitive member charged by the charging member was around −400V. A in the table indicates that the obtained image is very good, B is good, C indicates that the halftone image has a slight streak-like defect, and D indicates that the image defect of the streak is conspicuous.

また、画像出し評価を始める前に、帯電ローラの抵抗測定を図4に示すような方法で行った。結果を表4に示す。図中、2は導電性部材、11はステンレス製の円筒電極、12は抵抗、13はレコーダーを示す。これらの間の押圧力は用いられる画像形成装置と同様にし、外部電源S3から−200Vを印加した際の抵抗値を測定する。また、抵抗の均一性の評価として、測定した抵抗値の最大値と最小値の比を抵抗ムラとした。結果を表4に示す。   Further, before the image evaluation was started, the resistance of the charging roller was measured by the method shown in FIG. The results are shown in Table 4. In the figure, 2 is a conductive member, 11 is a cylindrical electrode made of stainless steel, 12 is a resistor, and 13 is a recorder. The pressing force between them is the same as that of the image forming apparatus used, and the resistance value when -200 V is applied from the external power source S3 is measured. In addition, as an evaluation of the uniformity of resistance, the ratio of the measured maximum resistance value to the minimum value was defined as resistance unevenness. The results are shown in Table 4.

上記評価を、作製初日と作製7日後のディッピング用塗布液を用いて作製した帯電ローラについてそれぞれ行なった。作製7日後の評価がA,Bのものは、作製された帯電ローラは良好であり、C,Dは画像結果も良くなかったものである。   The above evaluation was performed on each of the charging rollers prepared using the dipping coating liquid on the first day of production and 7 days after the production. When the evaluation after 7 days from the production was A or B, the produced charging roller was good, and for C and D, the image result was not good.

<実施例2>
導電性粒子の分散処理を、ディスク周速6m/s、処理速度2000ml/min(全塗料量の1/6)で360分間(60パス相当)の循環運転を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Example 2>
Example 1 except that the conductive particle dispersion treatment was carried out for 360 minutes (equivalent to 60 passes) at a disk peripheral speed of 6 m / s and a treatment speed of 2000 ml / min (1/6 of the total coating amount). Similarly, a charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<実施例3>
酸性度(β)がpH5.4の導電性粒子を用いて分散処理をおこなった以外は実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。尚、α/βは14.9である。
<Example 3>
A charging member was produced in the same manner as in Example 1 except that the dispersion treatment was performed using conductive particles having an acidity (β) of pH 5.4. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4. Α / β is 14.9.

<実施例4>
酸性度(β)がpH2.5の導電性粒子を用い、ディスク周速4m/sで分散処理をおこなった以外は実施例2と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。尚、α/βは32.1である。
<Example 4>
A charging member was produced in the same manner as in Example 2 except that conductive particles having an acidity (β) of pH 2.5 were used and the dispersion treatment was performed at a disk peripheral speed of 4 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4. Α / β is 32.1.

<実施例5>
酸性度(β)がpH6.9の導電性粒子を用い、ディスク周速6m/sで分散処理をおこなった以外は実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。尚、α/βは11.6である。
<Example 5>
A charging member was produced in the same manner as in Example 1 except that conductive particles having an acidity (β) of pH 6.9 were used and the dispersion treatment was performed at a disk peripheral speed of 6 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4. Α / β is 11.6.

<比較例1>
導電性粒子の分散処理を、ディスク周速8m/sで行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 1>
A charging member was produced in the same manner as in Example 1 except that the conductive particles were dispersed at a disk peripheral speed of 8 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例2>
導電性粒子の分散処理を、処理速度1000ml/min(全塗料量の1/12)で1080分間(90パス相当)の循環運転を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative example 2>
A charging member was prepared in the same manner as in Example 1 except that the conductive particles were dispersed for 1080 minutes (equivalent to 90 passes) at a processing speed of 1000 ml / min (1/12 of the total coating amount). did. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例3>
導電性粒子の分散処理を、160分間(40パス相当)の循環運転で行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 3>
A charging member was produced in the same manner as in Example 1 except that the conductive particles were dispersed in 160 minutes (equivalent to 40 passes). The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例4>
導電性粒子の分散処理を、ディスク周速8m/s、処理速度1000ml/min(全塗料量の1/12)で1080分間(90パス相当)の循環運転を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative example 4>
Example 1 except that the conductive particles were dispersed for 1080 minutes (equivalent to 90 passes) at a disk peripheral speed of 8 m / s and a processing speed of 1000 ml / min (1/12 of the total coating amount). Similarly, a charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例5>
導電性粒子の分散処理を、処理速度1000ml/min(全塗料量の1/12)で480分間(40パス相当)の循環運転で行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 5>
A charging member was produced in the same manner as in Example 1, except that the conductive particles were dispersed in a circulation operation of 480 minutes (equivalent to 40 passes) at a treatment speed of 1000 ml / min (1/12 of the total coating amount). did. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例6>
導電性粒子の分散処理を、ディスク周速8m/sで160分間(40パス相当)の循環運転で行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 6>
A charging member was produced in the same manner as in Example 1, except that the conductive particles were dispersed in a circulation operation for 160 minutes (equivalent to 40 passes) at a disk peripheral speed of 8 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例7>
導電性粒子の分散処理を、ディスク周速8m/s、処理速度1000ml/min(全塗料量の1/12)で480分間(40パス相当)の循環運転で行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 7>
Example 1 is the same as Example 1 except that the dispersion treatment of the conductive particles was performed in a circulation operation of 480 minutes (equivalent to 40 passes) at a disk peripheral speed of 8 m / s and a processing speed of 1000 ml / min (1/12 of the total coating amount) Similarly, a charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例8>
導電性粒子の分散処理を、平均粒径がφ1.5mmのガラスビーズ(半径0.75mm・密度2.5g/cm3)をメディアとして分散処理を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 8>
Conductive particle dispersion treatment was performed in the same manner as in Example 1, except that glass beads having an average particle diameter of φ1.5 mm (radius 0.75 mm and density 2.5 g / cm 3 ) were used as media. A charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例9>
導電性粒子の分散処理を、平均粒径がφ0.8mmのジルコニアビーズ(半径0.4mm・密度6.0g/cm3)をメディアとして分散処理を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 9>
Conductive particle dispersion treatment was performed in the same manner as in Example 1 except that zirconia beads having an average particle diameter of φ0.8 mm (radius 0.4 mm, density 6.0 g / cm 3 ) were used as media. A charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

<比較例10>
導電性粒子の分散処理を、平均粒径がφ1.5mmのジルコニアビーズ(半径0.75mm・密度6.0g/cm3)をメディアとして分散処理を行った以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表3及び表4に示す。
<Comparative Example 10>
The conductive particles were dispersed in the same manner as in Example 1 except that zirconia beads having an average particle diameter of φ1.5 mm (radius 0.75 mm, density 6.0 g / cm 3 ) were used as media. A charging member was produced. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

Figure 2007292298
Figure 2007292298

Figure 2007292298
Figure 2007292298

Figure 2007292298
Figure 2007292298

Figure 2007292298
Figure 2007292298

本発明の画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus of the present invention. 帯電ローラの概略図である。It is the schematic of a charging roller. 他の実施例を示す帯電ローラの概略図である。It is the schematic of the charging roller which shows another Example. 帯電部材の抵抗測定装置の概略図である。It is the schematic of the resistance measuring apparatus of a charging member. 本発明で使用できる分散機の概略図である。It is the schematic of the disperser which can be used by this invention.

符号の説明Explanation of symbols

1 像担持体(電子写真感光体)
2 帯電部材(帯電ローラ)
3 像露光手段
4 現像手段
5 転写手段(転写ローラ)
6 クリーニング手段
S1,S2,S3 バイアス印加電源
P 転写材
11 円筒電極(金属ローラ)
12 固定抵抗器
13 レコーダー
51 ディスク
52 回転軸
53 循環タンク
54 配管
55 撹拌処理部
56 循環ポンプ
1 Image carrier (electrophotographic photoreceptor)
2 Charging member (charging roller)
3 Image exposure means 4 Development means 5 Transfer means (transfer roller)
6 Cleaning means S1, S2, S3 Bias application power supply P Transfer material 11 Cylindrical electrode (metal roller)
12 Fixed resistor 13 Recorder 51 Disk 52 Rotating shaft 53 Circulating tank 54 Piping 55 Stirring processing unit 56 Circulating pump

Claims (4)

導電性支持体上に、弾性体層を有し、導電性粒子を含む導電性被覆層を少なくとも有する帯電部材の製造方法において、
該導電性被覆層の層形成用材料と導電性粒子とを少なくとも含む混合物の調製工程と、該混合物を撹拌して該混合物中に導電性粒子を分散させる分散工程と、該分散工程で得られた分散液を該弾性体層上に塗工する塗工工程と、該塗工後に乾燥し該導電性被覆層とする乾燥工程、を含む工程により行われ、
該分散工程が、下記式条件のビーズミル循環撹拌手段であることを特徴とする帯電部材の製造方法。
πr3gv2<20
L<6x
L<xy/50
r:ビーズ半径(mm)
g:ビーズ密度(g/cm3
v:ディスク周速(m/s)
L:仕込み量(ml)
x:処理速度(ml/min)
y:分散時間(min)
In a method for producing a charging member having an elastic layer on a conductive support and having at least a conductive coating layer containing conductive particles,
A step of preparing a mixture containing at least the layer forming material of the conductive coating layer and conductive particles, a dispersion step of stirring the mixture to disperse the conductive particles in the mixture, and the dispersion step. A coating step of applying the dispersion liquid on the elastic body layer, and a drying step of drying after the coating to form the conductive coating layer.
The method for producing a charging member, wherein the dispersing step is a bead mill circulating stirring means having the following formula conditions.
πr 3 gv 2 <20
L <6x
L <xy / 50
r: radius of bead (mm)
g: Bead density (g / cm 3 )
v: Disk peripheral speed (m / s)
L: Preparation amount (ml)
x: Processing speed (ml / min)
y: Dispersion time (min)
該導電性被覆層の層形成用材料の主成分である樹脂の水酸基価(mgKOH/g)αと、該導電性粒子の酸性度(pH)βが下記式範囲を満たすことを特徴とする請求項1に記載の帯電部材の製造方法。
12<α/β<30
The hydroxyl value (mgKOH / g) α of a resin, which is a main component of the layer forming material of the conductive coating layer, and the acidity (pH) β of the conductive particles satisfy the following formula range. Item 2. A method for producing a charging member according to Item 1.
12 <α / β <30
該導電性被覆層が複層構成のものであり、該導電性被覆層の最外層に含まれる導電性粒子がカーボンブラックである請求項1又は2に記載の帯電部材の製造方法。   The method for producing a charging member according to claim 1, wherein the conductive coating layer has a multilayer structure, and the conductive particles contained in the outermost layer of the conductive coating layer are carbon black. 該分散工程で得られた分散液の粘度が1乃至100mPa・sである請求項1乃至3のいずれかに記載の帯電部材の製造方法。   The method for producing a charging member according to claim 1, wherein the dispersion obtained in the dispersion step has a viscosity of 1 to 100 mPa · s.
JP2007076149A 2006-03-28 2007-03-23 Method for producing charging member Withdrawn JP2007292298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076149A JP2007292298A (en) 2006-03-28 2007-03-23 Method for producing charging member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006087311 2006-03-28
JP2007076149A JP2007292298A (en) 2006-03-28 2007-03-23 Method for producing charging member

Publications (2)

Publication Number Publication Date
JP2007292298A true JP2007292298A (en) 2007-11-08
JP2007292298A5 JP2007292298A5 (en) 2010-05-06

Family

ID=38763086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076149A Withdrawn JP2007292298A (en) 2006-03-28 2007-03-23 Method for producing charging member

Country Status (1)

Country Link
JP (1) JP2007292298A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045916A1 (en) 2009-10-15 2011-04-21 キヤノン株式会社 Electrificating member and electrophotographic device
JP2011090129A (en) * 2009-10-22 2011-05-06 Ricoh Co Ltd Method for preparing coating liquid for coating electrophotographic carrier
WO2011077635A1 (en) 2009-12-22 2011-06-30 キヤノン株式会社 Charging member, electrophotographic device and process cartridge
US8501312B2 (en) 2010-10-15 2013-08-06 Canon Kabushiki Kaisha Charging member
JP2017097095A (en) * 2015-11-20 2017-06-01 コニカミノルタ株式会社 Method of evaluating state of component related to process including at least charging and formation of electrostatic latent image, evaluation program, and image forming apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490077A4 (en) * 2009-10-15 2013-07-31 Canon Kk Electrificating member and electrophotographic device
CN102549506A (en) * 2009-10-15 2012-07-04 佳能株式会社 Electrificating member and electrophotographic device
EP2490077A1 (en) * 2009-10-15 2012-08-22 Canon Kabushiki Kaisha Electrificating member and electrophotographic device
WO2011045916A1 (en) 2009-10-15 2011-04-21 キヤノン株式会社 Electrificating member and electrophotographic device
US8750762B2 (en) 2009-10-15 2014-06-10 Canon Kabushiki Kaisha Charging member with vulcanized rubber, and electrophotographic apparatus including the charging member
CN102549506B (en) * 2009-10-15 2014-10-29 佳能株式会社 Charging member and electrophotographic device
JP2011090129A (en) * 2009-10-22 2011-05-06 Ricoh Co Ltd Method for preparing coating liquid for coating electrophotographic carrier
WO2011077635A1 (en) 2009-12-22 2011-06-30 キヤノン株式会社 Charging member, electrophotographic device and process cartridge
CN102667634A (en) * 2009-12-22 2012-09-12 佳能株式会社 Charging member, electrophotographic device and process cartridge
US8834333B2 (en) 2009-12-22 2014-09-16 Canon Kabushiki Kaisha Charging member, electrophotographic apparatus and process cartridge
CN102667634B (en) * 2009-12-22 2016-02-24 佳能株式会社 Charging member, electronic photographing device and handle box
US8501312B2 (en) 2010-10-15 2013-08-06 Canon Kabushiki Kaisha Charging member
JP2017097095A (en) * 2015-11-20 2017-06-01 コニカミノルタ株式会社 Method of evaluating state of component related to process including at least charging and formation of electrostatic latent image, evaluation program, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4047057B2 (en) Method for manufacturing charging member
JP5140920B2 (en) Image forming apparatus
JP5110985B2 (en) Contact charging member, process cartridge, and electrophotographic image forming apparatus
JP2007292298A (en) Method for producing charging member
JP2019003171A (en) Image formation apparatus, electrification member, cartridge and manufacturing method of electrification member
JP6303573B2 (en) Charging device, process cartridge, and image forming apparatus
JP2007101864A (en) Charging component and electrophotographic system
JP6338354B2 (en) Charging device, image forming means, and image forming apparatus
JP2008276021A (en) Charging member, process cartridge, and electrophotographic apparatus
JP5173247B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP7424139B2 (en) Charging member, charging device, process cartridge, and image forming device
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP4727244B2 (en) Method for manufacturing conductive member
JP2012194457A (en) Cleaning body, cleaning device, charging device, assembly, and image forming apparatus
JP4371833B2 (en) Charging member, image forming apparatus, charging method, and process cartridge
JP2008058466A (en) Method for manufacturing electrifying roller
JP2007187900A (en) Conductive roller for electrophotography
JP6801197B2 (en) Charging member, charging device, process cartridge, and image forming device
US20140128233A1 (en) Charging member, manufacturing method therefor, a process cartridge, and electrophotographic apparatus
JP4289928B2 (en) Method for manufacturing conductive member
JP5768401B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP2009294241A (en) Charging roller for electrophotography
JP2004004146A (en) Conductive member, processing cartridge, and image forming apparatus
JP2005249944A (en) Conductive member, process cartridge and image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111117