JP2005286059A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2005286059A
JP2005286059A JP2004096977A JP2004096977A JP2005286059A JP 2005286059 A JP2005286059 A JP 2005286059A JP 2004096977 A JP2004096977 A JP 2004096977A JP 2004096977 A JP2004096977 A JP 2004096977A JP 2005286059 A JP2005286059 A JP 2005286059A
Authority
JP
Japan
Prior art keywords
region
substrate
carrier concentration
injector
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004096977A
Other languages
English (en)
Inventor
Tetsuya Yamamoto
哲也 山本
Hiroshi Nonogami
寛 野々上
Kenichiro Wakizaka
健一郎 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004096977A priority Critical patent/JP2005286059A/ja
Publication of JP2005286059A publication Critical patent/JP2005286059A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 高耐圧で電流増幅率が高く、かつスイッチング速度が速い半導体装置を提供する。
【解決手段】 n型基板15の一方の主面上にはドレイン電極16が、他方の主面上にはn型ドリフト領域13が形成されている。ドリフト領域13の基板15と反対側にはp型インジェクタ領域とn型ソース領域14とが形成されている。また、インジェクタ領域12からソース領域に跨る溝部17が形成されており、溝部17はインジェクタ領域12付近では深くなっており、これによって耐圧を確保する。また、溝部17はソース領域14付近では浅くなっており、これによって順方向特性が改善される。
【選択図】 図2

Description

本発明は、半導体装置に関し、特に、GTBT(Grounded-Trench-MOS assisted Bipolar-Mode Field Effect Transistor)を高耐圧化する技術に関する。
近年、高耐圧のパワーデバイスとして開発されたGTBTは、オン抵抗がMOSFET(Metal Oxide Semiconductor Field Effect Transistor)より2桁、トランジスタやIGBT(Insulated Gate Bipolar Transistor)より1桁低く低損失のため、小型パッケージ化することができる。携帯機器の電源部やアダプタなどに用いることで、機器の高効率化、省エネ化、小型化が可能になる(例えば、特許文献1)。
図19は、従来技術に係るGTBTの構造を模式的に示す断面図である。図19に示されるように、GTBT130はソース電極134e、ソース領域134、トレンチ部137、ゲート電極132e、インジェクタ領域132、ドリフト領域133、基板領域135及びドレイン電極136を備えている。また、インジェクタ領域132とドリフト領域133との接合面から基板領域135までの距離はWμmである。このようなGTBT130においては、距離Wを大きくしたり、ドリフト領域133のキャリア濃度Nを下げたりすることによって更なる高耐圧化を図ることができる。
特許3214242号公報
しかしながら、距離Wを大きくすれば幾らでも高耐圧化を図ることができる訳ではなく、距離Wが一定値を超えると耐圧一定となり更なる高耐圧化を図ることができない。また、キャリア濃度Nを下げるとドリフト領域に電流が流れ難くなり電流増幅率hFEが低下する。このため、スイッチング速度が低下する、という問題がある。
本発明は、上述のような問題に鑑みて為されたものであって、高耐圧で電流増幅率が高く、かつスイッチング速度が速い半導体装置を提供することを目的とする。
上記目的を達成するため、本発明に係る半導体装置は、高キャリア濃度の基板と、前記基板上に形成されており、前記基板と同一導電型で低キャリア濃度の半導体層と、前記半導体層に、前記基板から離隔された状態で、互いに略平行かつ略等間隔に形成されている、前記基板とは異なる導電型で高キャリア濃度の複数の固定電位絶縁電極と、前記半導体層と前記固定電位絶縁電極とを絶縁する絶縁膜とを備え、前記半導体層は、前記複数の固定電位絶縁電極のうちの相隣り合う2つの間に挟まれており、前記基板と同一導電型で高キャリア濃度のソース領域と、前記複数の固定電位絶縁電極と同一導電型であって、前記ソース領域に接しておらず、かつ前記絶縁膜とに接しており、かつ前記絶縁膜よりも前記基板近くまで分布するインジェクタ領域とを有し、前記複数の固定電位絶縁電極の各個は、前記ソース領域付近よりもインジェクタ領域付近において、前記基板に向かって拡幅していることを特徴とする。
このようにすれば、高耐圧で電流増幅率が高く、かつスイッチング速度が速い半導体装置を提供することができる。
また、本発明に係る半導体装置は、前記複数の固定電位絶縁電極の各個は、前記ソース領域付近においては、前記ソース領域と前記インジェクタ領域との中間におけるよりも、前記基板に向かって拡幅していないことを特徴とする。このようにすれば、順方向特性を改善し乍ら十分な耐圧特性を実現することができる。
また、本発明に係る半導体装置は、前記複数の固定電位絶縁電極のうちの相隣り合う2つの間の距離は1.2μm以下であって、前記インジェクタ層と前記半導体層とによって形成されるPN接合の耐圧がVBDのとき、前記インジェクタ領域から前記基板までの距離Wと前記半導体層のキャリア濃度Nとが式
Figure 2005286059
Figure 2005286059
Figure 2005286059
Figure 2005286059
を満たすことを特徴とする。前記ドリフト領域と前記インジェクタ領域との接合面から前記半導体基板までの距離Wとドリフト領域のキャリア濃度Nとをかかる範囲内とすることによっても、順方向特性を改善し乍ら十分な耐圧特性を実現することができる。
以下、本発明に係る半導体装置の実施の形態について、図面を参照しながら説明する。
[1] 半導体装置の構造
図1は、本発明の実施の形態に係る半導体装置の構造を模式的に示す斜視図である。図1に示されるように、半導体装置1は、絶縁膜10、多結晶シリコン(poly-silicon)領域11、インジェクタ領域12、ドリフト領域13、ソース領域14、基板領域15及びドレイン電極16を備えている。
絶縁膜10は、多結晶シリコン領域11をインジェクタ領域12、ドリフト領域13及びソース領域14から絶縁する。以下、絶縁膜10と多結晶シリコン領域11とを合わせて「トレンチ部」と言い、ドリフト領域のうち2つのトレンチ部に挟まれた部分を「チャネル」と言う。図1においては、2つのトレンチ部のみが示されているが、トレンチ部の数が2に限定されないのは言うまでも無く、3以上であっても良い。これらトレンチ部は互いに略同一形状で、かつ略等間隔に配置される。
図2は、半導体装置1を図1の矢印Aから見た矢視断面図である。図2に示されるように、インジェクタ領域12にはゲート電極12eが接合され、ソース領域14にはソース電極14eが接合されている。また、図中破線で示されるように、トレンチ部17は、インジェクタ領域12、ドリフト領域13及びソース領域14に跨っている。トレンチ部17のソース領域14に近い部分においてはソース電極14eからドレイン電極16へ向かう方向の深さがより浅くなっており、インジェクタ領域12に近い部分においては当該深さがより深くなっている。
多結晶シリコン領域11はp+型半導体から成っており、ドレイン領域13に空乏領域を形成させる。また、多結晶シリコン領域11は一定電位に保たれている。インジェクタ領域12はp+型半導体から成り、ゲート電極12eに接続されている。インジェクタ領域12にはトレンチ部が陥入している。また、インジェクタ領域12はドリフト領域13に陥入している。この場合において、トレンチ部がドリフト領域13に陥入するよりも深く、また、トレンチ部がインジェクタ領域12に陥入するよりも深く、インジェクタ領域12はドリフト領域13に陥入している。
ソース領域14はn+型半導体から成り、ソース電極14eに接続されている。ソース領域14はトレンチ部に分断されつつも、インジェクタ領域12の長手方向に沿って細長に分布している。ドリフト領域13はn-型半導体から成る。ドリフト領域12にはトレンチ部、インジェクタ領域12及びソース領域14が陥入し、また、ドリフト領域12は基板領域15に接している。基板領域15はn+型半導体から成り、ドリフト領域12とドレイン電極16に接している。
上述のように、ドリフト領域13、ソース領域14及び基板領域15は同一導電型であって、ソース領域と基板領域15はキャリア濃度がより高く、ドリフト領域13はキャリア濃度がより低い。また、多結晶シリコン領域11とインジェクタ領域12とはドリフト領域13等と異なる導電型を有し、何れもキャリア濃度が高い。ドレイン電極16は、基板領域15にオーミックコンタクトする電極である。
さて、多結晶シリコン領域11がソース領域14と同電位とされている状態では、多結晶シリコン領域11とドリフト領域13との間の仕事関数の差に起因して、多結晶シリコン領域11の絶縁膜付近に負の電荷が蓄積する。このため、前記チャネル部分において電子が静電力によって排除されて空乏領域が形成されるので、ソース電極14eからドレイン電極16への導通が妨げられる。
これに対して、ゲート電極12eから印加する電圧を印加してインジェクタ領域12を昇圧すると、インジェクタ領域12とドリフト領域13との間のpn結合がオン状態となって、インジェクタ領域からドリフト領域13へ正孔(hole)が供給される。すると、空乏領域が解消されてソース電極14eからドレイン電極16への導通が実現される。すなわち、ゲート電極12eに印加される電圧の高さを制御することによって、ソース領域12からドリフト領域13への導通状態が制御され、スイッチ動作が実現される。
また、上述のように半導体装置1においては、トレンチ部17の深さがソース領域14近辺では浅くなっているので、チャネル部分の抵抗を低減して導通時の損失を低減することができる。また、トレンチ部17の深さはインジェクタ領域12近辺では深くなっているので、十分な耐圧を確保することができる。
[2] 半導体装置1の製造方法
次に、半導体装置1の製造方法について、耐圧2700Vの場合を例にとって説明する。図3は、半導体装置1の製造方法の各工程を示す図であって、(a)から(d)へと製造工程が進行する。図3(a)に示されるように、先ず、エピタキシャル成長によって基板領域15上にドリフト領域13を形成する。基板領域15の厚みWkは300μmで、キャリア濃度は1×1020cm-3である。形成されるドリフト領域13の厚みWdは200μmで、キャリア濃度は2×1013cm-3である。ドーパントとしては、何れも砒素(As)又はリン(P)を用いれば良い。
次に、図3(b)に示されるように、イオン注入と熱拡散とによって、ソース領域14とインジェクタ領域12とを形成する。
ソース領域14は、リンをイオン注入(120keV/50×1015cm-2)した後、窒素(N2)雰囲気中で熱拡散(1050℃、20分間)することによって形成される。形成されたソース領域14の厚みWsは2μmで、キャリア濃度は5×1019cm-3である。ドーパントとしては、砒素又はリンを用いる。
インジェクタ領域12は、ホウ素(B)をイオン注入(60keV/50×1015cm-2)した後、窒素雰囲気中で熱拡散(1150℃、420分間)することによって形成される。形成されたインジェクタ領域12の厚みWiは7.4μmで、キャリア濃度は2×1019cm-3である。ドーパントとしては、ホウ素が用いられる。
次に、図3(c)、(d)に示されるように、トレンチが形成される。図2に示されるように、トレンチ部17には深い部分(インジェクタ領域12に近い部分。以下、「深部」という。)と浅い部分(ソース領域14に近い部分。以下、「浅部」という。)がある。先ず、深部のみに対応する部分において、両部分を深さの差分相当の深さのトレンチが形成される。次いで、全部分について、浅部の深さ分のトレンチが更に掘り進められる。
図3(c)は、深部のみに対応する部分にトレンチを形成する製造工程を示す図である。図3(c)において、側面図は前記矢印Aから見た矢視断面図であり、上面図は基板領域15の主面に垂直な方向から見た俯瞰図である。図3(c)に示されるように、先ず、SiO2マスク20のパターニングを行い、異方性ドライエッチングによりエッチングし、側壁が基板領域15の主面に略垂直なトレンチを形成する。形成の手順は以下の通りである。
すなわち、(i)インジェクタ領域12、ドリフト領域13及びソース領域1
4の上に厚さ5000Åの熱SiO2膜21を形成し、レジストを塗布した後、ステッパでパターニングする。次に、(ii)前記レジストをマスクとしてSiO
2膜21をエッチングし、(iii)レジストを除去する。その後、(iv)パターニ
ングされたSiO2膜をマスクとして、Siのドライエッチングによってトレンチを形成する。トレンチ間の間隔(以下、「チャネル幅」という)Hは0.9μmである。
次に、図3(d)に示されるように、深部と浅部との双方に相当する部分にトレンチを形成するために、図3(c)におけるのと同様にして、SiO2マスクのパターニングを行い、異方性ドライエッチングによりエッチングする。
図4は、図3に引き続く半導体装置1の製造工程を示す図である。図4において、当該製造工程は(e)、(f)の順に進む。
図4(e)に示されるように、トレンチ内部に厚さ0.1μmの熱SiO2膜を形成して、絶縁膜10となす。次いで、CVD(Chemical Vapor Deposition)を用いて絶縁膜10にて囲繞される空間に多結晶シリコンを充填した後、表面を平坦化する。
図4(f)に示されるように、インジェクタ領域12、ソース領域14及び基板領域15の表面にそれぞれゲート電極12e、ソース電極14e及びドレイン電極16を形成して、全工程が終了する。このようにすれば、少ない工数でトレンチ部17の深さを深部と浅部との2段階とすることができる。
[3] 半導体装置1の特性評価
次に、半導体装置1の特性をシミュレーションによって評価したので、その評価結果について説明する。
[3−1] 耐圧特性
(1) ドレイン領域13の厚みWdと耐圧の関係
先ず、ドレイン領域13の厚みWdと耐圧との関係について説明する。図5は、ドレイン領域13の厚みWdを変化させた場合の耐圧変化を示すグラフである。図5において、縦軸はドレイン領域13を流れる電流密度JD(A/cm2)を表わし、横軸はドレイン領域13に印加される電圧VD(V)を表わす。また、グラフ30〜33は、それぞれドレイン領域13の厚みWdが180μm、200μm、220μm及び240μmである場合のグラフである。なお、本特性評価は、チャネル幅Hが0.32μm、ドレイン領域13のキャリア濃度が2×1013cm-3の場合に関するものである。
図5に示されるように、ドレイン領域13の厚みWdが180μmである場合には、印加電圧VDが2300Vを超えると電流密度JDが急激に増大して絶縁破壊が発生する(グラフ30)。一方、ドレイン領域の厚みWdが200μm以上である場合には、印加電圧VDが2700Vを超えるまで電流密度JDの増大が発生しないので、耐圧2700Vが達成されていることが分かる。
(2) チャネル幅Hと耐圧の関係
次に、チャネル幅Hと耐圧との関係について説明する。図6は、チャネル幅Hを変化させた場合の耐圧変化を示すグラフである。図6においても図5と同様に、縦軸はドレイン領域13を流れる電流密度JDを表わし、横軸はドレイン領域13に印加される電圧VDを表わす。グラフ40〜44は、それぞれドレイン領域13の厚みWdが200μmで、キャリア濃度が2×1013cm-3の場合においてチャネル幅Hを1.4μm、1.2μm、0.9μm、0.6μm及び0.32μmとしたときのグラフである。
図6に示されるように、チャネル幅Hが1.4μmである場合には、チャネル幅Hが大き過ぎるので、チャネル全体に亘って空乏領域を形成することができない。このため、空乏領域が形成されなかった部分に電流が流れるので、電圧VDが増大するに従って電流密度JDが漸増する(グラフ40)。
また、チャネル幅Hが1.2μmである場合には、一応、チャネル全体に亘って空乏領域が形成されるものの、チャネルの中央部分においては空乏化の程度が不十分である。このため、電圧VDが1300Vまでは遮断状態をほぼ維持することができるが、電圧VDが1300Vを超えるとチャネル部分でブレークダウンが発生して導通状態となってしまう(グラフ41)。
一方、チャネル幅Hが0.9μm以下である場合には、電圧VDが2700Vを超えるまで遮断状態がほぼ維持される。また、電圧VDが2700Vを超えるとインジェクタ領域12とドレイン領域13との間でブレークダウン(アバランシェ降伏)が発生して導通状態となってしまう(グラフ42〜44)。
(3) キャリア濃度と耐圧の関係
次に、ドリフト領域13のキャリア濃度と耐圧との関係について説明する。図7は、キャリア濃度を変化させた場合の耐圧変化を示すグラフである。図7においても図5と同様に、縦軸は電流密度JDを表わし、横軸は電圧VDを表わす。グラフ50〜53は、それぞれドレイン領域13の厚みWdが192.6μmで、チャネル幅Hが0.32μmである場合においてキャリア濃度を4×1013cm-3、3×1013cm-3、2×1013cm-3及び1×1013cm-3としたときのグラフである。
図7に示されるように、キャリア濃度が4×1013cm-3や3×1013cm-3である場合には電圧VDが2700Vに達する以前に電流密度JDが急上昇しているので、耐圧2700Vが達成されていないことが分かる(グラフ50、51)。一方、キャリア濃度が2×1013cm-3や1×1013cm-3である場合には、電圧VDが2700Vを超えた後に電流密度JDが急上昇しているので、耐圧2700Vが達成されていることが分かる(グラフ52、53)。
(4) 従来技術との比較
次に、耐圧特性について本発明と従来技術との比較を行ったので説明する。
図8は、耐圧600Vとなるように設計された半導体装置について耐圧特性を比較するグラフである。図8に示されるように、本発明に係る耐圧特性のグラフ60と従来技術に係る耐圧特性のグラフ61とは略重なり合っており、本発明によって従来と同等の耐圧特性を実現できることが分かる。
なお、ここで本評価に用いた半導体装置のトレンチ部の外径寸法は以下の通りである。図9は、半導体装置1のトレンチ部17の外形を示す図である。図9に示されるように、トレンチ部17全体の幅と長手方向の長さとをそれぞれXtr、Ytrと記し、トレンチ部17の深部の深さをZtrと記し、トレンチ部17の浅部の長さと深さをそれぞれYtrc、Ztrcと記すものとすれば、半導体装置1のトレンチ部17の外形寸法は、
Xtr = 1.44μm、
Ytr =13.7μm、
Ztr = 5.0μm、
Ytrc= 7.0μm、
Ztrc= 3.5μm、
である。また、従来技術に係る半導体装置のトレンチ部の外径寸法は、
長さ= 13.7μm、
幅 = 1.44μm、
深さ= 5.0μm、
である。また、ドリフト層13の厚みWd、キャリア濃度及びチャネル幅Hは何れも50μm、1×1014cm-3及び0.32μmである。
次に、耐圧2500Vの場合に関する比較結果について説明する。図10は、耐圧2500Vとなるように設計された半導体装置について耐圧特性を比較するグラフであって、グラフ70は本発明に係る耐圧特性を示し、グラフ71は従来技術に係る耐圧特性を示す。また、評価の条件は上記図8に係る評価と概ね同様であるが、ドレイン領域13の厚みWdとキャリア濃度とが異なっており、それぞれ200μm、2×1013cm-3である。この場合においても両グラフは概ね重なり合っており、本発明によって従来と同等の耐圧特性を実現できることが分かる。
[3−2] トレンチ部の深さと順方向特性
次に、トレンチ部の深さと順方向特性との関係について説明する。
図11は、トレンチ部の深さと順方向特性とを関係を示すグラフである。図11の縦軸は電流増幅率hFEを表わし、横軸は電流密度JDを表わす。この評価に当たっては、電圧を0.5Vとし、チャネル幅Hを0.32μmとし、ドリフト領域の厚みWdを200μmとし、キャリア濃度を2×1013cm-3とした。図11に示されるように、トレンチ部が浅くなるにつれてグラフ80から81、82と電流密度JDに対する電流増幅率hFEが向上することが分かる。
以上述べたように、本発明のように、インジェクタ領域12付近のトレンチ部17を深くし、かつソース領域14付近のトレンチ部17を浅くすることによって、従来と同程度の耐圧特性を維持し乍ら、順方向特性を改善することができる。
[4] 必要な耐圧特性を実現するための耐圧構造幅と濃度について
次に、必要な耐圧特性を実現するために要求される耐圧構造幅Wとドリフト領域13のキャリア濃度Nとについて説明する。なお、耐圧構造幅Wとは、インジェクタ領域12とドリフト領域13とによるpn接合部から基板領域15までの距離をいう。
まず、1000V以上の所定の耐圧VBDを実現するために必要な耐圧構造幅Wの下限値Woptと、かかる耐圧構造幅を実現するためのキャリア濃度Noptとを以下の近似式によって与える。
Figure 2005286059
Figure 2005286059
図12は、耐圧VBDと耐圧構造幅Woptとの間の上式に示される関係を示すグラフである。また、図13は、耐圧VBDとキャリア濃度Noptとの間の上式に示される関係を示すグラフである。図12に示されるように、より高い耐圧VBDを実現するためには耐圧構造幅Woptをより大きくしなければならない。また、図13に示されるように、より高い耐圧VBDを実現するためにはキャリア濃度Noptをより低くする必要がある。
また、図14は、耐圧構造幅Woptとキャリア濃度Noptとの具体例である。図12、図13からも分かるように、より高い耐圧を実現するためには、耐圧構造幅Woptはより大きくキャリア濃度Noptはより低くする必要がある。例えば、耐圧VBD2700Vを実現するためには、耐圧構造幅Woptを少なくとも180.3μmとしなければならず、キャリア濃度Noptは1.17×1013cm-3とする必要がある。
さて、このように耐圧構造幅とキャリア濃度を与えると、所与の耐圧を実現するための好適な耐圧構造幅の範囲並びにキャリア濃度の範囲を下の評価式によって定めることができる。
Figure 2005286059
Figure 2005286059
図15は、耐圧VBD毎に当該耐圧VBDを実現することができる耐圧構造幅Wとキャリア濃度Nの範囲を示すグラフである。図15において、縦軸はキャリア濃度Nを表わし、横軸は耐圧構造幅Wを表わす。また、○印と□印とはそれぞれ耐圧毎の座標(Wopt、Nopt)、(1.45Wopt、3.7Nopt)を表わす。領域90は、耐圧1000V以上を実現することができる耐圧構造幅Wとキャリア濃度Nの範囲を示す。同様に、領域91、92及び93はそれぞれ耐圧1500V以上、2000V以上及び2700V以上を実現することができる耐圧構造幅Wとキャリア濃度Nの範囲を示す。
図16は、上記各領域のうち特に耐圧2700V以上を実現することができる耐圧構造幅Wとキャリア濃度Nの範囲を示す図である。図16中の座標100〜106は、それぞれ異なる構成を備える半導体装置を表している。すなわち、座標100は耐圧構造幅200μm、キャリア濃度2×1013cm-3の半導体装置を表わす。同様に、座標101〜103はそれぞれ耐圧構造幅が200μmでキャリア濃度が3×1013cm-3、4×1013cm-3及び5×1013cm-3の半導体装置を表わす。また、座標104〜106はそれぞれキャリア濃度が2×1013cm-3で耐圧構造幅が190μm、180μm及び170μmの半導体装置を表わす。
次に、上記核は導体素子について、印加電圧と電流との関係を説明する。図17は、耐圧構造幅Wを200μmに固定してキャリア濃度Nを変化させた場合における印加電圧Vと電流Iとの関係を示すグラフである。図17において、グラフ110〜113は前記座標100〜103にて表わされる各半導体装置について印加電圧Vと電流Iとの関係を示すグラフとなっている。図17に示されるように、キャリア濃度Nが小さいほど電流が急上昇する電圧(耐圧)が高くなり、キャリア濃度Nが3×1013cm-3以下ならば耐圧2700Vが実現されることが分かる。
また、図18は、キャリア濃度Nを2×1013cm-3に固定して耐圧構造幅Wを変化させた場合における印加電圧Vと電流Iとの関係を示すグラフである。図18において、グラフ120〜123は前記座標100、104〜106にて表わされる各半導体装置について印加電圧Vと電流Iとの関係を示すグラフとなっている。図18に示されるように、耐圧構造幅Wが大きいほど電流が急上昇する電圧(耐圧)が高くなり、耐圧構造幅Wが190μm以上ならば耐圧2700Vが実現されることが分かる。
以上説明したように、前記評価式によれば、所望の耐圧を実現するための耐圧構造幅Wとキャリア濃度Nとを簡単に求めることができる。
[5] 変形例
上記実施の形態においては、専らトレンチ部17の深さが深部と浅部との2段階となっている場合について説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにするとしても良い。
すなわち、ソース領域近辺からインジェクタ領域近辺へ向かってトレンチ部17の深さが徐々に増してゆく構成としても良く、このようにしても本発明の効果に変わりは無い。ソース領域近辺からインジェクタ領域近辺へ向かうに際してトレンチ部17の深さがソース領域近辺における深さよりも小さくならなければ本発明の効果を得ることができる。
本発明に係る半導体装置は、GTBTを高耐圧化する技術として有用である。
本発明の実施の形態に係る半導体装置の構造を模式的に示す斜視図である。 本発明の実施の形態に係る半導体装置1を図1の矢印Aから見た矢視断面図である。 本発明の実施の形態に係る半導体装置1の製造方法の各工程を示す図である。 本発明の実施の形態に係る半導体装置1の製造工程であって、図3に引き続く製造工程を示す図である。 本発明の実施の形態に係る半導体装置1のドレイン領域13の厚みWdを変化させた場合の耐圧変化を示すグラフである。 本発明の実施の形態に係る半導体装置1のチャネル幅Hを変化させた場合の耐圧変化を示すグラフである。 本発明の実施の形態に係る半導体装置1のキャリア濃度を変化させた場合の耐圧変化を示すグラフである。 耐圧600Vとなるように設計された半導体装置について耐圧特性を比較するグラフである。 半導体装置1のトレンチ部17の外形を示す図である。 耐圧2500Vとなるように設計された半導体装置について耐圧特性を本発明と従来技術との間で比較するグラフである。 トレンチ部の深さと順方向特性とを関係を示すグラフである。 耐圧VBDと耐圧構造幅Woptとの関係を示すグラフである。 耐圧VBDとキャリア濃度Noptとの関係を示すグラフである。 耐圧構造幅Woptとキャリア濃度Noptとの具体例である。 耐圧VBD毎に当該耐圧VBDを実現することができる耐圧構造幅Wとキャリア濃度Nとの範囲を示すグラフである。 耐圧2700V以上を実現することができる耐圧構造幅Wとキャリア濃度Nとの範囲を示す図である。 耐圧構造幅Wを200μmに固定してキャリア濃度Nを変化させた場合における印加電圧Vと電流Iとの関係を示すグラフである。 キャリア濃度Nを2×1013cm-3に固定して耐圧構造幅Wを変化させた場合における印加電圧Vと電流Iとの関係を示すグラフである。 従来技術に係るGTBTの構造を模式的に示す断面図である。
符号の説明
1…半導体装置
10…絶縁膜
11…多結晶シリコン領域
12…インジェクタ領域
12e…ゲート電極
13…ドリフト領域
14…ソース領域
14e…ソース電極
15…基板領域
16…ドレイン電極
17…トレンチ部
20…SiO2マスク
21…熱SiO2

Claims (3)

  1. 高キャリア濃度の基板と、
    前記基板上に形成されており、前記基板と同一導電型で低キャリア濃度の半導体層と、
    前記半導体層に、前記基板から離隔された状態で、互いに略平行かつ略等間隔に形成されている、前記基板とは異なる導電型で高キャリア濃度の複数の固定電位絶縁電極と、
    前記半導体層と前記固定電位絶縁電極とを絶縁する絶縁膜とを備え、
    前記半導体層は、
    前記複数の固定電位絶縁電極のうちの相隣り合う2つの間に挟まれており、前記基板と同一導電型で高キャリア濃度のソース領域と、
    前記複数の固定電位絶縁電極と同一導電型であって、前記ソース領域に接しておらず、かつ前記絶縁膜とに接しており、かつ前記絶縁膜よりも前記基板近くまで分布するインジェクタ領域とを有し、
    前記複数の固定電位絶縁電極の各個は、前記ソース領域付近よりもインジェクタ領域付近において、前記基板に向かって拡幅している
    ことを特徴とする半導体装置。
  2. 前記複数の固定電位絶縁電極の各個は、前記ソース領域付近においては、前記ソース領域と前記インジェクタ領域との中間におけるよりも、前記基板に向かって拡幅していない
    ことを特徴とする請求項1に記載の半導体装置。
  3. 前記複数の固定電位絶縁電極のうちの相隣り合う2つの間の距離は1.2μm以下であって、
    前記インジェクタ層と前記半導体層とによって形成されるPN接合の耐圧がVBDのとき、
    前記インジェクタ領域から前記基板までの距離Wと前記半導体層のキャリア濃度Nとが式
    Figure 2005286059
    Figure 2005286059
    Figure 2005286059
    Figure 2005286059
    を満たすことを特徴とする請求項1に記載の半導体装置。

JP2004096977A 2004-03-29 2004-03-29 半導体装置 Withdrawn JP2005286059A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096977A JP2005286059A (ja) 2004-03-29 2004-03-29 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096977A JP2005286059A (ja) 2004-03-29 2004-03-29 半導体装置

Publications (1)

Publication Number Publication Date
JP2005286059A true JP2005286059A (ja) 2005-10-13

Family

ID=35184109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096977A Withdrawn JP2005286059A (ja) 2004-03-29 2004-03-29 半導体装置

Country Status (1)

Country Link
JP (1) JP2005286059A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124305A (ja) * 2006-11-14 2008-05-29 Denso Corp 半導体装置
JP2009016571A (ja) * 2007-07-04 2009-01-22 Rohm Co Ltd 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124305A (ja) * 2006-11-14 2008-05-29 Denso Corp 半導体装置
JP2009016571A (ja) * 2007-07-04 2009-01-22 Rohm Co Ltd 半導体装置

Similar Documents

Publication Publication Date Title
TWI804649B (zh) 絕緣閘極半導體器件及用於製造絕緣閘極半導體器件的區域的方法
CN104733531A (zh) 使用氧化物填充沟槽的双氧化物沟槽栅极功率mosfet
US9064952B2 (en) Semiconductor device
JPWO2016175152A1 (ja) 半導体装置および半導体装置の製造方法
JP2013084905A (ja) 縦型半導体素子を備えた半導体装置
JP4490094B2 (ja) トレンチ金属酸化膜半導体電界効果トランジスタ素子の製造方法
US9929259B2 (en) Semiconductor device and manufacturing method for semiconductor device
JP7005453B2 (ja) 半導体装置
KR20200018301A (ko) 수직 전원 장치의 접촉 임플란트 외부 확산 감소를 위한 산소 삽입형 Si 층
JP2015185751A (ja) 絶縁ゲート型半導体装置
CN105637644A (zh) 碳化硅半导体装置,碳化硅半导体装置的制造方法以及碳化硅半导体装置的设计方法
JP4447474B2 (ja) 半導体装置およびその製造方法
JP4645705B2 (ja) 半導体装置及び半導体装置の製造方法
JP2009246225A (ja) 半導体装置
JP7195167B2 (ja) 半導体装置及び半導体装置の製造方法
JP2017162969A (ja) 半導体装置
US10553681B2 (en) Forming a superjunction transistor device
CN104347475A (zh) 具有沟槽隔离区的边缘终止结构
JP6639365B2 (ja) 半導体装置
US7923330B2 (en) Method for manufacturing a semiconductor device
JP5563760B2 (ja) 半導体装置
JP2008147232A (ja) 炭化珪素半導体装置およびその製造方法
JP2004200441A (ja) 半導体装置とその製造方法
CN112005349A (zh) 半导体装置及半导体装置的制造方法
JP2007042826A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A761 Written withdrawal of application

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A761