JP4713900B2 - Manufacturing method of conductive member and conductive member for electrophotography - Google Patents

Manufacturing method of conductive member and conductive member for electrophotography Download PDF

Info

Publication number
JP4713900B2
JP4713900B2 JP2005045539A JP2005045539A JP4713900B2 JP 4713900 B2 JP4713900 B2 JP 4713900B2 JP 2005045539 A JP2005045539 A JP 2005045539A JP 2005045539 A JP2005045539 A JP 2005045539A JP 4713900 B2 JP4713900 B2 JP 4713900B2
Authority
JP
Japan
Prior art keywords
particles
conductive
charging
conductive member
dispersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045539A
Other languages
Japanese (ja)
Other versions
JP2006234898A (en
Inventor
利博 大高
秀太 荒木
弥斉 澤田
敦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2005045539A priority Critical patent/JP4713900B2/en
Publication of JP2006234898A publication Critical patent/JP2006234898A/en
Application granted granted Critical
Publication of JP4713900B2 publication Critical patent/JP4713900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性部材の製造方法に関し、特には、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置に用いる帯電部材、現像剤担持部材、転写部材、クリーニング部材、除電部材等の被接触物を電気的にコントロールする導電性部材の製造方法及び電子写真用導電性部材に関する。   The present invention relates to a method for producing a conductive member, and in particular, a charging member, a developer carrying member, a transfer member, a cleaning member, and a charge removing member used in an image forming apparatus employing an electrophotographic system such as a printer, a facsimile machine, and a copying machine. The present invention relates to a method for producing a conductive member for electrically controlling an object to be contacted such as an electrophotographic conductive member.

電子写真方式を採用した画像形成装置、いわゆる電子写真装置は、電子写真感光体、帯電手段、露光手段、現像手段及び転写手段を有するものが一般的である。   An image forming apparatus that employs an electrophotographic system, that is, an electrophotographic apparatus generally includes an electrophotographic photosensitive member, a charging unit, an exposing unit, a developing unit, and a transferring unit.

また、この帯電手段としては、電子写真感光体の表面に接触または近接配置された帯電部材に電圧(直流電圧のみの電圧または直流電圧に交流電圧を重畳した電圧)を印加することによって該電子写真感光体の表面を帯電する方式のものが多く採用されている。   Further, as this charging means, a voltage (a voltage of only DC voltage or a voltage obtained by superimposing an AC voltage on a DC voltage) is applied to a charging member that is in contact with or close to the surface of the electrophotographic photosensitive member. Many systems that charge the surface of the photoreceptor are used.

帯電部材に印加する電圧として、直流電圧に交流電圧を重畳した電圧を採用した場合、交流電源が必要となって電子写真装置の大型化やコストアップを招いたり、電力消費量が増加したり、交流電流の使用によるオゾンなどの多量発生によって帯電部材や電子写真感光体の耐久性が低下したりするため、これらの観点からすると、帯電部材への印加電圧は直流電圧のみの電圧であることが好ましい。   As a voltage to be applied to the charging member, when a voltage obtained by superimposing an AC voltage on a DC voltage is used, an AC power source is required, leading to an increase in size and cost of the electrophotographic apparatus, an increase in power consumption, From the above viewpoint, the voltage applied to the charging member may be only a DC voltage because the durability of the charging member and the electrophotographic photosensitive member may decrease due to the large amount of ozone generated by the use of alternating current. preferable.

更には、帯電を安定に行う、オゾンの発生を低減する、あるいは、低コストという観点から、接触式の帯電方式が好んで用いられている。   Furthermore, a contact-type charging method is preferably used from the viewpoint of stably charging, reducing the generation of ozone, or reducing the cost.

帯電部材への印加電圧を直流電圧のみの電圧とした場合、帯電処理された被帯電体表面の帯電電位がムラになり易く、また、微小のスジ状の画像欠陥が生じ易く、帯電の均一性が得られ難い。また帯電部材が連続使用により通電劣化し、帯電部材の抵抗が上昇(チャージアップ)し易く、それに伴い帯電処理された被帯電体表面の帯電電位が低下するという問題がある。また、接触式の帯電方式を用いる画像形成装置においては、帯電部材の汚れ(現像剤の表面付着)による帯電不良により画像濃度ムラ等が生じるという問題がある。特に、帯電部材に直流電圧のみを印加する帯電方式の場合、帯電部材の汚れの影響が直流電圧に交流電圧を重畳した電圧を印可する帯電方式に比べ、画像不良として現れ易い傾向にある。   When the voltage applied to the charging member is a DC voltage only, the charged potential of the charged object surface is likely to be uneven, and minute streak-like image defects are likely to occur, and the charging uniformity. Is difficult to obtain. In addition, there is a problem that the electrification of the charging member is deteriorated due to continuous use, the resistance of the charging member is easily increased (charged up), and the charged potential of the charged object surface is decreased accordingly. In addition, in an image forming apparatus using a contact-type charging method, there is a problem in that unevenness of image density or the like occurs due to a charging failure due to contamination (developer surface adhesion) of a charging member. In particular, in the charging method in which only a DC voltage is applied to the charging member, the influence of contamination on the charging member tends to appear as an image defect compared to a charging method in which a voltage in which an AC voltage is superimposed on the DC voltage is applied.

この問題に対して、帯電の均一性を得ることを目的として、粒径の小さい(サブミクロンオーダーの)導電性の粒子を用いることにより抵抗の均一性を得るという技術がある(例えば、特許文献1を参照)。   To solve this problem, there is a technique for obtaining uniformity of resistance by using conductive particles having a small particle size (submicron order) for the purpose of obtaining uniformity of charging (for example, Patent Documents). 1).

また、部材の表面性(粗さ)をコントロールして、帯電の均一性を向上させることを目的として、所望とする粗さを発現するために、ミクロンオーダーの平均粒径を持つ粒子を添加するという技術がある(例えば、特許文献2を参照)。また、帯電均一性向上以外の別の目的として、帯電音低減や感光体表面のキズ等によるリークの防止を目的として、ミクロンオーダーの平均粒径を持つ粒子を添加するという技術もある。(例えば、特許文献3、4を参照)。   In order to control the surface property (roughness) of the member and improve the uniformity of charging, particles having an average particle size of micron order are added in order to express the desired roughness. (For example, refer to Patent Document 2). As another purpose other than improving the charging uniformity, there is a technique of adding particles having an average particle size on the order of microns for the purpose of reducing charging noise and preventing leakage due to scratches on the surface of the photoreceptor. (For example, see Patent Documents 3 and 4).

しかし、粒径の小さい(サブミクロンオーダー以下の)粒子は、表面エネルギーが大きいため、粒子同士の凝集力が強く、ストラクチャー構造などの2次凝集体を形成していることが多いため、均一に分散することが容易ではなく、ミクロ的な抵抗ムラを生じ易く、抵抗の均一性が得られ難い。   However, particles with a small particle size (submicron order or less) have a large surface energy, so the cohesive force between the particles is strong, and secondary aggregates such as structure structures are often formed. Dispersion is not easy, micro resistance unevenness is likely to occur, and resistance uniformity is difficult to obtain.

また、ミクロンオーダーの粒子を分散する場合においては、粒子に比べて、粒子同士の凝集力は弱く、また、粒子1個にかかる分散シェアが強いため、過度の分散により、粒子が1次粒径以下に磨耗・破壊されてしまい、所望の表面性が得られない。そのため、接触式の帯電方式を用いる場合には、部材の表面性が不均一なため、帯電部材の汚れが偏在し易くなり、帯電不良が発生する。
特開平06−250494号公報 特開2003−207966号公報 特開平09−146342号公報 特開平11−133705号公報
In addition, when micron order particles are dispersed, the cohesive force between the particles is weaker than that of the particles, and the dispersion share of each particle is strong. The following surface wear and destruction result, and the desired surface properties cannot be obtained. For this reason, when the contact-type charging method is used, the surface property of the member is non-uniform, so that the charging member is liable to be unevenly distributed and a charging failure occurs.
Japanese Patent Laid-Open No. 06-250494 JP 2003-207966 A JP 09-146342 A JP-A-11-133705

本発明の目的は、製造された導電性部材を適用する電子写真装置が、帯電部材に印加する電圧が直流電圧のみの電子写真装置であって、表面層として粒子を分散させた被膜を形成した導電性部材であっても、粒子が均一に分散することが容易で、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られて、また、導電性部材の表面性が均一で、帯電部材の汚れが偏在しにくく、帯電不良が発生しにくく、画像欠陥のない良好な画像を出力することができる導電性部材の製造方法及び電子写真用導電性部材を提供することにある。   An object of the present invention is an electrophotographic apparatus to which a manufactured conductive member is applied, wherein the voltage applied to the charging member is only a DC voltage, and a film in which particles are dispersed is formed as a surface layer. Even if it is a conductive member, it is easy to disperse the particles uniformly, micro resistance unevenness does not occur, the uniformity of resistance is obtained, and the surface property of the conductive member is uniform and charged. It is an object of the present invention to provide a method for producing a conductive member and an electrophotographic conductive member capable of outputting a good image free from image defects and being less likely to cause uneven contamination of the member and causing poor charging.

本発明は、導電性支持体上に1層以上の被覆層を有し、該被覆層の表面層に、少なくとも、金属酸化物系導電性粒子、金属系導電性粒子、カーボンブラック、あるいはカーボン系導電性粒子の少なくとも1種を含む導電性粒子であり平均粒径が1〜500nmの粒子Aと、樹脂、ゴム、またはエラストマーのいずれかであり平均粒径が1〜50μmの粒子Bを含有する導電性部材の製造方法において、該粒子Aと該粒子Bが分散手段により分散された塗料を用いて該被覆層の表面層を塗布するものであって、該粒子Bを分散する際のシェアが該粒子Aを分散する際のシェアより弱く、かつ該粒子Bを分散する工程における分散手段の分散に寄与する部位で最も高い周速が得られる部位の周速が6m/s以下であることを特徴とする導電性部材の製造方法である。 The present invention has one or more coating layers on a conductive support, and at least the metal oxide conductive particles, the metal conductive particles, the carbon black, or the carbon-based coating on the surface layer of the coating layer. the average particle size is a conductive particle comprising at least one conductive particles and particles a of 1 to 500 nm, the resin, rubber or the average particle size is any one of elastomer, contains particles B of 1~50μm In the method for producing a conductive member, the surface layer of the coating layer is applied using a paint in which the particles A and the particles B are dispersed by a dispersing means, and the share when the particles B are dispersed is rather weak than share when dispersing the particles a, and that the peripheral speed of the portion highest circumferential speed at contributing sites distributed dispersing means in the step of dispersing the particles B are obtained is not more than 6 m / s Conductive member characterized by It is a manufacturing method.

また、本発明は、上記導電性部材の製造方法により得られたことを特徴とする電子写真用導電性部材である。   The present invention also provides an electrophotographic conductive member obtained by the above-described method for producing a conductive member.

本発明によれば、表面層として粒子を分散させた被膜を形成した導電性部材であっても、粒子が均一に分散することが容易で、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られて、また、導電性部材の表面性が均一で、帯電部材の汚れが偏在しにくく、帯電不良が発生しにくく、画像欠陥のない良好な画像を出力することができる導電性部材の製造方法を提供できる。   According to the present invention, even in the case of a conductive member formed with a film in which particles are dispersed as a surface layer, the particles can be easily dispersed uniformly, without causing microscopic resistance unevenness, and uniform resistance. In addition, the surface of the conductive member is uniform, the charging member is less likely to be unevenly distributed, the charging failure is unlikely to occur, and the conductive member can output a good image without image defects. A manufacturing method can be provided.

図1に、本発明で得られた導電性部材を接触帯電部材(帯電ローラ)として用いる電子写真装置を示す。この帯電部材に電圧を印加すると、帯電部材と感光体との微少な空間で放電が起こって感光体表面が帯電される。   FIG. 1 shows an electrophotographic apparatus using a conductive member obtained by the present invention as a contact charging member (charging roller). When a voltage is applied to the charging member, a discharge occurs in a minute space between the charging member and the photosensitive member, and the surface of the photosensitive member is charged.

本発明においては、導電性部材の帯電均一性を向上させることができるだけではなく、抵抗変化を抑えることができるため、非常に優れた画像を得ることができる。特に図1のように、独立したクリーニング手段を有さず、転写後に感光体に残留したトナーを現像手段により回収する、いわゆる現像兼クリーニング(クリーナーレス)方式を採用した画像形成装置の複数枚プリントを可能にするのに極めて有効である。   In the present invention, not only can the charging uniformity of the conductive member be improved, but also a resistance change can be suppressed, so that a very excellent image can be obtained. In particular, as shown in FIG. 1, a plurality of prints of an image forming apparatus that employs a so-called developing and cleaning (cleanerless) system that does not have an independent cleaning unit and collects toner remaining on the photoreceptor after transfer by a developing unit. It is extremely effective in making this possible.

本発明のメカニズムは明らかになっていないが、本発明者等の鋭意検討により、以下のことは解明できた。   Although the mechanism of the present invention has not been clarified, the following has been elucidated by intensive studies by the present inventors.

部材の帯電の均一性に対しては、帯電部材を構成する材料として用いられる導電剤や機能性粒子の分散性が寄与しているところが大きい。導電剤の分散性が劣る場合、抵抗の均一性が十分でないため、帯電の均一性が得られ難くなる。また、導電剤の通電劣化が起こり易くなる。機能性粒子の分散性が劣る場合も同様に、部材の導電性を構成する部分の抵抗均一性を損なうため、帯電の均一性が得られ難くなる。また、粒子の持つ機能性の発現にも均一性が得られ難くなる。   The dispersibility of the conductive agent and functional particles used as materials constituting the charging member contributes greatly to the uniformity of charging of the member. When the dispersibility of the conductive agent is inferior, the uniformity of resistance is not sufficient, so that it is difficult to obtain the uniformity of charging. In addition, current deterioration of the conductive agent is likely to occur. Similarly, when the dispersibility of the functional particles is inferior, the uniformity of the resistance of the portion constituting the conductivity of the member is impaired, so that it is difficult to obtain the uniformity of charging. Moreover, it becomes difficult to obtain uniformity in the expression of the functionality of the particles.

導電剤や機能性粒子として、平均粒径が1〜500nmの粒子を用いた場合、粒子同士の凝集力が強いため、1次粒径付近まで粒子を分散させるには、ある一定以上の強いシェアによって、強固な粒子の凝集体を崩すことが必要であることがわかった。また、導電剤の分散状態、導電剤同士の接触状態も通電による劣化には影響しているものと考えられている。導電剤の分散性が良くなれば、帯電部材を連続使用(連続通電)しても抵抗上昇しないものと考えられる。   When particles having an average particle diameter of 1 to 500 nm are used as the conductive agent and functional particles, the cohesive force between the particles is strong, and in order to disperse the particles up to the vicinity of the primary particle diameter, a certain share or more is required. Thus, it was found necessary to break up strong particle aggregates. Moreover, it is thought that the dispersion | distribution state of a electrically conductive agent and the contact state of electrically conductive agents are also affecting the deterioration by electricity supply. If the dispersibility of the conductive agent is improved, it is considered that the resistance does not increase even when the charging member is continuously used (continuous energization).

機能性粒子として、平均粒径が1〜50μmの粒子を用いた場合、平均粒径が1〜500nmの粒子に比べて、粒子1個にかかる分散シェアが強いため、平均粒径が1〜500nmの粒子の分散と同等のシェアで分散を行うと、過度の分散により、粒子が1次粒径以下に磨耗・破壊されてしまい、所望の特性が得られないことがわかった。   When particles having an average particle diameter of 1 to 50 μm are used as the functional particles, the average particle diameter is 1 to 500 nm because the dispersion share per particle is stronger than particles having an average particle diameter of 1 to 500 nm. It was found that when the dispersion was carried out with the same share as the dispersion of the particles, the particles were worn and destroyed to the primary particle size or less due to excessive dispersion, and desired characteristics could not be obtained.

上記のような様々な検討により、本発明者等は、本発明の課題を解決するものとして、導電性支持体上に1層以上の被覆層を有し、該被覆層の表面層に、少なくとも、平均粒径が1〜500nmの粒子Aと平均粒径が1〜50μmの粒子Bを含有する導電性部材の製造方法において、該粒子Aと該粒子Bが分散手段により分散された塗料を用いて該被覆層の表面層を塗布するものであって、該粒子Bを分散する際のシェアが該粒子Aを分散する際のシェアより弱いことを特徴とする導電性部材の製造方法に至ったものである。   As a result of various studies as described above, the present inventors have one or more coating layers on a conductive support to solve the problems of the present invention, and at least the surface layer of the coating layer has In a method for producing a conductive member containing particles A having an average particle diameter of 1 to 500 nm and particles B having an average particle diameter of 1 to 50 μm, a coating material in which the particles A and the particles B are dispersed by a dispersing means is used. The surface layer of the coating layer is applied, and the method of producing a conductive member is characterized in that the share when the particles B are dispersed is weaker than the share when the particles A are dispersed. Is.

(1)画像形成装置
図1は、本発明で得られた導電性部材を具備するプロセスカートリッジを具備する画像形成装置例の概略構成図である。本例の画像形成装置は、転写式電子写真利用の反転現像方式、現像兼クリーニング方式(クリーナーレス)の装置である。
(1) Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus including a process cartridge including a conductive member obtained by the present invention. The image forming apparatus of this example is a reversal developing method using transfer type electrophotography, and a developing and cleaning method (cleanerless).

1は像担持体としての回転ドラム型の電子写真感光体であり、矢印の方向に所定の周速度(プロセススピード)で回転駆動される。   Reference numeral 1 denotes a rotating drum type electrophotographic photosensitive member as an image carrier, which is driven to rotate at a predetermined peripheral speed (process speed) in the direction of an arrow.

2は電子写真感光体の帯電手段としての帯電ローラ(本発明で得られた導電性部材)であり、電子写真感光体1に所定の押圧力で接触させてあり、本例では帯電ローラを駆動し、電子写真感光体1と等速回転する。この帯電ローラ2に対して帯電バイアス印加電源S1から所定の直流電圧(この場合−1180Vとした)が印加されることで電子写真感光体1の表面が所定の極性電位(暗部電位−400Vとした)に一様に接触帯電方式・DC帯電方式で帯電処理される。   Reference numeral 2 denotes a charging roller (conductive member obtained by the present invention) as a charging means for the electrophotographic photosensitive member, which is brought into contact with the electrophotographic photosensitive member 1 with a predetermined pressing force. In this example, the charging roller is driven. Then, it rotates at the same speed as the electrophotographic photosensitive member 1. A predetermined DC voltage (in this case, -1180 V) is applied to the charging roller 2 from the charging bias application power source S1, so that the surface of the electrophotographic photosensitive member 1 has a predetermined polarity potential (dark part potential -400 V). ) Is uniformly charged by a contact charging method or a DC charging method.

3は露光手段であり、例えばレーザービームスキャナーである。電子写真感光体1の帯電処理面に露光手段3により目的の画像情報に対応した露光Lがなされることにより、電子写真感光体の表面電位が露光明部の電位(明部電位−120Vとした)に選択的に低下(減衰)して静電潜像が形成される。   Reference numeral 3 denotes exposure means, for example, a laser beam scanner. The surface L of the electrophotographic photosensitive member is set to the potential of the exposure bright portion (bright portion potential −120 V) by performing exposure L corresponding to the target image information by the exposure unit 3 on the charging processing surface of the electrophotographic photosensitive member 1. ) Is selectively lowered (attenuated) to form an electrostatic latent image.

4は反転現像手段であり、電子写真感光体の静電潜像の露光明部に、電子写真感光体の帯電極性と同極性に帯電(現像バイアス−350V)しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー画像として可視化する。図中、4aは現像ローラ、4bはトナー供給ローラ、4cはトナー層厚規制部材を示す。   Reference numeral 4 denotes a reversal developing unit, which selects a toner (negative toner) that is charged (development bias of −350 V) with the same polarity as the charging polarity of the electrophotographic photosensitive member in the exposed bright portion of the electrostatic latent image of the electrophotographic photosensitive member. The electrostatic latent image is visualized as a toner image. In the figure, 4a is a developing roller, 4b is a toner supply roller, and 4c is a toner layer thickness regulating member.

5は転写手段としての転写ローラであり、電子写真感光体1に所定の押圧力で接触させて転写部を形成させたものあり、電子写真感光体の回転と順方向に電子写真感光体の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電極性とは逆極性の転写電圧が印加される。転写部に対して不図示の給紙機構部から転写材Pが所定の制御タイミングで給紙され、その給紙された転写材Pの裏面が転写電圧を印加した転写ローラ5によりトナーの帯電極性とは逆極性に帯電されることにより、転写部において電子写真感光体1上のトナー画像が転写材Pに静電転写される。   Reference numeral 5 denotes a transfer roller as transfer means, which is formed by bringing the transfer portion into contact with the electrophotographic photosensitive member 1 with a predetermined pressing force. The electrophotographic photosensitive member rotates in the forward direction with the rotation of the electrophotographic photosensitive member. It rotates at the same peripheral speed as the peripheral speed. Further, a transfer voltage having a polarity opposite to the charging polarity of the toner is applied from the transfer bias applying power source S2. The transfer material P is fed to the transfer portion from a paper feed mechanism portion (not shown) at a predetermined control timing, and the back surface of the fed transfer material P is charged with toner by the transfer roller 5 to which a transfer voltage is applied. The toner image on the electrophotographic photosensitive member 1 is electrostatically transferred to the transfer material P at the transfer portion.

転写部でトナー画像の転写を受けた転写材は、電子写真感光体から分離されて、不図示のトナー画像定着手段へ導入されてトナー画像の定着処理を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機構に導入されて転写部へ再導入される。   The transfer material that has received the transfer of the toner image at the transfer portion is separated from the electrophotographic photosensitive member, introduced into a toner image fixing means (not shown), subjected to a toner image fixing process, and output as an image formed product. In the case of the double-sided image formation mode or the multiple image formation mode, this image formed product is introduced into a recirculation conveyance mechanism (not shown) and reintroduced into the transfer unit.

転写残余トナー等の電子写真感光体上の残留物は、帯電ローラ2により電子写真感光体の帯電極性と同極性に帯電される。そしてその転写残余トナーは、露光部を通って現像手段4に至って、バックコントラストにより電気的に現像装置内に回収され、現像兼クリーニング(クリーナーレス)が達成されている。   Residues on the electrophotographic photosensitive member such as transfer residual toner are charged to the same polarity as the charging polarity of the electrophotographic photosensitive member by the charging roller 2. Then, the transfer residual toner reaches the developing means 4 through the exposure portion, and is electrically collected in the developing device by the back contrast, thereby achieving development and cleaning (cleanerless).

本例では、電子写真感光体1、帯電ローラ2、現像手段4を一体に支持し、画像形成装置本体に着脱自在のプロセスカートリッジ6としている。この際現像手段4は別体としてもよい。   In this example, the electrophotographic photosensitive member 1, the charging roller 2, and the developing means 4 are integrally supported, and the process cartridge 6 is detachable from the main body of the image forming apparatus. At this time, the developing means 4 may be a separate body.

(2)導電性部材
例えば、帯電部材は図2に示すようにローラ形状であり、導電性支持体2aと被覆層として、その外周に一体に形成された弾性層2bから構成されている。
(2) Conductive Member For example, the charging member has a roller shape as shown in FIG. 2, and includes a conductive support 2a and an elastic layer 2b integrally formed on the outer periphery thereof as a covering layer.

本発明で得られた帯電部材の他の構成を図3に示す。図3に示すように帯電部材は、被覆層が弾性層2bと表面層2cからなる2層であってもよいし、弾性層2b及び抵抗層2dと表面層2cからなる3層、及び、抵抗層2dと表面層2cの間に第2の抵抗層2eを設けた、4層以上を導電性支持体2aの上に形成した構成としてもよい。   Another structure of the charging member obtained by the present invention is shown in FIG. As shown in FIG. 3, the charging member may be a two-layer coating layer composed of an elastic layer 2b and a surface layer 2c, a three-layer layer composed of an elastic layer 2b, a resistance layer 2d and a surface layer 2c, and a resistance layer. A configuration may be adopted in which the second resistance layer 2e is provided between the layer 2d and the surface layer 2c, and four or more layers are formed on the conductive support 2a.

本発明に用いられる導電性支持体2aは、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施してもさしつかえないが、導電性を損なわないことが必要である。   As the conductive support 2a used in the present invention, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel can be used. Furthermore, the metal surface may be plated for the purpose of providing rust prevention and scratch resistance, but it is necessary that the conductivity is not impaired.

帯電ローラ2において、弾性層2bは被帯電体としての電子写真感光体に対する給電や、電子写真感光体1に対する良好な均一密着性を確保するために適当な導電性と弾性を持たせてある。また、帯電ローラ2と電子写真感光体1の均一密着性を確保するために弾性層2bを研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。一般に使用されている帯電ローラ2が、支持体2aの両端部に所定の押圧力を与えて電子写真感光体1と当接されているので、中央部の押圧力が小さく、両端部ほど大きくなっているために、帯電ローラ1の真直度が十分であれば問題ないが、十分でない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを防止するために形成する。   In the charging roller 2, the elastic layer 2 b has appropriate conductivity and elasticity in order to supply power to the electrophotographic photosensitive member as a member to be charged and to ensure good uniform adhesion to the electrophotographic photosensitive member 1. Further, in order to ensure uniform adhesion between the charging roller 2 and the electrophotographic photosensitive member 1, the elastic layer 2b may be formed in a so-called crown shape by polishing so that the central portion is thickest and narrows toward both ends. preferable. Since the charging roller 2 that is generally used is in contact with the electrophotographic photosensitive member 1 by applying a predetermined pressing force to both ends of the support 2a, the pressing force at the central portion is small and increases toward both ends. Therefore, if the straightness of the charging roller 1 is sufficient, there is no problem, but if it is not sufficient, density unevenness may occur in the images corresponding to the central portion and both end portions. The crown shape is formed to prevent this.

弾性層2bの導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等の電子導電機構を有する導電剤、及びアルカリ金属塩や四級アンモニウム塩等のイオン導電機構を有する導電剤を適宜添加することにより1010Ωcm未満に調整されるのがよい。弾性層2bの具体的弾性材料としては、例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコンーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等も挙げられる。 The conductivity of the elastic layer 2b is a conductive agent having an electronic conductive mechanism such as carbon black, graphite and conductive metal oxide in an elastic material such as rubber, and an ionic conductive mechanism such as an alkali metal salt or a quaternary ammonium salt. It may be adjusted to less than 10 10 Ωcm by appropriately adding a conductive agent. Specific elastic materials of the elastic layer 2b include, for example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicon rubber, urethane rubber, epichlorohydrin rubber, isoprene rubber (IR), butadiene rubber (BR), Synthetic rubbers such as nitrile butadiene rubber (NBR) and chloroprene rubber (CR), and also polyamide resins, polyurethane resins, silicone resins and the like.

直流電圧のみを印加して、被帯電体の帯電処理を行う帯電部材においては、帯電均一性を達成するために、特に中抵抗の極性ゴム(例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等)やポリウレタン樹脂を弾性材料として用いるのが好ましい。これらの極性ゴムやポリウレタン樹脂は、ゴムや樹脂中の水分や不純物がキャリアとなり、僅かではあるが導電性を持つと考えられ、これらの導電機構はイオン導電であると考えられる。但し、これらの極性ゴムやポリウレタン樹脂に導電剤を全く添加しないで弾性層を作製した場合、得られた帯電部材は低温低湿環境(L/L)において、抵抗値が高くなり1010Ωcm以上となってしまうものもあるため帯電部材に高電圧を印加しなければならなくなる。 In a charging member that applies a direct current voltage only to charge an object to be charged, in order to achieve charging uniformity, particularly a moderate resistance polar rubber (for example, epichlorohydrin rubber, NBR, CR, urethane rubber, etc.) It is preferable to use polyurethane resin as an elastic material. These polar rubbers and polyurethane resins are considered to have a slight conductivity due to moisture and impurities in the rubber and resin as carriers, and these conduction mechanisms are considered to be ionic conduction. However, when an elastic layer is prepared without adding a conductive agent to these polar rubbers and polyurethane resins, the obtained charging member has a high resistance value in a low temperature and low humidity environment (L / L) and is 10 10 Ωcm or more. In some cases, a high voltage must be applied to the charging member.

そこで、L/L環境で帯電部材の抵抗値が1010Ωcm未満になるように、前述した電子導電機構を有する導電剤やイオン導電機構を有する導電剤を適宜添加して調整するのが好ましい。しかしながら、イオン導電機構を有する導電剤は抵抗値を低くする効果が小さく、特にL/L環境でその効果が小さい。そのため、イオン導電機構を有する導電剤の添加と併せて電子導電機構を有する導電剤を補助的に添加して抵抗調整を行ってもよい。 Therefore, it is preferable to adjust the conductive member having the above-described electronic conductive mechanism and the conductive agent having the ionic conductive mechanism by appropriately adding so that the resistance value of the charging member is less than 10 10 Ωcm in the L / L environment. However, the conductive agent having an ionic conduction mechanism has a small effect of lowering the resistance value, and particularly in the L / L environment. Therefore, the resistance adjustment may be performed by supplementarily adding a conductive agent having an electronic conductive mechanism in addition to the addition of a conductive agent having an ionic conductive mechanism.

また、弾性層2bはこれらの弾性材料を発泡成形した発泡体であってもよい。   The elastic layer 2b may be a foam obtained by foaming these elastic materials.

表面層2cは、帯電部材の表面を構成し、被帯電体である感光体と接触するため感光体を汚染してしまう材料構成では好ましくない。また、表面離型性のよいものが好ましいといえる。従って、表面層材料としては、樹脂を用いるのが好ましいといえる。   The surface layer 2c constitutes the surface of the charging member, and is not preferable in a material configuration that contaminates the photoconductor because it contacts the photoconductor that is the object to be charged. Moreover, it can be said that the thing with surface releasability is preferable. Therefore, it can be said that it is preferable to use a resin as the surface layer material.

本発明の特性を発揮させるための表面層2cの結着樹脂材料としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等が挙げられる。本発明における表面層の材料としては、特にはフッ素樹脂、アクリル樹脂及びシリコーン樹脂等が好ましい。   As the binder resin material for the surface layer 2c for exhibiting the characteristics of the present invention, fluororesin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC) And olefin-ethylene / butylene-olefin copolymer (CEBC). As the material for the surface layer in the present invention, fluorine resin, acrylic resin, silicone resin and the like are particularly preferable.

これらの結着樹脂に静摩擦係数を小さくする目的で、グラファイト、雲母、二硫化モリブテン及びフッ素樹脂粉末等の固体潤滑剤、あるいはフッ素系界面活性剤、あるいはワックス、及びシリコーンオイル等を添加してもよい。   For the purpose of reducing the static friction coefficient to these binder resins, solid lubricants such as graphite, mica, molybdenum disulfide and fluororesin powder, or fluorosurfactants, wax, silicone oil, etc. may be added. Good.

表面層2cには、各種導電性粒子を適宜用いる。導電性粒子としては、金属酸化物系導電性粒子、金属系導電性粒子、カーボンブラック、カーボン系導電性粒子等を挙げることができ、本発明においては、所望の電気抵抗を得るためには、該各種導電性粒子を2種以上併用してもよい。   Various conductive particles are appropriately used for the surface layer 2c. Examples of the conductive particles include metal oxide-based conductive particles, metal-based conductive particles, carbon black, and carbon-based conductive particles. In the present invention, in order to obtain a desired electric resistance, Two or more kinds of the various conductive particles may be used in combination.

金属酸化物系導電性粒子としては、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)、酸化鉄、酸化アルミニウム等が挙げられる。前記金属酸化物系導電性粒子はそれのみで十分な導電性を示すものもあるがそうでないものも存在する。粒子の導電性を十分なものとするため、これらの粒子に、ドーパントを添加してもよい。一般的に金属酸化物格子欠陥の存在により、余剰電子が生成し、導電性を示すと考えられ、ドーパント添加によって格子欠陥の形成が促進され、十分な導電性を得ることができるのである。例えば、酸化亜鉛のドーパントとしてはアルミニウム、酸化錫のドーパントとしてはアンチモン、酸化インジウムのドーパントとしては錫などが使用される。また、酸化チタンの導電性を得る場合は、酸化チタンに導電性酸化錫を被覆したものなども挙げることができる。更には、シリカにカーボンブラックを被覆したものなども挙げられる。   Examples of the metal oxide conductive particles include zinc oxide, tin oxide, indium oxide, titanium oxide (such as titanium dioxide and titanium monoxide), iron oxide, and aluminum oxide. Some of the metal oxide-based conductive particles show sufficient conductivity by themselves, but some of them do not. In order to make the conductivity of the particles sufficient, a dopant may be added to these particles. In general, it is considered that surplus electrons are generated due to the presence of metal oxide lattice defects and show conductivity, and formation of lattice defects is promoted by addition of a dopant, and sufficient conductivity can be obtained. For example, aluminum is used as a dopant for zinc oxide, antimony is used as a dopant for tin oxide, and tin is used as a dopant for indium oxide. Moreover, when obtaining the electroconductivity of titanium oxide, what coated electroconductive tin oxide on titanium oxide etc. can be mentioned. Furthermore, what coated the carbon black on the silica etc. are mentioned.

金属系導電性粒子としては、銀、銅、ニッケル、亜鉛等が挙げられる。   Examples of the metal conductive particles include silver, copper, nickel, and zinc.

カーボンブラックとしては、アセチレンブラック、ファーネスブラック、チャンネルブラック等が挙げられる。   Examples of carbon black include acetylene black, furnace black, and channel black.

カーボン系導電性粒子としては、グラファイト、カーボンファイバー、活性炭、木炭等を挙げることができる。   Examples of the carbon conductive particles include graphite, carbon fiber, activated carbon, charcoal and the like.

導電性粒子の粒径は平均粒径で1.0μm未満であることが好ましい。平均粒径が1.0μmを超えると感光ドラム上にピンホールが存在した場合、ピンホールリークが発生し易くなるため好ましくない。また、導電性粒子の比重が重い場合は平均粒径が1.0μmを超えると塗料分散安定性が悪くなり、塗料中で沈降し易いので好ましくない。   The average particle size of the conductive particles is preferably less than 1.0 μm. If the average particle size exceeds 1.0 μm, pinhole leakage is likely to occur when pinholes exist on the photosensitive drum, which is not preferable. On the other hand, when the specific gravity of the conductive particles is heavy, if the average particle diameter exceeds 1.0 μm, the dispersion stability of the paint is deteriorated, and it tends to settle in the paint.

本発明における平均粒径が1〜500nmの粒子Aは主として、抵抗の均一性及び帯電の均一性を得るために、上記の導電性粒子が好んで用いられる。   The particles A having an average particle diameter of 1 to 500 nm in the present invention are preferably used in order to obtain resistance uniformity and charging uniformity.

本発明における平均粒径が1〜50μmの粒子Bとしては、高分子化合物の粒子、例えば、ポリアミド樹脂、シリコーン樹脂、(メタ)アクリル樹脂、スチレン樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、オレフィン樹脂、エポキシ樹脂、及び、これらの共重合体や変性物、誘導体などの樹脂粒子や、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエン共重合ゴム(SBR)、シリコーンゴム、ウレタンゴム、イソプレンゴム(IR)、ブチルゴム、アクリロニトリル−ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、エピクロルヒドリンゴムなどのゴム粒子や、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、塩素化ポリエチレン系熱可塑性エラストマーなどの熱可塑性エラストマー粒子が挙げられる。 The average particle diameter of the particles of 1 to 50 [mu] m B of the present invention, particles of high-molecular compounds, for example, polyamide resin, silicone resin, (meth) acrylic resins, styrene resins, phenol resins, polyester resins, melamine resins, urethane resins , Resin particles such as olefin resin, epoxy resin, and copolymers, modified products and derivatives thereof, ethylene-propylene-diene copolymer (EPDM), styrene-butadiene copolymer rubber (SBR), silicone rubber, Rubber particles such as urethane rubber, isoprene rubber (IR), butyl rubber, acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR), epichlorohydrin rubber, polyolefin thermoplastic elastomer, urethane thermoplastic elastomer, polystyrene heat Plasticity Sutoma, Po Riesuteru based thermoplastic elastomer, polyamide thermoplastic elastomer, a polybutadiene based thermoplastic elastomer, ethylene vinyl acetate type thermoplastic elastomers, polyvinyl chloride thermoplastic elastomer, a thermoplastic elastomer particles, such as chlorinated polyethylene-based thermoplastic elastomer Is mentioned.

これらの粒子は1種でも2種以上併用してもよく、また、表面処理、変性、官能基や分子鎖の導入、コートなどを施したものでもよい。   These particles may be used alone or in combination of two or more, and may be subjected to surface treatment, modification, introduction of functional groups or molecular chains, coating, and the like.

これらの中でも、本発明における粒子Bは、主として表面性を制御するものとして、製造条件等により平均粒径や粒度分布、形状が制御し易く、均一な粒子が得られ易い樹脂粒子が好んで用いられる。   Among these, the particle B in the present invention is mainly used for controlling surface properties, and resin particles that are easy to control the average particle size, particle size distribution, and shape depending on production conditions and the like and that can easily obtain uniform particles are preferably used. It is done.

表面層の抵抗値は、104〜1015Ωcmであることが好ましい。また、厚さは1〜500μmであることが好ましい。特には1〜50μmであることが好ましい。 The resistance value of the surface layer is preferably 10 4 to 10 15 Ωcm. Moreover, it is preferable that thickness is 1-500 micrometers. In particular, it is preferably 1 to 50 μm.

上記の弾性被覆層及び抵抗層の形成は、例えば、あらかじめ所定の膜厚に形成されたシート形状またはチューブ形状の層を接着または被覆することによって行ってもよいし、静電スプレー塗布やディッピング塗布などの塗布法によって行ってもよい。また、押し出し成形によって大まかに層形成した後、研磨などによって層の形状を整える方法であってもよいし、型内で所定の形状に材料を硬化、成形する方法であってもよい。   The elastic coating layer and the resistance layer may be formed by, for example, adhering or coating a sheet-shaped or tube-shaped layer formed in advance to a predetermined film thickness, or electrostatic spray coating or dipping coating. You may carry out by the apply | coating methods. Moreover, after forming a layer roughly by extrusion molding, the method of adjusting the shape of a layer by grinding | polishing etc. may be used, and the method of hardening and shaping | molding material to a predetermined shape within a type | mold may be used.

塗布法によって層を形成する場合、塗布液に用いられる溶剤としては、結着材料を溶解することができる溶剤であればよく、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類や、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類や、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類や、ジメチルスルホキシドなどのスルホキシド類や、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテルなどのエーテル類や、酢酸メチル、酢酸エチルなどのエステル類や、クロロホルム、塩化エチレン、ジクロルエチレン、四塩化炭素、トリクロロエチレンなどの脂肪族ハロゲン化炭化水素や、ベンゼン、トルエン、キシレン、リグロイン、クロロベンゼン、ジクロロベンゼンなどの芳香族化合物などが挙げられる。   When the layer is formed by a coating method, the solvent used in the coating solution may be any solvent that can dissolve the binder material, for example, alcohols such as methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, Ketones such as cyclohexanone, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, and methyl acetate Esters such as ethyl acetate, aliphatic halogenated hydrocarbons such as chloroform, ethylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene, benzene, toluene, xylene, ligroin, chlorobenzene, di Chlorobenzene and aromatic compounds such as.

粒子を表面層材料に分散する方法としては、溶剤、表面層材料及び粒子を混合し、ボールミル、サンドミル、ペイントシェーカー、ダイノミル及びパールミル等、従来公知の溶液分散手段を用いることができる。本発明においては、これらの分散機の中でも、粒子と粒子を分散する工程が連続的に行え、分散シェアが適切で、シェアを容易に変更可能なビーズミルを用いることが好ましい。   As a method for dispersing the particles in the surface layer material, conventionally known solution dispersing means such as a ball mill, a sand mill, a paint shaker, a dyno mill and a pearl mill can be used by mixing the solvent, the surface layer material and the particles. In the present invention, among these dispersers, it is preferable to use a bead mill in which the step of dispersing particles can be continuously performed, the dispersion share is appropriate, and the share can be easily changed.

(3)電子写真感光体
本発明で得られた導電性部材と共に用いられる電子写真感光体は特に限定されるものではない。
(3) Electrophotographic photoreceptor The electrophotographic photoreceptor used with the conductive member obtained in the present invention is not particularly limited.

以下、本発明を実施例を用いて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
下記の要領で本発明で得られた帯電部材としての帯電ローラを作製した。
Example 1
A charging roller as a charging member obtained in the present invention was produced in the following manner.

エピクロルヒドリンゴム 100質量部
四級アンモニウム塩 2質量部
炭酸カルシウム 90質量部
酸化亜鉛 5質量部
脂肪酸 5質量部
Epichlorohydrin rubber 100 parts by mass Quaternary ammonium salt 2 parts by mass Calcium carbonate 90 parts by mass Zinc oxide 5 parts by mass Fatty acid 5 parts by mass

以上の材料を60℃に調節した密閉型ミキサーにより10分間混練した後、エピクロルヒドリンゴム100質量部に対してエーテルエステル系可塑剤15質量部を加え、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーDM(ジベンゾチアジルスルフィド)1質量部及びノクセラーTS(テトラメチルチウラムモノスルフィド)0.5質量部を加え、20℃に冷却した2本ロール機により10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成形機により成形し、加熱蒸気加硫した後、外径φ12mmになるように研磨処理して弾性層を得た。ローラ長は230mmとした。   After kneading the above materials for 10 minutes with a closed mixer adjusted to 60 ° C., 15 parts by mass of an ether ester plasticizer is added to 100 parts by mass of epichlorohydrin rubber, and further cooled for 20 minutes with a closed mixer cooled to 20 ° C. The raw material compound was prepared by kneading. To this compound, 100 parts by mass of epichlorohydrin rubber as a raw rubber, 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of noxeller DM (dibenzothiazyl sulfide) as a vulcanization accelerator, and noxeller TS (tetramethylthiuram monosulfide) 0.5 parts by mass was added and kneaded for 10 minutes by a two-roll mill cooled to 20 ° C. The resulting compound was molded by an extruder so as to form a roller around a φ6 mm stainless steel support, heated and steam vulcanized, and then polished to an outer diameter of φ12 mm to obtain an elastic layer. . The roller length was 230 mm.

続いて、以下に示す材料
アクリルポリオール溶液 (ダイセル化学社製 PLACCEL DC2016)
100質量部
イソシアネートA(IPDI) (デグサ社製 VESTANAT B1370)
22質量部
イソシアネートB(HDI) (旭化成ケミカルズ社製 DURANATE TPA−B80E) 34質量部
導電性粒子(粒子Aに該当) (戸田工業社製 CS−Bk100Y 平均粒径:20nm) 14質量部
酸化チタン (テイカ社製 SMT−150IB) 18質量部
変性ジメチルシリコーンオイル (東レ・ダウコーニング・シリコーン社製 SH28PA) 0.2質量部
メチルイソブチルケトン 220質量部
をミキサーを用いて撹拌し、混合溶液を作製した。次いでこの混合溶液を、平均粒径が0.8mmのガラスビーズをメディアとしてベッセルの容積に対して80%の充填率で充填したビーズミル分散機(アイメックス社製 ウルトラビスコミル)を用いて、ディスク周速8m/s、処理速度600ml/minで21時間循環運転を行い、分散処理をした。
Subsequently, the following acrylic polyol solution (PLACCEL DC2016 manufactured by Daicel Chemical Industries)
100 parts by mass isocyanate A (IPDI) (VESTANAT B1370 manufactured by Degussa)
22 parts by mass isocyanate B (HDI) (DURANATE TPA-B80E manufactured by Asahi Kasei Chemicals Corporation) 34 parts by mass conductive particles (corresponding to particle A) (CS-Bk100Y average particle size: 20 nm manufactured by Toda Kogyo Co., Ltd.) 14 parts by mass titanium oxide ( SMT-150IB manufactured by Teika Co., Ltd. 18 parts by mass modified dimethyl silicone oil (SH28PA manufactured by Toray Dow Corning Silicone Co., Ltd.) 0.2 parts by mass Methyl isobutyl ketone 220 parts by mass was stirred using a mixer to prepare a mixed solution. Next, this mixed solution was mixed with a bead mill disperser (Ultra Visco Mill manufactured by IMEX Co., Ltd.) filled with glass beads having an average particle diameter of 0.8 mm as a medium at a filling rate of 80% with respect to the volume of the vessel. Circulation was carried out for 21 hours at a speed of 8 m / s and a processing speed of 600 ml / min for dispersion treatment.

更に、連続して
PMMA粒子(粒子Bに該当) (積水化成品工業社製 テクポリマーMBX−5、平均粒径:3μm) 30質量部
メチルイソブチルケトン 13質量部
をミキサーを用いて撹拌した混合溶液を、先ほどの分散液中に投入し、ディスク周速を6m/sに変更して、2時間分散処理を行い、分散溶液を得た。
Furthermore, PMMA particles (corresponding to particle B) (Techpolymer MBX-5 manufactured by Sekisui Plastics Co., Ltd., average particle size: 3 μm) 30 parts by mass of methyl isobutyl ketone 13 parts by mass using a mixer Was put into the previous dispersion, the disk peripheral speed was changed to 6 m / s, and dispersion treatment was performed for 2 hours to obtain a dispersion solution.

この分散溶液を、ディッピング法により塗布して、膜厚が10μmの表面層を被覆形成し、ローラ形状の帯電部材を得た。   This dispersion solution was applied by a dipping method to form a surface layer having a film thickness of 10 μm to obtain a roller-shaped charging member.

「帯電ローラの表面性評価」
帯電ローラの表面を電子顕微鏡により観察し、粒子Bの形状について、割れ・欠けがあるか確認を行った。結果を表1に示す。
"Evaluation of surface properties of charging roller"
The surface of the charging roller was observed with an electron microscope, and the shape of the particle B was confirmed to be cracked or chipped. The results are shown in Table 1.

「帯電ローラに直流電圧のみを印加した時の連続複数枚画像出し耐久試験」
図1に示す電子写真方式の画像形成装置に上記で得られた帯電ローラを取り付けて、L/L環境(温度15℃/湿度10%)において、印字率4%のA4画像連続15000枚の画像出しを行い、500枚ごとにハーフトーン画像をプリントし、帯電ローラの抵抗上昇に起因した画像不良の発生について、目視により画像評価を行った。結果を表2に示す。但し、電子写真感光体の暗部電位Vdが画像出し耐久試験初期に、−400V付近となるように印加電圧(直流電圧のみ)を各環境で設定して画像出し耐久試験を行った。
"Durability test for continuous multiple image output when only DC voltage is applied to the charging roller"
The charging roller obtained above is attached to the electrophotographic image forming apparatus shown in FIG. 1, and in an L / L environment (temperature of 15 ° C./humidity of 10%), an A4 image of 15000 continuous images with a printing rate of 4% The halftone images were printed every 500 sheets, and image evaluation was visually performed for the occurrence of image defects due to the increase in resistance of the charging roller. The results are shown in Table 2. However, in the initial stage of the image output durability test, the applied voltage (DC voltage only) was set in each environment so that the dark portion potential Vd of the electrophotographic photoreceptor was in the vicinity of the image output durability test.

表中のAは得られた画像が非常に良い、Bは良い、Cはハーフトーン画像にやや濃度ムラあり、Dはハーフトーン画像に濃度ムラ、濃度のガサツキがあることを示す。   A in the table indicates that the obtained image is very good, B is good, C indicates that the halftone image has slightly uneven density, and D indicates that the halftone image has uneven density and unevenness in density.

また、画像出し耐久試験を始める前(初期)と連続15000枚の画像出し直後、それぞれについて、帯電ローラの抵抗測定を図4に示すような方法で行った。結果を表2に示す。図中、2は帯電ローラ、11はステンレス製の円筒電極、12は抵抗、13はレコーダーを示す。これらの間の押圧力は用いられる画像形成装置と同様にし、外部電源S3から−200Vを印加した際の抵抗値を測定する。   Further, the resistance of the charging roller was measured by a method as shown in FIG. 4 before (initially) starting the image printing endurance test and immediately after printing 15000 continuous images. The results are shown in Table 2. In the figure, 2 is a charging roller, 11 is a cylindrical electrode made of stainless steel, 12 is a resistor, and 13 is a recorder. The pressing force between them is the same as that of the image forming apparatus used, and the resistance value when -200 V is applied from the external power source S3 is measured.

(実施例2)
導電性粒子の分散時のディスク周速を10m/sとした以外は、実施例1と同様にして帯電部材を作製した。
(Example 2)
A charging member was produced in the same manner as in Example 1 except that the disk peripheral speed during dispersion of the conductive particles was 10 m / s.

この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。   The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(実施例3)
PMMA粒子(粒子Bに該当)の分散時のディスク周速を4m/sとした以外は、実施例1と同様にして帯電部材を作製した。
(Example 3)
A charging member was produced in the same manner as in Example 1 except that the disk peripheral speed during dispersion of PMMA particles (corresponding to particle B) was 4 m / s.

この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。   The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(比較例1)
PMMA粒子(粒子Bに該当)の分散時のディスク周速を8m/sとした以外は、実施例1と同様にして帯電部材を作製した。
(Comparative Example 1)
A charging member was prepared in the same manner as in Example 1 except that the disk peripheral speed during dispersion of PMMA particles (corresponding to particle B) was 8 m / s.

この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。   The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(比較例2)
導電性粒子(粒子Aに該当)の分散時のディスク周速を6m/sとした以外は、実施例1と同様にして帯電部材を作製した。
(Comparative Example 2)
A charging member was produced in the same manner as in Example 1 except that the disk peripheral speed during dispersion of the conductive particles (corresponding to the particles A) was 6 m / s.

この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。   The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(比較例3)
導電性粒子(粒子Aに該当)の分散時のディスク周速を6m/sとした以外は、比較例1と同様にして帯電部材を作製した。
(Comparative Example 3)
A charging member was produced in the same manner as in Comparative Example 1 except that the disk peripheral speed during dispersion of the conductive particles (corresponding to the particles A) was 6 m / s.

この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。   The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

Figure 0004713900
Figure 0004713900

Figure 0004713900
Figure 0004713900

本発明で得られた導電性部材を具備するプロセスカートリッジを具備する画像形成装置の概略構成図である。It is a schematic block diagram of the image forming apparatus provided with the process cartridge provided with the electroconductive member obtained by this invention. 本発明で得られた帯電ローラの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the charging roller obtained by this invention. 本発明で得られた帯電ローラの他の構成の例を示す概略図である。It is the schematic which shows the example of the other structure of the charging roller obtained by this invention. 帯電ローラの抵抗測定装置の概略図である。It is the schematic of the resistance measuring apparatus of a charging roller.

符号の説明Explanation of symbols

1;像担持体(電子写真感光体)
2;帯電部材(帯電ローラ)
2a;導電性支持体
2b;弾性層
2c;表面層
2d;抵抗層
2e;第2の抵抗層
3;像露光手段
4;現像手段
4a;現像ローラ
4b;トナー供給ローラ
4c;トナー層厚規制部材
5;転写手段(転写ローラ)
6;プロセスカートリッジ
S1,S2,S3;バイアス印加電源
L;露光
P;転写材
11;円筒電極(金属ローラ)
12;固定抵抗器
13;レコーダー
1; Image carrier (electrophotographic photosensitive member)
2; Charging member (charging roller)
2a; conductive support 2b; elastic layer 2c; surface layer 2d; resistive layer 2e; second resistive layer 3; image exposing means 4; developing means 4a; developing roller 4b; toner supply roller 4c; 5; Transfer means (transfer roller)
6; process cartridges S1, S2, S3; bias application power supply L; exposure P; transfer material 11; cylindrical electrode (metal roller)
12; Fixed resistor 13; Recorder

Claims (7)

導電性支持体上に1層以上の被覆層を有し、該被覆層の表面層に、少なくとも、金属酸化物系導電性粒子、金属系導電性粒子、カーボンブラック、あるいはカーボン系導電性粒子の少なくとも1種を含む導電性粒子であり平均粒径が1〜500nmの粒子Aと、樹脂、ゴム、またはエラストマーのいずれかであり平均粒径が1〜50μmの粒子Bを含有する導電性部材の製造方法において、該粒子Aと該粒子Bが分散手段により分散された塗料を用いて該被覆層の表面層を塗布するものであって、該粒子Bを分散する際のシェアが該粒子Aを分散する際のシェアより弱く、かつ該粒子Bを分散する工程における分散手段の分散に寄与する部位で最も高い周速が得られる部位の周速が6m/s以下であることを特徴とする導電性部材の製造方法。 One or more coating layers are provided on the conductive support, and at least the metal oxide conductive particles, metal conductive particles, carbon black, or carbon conductive particles are formed on the surface layer of the coating layer . Conductive particles containing at least one kind of conductive particles containing particles A having an average particle diameter of 1 to 500 nm and any one of resin, rubber or elastomer and particles B having an average particle diameter of 1 to 50 μm In the production method, the surface layer of the coating layer is applied using a paint in which the particles A and the particles B are dispersed by a dispersing means, and the share when the particles B are dispersed rather weak than share at the time of dispersion, and the peripheral speed of the portion highest circumferential speed at contributing sites distributed dispersing means in the step of dispersing the particles B are obtained is equal to or less than 6 m / s Method for manufacturing conductive member 該粒子Aを分散する工程における分散手段の分散に寄与する部位で最も高い周速が得られる部位の周速が7m/s以上である請求項1に記載の導電性部材の製造方法。 Method for manufacturing a conductive member according to Motomeko 1 peripheral speed of the portion highest circumferential speed is obtained by contributing sites dispersed Ru der than 7m / s dispersing means in the step of dispersing said particles A. 該粒子Aを分散する工程における分散手段と該粒子Bを分散する工程における分散手段が同一の分散機で行われる請求項1または2に記載の導電性部材の製造方法。 The method for producing a conductive member according to claim 1 or 2 , wherein the dispersing means in the step of dispersing the particles A and the dispersing means in the step of dispersing the particles B are performed by the same disperser. 該粒子Aを分散する工程と該粒子Bを分散する工程を連続的に行う請求項1〜のいずれか1項に記載の導電性部材の製造方法。 Method for manufacturing a conductive member according to any one of process and particles B Cormorant continuously line the step of dispersing the Motomeko 1-3 to disperse the particles A. 該分散手段がビーズミルである請求項1〜のいずれか1項に記載の導電性部材の製造方法。 Method for manufacturing a conductive member according to any one of Ah Ru請 Motomeko 1-4 in the dispersion means Gabi Zumiru. 請求項1〜のいずれか1項に記載の導電性部材の製造方法で得られたことを特徴とする電子写真用導電性部材。 Claim 1-5 electrophotographic conductive member, characterized in that obtained by the production method of the conductive member according to any one of. 帯電ローラである請求項に記載の電子写真用導電性部材。 Electro-conductive member for electrophotography according to Motomeko 6 Ru Ah at the charging roller.
JP2005045539A 2005-02-22 2005-02-22 Manufacturing method of conductive member and conductive member for electrophotography Active JP4713900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045539A JP4713900B2 (en) 2005-02-22 2005-02-22 Manufacturing method of conductive member and conductive member for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045539A JP4713900B2 (en) 2005-02-22 2005-02-22 Manufacturing method of conductive member and conductive member for electrophotography

Publications (2)

Publication Number Publication Date
JP2006234898A JP2006234898A (en) 2006-09-07
JP4713900B2 true JP4713900B2 (en) 2011-06-29

Family

ID=37042657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045539A Active JP4713900B2 (en) 2005-02-22 2005-02-22 Manufacturing method of conductive member and conductive member for electrophotography

Country Status (1)

Country Link
JP (1) JP4713900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070759A (en) * 2006-09-15 2008-03-27 Canon Chemicals Inc Charging roller, process cartridge and electrophotographic apparatus
JP5178073B2 (en) * 2007-07-12 2013-04-10 キヤノン株式会社 Charging member and charging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109664A (en) * 1997-10-01 1999-04-23 Canon Inc Device and method for forming image
JP2004075890A (en) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc Process for preparing solid fine particle dispersion of inorganic phosphor
JP2004117446A (en) * 2002-09-24 2004-04-15 Ricoh Co Ltd Electrifying roller and image forming apparatus having the same
JP2004306519A (en) * 2003-04-09 2004-11-04 Canon Inc Conductive member
JP2005029610A (en) * 2003-07-08 2005-02-03 Konica Minolta Holdings Inc Inkjet recording ink and ink set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021946A (en) * 2001-07-06 2003-01-24 Canon Inc Electrophotographic photoreceptor, electrophotographic device and process cartridge with the electrophotographic photoreceptor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109664A (en) * 1997-10-01 1999-04-23 Canon Inc Device and method for forming image
JP2004075890A (en) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc Process for preparing solid fine particle dispersion of inorganic phosphor
JP2004117446A (en) * 2002-09-24 2004-04-15 Ricoh Co Ltd Electrifying roller and image forming apparatus having the same
JP2004306519A (en) * 2003-04-09 2004-11-04 Canon Inc Conductive member
JP2005029610A (en) * 2003-07-08 2005-02-03 Konica Minolta Holdings Inc Inkjet recording ink and ink set

Also Published As

Publication number Publication date
JP2006234898A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5183018B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5140920B2 (en) Image forming apparatus
JP2010181819A (en) Charging member, charging apparatus, process cartridge and image forming apparatus
US9720343B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2007093937A (en) Charging member, process cartridge and electrophotographic apparatus
JP5110985B2 (en) Contact charging member, process cartridge, and electrophotographic image forming apparatus
JP2007101864A (en) Charging component and electrophotographic system
JP2007292298A (en) Method for producing charging member
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP2004306519A (en) Conductive member
JP2005024674A (en) Conductive roller and manufacturing method therefor
JP6515485B2 (en) Charging roll, charging device, process cartridge and image forming apparatus
JP2012194457A (en) Cleaning body, cleaning device, charging device, assembly, and image forming apparatus
JP4371833B2 (en) Charging member, image forming apparatus, charging method, and process cartridge
JP4727244B2 (en) Method for manufacturing conductive member
CN107168023B (en) Charging member, process cartridge, and image forming apparatus
JP2009156904A (en) Charging device, process cartridge and image forming apparatus
JP5768401B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2006113377A (en) Electrifying member, process cartridge and electrophotographic apparatus using electrifying member
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP2004294849A (en) Electrifying member
JP2010169941A (en) Charging member, charging device, process cartridge, and image forming device
JP5317510B2 (en) Charging member, electrophotographic image forming apparatus
JP2011118050A (en) Cleaning member for electrifying member, electrifying device, process cartridge and image forming apparatus
JP2003043765A (en) Electrostatic charging member and electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4713900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350