JP2006154442A - Electrifying member and electrifying device - Google Patents
Electrifying member and electrifying device Download PDFInfo
- Publication number
- JP2006154442A JP2006154442A JP2004346335A JP2004346335A JP2006154442A JP 2006154442 A JP2006154442 A JP 2006154442A JP 2004346335 A JP2004346335 A JP 2004346335A JP 2004346335 A JP2004346335 A JP 2004346335A JP 2006154442 A JP2006154442 A JP 2006154442A
- Authority
- JP
- Japan
- Prior art keywords
- charging member
- charging
- resistance layer
- parts
- elastic particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Rolls And Other Rotary Bodies (AREA)
Abstract
Description
本発明は、レーザービームプリンター、複写機等の電子写真装置に使用される帯電部材及び該帯電部材を具備した帯電装置に関する。 The present invention relates to a charging member used in an electrophotographic apparatus such as a laser beam printer and a copying machine, and a charging device including the charging member.
電子写真装置における、感光体表面を均一に帯電するための接触帯電装置では、鉄やSUS等の導電性基体上にゴムや樹脂からなる抵抗層を設けた構成を有する帯電部材が一般的に使用されている。抵抗層には、導電性カーボンブラックや金属紛等の導電性材料が添加され導電性が付与されると共に、感光体との当接部(ニップ部)を確保するため適度な弾性が保持させる。抵抗層に弾性を持たせるためには、一般にオイルや可塑剤等の軟化剤を添加するが、これらの軟化剤は一般に移行性があることから感光体を汚染する場合があり、必要に応じて、汚染防止と帯電部材の弾性維持を両立する表面層を施す必要がある。 In a contact charging device for uniformly charging the surface of a photoreceptor in an electrophotographic apparatus, a charging member having a configuration in which a resistance layer made of rubber or resin is provided on a conductive substrate such as iron or SUS is generally used. Has been. A conductive material such as conductive carbon black or metal powder is added to the resistance layer to impart conductivity, and an appropriate elasticity is maintained in order to secure a contact portion (nip portion) with the photoreceptor. In order to give elasticity to the resistance layer, generally, softeners such as oil and plasticizer are added. However, these softeners are generally migratory and may contaminate the photoconductor. It is necessary to apply a surface layer that achieves both prevention of contamination and maintaining the elasticity of the charging member.
帯電部材の導電特性として、一般に体積抵抗が高過ぎると感光体の帯電ムラや帯電不良による異常画像が発生する。一方帯電部材の抵抗値を下げ過ぎると帯電不良による異常画像は抑制できるが、感光体表面に製造上または取り扱い上等の原因でピンホールが生じた場合そのピンホール部に対応する画像上に反転現像の時、菱形状の異常画像が発生するなど、帯電部材の抵抗には適正な領域が存在する。 As the conductive characteristics of the charging member, if the volume resistance is generally too high, abnormal images due to uneven charging of the photosensitive member or defective charging occur. On the other hand, if the resistance value of the charging member is lowered too much, abnormal images due to poor charging can be suppressed, but if a pinhole occurs on the surface of the photoreceptor due to manufacturing or handling, the image is reversed on the image corresponding to the pinhole portion. There is an appropriate region in the resistance of the charging member, such as a rhombus abnormal image being generated during development.
帯電部材と被帯電体との帯電現象は、接触または近接部分に狭い空間を形成し、パッシェンの法則で解釈できる放電可能領域、例えば数10μmの空隙で放電を形成することにより帯電する方法が挙げられる(例えば特許文献1参照)。 The charging phenomenon between the charging member and the object to be charged includes a method in which a narrow space is formed at the contact or adjacent portion, and charging is performed by forming discharge in a dischargeable region that can be interpreted by Paschen's law, for example, a gap of several tens of μm. (See, for example, Patent Document 1).
従来の接触帯電装置において被帯電体である感光体表面を均一に帯電させる方式として、帯電部材に交流電圧(AC)と直流電圧(DC)を同時に印加する方式がある。この方式では、交流の電圧源を使用する分、帯電部材に直流電圧のみを印加するDC帯電方式に比較して、電子写真装置のコストが高くなってしまう。 As a method for uniformly charging the surface of a photoconductor as a member to be charged in a conventional contact charging device, there is a method in which an AC voltage (AC) and a DC voltage (DC) are simultaneously applied to a charging member. In this method, the cost of the electrophotographic apparatus becomes higher as compared with the DC charging method in which only the DC voltage is applied to the charging member because the AC voltage source is used.
そこで、DC帯電方式についての提案がなされている(例えば特許文献2参照)。 Therefore, a proposal for a DC charging method has been made (see, for example, Patent Document 2).
DC帯電方式は、AC+DC帯電方式に比較して一般的にコストが低いが問題点もある。つまり、AC+DC帯電のようにAC電流の均し効果が無いため、帯電ローラ自身の電気抵抗の不均一性が画像に出易く、AC+DC帯電方式に比較して均一な帯電が困難である。また、やはり均し効果が無いことから、帯電部材表面に付着したトナーや紙紛等の汚れが原因となった画像不良を起こし易いという問題もある。 The DC charging method is generally lower in cost than the AC + DC charging method, but has a problem. That is, since there is no AC current leveling effect as in the case of AC + DC charging, non-uniformity in the electrical resistance of the charging roller itself is likely to appear in the image, and uniform charging is difficult as compared with the AC + DC charging method. Further, since there is no leveling effect, there is also a problem that image defects are easily caused due to dirt such as toner and paper dust adhering to the surface of the charging member.
ローコストなどのメリットがあるものの帯電の均一性や帯電部材表面への付着に対して、帯電部材の物性として余裕幅が少ないと思われるDC帯電方式に対して、昨今の電子写真装置は高速化と共に高耐久化が急速に進展しており、帯電部材における一層の性能の向上が急務になっている。 Although there is a merit such as low cost, the recent electrophotographic apparatus has increased in speed with respect to the DC charging method that seems to have little margin as the physical property of the charging member against the uniformity of charging and the adhesion to the surface of the charging member. High durability is advancing rapidly, and there is an urgent need to further improve the performance of the charging member.
帯電の均一性を向上させるため、従来技術では帯電部材を所望の表面粗さに制御する方法、例えば表面層に粒径7〜30μmのシリコーンパウダー等の柔軟な弾性粒子をポリアミド等の柔軟な結着樹脂に分散させることで帯電部材表面の表面粗さを所望の値に制御する方法が提案されている(例えば特許文献3参照)。また、表面層に架橋アクリル粒子を分散させたウレタン樹脂層を被覆する方法(例えば特許文献4参照)や、高離型ではあるが硬度が高いシリカ粒子、ポリカーボネート粒子を分散させる方法(例えば特許文献5参照)が提案されている。 In order to improve the uniformity of charging, in the conventional technique, the charging member is controlled to a desired surface roughness, for example, flexible elastic particles such as silicone powder having a particle diameter of 7 to 30 μm are bonded to the surface layer, such as polyamide. There has been proposed a method of controlling the surface roughness of the charging member surface to a desired value by dispersing the resin in a resin (see, for example, Patent Document 3). Also, a method of coating a urethane resin layer in which cross-linked acrylic particles are dispersed on the surface layer (see, for example, Patent Document 4), a method of dispersing silica particles and polycarbonate particles that are high mold release but high in hardness (for example, Patent Documents) 5) has been proposed.
電子写真装置の高耐久化に対しては、帯電部材表面へのトナーや紙紛等の付着による部分的な帯電不良を抑制し、長期にわたって安定した帯電の均一性を持続することが求められている。これは、クリーニング部材をすり抜けたトナーや紙紛等が、被帯電体である感光体と帯電部材との当接ニップ部において感光体表面から帯電部材表面へと付着しそれが堆積することで帯電不良を発生させるものである。電子写真装置の高耐久化にむけ、帯電部材表面へのトナー等の付着を抑制させるため帯電部材にクリーナを設ける方法では装置コストを上げることになるため、低コストな方法として帯電部材の表面粗さを所定の表面粗さ以下とする方法が提案されている(例えば特許文献6参照)。
しかしながら、帯電の均一性を向上させるために帯電部材の表面を粗面化するだけでは、帯電の均一性は向上できるが、被帯電体である感光体とのニップ部での帯電部材の表面積が増加し、また帯電部材に微小の凹みが存在することになるためトナーや紙紛等が帯電部材表面へ移行し易くなり、さらにはトナー等の堆積が起こり易く、電子写真装置の高耐久化への対応が困難になっている。この傾向は、架橋アクリル粒子やポリカーボネート粒子、シリカ粒子など、高硬度の粒子を添加した場合さらに顕著である。 However, by simply roughening the surface of the charging member in order to improve the charging uniformity, the charging uniformity can be improved. However, the surface area of the charging member at the nip portion with the photosensitive member being charged is reduced. In addition, since there is a minute dent in the charging member, toner, paper dust and the like are likely to move to the surface of the charging member, and further, toner and the like are liable to accumulate, leading to high durability of the electrophotographic apparatus. It has become difficult to respond. This tendency is more remarkable when high hardness particles such as crosslinked acrylic particles, polycarbonate particles, and silica particles are added.
図2、図3に帯電部材と被帯電体との当接の概念図を示す。帯電部材と被帯電体である感光体との間には所定の当接力f1により、ニップ部(ニップ領域)13が形成される。帯電部材と感光体との当接はニップ部13の中で高硬度粒子61を中心とした凸部と粒子の周囲に存在する凹部62が形成されている。この凹凸はニップ部内においてもその形状はほとんど変化しないため、この凹部にはトナーや紙紛等が付着、堆積し易いので、帯電部材表面の汚れによる異常画像が凹部で発生するといった課題がある。
2 and 3 are conceptual diagrams of contact between the charging member and the member to be charged. A nip portion (nip region) 13 is formed between the charging member and the photosensitive member as the member to be charged by a predetermined contact force f1. In the contact between the charging member and the photosensitive member, a convex portion centered on the
特許文献3ではシリコーンパウダー等の柔軟な弾性粒子を低硬度の結着樹脂に分散して表面層を形成しているが、結着樹脂の硬さ等に関して具体的な記述がなく、また弾性粒子の硬度に関連した特性の記述はなく、弾性粒子を使用する理由として感光体を損傷させないことが挙げられていることから、表面層を形成する結着樹脂も柔軟であると考えるのが妥当である。
In
本発明者らは柔軟な結着樹脂中に柔軟な弾性粒子を分散させて帯電の均一性と帯電部材表面の汚れ易さについて検証した。本発明者らが詳細に帯電部材と被帯電体との当接ニップ部周辺を観察したところ、柔軟な弾性粒子を柔軟な結着樹脂に分散させた場合、帯電部材のニップ部を通過した下流側で表面の粗さが復元するのに時間がかかっていることがわかった。このため帯電部材を所望の表面粗さに作成したとしても、放電領域内で所望の表面粗さを確保できず、特に高速の印字速度を持つ電子写真装置では帯電の均一性を達成できないことがわかった。また、ニップ部内における表面粗さが低下し過ぎてニップ部内における放電が起こらないため、帯電の均一性を維持できない。さらには結着樹脂に粘着性が生じ、トナーや紙紛等の付着による帯電部材の汚れを抑制できないといった課題があることが分かった。 The present inventors have examined the uniformity of charging and the easiness of contamination of the charging member surface by dispersing flexible elastic particles in a flexible binder resin. The inventors have observed the periphery of the contact nip between the charging member and the object to be charged in detail. As a result, when the flexible elastic particles are dispersed in the flexible binder resin, the downstream that has passed through the nip of the charging member. It was found that it took time to restore the surface roughness on the side. For this reason, even if the charging member is made to have a desired surface roughness, the desired surface roughness cannot be ensured in the discharge region, and the uniformity of charging cannot be achieved particularly in an electrophotographic apparatus having a high printing speed. all right. In addition, since the surface roughness in the nip portion is excessively reduced and no discharge occurs in the nip portion, the charging uniformity cannot be maintained. Further, it has been found that there is a problem that the binder resin becomes sticky, and the charging member cannot be prevented from being soiled due to adhesion of toner or paper dust.
一方、帯電部材表面の汚れを抑制するために帯電部材表面を平滑化させた帯電部材では、ニップ部内での放電が起こらず、またニップ部近傍の放電領域でも所望の放電が起こりにくいため、電子写真装置の高速化が急速に進む昨今の状況では、帯電の均一性を十分に達成できなくなっている。 On the other hand, a charging member that has a smooth charging member surface to prevent contamination of the charging member surface does not cause a discharge in the nip, and does not easily generate a desired discharge in the discharge region near the nip. In the recent situation where the speed of photographic devices is rapidly increasing, it is impossible to sufficiently achieve the uniformity of charging.
以上述べたように、弾性粒子を分散させた表面抵抗層にかかわる従来技術としては、帯電部材の表面抵抗層の構成として、高硬度の粒子を高硬度の結着樹脂中に分散させたものや、被帯電体に傷をつけないために柔軟な粒子を使用しそのために結着樹脂も柔軟な樹脂やゴムを使用したものであったが、いずれの従来技術でも、帯電の均一性を向上させかつ帯電部材の汚れを抑制する方法は達成されていない。 As described above, as a conventional technique related to the surface resistance layer in which elastic particles are dispersed, as a structure of the surface resistance layer of the charging member, high hardness particles are dispersed in a high hardness binder resin, In order to prevent damage to the body to be charged, flexible particles were used, and as a result, the binder resin was also made of flexible resin or rubber. In addition, a method for suppressing contamination of the charging member has not been achieved.
本発明はこのような事情に鑑みなされたものであって、電子写真装置の高速化、高耐久化に対しても、表面が平滑なことにより帯電の均一性が低下するといったことがなく、柔軟な弾性粒子を柔軟な結着樹脂に分散させたことにより帯電の均一性が低下したり、トナー等が付着することにより異常画像が発生することなく、また高硬度の粒子を分散させたことによりトナー等の付着による異常画像が発生することなく、長期にわたり安定して均一な帯電ができる帯電部材を提供する手段を提案するものである。また本発明は、帯電部材の表面形状が被帯電体への当接力によりニップ部で変化し表面の粗さが平滑化すると共に、ニップ部を通過すると表面形状が復元することを発明の趣旨としており、従来の発明とは大きく異なるものである。 The present invention has been made in view of such circumstances, and it is possible to flexibly prevent the uniformity of charging from being reduced due to the smooth surface even when the electrophotographic apparatus is increased in speed and durability. Dispersion of various elastic particles in a flexible binder resin reduces the uniformity of charging, prevents abnormal images from adhering to toner, etc., and disperses particles with high hardness The present invention proposes a means for providing a charging member that can stably and uniformly charge for a long time without generating an abnormal image due to adhesion of toner or the like. Further, the present invention aims to change the surface shape of the charging member at the nip portion due to the contact force with the object to be charged, smooth the surface roughness, and restore the surface shape when passing through the nip portion. Therefore, it is very different from the conventional invention.
従って、本発明の課題は、高速・高耐久の電子写真装置に装着でき、帯電不良が無く、帯電部材クリーナ等を使用する必要が無く、トナー等の付着による異常画像の発生が無く、長期にわたり安定して良好な画像を形成することができる帯電部材及び該帯電部材を具備した帯電装置を提供することである。 Accordingly, the problem of the present invention is that it can be mounted on a high-speed, high-durability electrophotographic apparatus, has no charging failure, does not require the use of a charging member cleaner, does not generate abnormal images due to adhesion of toner, etc. It is an object to provide a charging member capable of stably forming a good image and a charging device including the charging member.
第1の発明は、被帯電体を帯電する帯電部材において、該帯電部材の表面硬度が40°以上であり、かつ該被帯電体への当接力を0.49N(50g)から19.6N(2000g)に増加させたとき、該帯電部材と該被帯電体とのニップ部における実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)が、{Sa(19.6N(2000g))/Sa(0.49N(50g))}で1.1倍以上10倍以下であることを特徴とする帯電部材である。 According to a first aspect of the present invention, in a charging member that charges a member to be charged, the surface hardness of the charging member is 40 ° or more, and the contact force to the member to be charged is 0.49 N (50 g) to 19.6 N ( 2000g), the ratio (B / A = Sa) of the sum (B) of the actual contact area in the nip portion between the charging member and the member to be charged (B) and the area (A) of the entire nip portion is {Sa (19.6 N (2000 g)) / Sa (0.49 N (50 g))} is a charging member characterized by being 1.1 times or more and 10 times or less.
上述のように帯電部材表面へのトナーや紙紛等の付着を詳細に検討した結果、帯電部材と被帯電体とのニップ部内での接触状況が大きく影響しており、またニップ部近傍の放電領域における表面粗さが帯電の均一性に大きく影響していることがわかった。 As a result of detailed examination of the adhesion of toner, paper dust, etc. to the surface of the charging member as described above, the contact state in the nip portion between the charging member and the object to be charged has a great influence, and the discharge in the vicinity of the nip portion is also affected. It was found that the surface roughness in the region greatly affects the uniformity of charging.
当接力を0.49N及び19.6Nとする理由として、帯電部材には一般的に4.9N(500g)から9.8N(1000g)程度の荷重を有するバネを両端に設けて被帯電体に当接させている。そのため19.6Nの荷重をかけた場合のSa(19.6N)は、実使用時のニップ状態を反映すると考えられ、また0.49Nの荷重をかけた場合のSa(0.49N)は、ニップ部近傍の放電領域、つまり当接力がなくなった状態に近い表面状態を反映することができる。このためSa(19.6N)/Sa(0.49N)を本発明の範囲に制御することは、ニップ部内とニップ部近傍での表面状態の変化を表すことができる。 The reason why the contact force is set to 0.49 N and 19.6 N is that the charging member is generally provided with springs having a load of about 4.9 N (500 g) to 9.8 N (1000 g) at both ends, and the object to be charged is provided. It is in contact. Therefore, Sa (19.6 N) when a load of 19.6 N is applied is considered to reflect the nip state during actual use, and Sa (0.49 N) when a load of 0.49 N is applied is It is possible to reflect a discharge state in the vicinity of the nip, that is, a surface state close to a state where the contact force is lost. Therefore, controlling Sa (19.6 N) / Sa (0.49 N) within the range of the present invention can represent a change in the surface state in and near the nip portion.
本発明は、被帯電体への当接力f1を0.49Nから19.6Nに増加させたとき、Saの比{Sa(19.6N)/Sa(0.49N)}が1.1倍以上となるように帯電部材を構成することで、ニップ部内においてトナー等が付着するポケットとなる帯電部材表面の凹み深さを低減でき付着を抑制することができる。また被帯電体への当接力f1を0.49Nから19.6Nに増加させたとき、Saの比を10倍以下とすることで、ニップ部を通過した下流側では表面の粗さを復元し易くすることができるため放電領域における表面粗さを所望の粗度にして帯電の均一性を向上することができる。すなわち、Saの比を1.1倍以上10倍以下とすることで、放電領域での凹凸を確保すると共に、ニップ部内においてトナー等が付着するポケットとなる帯電部材表面の凹み深さを低減でき付着を抑制することができる。 In the present invention, when the contact force f1 to the charged body is increased from 0.49N to 19.6N, the ratio of Sa {Sa (19.6N) / Sa (0.49N)} is 1.1 times or more. By configuring the charging member so as to satisfy the above, it is possible to reduce the dent depth on the surface of the charging member that becomes a pocket to which toner or the like adheres in the nip portion, and to suppress the adhesion. Further, when the contact force f1 to the charged body is increased from 0.49N to 19.6N, the roughness of the surface is restored on the downstream side passing through the nip portion by reducing the ratio of Sa to 10 times or less. Since the surface roughness in the discharge region can be set to a desired roughness, the charging uniformity can be improved. That is, by setting the ratio of Sa to 1.1 times or more and 10 times or less, it is possible to secure unevenness in the discharge region and reduce the depth of the dent on the surface of the charging member that becomes a pocket to which toner or the like adheres in the nip portion. Adhesion can be suppressed.
さらに帯電部材の表面硬度を40°以上とすることで、ニップ部内においても放電が発生することで帯電の均一性を維持できると共に、帯電部材表面の粘着性を抑制し、またニップ部通過後の帯電部材の表面形状を早く復元でき放電領域での帯電部材の表面形状を所望の粗さにできる。 Furthermore, by setting the surface hardness of the charging member to 40 ° or more, it is possible to maintain the uniformity of charging by generating discharge even in the nip portion, and to suppress the adhesion of the charging member surface, and after passing through the nip portion. The surface shape of the charging member can be quickly restored, and the surface shape of the charging member in the discharge region can be set to a desired roughness.
第2の発明は、該帯電部材が導電性基体上に抵抗層を被覆した構造からなり、該帯電部材の表面に位置する表面抵抗層を除く基層抵抗層の硬度が、JIS K6253:1997に準拠して測定して50°以上であることを特徴とする上記帯電部材である。 According to a second aspect of the present invention, the charging member has a structure in which a resistance layer is coated on a conductive substrate, and the hardness of the base layer resistance layer excluding the surface resistance layer located on the surface of the charging member conforms to JIS K6253: 1997. Thus, the charging member is characterized by being measured at 50 ° or more.
基層抵抗層の硬度をJIS K6253:1997準拠で50°以上とすることで、基層抵抗層の変形を抑制して表面抵抗層を変形できるため、帯電部材のニップ部の表面粗さの制御が容易になる。 Since the surface resistance layer can be deformed by suppressing the deformation of the base resistance layer by setting the hardness of the base resistance layer to 50 ° or more in accordance with JIS K6253: 1997, the surface roughness of the nip portion of the charging member can be easily controlled. become.
第3の発明は、該帯電部材の表面粗度が、JIS B0601−1994準拠の十点平均粗さRzで4μm以上15μm以下であることを特徴とする上記帯電部材である。 A third aspect of the present invention is the above charging member, wherein the charging member has a surface roughness of 4 μm or more and 15 μm or less in terms of a ten-point average roughness Rz based on JIS B0601-1994.
Rzを4μm以上とすることでニップ部を通過後の表面粗さを大きくできるため帯電の均一性を向上でき、Rzを15μm以下とすることでニップ部における帯電部材表面の凹みを低減でき帯電部材の汚れを抑制できる。 By setting Rz to 4 μm or more, the surface roughness after passing through the nip portion can be increased, so that the uniformity of charging can be improved. By setting Rz to 15 μm or less, the dent on the surface of the charging member in the nip portion can be reduced. Stain can be suppressed.
第4の発明は、該帯電部材が導電性基体上に抵抗層を被覆した構造からなり、該帯電部材の表面に位置する表面抵抗層が弾性粒子、結着樹脂及び導電性粒子からなり、該弾性粒子の0.0098N(1g)荷重による圧縮率が、粒子径の10%以上50%以下であることを特徴とする上記帯電部材である。
According to a fourth aspect of the present invention, the charging member has a structure in which a resistance layer is coated on a conductive substrate, the surface resistance layer located on the surface of the charging member is made of elastic particles, a binder resin, and conductive particles, The charging member according to
表面抵抗層中に分散させる粒子を圧縮率が10%以上の弾性粒子とすることで、弾性粒子により形成された凸部周辺につくられる凹部の深さを抑制でき付着を抑制できる。弾性粒子の硬度としては、弾性粒子を0.0098Nの荷重がかかるまで圧縮したときの粒子径に対する変位量を圧縮率として表すことができ、その圧縮率が粒子径の10%以上となるような弾性粒子を選定することにより、帯電の均一性を向上でき、弾性粒子により形成された凸部周辺につくられる凹部の深さを抑制でき帯電部材表面への付着を抑制することができる。また50%以下となるようにすることでニップ領域(ニップ部)の下流での表面形状を均一な放電が起こり易くすることができる。 By making the particles dispersed in the surface resistance layer elastic particles having a compression rate of 10% or more, the depth of the concave portions formed around the convex portions formed by the elastic particles can be suppressed, and adhesion can be suppressed. As the hardness of the elastic particles, the amount of displacement with respect to the particle diameter when the elastic particles are compressed until a load of 0.0098 N is applied can be expressed as a compression ratio, and the compression ratio is 10% or more of the particle diameter. By selecting the elastic particles, the uniformity of charging can be improved, the depth of the concave portions formed around the convex portions formed by the elastic particles can be suppressed, and adhesion to the charging member surface can be suppressed. Further, by setting it to 50% or less, the surface shape downstream of the nip region (nip portion) can be made to easily generate a uniform discharge.
第5の発明は、該帯電部材の表面硬度が50°以上55°以下であることを特徴とする上記帯電部材である。 A fifth invention is the above-mentioned charging member, wherein the charging member has a surface hardness of 50 ° or more and 55 ° or less.
帯電部材の表面硬度を50°以上にすることでさらにニップ部通過後の表面粗さの回復を早め、55°以下にすることで弾性粒子により形成された凸部周辺につくられる凹部の深さを抑制でき帯電部材表面への付着を抑制する。 By making the surface hardness of the charging member 50 ° or more, the recovery of the surface roughness after passing through the nip portion is further accelerated, and by making the surface hardness 55 ° or less, the depth of the concave portion formed around the convex portion formed by the elastic particles. Can be suppressed, and adhesion to the surface of the charging member can be suppressed.
第6の発明は、該弾性粒子が、中空多孔質からなる球状樹脂により構成されていることを特徴とする上記帯電部材である。 A sixth invention is the above-mentioned charging member, characterized in that the elastic particles are composed of a spherical resin made of a hollow porous material.
弾性粒子を中空多孔質の球状樹脂とすることで、結着樹脂との補強性が増加することにより、被帯電体との当接により表面形状が変化しても、ニップ部通過後の復元速度を早めることができる。 By making the elastic particles hollow spherical resin, the reinforcement speed with the binder resin increases, so even if the surface shape changes due to contact with the charged body, the restoration speed after passing through the nip part Can be expedited.
第6の発明は、上記帯電部材を搭載したことを特徴とする帯電装置である。 A sixth aspect of the present invention is a charging device including the above charging member.
なお、前記特許文献3には、帯電部材の表面形状、特に表面の凹凸が当接ニップ部で平滑化されることで帯電部材の汚れを抑制するといった本発明の作用・効果に関連した記載は一切ない。
In
以上説明したように、請求項記載の発明による帯電部材は、高速・高耐久の電子写真装置に装着でき、帯電不良が無く、帯電部材クリーナ等を使用する必要が無く、トナー等の付着による異常画像の発生が無く、長期にわたり安定して良好な画像を形成することができる。 As described above, the charging member according to the claimed invention can be mounted on a high-speed, high-durability electrophotographic apparatus, has no charging failure, does not require the use of a charging member cleaner, and is abnormal due to adhesion of toner or the like. There is no generation of an image, and a good image can be stably formed over a long period of time.
本発明の帯電部材の具体例について、以下に述べる。図6は本発明の帯電部材と被帯電体との当接部を示す概略断面図であり、図1は本発明の帯電部材を組み込んだ帯電装置を概念的に示す図であり、図4は本発明の帯電部材を組み込んだ電子写真装置の例を示す概略図である。 Specific examples of the charging member of the present invention will be described below. FIG. 6 is a schematic cross-sectional view showing a contact portion between the charging member of the present invention and a member to be charged, FIG. 1 is a diagram conceptually showing a charging device incorporating the charging member of the present invention, and FIG. It is the schematic which shows the example of the electrophotographic apparatus incorporating the charging member of this invention.
図1に示す本発明の帯電装置は、本発明の帯電部材2、被帯電体となる感光ドラム10、帯電部材2に帯電バイアスを与える電源3により構成される。帯電部材2は導電性基体5に抵抗層6を被覆しており、抵抗層は帯電部材表面に位置する表面抵抗層8と表面抵抗層を除く基層抵抗層7からなる。
The charging device according to the present invention shown in FIG. 1 includes a charging
一般に、帯電部材は図2に示すように、導電性基体5にかかる当接力f1により被帯電体10に当接し、ニップ部(ニップ領域)13を形成している。
In general, as shown in FIG. 2, the charging member is in contact with the member to be charged 10 by the contact force f <b> 1 applied to the
本発明においては、帯電部材は図6に示すように、ニップ部13で当接力f1により表面形状が、特に凹凸が押しつぶされるように変形して、被帯電体に当接している。図5において、被帯電体とのニップ部13の中で、帯電部材の凸部を中心とした実際の接触面積(接触部分bの面積)の和(B)と、ニップ部全体の面積(A)の比(B/A=Sa)は、当接力を増加することにより増加する構成になっている。
In the present invention, as shown in FIG. 6, the surface of the charging member is deformed by the contact force f1 at the
本発明において帯電部材は、帯電部材の被帯電体とのニップ部における実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)が、被帯電体への当接力を0.49Nから19.6Nに増加させたときSa(19.6N)/Sa(0.49N)が1.1倍以上10倍以下になるように構成されている。帯電部材の被帯電体とのニップ部における実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)を制御する方法としては、基層抵抗層の硬度と共に、次に述べる表面抵抗層(弾性粒子のみを添加していない場合)の膜硬度や、及び弾、性粒子の圧縮率を制御する方法を挙げることができる。特に好ましいSa(19.6N)/Sa(0.49N)は4倍以上8倍以下であり、この範囲内で特に均一な帯電と表面の汚れを防止した帯電部材とすることができる。 In the present invention, the charging member has a ratio (B / A = Sa) of the sum (B) of the actual contact area in the nip portion of the charging member with the member to be charged and the area (A) of the entire nip portion (B / A = Sa). Sa (19.6 N) / Sa (0.49 N) is configured to be 1.1 times or more and 10 times or less when the abutting force is increased from 0.49 N to 19.6 N. As a method for controlling the ratio (B / A = Sa) of the sum (B) of the actual contact area of the charging member with the member to be charged (B) and the area (A) of the entire nip portion, the hardness of the base resistance layer In addition, a method of controlling the film hardness of the surface resistance layer (when only elastic particles are not added), and the compressibility of the elastic and sex particles described below can be mentioned. Particularly preferable Sa (19.6N) / Sa (0.49N) is 4 times or more and 8 times or less, and in this range, it is possible to obtain a charging member which prevents particularly uniform charging and surface contamination.
ニップ部における実際の接触面積の和(B)は、帯電部材を被帯電体と同形状のガラス製の円柱ドラムに、所定荷重で押し当て、CCDカメラ等を用いて実際に接触している部分と非接触部分を画像処理により2値化し、ガラス面に接触している部分の面積を和する方法などにより求めることができる。またニッブ部全体の面積(A)は、実際に接触している部分のなかで最外部の接触箇所を結んだ領域全体を計算することで求めることができる。円柱ドラムの内部からCCDカメラを用いてニップ部を観察した一例の画像を示す。図5では、帯電部材表面の凸部により形成される実際の接触部分Bが点在して観察される。ニップ部Aは、接触部分Bの最外部を結んだ領域とした。空間部分Cは、円柱ドラムに帯電部材が接触していない領域である。ニップ部Aの面積と実際の接触面積の和Bとの比(B/A=Sa)を、0.49N荷重と19.6N荷重のそれぞれについて算出して比Sa(19.6N)/Sa(0.49N)をとり、当接の変化率とした。 The sum (B) of the actual contact area at the nip is a portion where the charging member is pressed against a glass cylindrical drum having the same shape as the body to be charged with a predetermined load and is actually in contact using a CCD camera or the like. And a non-contact portion is binarized by image processing, and the area of the portion in contact with the glass surface is summed. Moreover, the area (A) of the whole nib part can be calculated | required by calculating the whole area | region which connected the outermost contact location in the part which is actually contacting. An image of an example in which a nip portion is observed from the inside of a cylindrical drum using a CCD camera is shown. In FIG. 5, the actual contact portions B formed by the convex portions on the surface of the charging member are observed scattered. The nip part A was an area connecting the outermost parts of the contact part B. The space portion C is a region where the charging member is not in contact with the cylindrical drum. The ratio (B / A = Sa) between the area of the nip portion A and the actual contact area sum B (B / A = Sa) is calculated for each of the 0.49N load and 19.6N load, and the ratio Sa (19.6N) / Sa ( 0.49N), which was defined as the rate of change in contact.
本発明では表面抵抗層の膜硬度としては、弾性粒子のみを添加せずに同程度の膜厚で帯電部材を形成した場合に表面硬度を45°以上とすることが好ましい。45°以上の表面硬度を有する膜に弾性粒子を添加して表面抵抗層を形成することで、ニップ部下流で表面状態を所望の粗さにし易く、また粘着性を抑制した表面抵抗層を作成し易い。 In the present invention, the film hardness of the surface resistance layer is preferably set to 45 ° or more when the charging member is formed with the same film thickness without adding only elastic particles. Forming a surface resistance layer by adding elastic particles to a film having a surface hardness of 45 ° or more, creating a surface resistance layer that makes it easy to obtain a desired surface roughness downstream of the nip and suppresses adhesiveness. Easy to do.
本発明では圧縮率が5%以上の弾性粒子を使用することが好ましい。また添加量としては、放電領域での粗さを確保するために結着樹脂100質量部に対して弾性粒子が20質量部以上が好ましく、ニップ部における平滑性を得るために弾性粒子が100質量部以下が好ましい。また弾性粒子の平均粒径は表面抵抗層の厚さに対して10%以上130%以下の大きさとすることが、ニップ部では変形が起き、ニップ部下流では形状の復元が起きるために好ましい。また表面抵抗層の膜硬度としては、弾性粒子のみを添加せずに同程度の膜厚で帯電部材を形成した場合に表面硬度を45°以上とすることが好ましい。45°以上の表面硬度を有する膜に弾性粒子を添加して表面抵抗層を形成することで、ニップ部下流で表面状態を所望の粗さにし易く、また粘着性を抑制した表面抵抗層を作成し易い。 In the present invention, it is preferable to use elastic particles having a compressibility of 5% or more. Further, the addition amount is preferably 20 parts by mass or more of elastic particles with respect to 100 parts by mass of the binder resin in order to ensure the roughness in the discharge region, and 100 masses of elastic particles in order to obtain smoothness at the nip part. Part or less is preferred. The average particle size of the elastic particles is preferably 10% or more and 130% or less with respect to the thickness of the surface resistance layer, because deformation occurs in the nip portion and shape recovery occurs downstream of the nip portion. The surface hardness of the surface resistance layer is preferably 45 ° or more when the charging member is formed with the same film thickness without adding only the elastic particles. Forming a surface resistance layer by adding elastic particles to a film having a surface hardness of 45 ° or more, creating a surface resistance layer that makes it easy to obtain a desired surface roughness downstream of the nip and suppresses adhesiveness. Easy to do.
導電性基体(芯金)5の材質は特に限定されないが、基体としての強度があり、導電性を示すものが好適である。これらの材料としては鉄、ステンレス、アルミニウム、導電性プラスチック等がある。 The material of the conductive substrate (core metal) 5 is not particularly limited, but a material having strength as a substrate and exhibiting conductivity is suitable. These materials include iron, stainless steel, aluminum, and conductive plastic.
基層抵抗層7の体積抵抗値は、表面抵抗層に過剰な電圧印加が起こらないように、1×102Ω・cm以上が好ましく、また、被帯電体表面を帯電させるために、1×1013Ω・cm以下が好ましい。
The volume resistance value of the
基層抵抗層の厚さは特に限定されないが、感光ドラムとの接触を行うことから、通常1mm以上10mm程度である。 The thickness of the base resistance layer is not particularly limited, but is usually about 1 mm or more and about 10 mm because of contact with the photosensitive drum.
基層抵抗層の硬度は、帯電部材の被帯電体とのニップ部における実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)が、被帯電体への当接力f1を0.49Nから19.6Nに増加させたとき、1.1倍以上10倍以下に増加するためには適度な硬さが必要であるため、好ましくはJIS K6253:1997に準拠して測定して50°以上である。 The hardness of the base resistance layer is determined by the ratio (B / A = Sa) of the sum (B) of the actual contact area in the nip portion of the charging member with the member to be charged and the area (A) of the entire nip portion (B / A = Sa). When the abutment force f1 is increased from 0.49N to 19.6N, an appropriate hardness is required to increase from 1.1 times to 10 times, and therefore preferably in JIS K6253: 1997. It is 50 ° or more as measured in conformity.
基層抵抗層の原料としては、通常の樹脂やゴム材で構成すればよい。例えばポリブタジエン、天然ゴム、ポリイソプレン、SBR(スチレンブタジエンゴム)、CR(クロロプレンゴム)、EPDM(エチレン・プロピレン・ジエンターゴム)、IIR(ブチルゴム)、NBR(ニトリルブタジエンゴム)、シリコーンゴム、ウレタンゴム、エピクロルヒドリンゴム等のゴムや、RB(ブタジエン樹脂)、SBS(スチレン・ブタジエン・スチレンエラストマー)等のポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン、PVC(ポリ塩化ビニル)、アクリル系樹脂、スチレン・酢酸ビニル共重合体、ブタジエン・アクリロニトリル共重合体等の高分子材料に弾性を付与したものを用いることができる。抵抗層を形成するために、これらの材料1種を用いても、2種以上を併用してもよい。 What is necessary is just to comprise with a normal resin and a rubber material as a raw material of a base layer resistance layer. For example, polybutadiene, natural rubber, polyisoprene, SBR (styrene butadiene rubber), CR (chloroprene rubber), EPDM (ethylene propylene dienter rubber), IIR (butyl rubber), NBR (nitrile butadiene rubber), silicone rubber, urethane rubber, epichlorohydrin Rubbers such as rubber, polystyrene resins such as RB (butadiene resin) and SBS (styrene / butadiene / styrene elastomer), polyolefin resins, polyester resins, polyurethane, PVC (polyvinyl chloride), acrylic resins, styrene / What gave elasticity to high molecular materials, such as a vinyl acetate copolymer and a butadiene acrylonitrile copolymer, can be used. In order to form the resistance layer, one kind of these materials may be used or two or more kinds may be used in combination.
これらの原料に後述する導電性粒子を分散させて導電性を有する基層抵抗層7を作成することができる。 Conductive base particles can be formed by dispersing conductive particles described later in these raw materials.
基層抵抗層7はソリッドでも発泡体(スポンジ状)でもよいが、ソリッドの方が当接力による変形を表面抵抗層に集約できるためニップ部における帯電部材の表面形状を平滑化し易いため好ましい。
The
また、基層抵抗層7の表面は、研磨面でもモールド内面が転写された面やスキン面でもよく、特に限定されるものではない。特に、平滑なモールド内面が転写された面かソリッド体を研磨した面が、感光ドラムとの均一な接触のために好ましい。
The surface of the
発泡剤を用いることで発泡体を製造する場合、発泡剤としては、無機発泡剤、有機発泡剤、高分子発泡剤等を用いることができる。無機発泡剤としては、重炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム等、また有機発泡剤としては、A.D.C.A.(アゾジカルボナミド)系、D.P.T.(ジ−ニトロソペンタメチレンテトラミン)系、O.B.S.H.(4,4’−オキシビス−ベンゼンサルフォニル−ヒドラジド)系、T.S.H.(P−トリエンサルフォニルヒドラジド)系、A.I.B.N.(アゾビスイソブチロニトリル)系などを使用することができ、特にA.D.C.A.系、O.B.S.H.系のブレンドでは緻密な発泡体でかつ加硫のタイト(架橋密度が高い)な発泡体が得られる。さらに高分子発泡剤としては、ポリエチレン系発泡剤、ポリプロピレン系発泡剤、塩化ビニル系発泡剤、塩化ビニリデン系発泡剤、アクリル系発泡剤等を用いることができる。発泡剤は1種を用いても2種以上を併用してもよい。 When a foam is produced by using a foaming agent, an inorganic foaming agent, an organic foaming agent, a polymer foaming agent, or the like can be used as the foaming agent. Examples of the inorganic foaming agent include sodium bicarbonate, ammonium bicarbonate, and ammonium carbonate. D. C. A. (Azodicarbonamide) series, D.I. P. T.A. (Di-nitrosopentamethylenetetramine) system, O.D. B. S. H. (4,4'-oxybis-benzenesulfonyl-hydrazide) system, T.W. S. H. (P-trienesulfonylhydrazide) system, A.I. I. B. N. (Azobisisobutyronitrile) and the like can be used. D. C. A. System, O.D. B. S. H. With the blend of the system, a dense foam and a vulcanized tight (high crosslink density) foam can be obtained. Furthermore, as the polymer foaming agent, a polyethylene foaming agent, a polypropylene foaming agent, a vinyl chloride foaming agent, a vinylidene chloride foaming agent, an acrylic foaming agent, or the like can be used. A foaming agent may use 1 type or may use 2 or more types together.
また、基層抵抗層7には、必要に応じて加硫剤が配合される。加硫剤としては、使用するゴムの種類により、硫黄系加硫剤、有機過酸化物、キノイド系加硫剤、樹脂架橋剤、金属酸化物架橋剤、アミン架橋剤、トリアジン系架橋剤、マレイミド系架橋剤など公知の加硫剤を適宜使用できる。
The
基層抵抗層には、この他に、加硫促進剤、老化防止剤、可塑剤等を添加してもよい。 In addition to this, a vulcanization accelerator, an anti-aging agent, a plasticizer, and the like may be added to the base layer resistance layer.
基層抵抗層の製造方法は、公知の方法が使用でき弾性体素材を押出成形し、これを加熱して加硫硬化して芯金を圧入した後、所望の形状に研磨する方法、弾性体素材を所定形状を有する金型内に注入するインジェクションやトランスファー等が挙げられる。 A known method can be used to manufacture the base layer resistance layer. An elastic material is extruded, heated, vulcanized and cured, pressed into a core, and then polished into a desired shape. Elastic material Injection, transfer, and the like are injected into a mold having a predetermined shape.
このようにして、体積抵抗が1×102Ω・cm以上、1×1013Ω・cm以下であり、硬度がJIS K6253:1997準拠で50°以上である基層抵抗層を作成できる。 In this manner, a base resistance layer having a volume resistance of 1 × 10 2 Ω · cm or more and 1 × 10 13 Ω · cm or less and a hardness of 50 ° or more in accordance with JIS K6253: 1997 can be produced.
表面抵抗層8は、少なくとも導電性材料、弾性粒子及び結着樹脂を構成要素とする。表面抵抗層は、表面硬度を40°以上でかつ、ニップ部における接触面積の割合を所望の値に制御する必要がある。帯電部材の被帯電体とのニップ部における実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)を制御する方法としては、基層抵抗層の硬度と共に、表層抵抗層の膜硬度、及び、弾性粒子の圧縮率を制御することにより可能である。
The
表面抵抗層に使用する結着樹脂の材料は、基層抵抗層の材料の染み出し防止やトナー等の付着防止性の観点から架橋性の樹脂が好ましく、BR(ブタジエン樹脂)、SBS(スチレン・ブタジエン・スチレンエラストマー)等のポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン樹脂、PVC(ポリ塩化ビニル)、アクリル系樹脂、スチレン・酢酸ビニル共重合体、ブタジエン・アクリロニトリル共重合体等の高分子材料を用いることができる。抵抗層を形成するために、これらの材料1種を用いても、2種以上を併用してもよい。また、表面抵抗層に、架橋剤を配合する場合、架橋剤としてはイソシアネート系架橋剤、メラミン系架橋剤、アミン系架橋剤など通常使われている架橋剤が使用できる。 The material of the binder resin used for the surface resistance layer is preferably a crosslinkable resin from the viewpoint of preventing bleeding of the material of the base layer resistance layer and preventing adhesion of toner, etc., and BR (butadiene resin), SBS (styrene butadiene)・ Polystyrene resins such as styrene elastomers, polyolefin resins, polyester resins, polyurethane resins, PVC (polyvinyl chloride), acrylic resins, styrene / vinyl acetate copolymers, butadiene / acrylonitrile copolymers, etc. Materials can be used. In order to form the resistance layer, one kind of these materials may be used or two or more kinds may be used in combination. In addition, when a crosslinking agent is blended in the surface resistance layer, conventionally used crosslinking agents such as isocyanate crosslinking agents, melamine crosslinking agents, and amine crosslinking agents can be used as the crosslinking agent.
表面抵抗層に分散される弾性粒子は、5%以上の圧縮率を有する弾性粒子を使用することができ、材質としては、アクリル樹脂、ウレタン樹脂、スチレン樹脂、シリコーン樹脂等が使用でき、特に好ましくは圧縮率が10%以上の粒子である。また特定の形状としては、中空多孔質の球状樹脂からなる弾性粒子が、前述したように帯電部材の特性を向上させることができるため特に好ましい。 As the elastic particles dispersed in the surface resistance layer, elastic particles having a compressibility of 5% or more can be used. As the material, acrylic resin, urethane resin, styrene resin, silicone resin, etc. can be used, and particularly preferable. Is a particle having a compressibility of 10% or more. As a specific shape, elastic particles made of a hollow porous spherical resin are particularly preferable because the characteristics of the charging member can be improved as described above.
本発明に使用される基層抵抗層及び表面抵抗層に含有される導電性物質は、イオン導電系の導電性物質や導電性高分子、電子導電系の導電性物質など適宜選択できる。例えば、ポリアニリン、ポリピロール、ポリアセチレン等の導電性ポリマー、トリメチルオクタデシルアンモニウムパークロレート、ベンジルトリメチルアンモニウムクロリド等の第4級アンモニウム塩や過塩素酸リチウム、過塩素酸カリウム等の過塩素酸塩や、テトラアルキルアンモニウム塩、リン酸エステル、脂肪族アルコールサルフェート塩、脂肪族多価アルコールや、イオン系界面活性剤などや、グラファイト、スズ、ルテニウム、チタン、ニッケル、銅、銀、ゲルマニウム等の金属及び金属酸化物や、ケッチェンブラック、アセチレンブラック、HAF、SAF、ISAF、SRF、FT等のカーボンブラック、が使用できる。高分子原料に対する分散手段としては、ロールニーダー、バンバリーミキサー、ボールミル、サンドグラインダー、ペイントシェーカー等を適宜利用すればよい。 The conductive substance contained in the base layer resistance layer and the surface resistance layer used in the present invention can be appropriately selected from an ion conductive type conductive substance, a conductive polymer, and an electronic conductive type conductive substance. For example, conductive polymers such as polyaniline, polypyrrole and polyacetylene, quaternary ammonium salts such as trimethyloctadecyl ammonium perchlorate and benzyltrimethyl ammonium chloride, perchlorates such as lithium perchlorate and potassium perchlorate, and tetraalkyls. Ammonium salts, phosphate esters, aliphatic alcohol sulfate salts, aliphatic polyhydric alcohols, ionic surfactants, metals and metal oxides such as graphite, tin, ruthenium, titanium, nickel, copper, silver, germanium Alternatively, ketjen black, acetylene black, carbon black such as HAF, SAF, ISAF, SRF, and FT can be used. As a dispersing means for the polymer raw material, a roll kneader, a Banbury mixer, a ball mill, a sand grinder, a paint shaker, or the like may be used as appropriate.
表面抵抗層8の体積抵抗値は、被帯電体への過剰電流を防止する点で1×104Ω・cm以上が好ましく、また、被帯電体表面を帯電させるためには1×1013Ω・cm以下が好ましい。表面抵抗層の厚さは特に限定されないが通常1μmから50μm程度である。
The volume resistance value of the
表面抵抗層の被覆方法は、押出し機等を使用してチューブ状に押出すと共に基層抵抗層上に被覆される方法によっても製造されるが、好ましくは、スプレー、ディッピング、ロールコータ、コイルコータ、カーテンフローコータ、電着塗装、静電塗装、紛体塗装等の塗工により、液状塗料や紛体塗料を適宜使用して表面抵抗層を設けることが基層抵抗層との接着性、帯電部材の形状の安定性、基層抵抗層との接着性などから好ましく、特に帯電部材がロール状の場合にはリング塗工が基層抵抗層の膨潤がなく、軸方向における表面抵抗層の厚み制御が容易で形状精度に優れることから好ましい。 The surface resistance layer is coated by a method of extruding into a tube using an extruder or the like and coating on the base resistance layer. Preferably, the surface resistance layer is sprayed, dipped, roll coater, coil coater, curtain. Providing a surface resistance layer using liquid coating or powder coating as appropriate by coating such as flow coater, electrodeposition coating, electrostatic coating, powder coating, etc. Adhesiveness with the base layer resistance layer, stable charging member shape In particular, when the charging member is in the form of a roll, ring coating does not swell the base layer resistance layer, and the thickness of the surface resistance layer in the axial direction can be easily controlled to improve shape accuracy. It is preferable because it is excellent.
また、図1に示すように、ドラム状電子写真感光体である感光ドラム10は、R方向に回動可能で接地されている感光ドラム基体11に、OPC(有機感光体)、アモルファスシリコン、セレン、酸化亜鉛等からなる感光層12を覆設した構造をしている。
Further, as shown in FIG. 1, a
なお、前記感光体10はドラム状に限らず、ベルト状またはシート状であってもよい。また、帯電部材2としては、ローラ形状のものを用いているが、非回転ローラやブレード状のパッド部材等であってもよい。
The
帯電部材2は感光体10に当接し、また電源3を介して感光体10と接続されて電気回路が構成されている。電源3により接触帯電部材2と感光体10とのニップ部13の近傍が帯電し、ニップ部13が感光体10の動きにつれて移動するので感光体10表面全体が帯電される。
The charging
図4は導電性部材を帯電部材として電子写真装置に適用した例を示す概略図である。 FIG. 4 is a schematic view showing an example in which a conductive member is applied to an electrophotographic apparatus as a charging member.
電子写真装置は、図1、図3に示すような帯電部材2と感光ドラム10とを有し、さらに、現像器31、転写部材32、定着器33、クリーナ34、電子写真装置に一体的に着脱自在なユニットとしてプロセスカートリッジを有している。
The electrophotographic apparatus has a charging
図4に示すように、感光体10表面全体が帯電された後、画像情報に応じてレーザー光Lで露光して感光体10表面に潜像を形成し、次に現像器31でトナーにより現像し、転写部では転写部材32で転写材に転写し、定着器33で熱定着する。一方、感光ドラム10は、転写後クリーナ34でクリーニングされ、次回像形成に備える。
As shown in FIG. 4, after the entire surface of the
ここで、プロセスカートリッジとは、像担持体としての電子写真感光体と、作用手段としての帯電手段、現像手段またはクリーニング手段の少なくとも一つとを一体的にカートリッジ化したものであり、電子写真装置(例えば、複写機、LBP等)本体に対して着脱自在である。プロセスカートリッジは少なくとも感光ドラムと帯電部材とを備えていればよい。 Here, the process cartridge is a cartridge in which an electrophotographic photosensitive member as an image carrier and at least one of a charging unit, a developing unit, or a cleaning unit as an operation unit are integrally formed into a cartridge. For example, a copying machine, LBP, etc.) are detachable from the main body. The process cartridge only needs to include at least a photosensitive drum and a charging member.
感光ドラム10は、次のように構成される。
The
感光体10は、感光ドラム基体11の上に設けられる。感光ドラム基体11としては、支持体自体が導電性をもつもの、例えばアルミニウム、アルミニウム合金、ステンレス、ニッケル等の金属を用いることができ、その他に、アルミニウム、アルミニウム合金、酸化インジウム−酸化錫合金等を真空蒸着によって被膜形成した層を有するプラスチック、導電性粒子(例えばカーボンブラック、酸化錫粒子等)を適当な結着樹脂と共に金属やプラスチックに塗布した支持体、導電性結着樹脂を有するプラスチック等を用いることができる。
The
感光ドラム基体11と感光体12の中間に、バリヤー機能と接着機能とをもつ下引層を設けることもできる。下引層は、カゼイン、ポリビニルアルコール、ニトロセルロース、エチレン−アクリル酸コポリマー、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン等)、ポリウレタン、ゼラチン、酸化アルミニウム等によって形成できる。下引層の膜厚は5μm以下、特に0.5μm〜3μmが好ましい。下引層は、その機能を発揮するためには、10×107Ω・cm以上であることが好ましい。
An undercoat layer having a barrier function and an adhesive function may be provided between the
感光体12は、有機または無機の光導電体を必要に応じて結着樹脂と共に塗工することで形成でき、また蒸着によっても形成することができる。感光層(感光体)の形態としては、電荷発生層と電荷輸送層の機能分離型積層感光層が好ましい。
The
電荷発生層は、アゾ顔料、フタロシアニン顔料、キノン顔料、ペリレン顔料等の電荷発生物質を蒸着、または、適当な結着樹脂と共に(結着樹脂がなくても可)塗工することによって形成できる。電荷発生層の膜厚は、0.01μm〜5μm、特に0.05μm〜2μmが好ましい。 The charge generation layer can be formed by depositing a charge generation material such as an azo pigment, a phthalocyanine pigment, a quinone pigment, or a perylene pigment, or by coating with a suitable binder resin (or without a binder resin). The film thickness of the charge generation layer is preferably 0.01 μm to 5 μm, particularly preferably 0.05 μm to 2 μm.
電荷輸送層は、ヒドラゾン化合物、スチリル化合物、オシサゾール化合物、トリアリールアミン化合物等の電荷輸送物質を成膜性のある結着樹脂に溶解させて形成することができる。電荷輸送層の膜厚は5μm〜50μm、特に10μm〜30μmが好ましい。 The charge transport layer can be formed by dissolving a charge transport material such as a hydrazone compound, a styryl compound, an osissazole compound, or a triarylamine compound in a film-forming binder resin. The film thickness of the charge transport layer is preferably 5 μm to 50 μm, particularly preferably 10 μm to 30 μm.
以下、本発明を実施例により説明する。実施例中「部」は質量部を示す。 Hereinafter, the present invention will be described by way of examples. In the examples, “part” means part by mass.
<実施例1>
本実施例で使用した帯電部材は以下のような方法で製造した。
<Example 1>
The charging member used in this example was manufactured by the following method.
基層抵抗層用の原料として、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(商品名:エピクロマーCG102、ダイソー(株)製)100部、加工助剤としてステアリン酸亜鉛1部、加硫促進助剤として酸化亜鉛5部、充填剤としてMTカーボンブラック(商品名:サーマックッスフローフォームN990、CANCAB社製)30部、加硫剤としてジペンタメチレンチウラムテトラスルフィド(商品名:ノクセラーTRA、大内振興化学工業(株)製)2部をオープンロールにて混合して未加硫ゴム組成物を得た。
100 parts of epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (trade name: Epichromer CG102, manufactured by Daiso Corporation) as a raw material for the base resistance layer, 1 part of zinc stearate as a processing aid,
ついで、ベント式ゴム押出機(φ50mmベント押出機 L/D=16 EM技研社製)によってチューブ状に押出し、加硫缶を用いた加圧水蒸気により160℃で30分の一次加硫を行い、外径15mm、内径5.5mm、長さ250mmのゴムチューブを得た。 Next, it was extruded into a tube shape by a vent type rubber extruder (φ50 mm vent extruder L / D = 16 manufactured by EM Giken Co., Ltd.), subjected to primary vulcanization at 160 ° C. for 30 minutes with pressurized steam using a vulcanizing can, A rubber tube having a diameter of 15 mm, an inner diameter of 5.5 mm, and a length of 250 mm was obtained.
次に、予め熱硬化性接着剤(商品名:メタロックU−20、東洋化学研究所製)を塗布した後に乾燥させたSUMからなる長さ256mm、φ6mmの芯金を、上記ゴムチューブに挿入し、熱風炉にて160℃で2時間の二次加硫と接着処理を行った。 Next, a core metal having a length of 256 mm and a diameter of 6 mm made of SUM which has been dried after applying a thermosetting adhesive (trade name: METALOC U-20, manufactured by Toyo Chemical Laboratories) is inserted into the rubber tube. Then, secondary vulcanization and adhesion treatment were performed in a hot air oven at 160 ° C. for 2 hours.
基層抵抗層用材料を用いて試料片を作成し、基層抵抗層の硬度をJIS K6253:1997に準拠して測定したところ、52°であった。 A sample piece was prepared using the material for the base layer resistance layer, and the hardness of the base layer resistance layer was measured according to JIS K6253: 1997 to be 52 °.
ついで224mmのゴム長になるように両端部を切断した後、NC研磨機を使用して、ゴム部の端部直径12.00mm、中央部直径12.10mmのクラウン形状の基層抵抗層用素材を得た。 Next, after cutting both ends so as to have a rubber length of 224 mm, using an NC grinder, a crown-shaped base layer resistance layer material with a rubber part end diameter of 12.00 mm and a center part diameter of 12.10 mm was obtained. Obtained.
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009、ダイセル化学工業(株)製)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(商品名:SH28PA、東レ・ダウシリコーン(株)製)を0.05部、導電性粒子として導電性酸化スズ紛体(商品名:SN−100P、石原産業(株)製)を30部、弾性粒子として非架橋アクリル粒子(商品名:M−200、松本油脂製薬(株)製)をエルボージェットを用いて平均粒径を2μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(商品名:ベスタナートB1370、デグサ・ヒュルス社製)を25部、ヘキサメチレンジイソシアネートのヌレートタイプ(商品名:デュラネートTPA−B80E、旭化成工業(株)製)を16部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は5%であった。 As a coating for the surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009, manufactured by Daicel Chemical Industries) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, a leveling agent 0.05 parts of silicone oil (trade name: SH28PA, manufactured by Toray Dow Silicone Co., Ltd.) and 30 parts of conductive tin oxide powder (trade name: SN-100P, manufactured by Ishihara Sangyo Co., Ltd.) as conductive particles 30 parts of elastic particles obtained by dividing non-crosslinked acrylic particles (trade name: M-200, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) as elastic particles using an elbow jet into an average particle size of 2 μm, and paint shaker For 6 hours. To 370 parts of the resulting dispersion, 25 parts of isophorone diisocyanate nurate type (trade name: Bestanat B1370, manufactured by Degussa Huls), hexamethylene diisocyanate nurate type (trade name: Duranate TPA-B80E, Asahi Kasei Corporation) 16 parts) was mixed and stirred with a ball mill for 1 hour to obtain a coating for a surface resistance layer having a viscosity of 9 mPa · s. The compression rate of the elastic particles used was 5%.
弾性粒子の圧縮率は、微小圧縮試験機MCTM/MCTE((株)島津製作所製)を用いて負荷除荷試験を行い、弾性粒子を0.0098Nの荷重がかかるまで圧縮したときの粒子径の変位量を100分率で表し圧縮率とした。 The compression ratio of the elastic particles is the particle diameter when the load is unloaded using a micro compression tester MCTM / MCTE (manufactured by Shimadzu Corporation) and the elastic particles are compressed until a load of 0.0098 N is applied. The amount of displacement was expressed as a percentage and was taken as the compression rate.
基層抵抗層用素材に表面抵抗層用塗料をディッピング法により、引き上げ速度300mm/minで塗工し、30分風乾後、軸方向を反転して再度ディッピング塗工して同様に乾燥させた。ついで160℃で1時間乾燥して、表面抵抗層の厚みが20μmの帯電部材1を得た。
The surface resistance layer coating material was applied to the base layer resistance layer material by dipping at a lifting speed of 300 mm / min, air-dried for 30 minutes, then dipped again with the axis direction reversed and dried in the same manner. Subsequently, it dried at 160 degreeC for 1 hour, and obtained the charging
帯電部材1の電流値は250μA、十点平均粗さRzは1μmであった。また帯電部材1の表面硬度は55°、当接の変化率は1.1倍であった。
The charging
帯電部材の電流値は、帯電部材を円柱状の金属ドラムに、4.9N(500g)のバネ圧を有するバネを両端に使用して当接させ、回転させた状態で、導電性基体と金属ドラム間に直流200Vの電圧を印加し、金属ドラムと直列に接続した抵抗体にかかる電圧を測定して、帯電ローラの電流値を求めた。 The current value of the charging member is determined by contacting the conductive substrate and the metal in a state where the charging member is brought into contact with a cylindrical metal drum using springs having a spring pressure of 4.9 N (500 g) at both ends and rotated. A voltage of DC 200V was applied between the drums, and the voltage applied to the resistor connected in series with the metal drum was measured to obtain the current value of the charging roller.
十点平均粗さRzは、JIS B0601−1994の表面粗さに基づき、サーフコーダーSE3400(小坂研究所製)にて、軸方向3点×周方向2点の計6点について各々測定し、その平均とした。表面硬度は、帯電部材の状態で、マイクロゴム硬度計MD−1タイプA(高分子計器(株)製)で測定した。 The ten-point average roughness Rz was measured for a total of six points, 3 in the axial direction and 2 in the circumferential direction, using Surfcoder SE3400 (manufactured by Kosaka Laboratory) based on the surface roughness of JIS B0601-1994. Averaged. The surface hardness was measured with a micro rubber hardness meter MD-1 type A (manufactured by Kobunshi Keiki Co., Ltd.) in the state of the charging member.
帯電部材と被帯電体とのニップ幅における実際の接触面積の割合(Sa)は、帯電部材を被帯電体と同形状のガラス製の円柱ドラムに、0.49Nまたは1000gのバネ圧を有するバネを両端に使用して当接させた状態を観察した。円柱ドラムの内部からCCDカメラを用いてニップ部を観察し、実際の接触面積の和(B)とニップ部全体の面積(A)の比(B/A=Sa)を、0.49N荷重と1000g荷重のそれぞれについて算出して比Sa(1000g)/Sa(0.49N)をとり、当接の変化率とした。 The ratio (Sa) of the actual contact area in the nip width between the charging member and the member to be charged is the spring having a spring pressure of 0.49 N or 1000 g when the charging member is a glass cylindrical drum having the same shape as the member to be charged. Was used for both ends, and the contact state was observed. The nip portion is observed from the inside of the cylindrical drum using a CCD camera, and the ratio (B / A = Sa) of the sum (B) of the actual contact area (B) to the total area (A) of the entire nip portion is set to 0.49 N load. The ratio Sa (1000 g) / Sa (0.49 N) was calculated for each load of 1000 g, and the change rate of contact was taken.
帯電部材1を用いて図1に概略図示される接触帯電装置1を作製した。本実施例では、OPCの感光体を覆設した感光ドラムを使用した。また、4.9N(500g)のバネ圧を有するバネを両端に使用して当接させて帯電部材を感光ドラムに押圧させた。
Using the charging
帯電部材1を用いた接触帯電装置について、実使用初期では感光体の周速を47mm/s、94mm/sの2条件において、また94mm/sで20000枚及び80000枚の通紙耐久後ではトナー等の付着に起因する画像が観察された。その結果を表1に示す。接触帯電装置において帯電部材1へは、−1500Vの直流電圧を印加した。
As for the contact charging device using the charging
ここで、異常画像の発生の評価は、
〇:ハーフトーン画像において、帯電不良による黒斑点の発生がない、
△:ハーフトーン画像において、帯電不良による黒斑点の発生があるものの実使用上問題ない、
×:ハーフトーン画像において、帯電不良による黒斑点の発生がある、
とした。
Here, the evaluation of the occurrence of abnormal images is
◯: In the halftone image, there are no black spots due to poor charging.
Δ: In the halftone image, although black spots are generated due to charging failure, there is no problem in actual use.
X: In a halftone image, black spots are generated due to defective charging.
It was.
帯電部材1を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s及び周速94mm/sでの初期画像及び連続通紙では、実使用には問題ない程度であるが若干の帯電不良による黒斑点が観測された。
When the charging
以上より、帯電部材1は実使用には問題なく、画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<実施例2>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、シリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子として非架橋アクリル粒子(商品名:M−100、松本油脂製薬(株)製)をエルボージェットを用いて平均粒径を18μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を12.5部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を8部混合し、ボールミルで1時間攪拌し、粘度8mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は5%であった。
<Example 2>
As a coating for the surface resistance layer, 150 parts of a lactone-modified acrylic polyol having a solid content of 70% and a hydroxyl value of 90% (trade name: Plaxel DC2009), 500 parts of methyl isobutyl ketone, 0.05 part of silicone oil (SH28PA), 30 parts of conductive tin oxide powder (SN-100P), non-crosslinked acrylic particles (trade name: M-100, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) as elastic particles are divided into an average particle size of 18 μm using an elbow jet. 30 parts of spherical elastic particles were blended and dispersed for 6 hours with a paint shaker. 12.5 parts of isophorone diisocyanate nurate type (Vestanat B1370) and 8 parts of hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 8 mPa.s. -The coating material for surface resistance layers of s was obtained. The compression rate of the elastic particles used was 5%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが15μmの帯電部材2を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to produce a charging
帯電部材2の電流値は150μA、十点平均粗さRzは18μmであった。また帯電部材2の表面硬度は40°、当接の変化率は10倍であった。
The charging
帯電部材2を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s及び94mm/sでの初期画像では良好な画像が得られたが、連続通紙では、実使用には問題ない程度であるがトナー等の付着に起因する画像が観察された。
When the charging
以上より、帯電部材2は実使用には問題なく、画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<実施例3>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、シリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子として非架橋アクリル粒子(M−100)をエルボージェットを用いて平均粒径を15μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を18部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を12部混合し、ボールミルで1時間攪拌し、粘度10mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は5%であった。
<Example 3>
As a coating for the surface resistance layer, 150 parts of a lactone-modified acrylic polyol having a solid content of 70% and a hydroxyl value of 90% (trade name: Plaxel DC2009), 500 parts of methyl isobutyl ketone, 0.05 part of silicone oil (SH28PA), 30 parts of conductive tin oxide powder (SN-100P), 30 parts of non-crosslinked acrylic particles (M-100) as elastic particles, and 30 parts of elastic particles with an average particle size of 15 μm using elbow jet, paint Dispersed for 6 hours on a shaker. 18 parts of isophorone diisocyanate nurate type (Vestanat B1370) and 12 parts of hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 10 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 5%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが25μmの帯電部材3を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to prepare the charging
帯電部材3の電流値は160μA、十点平均粗さRzは10μmであった。また帯電部材3の表面硬度は45°、当接の変化率は8倍であった。
The charging
帯電部材3を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s及び94mm/sでの初期画像では良好な画像が得られたが、連続通紙では、実使用には問題ない程度であるがトナー等の付着に起因する画像が観察された。
When the charging
以上より、帯電部材3は実使用には問題なく、画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<実施例4>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子として非架橋アクリル粒子(M−200)をエルボージェットを用いて平均粒径を6μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を25部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を16部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は5%であった。
<Example 4>
As a coating for a surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, 30 parts of conductive tin oxide powder (SN-100P), 30 parts of elastic particles obtained by dividing non-crosslinked acrylic particles (M-200) as elastic particles into an average particle size of 6 μm using an elbow jet Blended and dispersed for 6 hours in paint shaker. 25 parts of the isophorone diisocyanate nurate type (Bestanat B1370) and 16 parts of the hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 5%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが18μmの帯電部材4を作成した。 The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to produce the charging member 4 having a surface resistance layer thickness of 18 μm.
帯電部材4の電流値は160μA、十点平均粗さRzは4μmであった。また帯電部材4の表面硬度は53°、当接の変化率は1.5倍であった。 The charging member 4 had a current value of 160 μA and a ten-point average roughness Rz of 4 μm. The charging member 4 had a surface hardness of 53 ° and a contact change rate of 1.5 times.
帯電部材4を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s及び94mm/sでの初期画像は良好な画像が得られた。また連続通紙では、通紙後20000枚まではトナー等の付着による異常画像は観察されないが、80000枚では実使用には問題ない程度であるが若干のトナー等の付着に起因する画像が観測された。
When the charging member 4 was mounted on the
以上より、帯電部材4は実使用には問題なく、画像特性が良好であることがわかる。 From the above, it can be seen that the charging member 4 has no problem in actual use and has good image characteristics.
<実施例5>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子としてウレタン粒子(商品名:CZ−400、根上工業製(株)製)をエルボージェットを用いて平均粒径を8μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を18部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を12部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は12%であった。
<Example 5>
As a coating for a surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, 30 parts of conductive tin oxide powder (SN-100P), urethane particles (trade name: CZ-400, manufactured by Negami Kogyo Co., Ltd.) as elastic particles, and an average particle diameter of 8 μm using an elbow jet 30 parts of the divided elastic particles were mixed and dispersed for 6 hours with a paint shaker. 18 parts of the isophorone diisocyanate nurate type (Bestanat B1370) and 12 parts of the hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 12%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが15μmの帯電部材5を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner, and the charging
帯電部材5の電流値は160μA、十点平均粗さRzは6μmであった。また帯電部材5の表面硬度は50°、当接の変化率は4倍であった。
The charging
帯電部材5を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s及び94mm/sでの初期画像は良好な画像が得られた。また連続通紙では、通紙後20000枚まではトナー等の付着による異常画像は観察されないが、80000枚では実使用には問題ない程度であるが若干のトナー等の付着に起因する画像が観測された。
When the charging
以上より、帯電部材5は実使用には問題なく、画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<実施例6>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子としてウレタン粒子(商品名:C−800、根上工業(株)製)をエルボージェットを用いて平均粒径を8μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を22部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を14部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は32%であった。
<Example 6>
As a coating for a surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, 30 parts of conductive tin oxide powder (SN-100P), urethane particles (trade name: C-800, manufactured by Negami Kogyo Co., Ltd.) as elastic particles using an elbow jet to an average particle size of 8 μm 30 parts of the divided elastic particles were blended and dispersed for 6 hours with a paint shaker. 22 parts of isophorone diisocyanate nurate type (Vestanat B1370) and 14 parts of hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 32%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが18μmの帯電部材6を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner, and the charging
帯電部材6の電流値は160μA、十点平均粗さRzは6μmであった。また帯電部材6の表面硬度は55°、当接の変化率は8倍であった。
The charging
帯電部材6を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s、94mm/sの初期画像は良好な画像が観察された。また連続通紙試験では、80000枚でも良好な画像が得られた。
When the charging
以上より、帯電部材6は、画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<実施例7>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子として中空多孔質状のアクリル粒子(M−610 松本油脂製薬)をエルボージェットを用いて平均粒径を5μmに分球した弾性粒子を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を20部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を13部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は12%であった。
<Example 7>
As a coating for a surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, conductive tin oxide powder (SN-100P) 30 parts, hollow porous acrylic particles (M-610 Matsumoto Yushi Seiyaku Co., Ltd.) as elastic particles, spheroidized to an average particle size of 5 μm using elbow jet 30 parts of the resulting elastic particles were blended and dispersed for 6 hours with a paint shaker. 20 parts of the isophorone diisocyanate nurate type (Bestanat B1370) and 13 parts of the hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 12%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが15μmの帯電部材7を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to produce a charging
帯電部材7の電流値は200μA、十点平均粗さRzは3μmであった。また帯電部材7の表面硬度は50°、当接の変化率は4倍であった。
The charging
帯電部材7を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/s、94mm/s共に良好な初期画像が得られた。また連続通紙では、通紙後80000枚までトナー等の付着に起因する画像や帯電不良による異常画像は発生しなかった。
When the charging
以上より、帯電部材7は画像特性が良好であることがわかる。
From the above, it can be seen that the charging
<比較例1>
表面抵抗層用塗料として、固形分70%で水酸基価90%のラクトン変性アクリルポリオール(商品名:プラクセルDC2009)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子として平均粒子径8μmの架橋アクリル粒子(商品名:MBX−8、積水化成品工業)を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を25部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を16部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は2%であった。
<Comparative Example 1>
As a coating for a surface resistance layer, 150 parts of a lactone-modified acrylic polyol (trade name: Plaxel DC2009) having a solid content of 70% and a hydroxyl value of 90%, 500 parts of methyl isobutyl ketone, and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, 30 parts of conductive tin oxide powder (SN-100P), 30 parts of crosslinked acrylic particles (trade name: MBX-8, Sekisui Plastics Co., Ltd.) having an average particle diameter of 8 μm as elastic particles, and paint shaker For 6 hours. 25 parts of the isophorone diisocyanate nurate type (Bestanat B1370) and 16 parts of the hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 2%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが18μmの帯電部材8を作成した。
The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to produce a charging
帯電部材8の電流値は130μA、十点平均粗さRzは7μmであった。また帯電部材8の表面硬度は55°、当接の変化率は1.01倍であった。
The charging
帯電部材8を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/sでは実使用には問題ない程度であるが帯電不良による画像が観察されたが、94mm/sでは帯電不良により画像の均一性が保てなかった。また連続通紙では、通紙後20000枚と、80000枚とにトナー付着に起因する画像不良と帯電不良が発生した
<比較例2>
表面抵抗層用塗料として、固形分70%で水酸基価12%のラクトン変性アクリルポリオール(プラクセルDC2026 ダイセル化学工業)150部に、メチルイソブチルケトンを500部、レベルング剤としてシリコーンオイル(SH28PA)を0.05部、導電性酸化スズ紛体(SN−100P)を30部、弾性粒子としてウレタン粒子(商品名:C−800、根上工業(株)製)を30部配合し、ペイントシェーカーで6時間分散した。得られた分散液370部にイソホロンジイソシアネートのヌレートタイプ(ベスタナートB1370)を4部、ヘキサメチレンジイソシアネートのヌレートタイプ(デュラネートTPA−B80E)を2部混合し、ボールミルで1時間攪拌し、粘度9mPa・sの表面抵抗層用塗料を得た。使用した弾性粒子の圧縮率は32%であった。
When the charging
As a coating for the surface resistance layer, 150 parts of a lactone-modified acrylic polyol having a solid content of 70% and a hydroxyl value of 12% (Placcel DC2026 Daicel Chemical Industries), 500 parts of methyl isobutyl ketone and 0 of silicone oil (SH28PA) as a leveling agent .05 parts, 30 parts of conductive tin oxide powder (SN-100P), 30 parts of urethane particles (trade name: C-800, manufactured by Negami Kogyo Co., Ltd.) as elastic particles, and dispersed for 6 hours with a paint shaker did. 4 parts of the isophorone diisocyanate nurate type (Vestanat B1370) and 2 parts of the hexamethylene diisocyanate nurate type (Duranate TPA-B80E) were mixed with 370 parts of the resulting dispersion, stirred for 1 hour with a ball mill, and a viscosity of 9 mPa · s. A coating for the surface resistance layer was obtained. The compression rate of the elastic particles used was 32%.
表面抵抗層用塗料を実施例1と同様にして得られる基層抵抗層用素材に同様な方法で塗工し、表面抵抗層の厚みが15μmの帯電部材9を作成した。 The coating material for the surface resistance layer was applied to the base layer resistance layer material obtained in the same manner as in Example 1 in the same manner to produce a charging member 9 having a surface resistance layer thickness of 15 μm.
帯電部材9の電流値は150μA、十点平均粗さRzは7μmであった。また帯電部材9の表面硬度は38°、当接の変化率は13倍であった。 The charging member 9 had a current value of 150 μA and a ten-point average roughness Rz of 7 μm. The charging member 9 had a surface hardness of 38 ° and a contact change rate of 13 times.
帯電部材9を電子写真装置1に装着し、画像評価を行ったところ、周速47mm/sでは実使用には問題ない程度であるが帯電不良による画像が観察されたが、94mm/sでは帯電不良により画像の均一性が保てなかった。また連続通紙では、通紙後20000枚と、80000枚とにトナー付着に起因する画像不良と帯電不良が発生した
When the charging member 9 was mounted on the
1 接触帯電装置
2 帯電部材
3 電源
5 導電性基体(芯金)
6 抵抗層
7 基層抵抗層
8 表面抵抗層
10 被帯電体(感光体、感光ドラム)
11 感光ドラム基体
12 感光層
13 ニップ部(ニップ領域)
31 現像器
32 転写部材
33 定着器
34 クリーナ
61 高硬度粒子
62 凹部
L レーザー光
f1 当接力
A ニップ部全体の面積
b ニップ部における実際の接触部分
B ニップ部における実際の接触面積(接触部分bの面積)の和
DESCRIPTION OF
6
11
31 Developing
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346335A JP2006154442A (en) | 2004-11-30 | 2004-11-30 | Electrifying member and electrifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346335A JP2006154442A (en) | 2004-11-30 | 2004-11-30 | Electrifying member and electrifying device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006154442A true JP2006154442A (en) | 2006-06-15 |
Family
ID=36632826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346335A Withdrawn JP2006154442A (en) | 2004-11-30 | 2004-11-30 | Electrifying member and electrifying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006154442A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008083404A (en) * | 2006-09-27 | 2008-04-10 | Fuji Xerox Co Ltd | Charging roll, process cartridge and image forming apparatus |
JP2008249837A (en) * | 2007-03-29 | 2008-10-16 | Canon Chemicals Inc | Charging roller, cartridge for image forming apparatus and image forming apparatus |
JP2009009045A (en) * | 2007-06-29 | 2009-01-15 | Canon Inc | Charging member, process cartridge, and electrophotographic image forming apparatus |
JP2009175427A (en) * | 2008-01-24 | 2009-08-06 | Tokai Rubber Ind Ltd | Charging roll |
JP2010072450A (en) * | 2008-09-19 | 2010-04-02 | Tokai Rubber Ind Ltd | Charging roll for electrophotographic equipment and method for manufacturing charging roll for electrophotographic equipment |
JP2010113177A (en) * | 2008-11-07 | 2010-05-20 | Fuji Xerox Co Ltd | Conductive roll, electrifying device, and process cartridge and image forming apparatus including the conductive roll |
JP2010231007A (en) * | 2009-03-27 | 2010-10-14 | Fuji Xerox Co Ltd | Charging roll, and replacement component and image forming apparatus using the same |
US7835669B2 (en) | 2008-10-31 | 2010-11-16 | Canon Kabushiki Kaisha | Charging roller, process cartridge and electrophotographic apparatus |
US7869741B2 (en) | 2008-10-31 | 2011-01-11 | Canon Kabushiki Kaisha | Charging member including a conductive support and surface layer having protrusions formed on a surface thereof, a process cartridge including same for use in an image forming apparatus |
JP2011013495A (en) * | 2009-07-02 | 2011-01-20 | Fuji Xerox Co Ltd | Electroconductive roll, charging device, process cartridge, and image forming apparatus |
JP2013142879A (en) * | 2012-01-12 | 2013-07-22 | Bridgestone Corp | Charging roller |
JP2013235295A (en) * | 2013-08-12 | 2013-11-21 | Fuji Xerox Co Ltd | Conductive roll, charging device, process cartridge with conductive roll, and image forming device |
WO2014207876A1 (en) * | 2013-06-27 | 2014-12-31 | キヤノン株式会社 | Image forming device and process cartridge |
CN104281026A (en) * | 2013-07-01 | 2015-01-14 | 佳能株式会社 | Charging device and image forming apparatus |
JP2015018127A (en) * | 2013-07-11 | 2015-01-29 | キヤノン株式会社 | Image forming apparatus and process cartridge |
JP2015090453A (en) * | 2013-11-06 | 2015-05-11 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2015090454A (en) * | 2013-11-06 | 2015-05-11 | 富士ゼロックス株式会社 | Charging member, charging apparatus, process cartridge, and image forming apparatus |
JP2015212812A (en) * | 2014-04-18 | 2015-11-26 | キヤノン株式会社 | Charging member, process cartridge, and electrophotographic device |
JP2018025735A (en) * | 2015-10-26 | 2018-02-15 | キヤノン株式会社 | Charging member and electrophotographic apparatus |
EP3415993A1 (en) * | 2017-06-15 | 2018-12-19 | Canon Kabushiki Kaisha | Image forming apparatus and cartridge |
JP2020012964A (en) * | 2018-07-18 | 2020-01-23 | 京セラドキュメントソリューションズ株式会社 | Developing device and image forming apparatus |
JP2021117236A (en) * | 2020-01-22 | 2021-08-10 | 株式会社沖データ | Drum unit and image forming apparatus |
-
2004
- 2004-11-30 JP JP2004346335A patent/JP2006154442A/en not_active Withdrawn
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008083404A (en) * | 2006-09-27 | 2008-04-10 | Fuji Xerox Co Ltd | Charging roll, process cartridge and image forming apparatus |
JP2008249837A (en) * | 2007-03-29 | 2008-10-16 | Canon Chemicals Inc | Charging roller, cartridge for image forming apparatus and image forming apparatus |
JP2009009045A (en) * | 2007-06-29 | 2009-01-15 | Canon Inc | Charging member, process cartridge, and electrophotographic image forming apparatus |
JP2009175427A (en) * | 2008-01-24 | 2009-08-06 | Tokai Rubber Ind Ltd | Charging roll |
JP2010072450A (en) * | 2008-09-19 | 2010-04-02 | Tokai Rubber Ind Ltd | Charging roll for electrophotographic equipment and method for manufacturing charging roll for electrophotographic equipment |
US7835669B2 (en) | 2008-10-31 | 2010-11-16 | Canon Kabushiki Kaisha | Charging roller, process cartridge and electrophotographic apparatus |
US7869741B2 (en) | 2008-10-31 | 2011-01-11 | Canon Kabushiki Kaisha | Charging member including a conductive support and surface layer having protrusions formed on a surface thereof, a process cartridge including same for use in an image forming apparatus |
JP2010113177A (en) * | 2008-11-07 | 2010-05-20 | Fuji Xerox Co Ltd | Conductive roll, electrifying device, and process cartridge and image forming apparatus including the conductive roll |
JP2010231007A (en) * | 2009-03-27 | 2010-10-14 | Fuji Xerox Co Ltd | Charging roll, and replacement component and image forming apparatus using the same |
JP2011013495A (en) * | 2009-07-02 | 2011-01-20 | Fuji Xerox Co Ltd | Electroconductive roll, charging device, process cartridge, and image forming apparatus |
JP2013142879A (en) * | 2012-01-12 | 2013-07-22 | Bridgestone Corp | Charging roller |
WO2014207876A1 (en) * | 2013-06-27 | 2014-12-31 | キヤノン株式会社 | Image forming device and process cartridge |
CN105339847A (en) * | 2013-06-27 | 2016-02-17 | 佳能株式会社 | Image forming device and process cartridge |
CN105339847B (en) * | 2013-06-27 | 2017-12-22 | 佳能株式会社 | Image forming apparatus and handle box |
JPWO2014207876A1 (en) * | 2013-06-27 | 2017-02-23 | キヤノン株式会社 | Image forming apparatus and process cartridge |
CN104281026B (en) * | 2013-07-01 | 2017-04-12 | 佳能株式会社 | Charging device and image forming apparatus |
JP2015028603A (en) * | 2013-07-01 | 2015-02-12 | キヤノン株式会社 | Charging device and image forming apparatus |
CN104281026A (en) * | 2013-07-01 | 2015-01-14 | 佳能株式会社 | Charging device and image forming apparatus |
JP2015018127A (en) * | 2013-07-11 | 2015-01-29 | キヤノン株式会社 | Image forming apparatus and process cartridge |
JP2013235295A (en) * | 2013-08-12 | 2013-11-21 | Fuji Xerox Co Ltd | Conductive roll, charging device, process cartridge with conductive roll, and image forming device |
JP2015090453A (en) * | 2013-11-06 | 2015-05-11 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2015090454A (en) * | 2013-11-06 | 2015-05-11 | 富士ゼロックス株式会社 | Charging member, charging apparatus, process cartridge, and image forming apparatus |
JP2015212812A (en) * | 2014-04-18 | 2015-11-26 | キヤノン株式会社 | Charging member, process cartridge, and electrophotographic device |
JP2018025735A (en) * | 2015-10-26 | 2018-02-15 | キヤノン株式会社 | Charging member and electrophotographic apparatus |
EP3415993A1 (en) * | 2017-06-15 | 2018-12-19 | Canon Kabushiki Kaisha | Image forming apparatus and cartridge |
JP2020012964A (en) * | 2018-07-18 | 2020-01-23 | 京セラドキュメントソリューションズ株式会社 | Developing device and image forming apparatus |
JP2021117236A (en) * | 2020-01-22 | 2021-08-10 | 株式会社沖データ | Drum unit and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006154442A (en) | Electrifying member and electrifying device | |
JP2011164399A (en) | Charging member, charging device, image forming apparatus and process cartridge | |
JP2010181819A (en) | Charging member, charging apparatus, process cartridge and image forming apparatus | |
JP5447223B2 (en) | Cleaning member, charging device, process cartridge, and image forming apparatus for image forming apparatus | |
JP5110985B2 (en) | Contact charging member, process cartridge, and electrophotographic image forming apparatus | |
JP6303573B2 (en) | Charging device, process cartridge, and image forming apparatus | |
US7072604B2 (en) | Electro-conductive roll and image-forming apparatus using the same | |
JP2009300849A (en) | Charging member cleaning member, charging device, process cartridge and image forming apparatus | |
JP4262000B2 (en) | Conductive roller, conductive roller manufacturing method, and electrophotographic apparatus | |
JP2021018292A (en) | Charging device, process cartridge, image forming apparatus, and assembly | |
JP7499336B2 (en) | CONDUCTIVE ROLL INSPECTION METHOD AND CONDUCTIVE ROLL MANUFACTURING METHOD | |
JP5609034B2 (en) | Charging device, method for manufacturing charging device, process cartridge, and image forming apparatus | |
JP2007225708A (en) | Conductive roll, method of manufacturing same, charging roll, transfer roll, cleaning roll, and image forming apparatus | |
JP6515485B2 (en) | Charging roll, charging device, process cartridge and image forming apparatus | |
JP6217489B2 (en) | Cleaning member, charging device, unit for image forming apparatus, process cartridge, and image forming apparatus | |
JP4713900B2 (en) | Manufacturing method of conductive member and conductive member for electrophotography | |
JP2004157384A (en) | Electrifying member, process cartridge, and electrophotographic device | |
JP5768401B2 (en) | Conductive member, charging device, process cartridge, and image forming apparatus | |
JP2012053391A (en) | Cleaning member for image-forming device, electrification unit, process cartridge, and image-forming device | |
JP4371833B2 (en) | Charging member, image forming apparatus, charging method, and process cartridge | |
JP2930001B2 (en) | Developing roller and developing device | |
JP2005300667A (en) | Charging member and its manufacture method | |
JP2009156904A (en) | Charging device, process cartridge and image forming apparatus | |
JP2007108319A (en) | Charging roller for electrophotography | |
JP2011118050A (en) | Cleaning member for electrifying member, electrifying device, process cartridge and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080205 |