JP2005281853A - Steel pipe having superior electromagnetic property and manufacturing method therefor - Google Patents

Steel pipe having superior electromagnetic property and manufacturing method therefor Download PDF

Info

Publication number
JP2005281853A
JP2005281853A JP2004342024A JP2004342024A JP2005281853A JP 2005281853 A JP2005281853 A JP 2005281853A JP 2004342024 A JP2004342024 A JP 2004342024A JP 2004342024 A JP2004342024 A JP 2004342024A JP 2005281853 A JP2005281853 A JP 2005281853A
Authority
JP
Japan
Prior art keywords
less
steel pipe
rolling
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004342024A
Other languages
Japanese (ja)
Other versions
JP4701687B2 (en
Inventor
Yasuhide Ishiguro
康英 石黒
Yoshikazu Kawabata
良和 河端
Masayuki Sakaguchi
雅之 坂口
Yasue Koyama
康衛 小山
Takashi Sakata
坂田  敬
Masayoshi Ishida
昌義 石田
Motoaki Itaya
元晶 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004342024A priority Critical patent/JP4701687B2/en
Priority to US11/791,503 priority patent/US7942984B2/en
Priority to PCT/JP2005/016472 priority patent/WO2006057098A1/en
Priority to CN2005800404593A priority patent/CN101065508B/en
Priority to EP05781981A priority patent/EP1816225A4/en
Publication of JP2005281853A publication Critical patent/JP2005281853A/en
Application granted granted Critical
Publication of JP4701687B2 publication Critical patent/JP4701687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe having superior electromagnetic properties, and to provide a manufacturing method therefor. <P>SOLUTION: This steel pipe has a composition including, by mass%, 0.5% or less C and 85% or more Fe. The manufacturing method comprises: heating the base steel pipe having the above composition; and rolling it to reduce a diameter at a diameter reduction rate of 15% or more and at a rolling-finishing temperature of (Ar<SB>3</SB>transformation temperature -10)°C or lower. Thereby, the steel pipe acquires a structure having the three-dimensional random intensity ratio of crystals having the orientation of <100> in a circumferential direction and of <110> in a rolling direction in an amount of 3.0 or larger, when measured with an X-ray diffraction method; an enhanced r-value; and improved electromagnetic properties. Annealing treatment at 550°C or higher but the Ac<SB>1</SB>transformation temperature or lower after rolling for diameter reduction increases the grain size and further improves the electromagnetic properties. The steel pipe may be cold-drawn before being annealed. The electromagnetic properties are further improved by using a steel pipe having the high-purity composition including less than 0.01% C and 95% or more Fe, for the base steel pipe. It is preferable to contain a proper amount of Si and Al for further improving the electromagnetic properties. The electromagnetic properties in a high-frequency area are improved by containing the proper amount of Cr. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気シールドや、モータ用ステータ、ロータ等の使途に好適な、電磁特性に優れた鋼管およびその製造方法に関する。   The present invention relates to a steel pipe excellent in electromagnetic characteristics suitable for the use of a magnetic shield, a stator for a motor, a rotor, and the like, and a method for manufacturing the steel pipe.

磁気シールドや、モータ用ステータ、ロータ等には、従来から電磁特性に優れた鋼板、厚板が使用されてきた。電磁特性に優れた材料としては、磁化容易方向<100>が面内に無方向に配向された無方向性電磁鋼板や、磁化容易方向<100>が圧延方向に平行に強く配向された方向性珪素鋼板などがある。
しかし、これら電磁特性に優れた鋼板を、例えば磁気シールド用として使用する場合には、これら鋼板を加工し、溶接等で接合、組み立して所望形状に仕上げる工程が必要となる。またモータのステータ、ロータ用として使用する場合には、これら鋼板を打抜き、複数枚を積層して使用しており、打抜き加工、積層加工などの工程を必要とする。このように、鋼板を素材とする場合には、複雑な工程を必要とするうえ、溶接部等の非定常部が形成され、電磁特性が劣化するという問題があった。このような問題を回避するため、鋼管を素材として使用することも考えられている。
Conventionally, steel plates and thick plates having excellent electromagnetic characteristics have been used for magnetic shields, motor stators, rotors, and the like. Examples of a material having excellent electromagnetic characteristics include a non-oriented electrical steel sheet in which the easy magnetization direction <100> is oriented in the in-plane direction, and a directionality in which the easy magnetization direction <100> is strongly oriented parallel to the rolling direction. There are silicon steel sheets.
However, when these steel plates having excellent electromagnetic characteristics are used for, for example, magnetic shielding, a process is required in which these steel plates are processed, joined by welding or the like, and assembled into a desired shape. Further, when used for a stator or a rotor of a motor, these steel plates are punched and a plurality of sheets are laminated and used, and processes such as punching and lamination are required. As described above, when a steel plate is used as a raw material, there is a problem that a complicated process is required and an unsteady portion such as a welded portion is formed, resulting in deterioration of electromagnetic characteristics. In order to avoid such a problem, it is also considered to use a steel pipe as a material.

電磁鋼板を電縫溶接して電磁特性に優れた鋼管とすることが考えられるが、電磁鋼板はSi含有量が高く電縫溶接が難しいうえ、電縫溶接部の電磁特性が劣化するという問題がある。また、電磁鋼のビレットを使用して継目無鋼管とすることも考えられるが、電磁鋼は延性が低く、製管作業が困難である。
このような問題に対し、例えば特許文献1には、Si、Alを高くした組成の鋼を用い、熱間押出し条件、熱間圧延条件を適正範囲に調整して継目無管とし、ついで、再結晶温度以下で圧延を行い、さらに最終焼鈍を施す、電磁材料管の製造方法が提案されている。しかし、特許文献1に記載された技術では、熱間押出し工程を必須工程としており製造コストが高いという問題があった。
It is conceivable to make a steel pipe with excellent electromagnetic characteristics by electro-welding the electrical steel sheet, but the electrical steel sheet has a high Si content and is difficult to electro-welded, and also has the problem that the electro-magnetic characteristics of the electro-resistance weld are deteriorated. is there. In addition, although it is conceivable to use a billet of electromagnetic steel to make a seamless steel pipe, the electromagnetic steel has low ductility and is difficult to make a pipe.
To deal with such problems, for example, Patent Document 1 uses a steel with a high Si and Al composition, and adjusts the hot extrusion conditions and hot rolling conditions to appropriate ranges to make seamless pipes. There has been proposed a method for manufacturing an electromagnetic material tube, in which rolling is performed at a temperature lower than the crystal temperature and further final annealing is performed. However, the technique described in Patent Document 1 has a problem that the hot extrusion process is an essential process and the manufacturing cost is high.

また、特許文献2には、99.5%以上のFeを含み残部が不純物からなる鋼組成の鋼片または鋳片を1100〜1350℃に加熱し、熱間圧延を行なって素材としたのち、製管し、500〜1000℃で熱処理する電磁鋼管の製造方法が提案されている。特許文献2に記載された技術によれば、磁気シールド用として十分な特性の鋼管が得られるとしているが、しかしこの技術は、熱処理による単なる粒成長を図っているだけで、結晶方位の配向性にまで配慮されておらず、更なる高い電磁特性を要求される使途には特性が不足するという問題を残していた。
特開平2−236226号公報 特公平7−68579号公報
Also, in Patent Document 2, a steel slab or slab having a steel composition containing 99.5% or more Fe and the balance being impurities is heated to 1100 to 1350 ° C. and hot-rolled to obtain a raw material. And the manufacturing method of the electromagnetic steel pipe heat-processed at 500-1000 degreeC is proposed. According to the technique described in Patent Document 2, it is said that a steel pipe having sufficient characteristics for a magnetic shield can be obtained. However, in this technique, the orientation of crystal orientation is merely achieved by grain growth by heat treatment. Therefore, there is a problem that the characteristics are insufficient for the purpose of use that requires higher electromagnetic characteristics.
JP-A-2-236226 Japanese Examined Patent Publication No. 7-68579

本発明は、上記した従来技術の問題を解決し、磁気シールド用、あるいはモータ用として好適な、電磁特性に優れた鋼管およびその製造方法を提案することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art, and to propose a steel pipe excellent in electromagnetic characteristics and suitable for a magnetic shield or a motor and a method for manufacturing the steel pipe.

本発明者らは、上記した課題を達成するために、鋼管の電磁特性に及ぼす各種要因について鋭意考究した。その結果、鋼管の電磁特性、とくに軟磁性特性をさらに向上させるためには、
(イ)鋼管の円周方向に<100>方向、圧延方向に<110>方向が強く配向した結晶組織に調整すること、
(ロ)結晶粒径を、比較的粗大な粒とすること、好ましくは20μm以上の粒とすること、さらには、
(ハ)電縫溶接部等の非定常部をなくすこと、
が重要であることを見出した。そして、更なる電磁特性向上のためには、
(ニ)C含有量を0.01質量%未満とすること、
が望ましいことを知見した。
In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting the electromagnetic characteristics of steel pipes. As a result, in order to further improve the electromagnetic properties of steel pipes, especially soft magnetic properties,
(B) adjusting the crystal structure in which the <100> direction in the circumferential direction of the steel pipe and the <110> direction in the rolling direction are strongly oriented;
(B) The crystal grain size should be a relatively coarse grain, preferably a grain of 20 μm or more,
(C) Eliminating unsteady parts such as ERW welds,
Found that is important. And for further improvement of electromagnetic characteristics,
(D) the C content is less than 0.01% by mass,
I found that is desirable.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.5%以下を含み、Feを85%以上含む組成を有する鋼管であって、円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有することを特徴とする電磁特性に優れた鋼管。
(2)(1)において、円周方向のr値が1.2以上、圧延方向のr値が(円周方向のr値+1.0)以上を有することを特徴とする鋼管。
(3)(1)または(2)において、前記組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする鋼管。
(4)(1)ないし(3)のいずれかにおいて、前記組成が、質量%で、C:0.5%以下を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管。
(5)(4)において、前記組成に加えてさらに、質量%で、次A〜C群
A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以上、
B群:Cr:15%以下、Ni:0.5%以下、Mo:0.3%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする鋼管。
(6)質量%で、C:0.5%以下を含み、Feを85%以上とする組成を有する鋼管を、加熱したのち、縮径圧延を施すに当たり、前記縮径圧延を、縮径率が15%以上、圧延終了温度が(Ar変態点−10)℃以下である圧延とすることを特徴とする電磁特性に優れた鋼管の製造方法。
(7)(6)において、前記組成が、質量%で、C:0.5%以下を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管の製造方法。
(8)(7)において、前記組成に加えてさらに、質量%で、次A〜C群
A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以上、
B群:Cr:15%以下、Ni:0.5%以下、Mo:0.3%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする鋼管の製造方法。
(9)(6)ないし(8)のいずれかにおいて、前記縮径圧延後、あるいはさらに所望形状に加工したのち、550℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことを特徴とする鋼管の製造方法。
(10)(9)において、前記縮径圧延後で前記焼鈍処理前に、冷間引抜加工を施すことを特徴とする鋼管の製造方法。
(11)(6)ないし(10)のいずれかにおいて、前記縮径圧延が、増肉率:40%以下の縮径圧延であることを特徴とする鋼管の製造方法。
(12)(6)ないし(10)のいずれかにおいて、前記縮径圧延が、減肉率:40%以下の縮径圧延であることを特徴とする鋼管の製造方法。
(13)質量%で、C:0.01%未満を含み、Feを95%以上含む組成を有する鋼管であって、円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有することを特徴とする電磁特性に優れた鋼管。
(14)(13)において、圧延方向のr値が2.0以上を有することを特徴とする鋼管。
(15)(13)または(14)において、前記組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする鋼管。
(16)(13)ないし(15)のいずれかにおいて、前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管。
(17)(13)ないし(15)のいずれかにおいて、前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超え0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管。
(18)(16)または(17)において、前記組成に加えてさらに、質量%で、次D〜F群
D群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
E群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
F群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種、
のうちから選ばれた1群または2群以上を含有することを特徴とする鋼管。
(19)質量%で、C:0.01%未満を含み、Feを95%以上とする組成を有する鋼管を、加熱したのち、縮径圧延を施すに当たり、前記縮径圧延を、縮径率が15%以上、圧延終了温度が730℃以上900℃以下である圧延とすることを特徴とする電磁特性に優れた鋼管の製造方法。
(20)(19)において、前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管の製造方法。
(21)(19)において、前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする鋼管の製造方法。
(22)(20)または(21)において、前記組成に加えてさらに、質量%で、次D〜F群
D群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
E群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
F群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有することを特徴とする鋼管の製造方法。
(23)(19)ないし(22)のいずれかにおいて、前記縮径圧延後、あるいはさらに所望形状に加工したのち、750℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことを特徴とする鋼管の製造方法。
(24)(23)において、前記縮径圧延後で前記焼鈍処理前に、冷間引抜加工を施すことを特徴とする鋼管の製造方法。
(25)(19)ないし(24)のいずれかにおいて、前記縮径圧延が、増肉率:40%以下の縮径圧延であることを特徴とする鋼管の製造方法。
(26)(19)ないし(24)のいずれかにおいて、前記縮径圧延が、減肉率:40%以下の縮径圧延であることを特徴とする鋼管の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A steel pipe having a composition containing, by mass%, C: 0.5% or less, and Fe containing 85% or more, wherein the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction. A steel pipe excellent in electromagnetic characteristics, characterized by having a structure with a three-dimensional random intensity ratio of X-rays of 3.0 or more in an orientation.
(2) The steel pipe according to (1), wherein the r value in the circumferential direction is 1.2 or more and the r value in the rolling direction is (r value +1.0 in the circumferential direction) or more.
(3) The steel pipe according to (1) or (2), wherein the structure is a structure having an average crystal grain size of 20 μm or more.
(4) In any one of (1) to (3), the composition contains, by mass%, C: 0.5% or less, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less , P: 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, and a steel pipe characterized by being composed of the balance Fe and inevitable impurities.
(5) In (4), in addition to the above-mentioned composition, the following A to C groups: A group: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less, or 2 or more types,
Group B: Cr: 15% or less, Ni: 0.5% or less, Mo: 0.3% or less, 1 type or 2 types or more,
Group C: A steel pipe containing one group or two or more groups selected from one or two of Ca: 0.005% or less and REM: 0.05% or less.
(6) When a steel pipe having a composition containing C: 0.5% or less and containing Fe of 85% or more in mass% is heated and then subjected to reduction rolling, the reduction rolling is performed at a reduction ratio of 15%. %, And a rolling end temperature is (Ar 3 transformation point −10) ° C. or less.
(7) In (6), the composition contains, by mass%, C: 0.5% or less, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, A method for producing a steel pipe, comprising Al: 0.01 to 0.06%, N: 0.005% or less, and having a balance Fe and inevitable impurities.
(8) In (7), in addition to the above-mentioned composition, the following groups A to C: Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less, or 2 or more types,
Group B: Cr: 15% or less, Ni: 0.5% or less, Mo: 0.3% or less, 1 type or 2 types or more,
C group: Ca: 0.005% or less, REM: One or two or more selected from one or two of 0.05% or less.
(9) In any one of (6) to (8), after the diameter reduction rolling or further processing into a desired shape, an annealing treatment is performed at a temperature of 550 ° C. or higher and Ac 1 transformation point or lower. Steel pipe manufacturing method.
(10) A method for manufacturing a steel pipe according to (9), wherein cold drawing is performed after the diameter reduction rolling and before the annealing treatment.
(11) The method for manufacturing a steel pipe according to any one of (6) to (10), wherein the reduced diameter rolling is reduced diameter rolling with a thickness increase rate of 40% or less.
(12) The method for manufacturing a steel pipe according to any one of (6) to (10), wherein the reduced diameter rolling is reduced diameter rolling with a reduction ratio of 40% or less.
(13) A steel pipe having a composition containing less than 0.01% by mass and containing less than 0.01% by mass and containing 95% or more of Fe, wherein the crystal is oriented in the <100> direction in the circumferential direction and the <110> direction in the rolling direction A steel pipe excellent in electromagnetic characteristics, characterized by having a structure with a three-dimensional random intensity ratio of X-rays of 3.0 or more in an orientation.
(14) The steel pipe according to (13), wherein the r value in the rolling direction is 2.0 or more.
(15) The steel pipe according to (13) or (14), wherein the structure is a structure having an average crystal grain size of 20 μm or more.
(16) In any one of (13) to (15), the composition includes, by mass%, C: less than 0.01%, Si: 0.45% or less, Mn: 0.1 to 1.4%, S: 0.01% or less , P: 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, and a steel pipe characterized by being composed of the balance Fe and inevitable impurities.
(17) In any one of (13) to (15), the composition contains, by mass%, C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: A steel pipe characterized by containing 0.01% or less, P: 0.025% or less, Al: more than 0.06% and 0.5% or less, N: 0.005% or less, and the balance consisting of Fe and inevitable impurities.
(18) In (16) or (17), in addition to the above composition, in mass%, the following groups D to F: Group D: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less One or more of
Group E: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group F: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
A steel pipe characterized by containing one group or two or more groups selected from the group.
(19) When a steel pipe having a composition containing less than 0.01% by mass and Fe of 95% or more is heated and then subjected to diameter reduction rolling, the diameter reduction rolling is performed at a diameter reduction ratio of 15%. %, And a rolling end temperature of 730 ° C. or higher and 900 ° C. or lower is used.
(20) In (19), the composition contains, by mass%, C: less than 0.01%, Si: 0.45% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, A method for producing a steel pipe, comprising Al: 0.01 to 0.06%, N: 0.005% or less, and having a balance Fe and inevitable impurities.
(21) In (19), the composition contains, by mass%, C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025 % Or less, Al: more than 0.06%, 0.5% or less, N: 0.005% or less, and a composition comprising the balance Fe and inevitable impurities.
(22) In (20) or (21), in addition to the above composition, in mass%, the following groups D to F: Group D: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less One or more of
Group E: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
F group: Ca: 0.005% or less, REM: One or two or more groups selected from one or two of 0.05% or less.
(23) In any one of (19) to (22), after the diameter reduction rolling or further processing into a desired shape, an annealing treatment is performed at a temperature not lower than 750 ° C. and not higher than the Ac 1 transformation point. Steel pipe manufacturing method.
(24) The method for manufacturing a steel pipe according to (23), wherein cold drawing is performed after the diameter reduction rolling and before the annealing treatment.
(25) The method for manufacturing a steel pipe according to any one of (19) to (24), wherein the reduced diameter rolling is reduced diameter rolling with a thickness increase rate of 40% or less.
(26) The method of manufacturing a steel pipe according to any one of (19) to (24), wherein the reduced diameter rolling is reduced diameter rolling with a reduction ratio of 40% or less.

本発明によれば、磁気シールド用材料、あるいはモータ用材料として十分な軟磁特性を有する、電磁特性に優れた鋼管を容易にかつ安価に製造でき、産業上格段の効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the steel pipe excellent in the electromagnetic characteristic which has sufficient soft magnetic characteristics as a magnetic shielding material or a motor material can be manufactured easily and inexpensively, and there is a remarkable industrial effect.

本発明鋼管は、質量%で、C:0.5%以下を含み、Feを85%以上含む組成を有する鋼管である。まず、本発明鋼管の組成限定理由について説明する。なお、以下、組成における質量%は、単に%と記す。
C:0.5%以下
Cは、強度を増加させる元素であり、所望の鋼管強度に応じ所定量含有することが望ましいが、0.5%を超える含有は結晶粒の成長性を低下させる。このため、Cは0.5%以下に限定した。なお、Cは電磁特性を低下させるため、電磁特性の観点からはできるだけ低減することが望ましく、磁気時効による経時劣化を考慮して0.01%以下、更なる電磁特性の向上の観点からは、0.01%未満とすることが好ましい。C含有量が0.01%以上の場合には、Cを析出物として固定するために添加する金属元素(炭化物形成元素)量が多くなり電磁特性が向上しにくくなる場合がある。なお、より好ましくは0.004%以下である。なお、0.001%以下のCの低減は精錬時間を異常に長引かせて精錬コストの高騰を招くため、下限とすることが経済的な観点から望ましい。
The steel pipe of the present invention is a steel pipe having a composition containing C: 0.5% or less and Fe containing 85% or more by mass%. First, the reasons for limiting the composition of the steel pipe of the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: 0.5% or less C is an element that increases the strength, and is desirably contained in a predetermined amount according to the desired steel pipe strength. However, the content exceeding 0.5% lowers the growth of crystal grains. For this reason, C was limited to 0.5% or less. In addition, since C lowers the electromagnetic characteristics, it is desirable to reduce as much as possible from the viewpoint of electromagnetic characteristics, considering the deterioration with time due to magnetic aging, 0.01% or less, and from the viewpoint of further improving the electromagnetic characteristics, 0.01% It is preferable to make it less than. When the C content is 0.01% or more, the amount of metal element (carbide forming element) added to fix C as a precipitate increases, and it may be difficult to improve electromagnetic characteristics. More preferably, it is 0.004% or less. In addition, since the reduction of C of 0.001% or less causes the refining time to be abnormally prolonged and increases the refining cost, the lower limit is desirable from an economical viewpoint.

Fe:85%以上
不純物が増加するにしたがい、結晶粒成長の阻害要因が増し、磁気特性が低下するため、不純物が少ない高純度とすることが望ましい。本発明では、不純物量を規制し、純度を上げる意味で、Fe分を85%以上とする。なお、好ましくは95%以上、より好ましくは98%以上である。
Fe: 85% or more As the impurities increase, the inhibition factors of the crystal grain growth increase and the magnetic properties deteriorate, so it is desirable to have a high purity with few impurities. In the present invention, the content of Fe is set to 85% or more in order to regulate the amount of impurities and increase the purity. In addition, Preferably it is 95% or more, More preferably, it is 98% or more.

本発明の基本組成は、上記したとおりであるが、更なる電磁特性向上のためには、質量%で、C:0.5%以下を含み、さらにSi:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成とすることが好ましい。
なお、電磁特性の更なる向上を要求される使途には、Cを0.01%未満としその他含有成分を極力低減し、Fe:95%以上とする高純度系の組成とすることが好ましい。さらに電磁特性を向上させるために必要に応じてSi、Alを、あるいはさらに高周波域での電磁特性を向上させるためにCr、Ni等を含有させてもよい。このような優れた電磁特性が要求される使途向けには、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる高純度系の組成、あるいは質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる高純度系組成とすることが好ましい。
Although the basic composition of the present invention is as described above, in order to further improve electromagnetic characteristics, it is contained by mass%, including C: 0.5% or less, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, and preferably a composition comprising the balance Fe and inevitable impurities.
For uses that require further improvement in electromagnetic characteristics, it is preferable to have a high-purity composition in which C is less than 0.01%, other components are reduced as much as possible, and Fe: 95% or more. Further, Si and Al may be added as necessary to improve the electromagnetic characteristics, or Cr, Ni and the like may be added to further improve the electromagnetic characteristics in the high frequency range. For applications where such excellent electromagnetic properties are required, it is contained in mass%, including C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01 to 0.06%, N: 0.005% or less, and a high-purity composition consisting of the balance Fe and inevitable impurities, or mass%, including C: less than 0.01%, and Si: Contains 0.45% or more and 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, Al: more than 0.06%, 0.5% or less, N: 0.005% or less, the remainder Fe and inevitable impurities It is preferable to have a high-purity composition comprising

Si:0.45%以下、または0.45%超3.5%以下
Siは、脱酸剤として作用し、少なくとも0.01%以上含有する。また、Siは、電磁特性、とくに鉄損特性を向上させ、また固溶して鋼管の強度を増加させる元素であるが、0.45%を超える含有は、電縫溶接性を低下させる傾向がある。このため、Siは0.45%以下に限定することが好ましい。なお、とくに優れた電磁特性が要求される場合にはSiは0.45%超3.5%以下とすることができる。3.5%を超えるSiの含有は、低H(磁界)域の磁束密度(B)は優れるが、高H域の飽和磁束密度Bが低下し、さらに電縫溶接性が顕著に劣化する。
Si: 0.45% or less, or more than 0.45% and 3.5% or less
Si acts as a deoxidizer and contains at least 0.01% or more. Si is an element that improves electromagnetic characteristics, particularly iron loss characteristics, and increases the strength of the steel pipe by solid solution. However, if its content exceeds 0.45%, there is a tendency to lower the ERW weldability. For this reason, it is preferable to limit Si to 0.45% or less. In addition, when particularly excellent electromagnetic characteristics are required, Si can be made more than 0.45% and 3.5% or less. When Si exceeds 3.5%, the magnetic flux density (B) in the low H (magnetic field) region is excellent, but the saturation magnetic flux density B in the high H region is lowered, and the electric resistance weldability is remarkably deteriorated.

Mn:0.1〜1.4%
Mnは、Sと結合してMnSを形成し、Sの悪影響を除去して熱間加工性を向上させる元素であり、S含有量に応じて含有することが望ましく、本発明では0.1%以上含有させることが好ましい。また、Mnは、固溶して鋼管の強度を増加させる元素であり、所望の鋼管強度に応じて含有することが望ましいが、1.4%を超える含有は靭性を劣化させる。このため、Mnは0.1〜1.4%の範囲に限定することが好ましい。なお、より好ましくは0.3〜0.6%である。
Mn: 0.1-1.4%
Mn is an element that combines with S to form MnS, removes the adverse effects of S and improves hot workability, and is preferably contained according to the S content. It is preferable to make it. Mn is an element that increases the strength of the steel pipe by solid solution, and it is desirable to contain it according to the desired steel pipe strength, but if it exceeds 1.4%, the toughness deteriorates. For this reason, it is preferable to limit Mn to the range of 0.1 to 1.4%. In addition, More preferably, it is 0.3 to 0.6%.

S:0.01%以下
Sは、鋼中では介在物として存在し、加工性を低下させるとともに、MnSとして電磁特性を阻害するため、できるだけ低減することが望ましい。このようなことから、Sは0.01%以下に限定することが好ましい。しかし、過度のSの低減は精錬コストの高騰を招くため、0.001%以上とすることが望ましい。なお、電磁特性向上のために、SiやAlを多量に含有する場合には、打抜き性向上のため、Sは0.001%以下まで低減することが好ましい。
S: 0.01% or less S is present as an inclusion in steel, lowers workability, and inhibits electromagnetic characteristics as MnS, so it is desirable to reduce it as much as possible. For these reasons, S is preferably limited to 0.01% or less. However, excessive reduction of S leads to an increase in refining costs, so 0.001% or more is desirable. In addition, when Si and Al are contained in a large amount for improving electromagnetic characteristics, it is preferable to reduce S to 0.001% or less for improving punchability.

P:0.025%以下
Pは、固溶して鋼管強度の増加に寄与するとともに、電磁特性を向上させる元素であるが、Pは粒界に偏析する傾向が強く、磁壁の移動を妨げるという悪影響を及ぼす可能性が強く、本発明では0.025%以下に限定することが好ましい。なお、過度の低減は製錬コストの高騰を招くため、0.005%程度を下限とすることが望ましい。
P: 0.025% or less P is an element that dissolves and contributes to an increase in steel pipe strength and improves electromagnetic properties, but P has a strong tendency to segregate at grain boundaries and has the adverse effect of preventing the domain wall from moving. In the present invention, it is preferably limited to 0.025% or less. In addition, since excessive reduction leads to a rise in smelting cost, it is desirable to set the lower limit to about 0.005%.

Al:0.01〜0.06%、または0.06%超0.5%以下
Alは、脱酸剤として作用するとともに、AlNを形成し固溶N量を低減する元素である。このような効果は0.01%以上の含有で認められるが、N含有量によっては0.06%を超える含有は介在物量を増加させ、電磁特性を低下させる場合が多い。このため、Alは0.01〜0.06%の範囲に限定することが好ましい。なお、より好ましくはN含有量との関係で27/14N以上3×27/14N以下である。Ti、b等の強力な窒化物形成元素を含有する場合にはAl量は少なくてもよい。なお、Alは、Siとともに、電磁特性を向上させる元素であり、とくに低H(磁界)域での優れた電磁特性が要求される場合には、Alは0.06%超0.5%以下含有することができる。しかし、0.5%を超えるAlの含有は、かえって電磁特性の劣化を引き起こすことがある。
Al: 0.01 to 0.06%, or more than 0.06% and 0.5% or less
Al is an element that acts as a deoxidizer and forms AlN to reduce the amount of dissolved N. Such an effect is recognized at a content of 0.01% or more, but depending on the N content, a content exceeding 0.06% often increases the amount of inclusions and lowers the electromagnetic characteristics. For this reason, it is preferable to limit Al to the range of 0.01 to 0.06%. More preferably, it is 27 / 14N or more and 3 × 27 / 14N or less in relation to the N content. In the case of containing a strong nitride-forming element such as Ti or b, the amount of Al may be small. Al, together with Si, is an element that improves electromagnetic characteristics. In particular, when excellent electromagnetic characteristics in a low H (magnetic field) region are required, Al may be contained more than 0.06% and 0.5% or less. it can. However, Al content exceeding 0.5% may cause deterioration of electromagnetic characteristics.

N:0.005%以下
Nは、鋼では侵入型固溶元素として強度を増加させるが、内部応力を高め電磁特性を低下させるとともに、AlNを形成し電磁特性に悪影響を及ぼす。このため、Nは、できるだけ低減することが望ましいが0.005%までは許容できる。このため、Nは0.005%以下に限定することが好ましい。なお、製錬コストとの関係で0.001%程度が下限である。なお、電磁特性向上のためにAlを多量含有させる場合には、AlNによる電磁特性の劣化を招かないように、Nは0.0025%以下に低減することが望ましい。
N: 0.005% or less N increases the strength as an interstitial solid solution element in steel, but increases the internal stress and decreases the electromagnetic characteristics, and forms AlN to adversely affect the electromagnetic characteristics. For this reason, it is desirable to reduce N as much as possible, but it is acceptable up to 0.005%. For this reason, it is preferable to limit N to 0.005% or less. The lower limit is about 0.001% in relation to smelting costs. When a large amount of Al is contained to improve electromagnetic characteristics, it is desirable to reduce N to 0.0025% or less so as not to cause deterioration of electromagnetic characteristics due to AlN.

なお、上記した成分に加えてさらに、次A〜C群
A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以上、
B群:Cr:15%以下、Ni:0.5%以下、Mo:0.3%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有してもよい。なお、高純度系組成の場合には、次D〜F群
D群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
E群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
F群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
のうちから選ばれた1群または2群以上を含有することが好ましい。
In addition to the above-described components, the following groups A to C: Group A: Ti: 0.05% or less; Nb: 0.05% or less; B: 0.005% or less;
Group B: Cr: 15% or less, Ni: 0.5% or less, Mo: 0.3% or less, 1 type or 2 types or more,
Group C: Ca: 0.005% or less, REM: One or two groups selected from one or two of 0.05% or less may be contained. In the case of a high-purity composition, the following groups D to F: Group D: Ti: 0.05% or less; Nb: 0.05% or less; B: 0.005% or less;
Group E: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group F: It is preferable to contain one group or two or more groups selected from one or two of Ca: 0.005% or less and REM: 0.05% or less.

A群又はD群のTi、Nb、Bは、炭化物、窒化物等を形成して、鋼管の強度を増加させる元素であり、必要に応じ選択して含有できる。Ti:0.05%、Nb:0.005%、B:0.005%を超える含有は、磁気特性を劣化させる場合が多いため、Ti:0.05%、Nb:0.05%、B:0.005%をそれぞれ上限とすることが好ましい。
B群又はE群:Cr、Mo、Niは、焼入れ性、耐食性を向上させる元素であり、必要に応じ選択して含有できる。Cr:15%、Mo:0.3%、Ni:0.5%を超える含有は、電磁特性を劣化させるため、Cr:15%、Mo:0.3%、Ni:0.5%をそれぞれ上限とすることが好ましい。なお、Crはとくに耐食性を向上させる元素であり、15%までの多量の含有は耐食性を顕著に向上させる必要がある場合に限られる。焼入れ性の向上が目的である場合には0.05%以下とすることが好ましい。また、電磁特性の更なる向上を要求される使途の場合には、Cr:0.05%以下、Mo:0.05%以下、Ni:0.05%以下とすることが好ましい。なお、高周波域での電磁特性をさらに向上させる必要のある場合には、Fe:95%以上とする高純度系組成の条件のもとに、Cr:5%以下、Ni:5%以下、Mo:0.05%以下含有させることができる。
Ti, Nb, and B in Group A or Group D are elements that form carbides, nitrides, and the like to increase the strength of the steel pipe, and can be selected and contained as necessary. Ti: 0.05%, Nb: 0.005%, and B: More than 0.005% often deteriorate the magnetic properties, so Ti: 0.05%, Nb: 0.05%, B: 0.005% may be the upper limit. preferable.
Group B or Group E: Cr, Mo, Ni are elements that improve hardenability and corrosion resistance, and can be selected and contained as necessary. If the content exceeds Cr: 15%, Mo: 0.3%, Ni: 0.5%, the electromagnetic characteristics are deteriorated, so Cr: 15%, Mo: 0.3%, and Ni: 0.5% are preferably set as upper limits, respectively. Note that Cr is an element that particularly improves the corrosion resistance, and a large amount of up to 15% is limited to the case where the corrosion resistance needs to be remarkably improved. When the purpose is to improve hardenability, it is preferably 0.05% or less. Moreover, in the use which requires the further improvement of electromagnetic characteristics, it is preferable to set Cr: 0.05% or less, Mo: 0.05% or less, and Ni: 0.05% or less. When it is necessary to further improve the electromagnetic characteristics in the high frequency range, Cr: 5% or less, Ni: 5% or less, Mo under the condition of a high purity composition of Fe: 95% or more, Mo : 0.05% or less can be contained.

C群又はF群:Ca、REMは、介在物の形態を制御し、耐食性を向上させる元素であり、必要に応じ選択して含有できる。わずかでも水に触れる環境で使用される場合には、Ca、REMを含有することが好ましく、耐食性が向上する。なお、 Ca:0.005%、REM:0.05%を超える含有は、磁気特性を劣化させる。このため、Ca:0.005%、REM:0.05%を上限とすることが好ましい。   Group C or Group F: Ca and REM are elements that control the form of inclusions and improve corrosion resistance, and can be selected and contained as necessary. When used in an environment where even a slight amount of water comes into contact, it is preferable to contain Ca and REM, and the corrosion resistance is improved. In addition, the content exceeding Ca: 0.005% and REM: 0.05% deteriorates the magnetic properties. For this reason, it is preferable to make Ca: 0.005% and REM: 0.05% the upper limit.

上記した成分以外の残部はFeおよび不可避的不純物である。
上記した組成に加えてさらに、本発明鋼管は、円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有する。
結晶方位を、鋼管の、円周方向に磁化容易軸である<100>方向を、かつ圧延方向に<110>方向が配向した結晶方位とすることにより、鋼管の電磁特性が顕著に向上する。本発明では、円周方向に<100>方向、圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比を3.0以上とする。三次元ランダム方位強度が3.0未満では、優れた電磁特性が得られない。なお、好ましくは8.0以上、より好ましくは10以上である。
The balance other than the above components is Fe and inevitable impurities.
In addition to the above composition, the steel pipe of the present invention has an X-ray three-dimensional random intensity ratio of 3.0 or more in a crystal orientation in which the <100> direction in the circumferential direction and the <110> direction in the rolling direction are oriented. Have an organization.
By setting the crystal orientation to a crystal orientation in which the <100> direction that is the easy axis of magnetization in the circumferential direction of the steel pipe and the <110> direction in the rolling direction are oriented, the electromagnetic characteristics of the steel pipe are remarkably improved. In the present invention, the X-ray three-dimensional random intensity ratio of the crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction is 3.0 or more. If the three-dimensional random orientation strength is less than 3.0, excellent electromagnetic characteristics cannot be obtained. In addition, Preferably it is 8.0 or more, More preferably, it is 10 or more.

ここでいう三次元ランダム強度比とは、ある特定結晶方位の配向の有無を示す指標であり、全く配向していない場合(ランダム)の結晶方位を1とし、配向性のある特定結晶方位の強度を、ランダムの場合で規格化したものである。数値が大きいほど強い配向性を示すことを意味する。
具体的には、反射法による不完全極点図を測定し、特定結晶方位(本発明では円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位)の積分強度をランダム強度で規格化して求める。なお、反射法および透過法をともに用いた完全極点図の測定からも同じ値が得られる。
Here, the three-dimensional random intensity ratio is an index indicating the presence or absence of orientation of a specific crystal orientation. The crystal orientation in the case of no orientation (random) is set to 1, and the strength of a specific crystal orientation with orientation. Is normalized in a random case. A larger value means stronger orientation.
Specifically, an incomplete pole figure by the reflection method is measured, and the integrated intensity of a specific crystal orientation (in the present invention, a crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction) is obtained. Standardized with random strength. The same value can be obtained from the measurement of a complete pole figure using both the reflection method and the transmission method.

本発明でいう「優れた電磁特性」とは、最大比透磁率が、その後の処理を施さない電縫鋼管ままと比べて大きく、また、磁化力200A/mの低磁場条件において、磁束密度が電縫鋼管ままと比べて、大きいことを意味する。ただし、電縫鋼管ままの状態での最大比透磁率、及び200A/mでの磁束密度は、化学成分の影響を受けるため、高純度系の成分の方が良好であることを考慮する必要がある。よって、例えば、添加元素が多く入った系での電磁特性が、高純度系の電縫鋼管ままの状態と比べて、わずかでも良好な場合には、その鋼管の電磁特性はかなり向上しているとみることができる。   The “excellent electromagnetic characteristics” as used in the present invention means that the maximum relative magnetic permeability is larger than that of an electric resistance welded steel pipe that is not subjected to subsequent treatment, and the magnetic flux density is low under a low magnetic field condition with a magnetizing force of 200 A / m. This means that it is larger than the ERW steel pipe. However, it is necessary to consider that the high-purity component is better because the maximum relative permeability in the state of the ERW steel tube and the magnetic flux density at 200 A / m are affected by the chemical component. is there. Therefore, for example, when the electromagnetic characteristics in a system containing a lot of additive elements are slightly better than the state of a high-purity ERW steel pipe, the electromagnetic characteristics of the steel pipe are considerably improved. Can be seen.

なお、高純度系組成の鋼管において「優れた電磁特性」とは、好ましくは最大比透磁率が2500以上、より好ましくは7500以上で、磁化力200A/mの低磁場条件における磁束密度が0.8T以上、より好ましくは1.0T以上であるとともに、鋼管が縮径圧延のままの場合には、電縫鋼管ままのものの特性を基準とし、縮径圧延後熱処理を施した場合には、電縫鋼管のままに熱処理を施したものの特性を基準とし、最大比透磁率、磁束密度を比較して優れていることを「優れた電磁特性」の判断基準とする。   Note that “excellent electromagnetic characteristics” in a steel tube having a high-purity composition preferably has a maximum relative permeability of 2500 or more, more preferably 7500 or more, and a magnetic flux density of 0.8 T under a low magnetic field condition with a magnetizing force of 200 A / m. As described above, more preferably 1.0T or more, and when the steel pipe remains in the diameter-reduced rolling, the characteristics of the same as the ERW steel pipe are used as a reference, and when the heat treatment is performed after the diameter-reduced rolling, the ERW steel pipe Based on the characteristics of the heat-treated materials as they are, the superior relative magnetic permeability and magnetic flux density are used as the judgment criteria for “excellent electromagnetic characteristics”.

さらに、本発明鋼管は、好ましくは平均結晶粒径が5μm以上である組織を有する。平均結晶粒径が5μm未満では、円周方向に<100>、かつ圧延方向に<110>が配向していても、優れた電磁特性を確保することは望めない。本発明では、結晶粒は比較的粗粒であることが優れた電磁特性を得ることができるという観点から好ましい。より好ましくは平均結晶粒径が10μm以上、さらに好ましくは平均結晶粒径が20μm以上、望ましくは40μm以上である。とくに、平均結晶粒径を20μm以上、さらには40μm以上とすることにより、より優れた電磁特性を有する鋼管となる。   Furthermore, the steel pipe of the present invention preferably has a structure with an average crystal grain size of 5 μm or more. When the average crystal grain size is less than 5 μm, it is not possible to ensure excellent electromagnetic characteristics even if <100> is oriented in the circumferential direction and <110> is oriented in the rolling direction. In the present invention, it is preferable that the crystal grains are relatively coarse from the viewpoint that excellent electromagnetic characteristics can be obtained. More preferably, the average crystal grain size is 10 μm or more, further preferably the average crystal grain size is 20 μm or more, and desirably 40 μm or more. In particular, when the average crystal grain size is 20 μm or more, further 40 μm or more, a steel pipe having more excellent electromagnetic characteristics can be obtained.

また、本発明鋼管では、円周方向のr値が1.2以上、圧延方向のr値が(円周方向のr値+1.0)以上を有することが好ましい。なお、高純度系組成を有する本発明鋼管では、圧延方向のr値が2.0以上を有することが好ましい。円周方向のr値が1.2以上、圧延方向のr値が(円周方向のr値+1.0)以上を有するか、あるいは高純度系組成の鋼管では圧延方向のr値が2.0以上を有することにより、優れた電磁特性が確保できる。r値が上記した値未満では、優れた電磁特性の確保が難しくなる。なお、高純度系組成の鋼管では圧延方向のr値は、好ましくは4.0以上、より好ましくは8.0以上である。   In the steel pipe of the present invention, it is preferable that the r value in the circumferential direction is 1.2 or more and the r value in the rolling direction is (r value +1.0 in the circumferential direction) or more. In the steel pipe of the present invention having a high purity composition, the r value in the rolling direction is preferably 2.0 or more. The r value in the circumferential direction is 1.2 or more, the r value in the rolling direction is (r value in the circumferential direction +1.0) or more, or the r value in the rolling direction is 2.0 or more in a high purity steel pipe. Therefore, excellent electromagnetic characteristics can be secured. When the r value is less than the above value, it is difficult to ensure excellent electromagnetic characteristics. Note that the r value in the rolling direction is preferably 4.0 or more, more preferably 8.0 or more in a steel pipe having a high purity composition.

r値は、従来から成形性の指標として用いられているが、本発明鋼管では円周方向に<100>、かつ圧延方向に<110>が配向された結晶方位を有することから、電磁特性が向上することに連動して、圧延方向のr値と電磁特性の対応がよく、r値が電磁特性の指標として用いることができる。
なお、本発明では、r値の測定は、試験片の引張方向およびその垂直方向に歪ゲージを貼付して、引張試験を行い、それぞれの方向の変位を逐一取り込んで、伸び6〜7%付近における変位を用いてr値を計算するものとする。なお、伸び6〜7%でr値を計算するのは、降伏点伸びの領域を越えた塑性変形域で算出するためである。r値は次式
r値=−1/{1+ln(L0/L)/ln(W0/W)}
ここで、L:試験片の引張方向の長さ
0:試験片の引張方向の初期長さ
W:試験片の幅方向の長さ
0:試験片の幅方向の初期長さ
を用いて計算した。なお、降伏点伸びが7%を超える場合には、塑性変形をした部分でr値を測定するものとする。なお、JIS 12号片(弧状試験片)で評価しても、鋼管を平板展開した平板試験片を使って評価してもよく、歪ゲージが貼れる面積が試験片の平行部に確保されれば試験片自体はJIS 5号、13号B等、とくに制限されない。ただし、円周方向のr値を測定する場合は平板展開しなければならない。
The r value is conventionally used as an index of formability, but the steel pipe of the present invention has a crystal orientation in which <100> is oriented in the circumferential direction and <110> is oriented in the rolling direction. In conjunction with the improvement, the correspondence between the r value in the rolling direction and the electromagnetic characteristics is good, and the r value can be used as an index of the electromagnetic characteristics.
In the present invention, the r value is measured by attaching a strain gauge in the tensile direction of the test piece and in the direction perpendicular thereto, conducting a tensile test, taking in the displacement in each direction one by one, and extending around 6 to 7%. The r value is calculated using the displacement at. The reason why the r value is calculated at an elongation of 6 to 7% is that the calculation is performed in a plastic deformation region exceeding the yield point elongation region. The r value is the following equation: r value = −1 / {1 + ln (L 0 / L) / ln (W 0 / W)}
Where L: length of the specimen in the tensile direction
L 0 : initial length of the specimen in the tensile direction
W: Length of the specimen in the width direction
W 0 : Calculated using the initial length in the width direction of the test piece. When the yield point elongation exceeds 7%, the r value is measured at the plastically deformed portion. In addition, it may be evaluated with a JIS No. 12 piece (arc-shaped test piece) or with a flat plate test piece obtained by flattening a steel pipe, and if the area where the strain gauge can be attached is secured in the parallel part of the test piece The test piece itself is not particularly limited, such as JIS No. 5 or No. 13 B. However, when measuring the r value in the circumferential direction, it must be flattened.

つぎに、本発明鋼管の好ましい製造方法について説明する。
本発明では、上記した組成を有する鋼管を加熱し、縮径圧延を施す。
本発明で使用する鋼管は、上記した組成を有する以外、その製造方法はとくに限定されない。通常公知の方法で製造された継目無鋼管、あるいは通常公知の方法で製造された電縫鋼管等の溶接鋼管がいずれも好適に用いることができる。
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.
In the present invention, the steel pipe having the above composition is heated and subjected to reduction rolling.
The manufacturing method of the steel pipe used in the present invention is not particularly limited except that it has the above-described composition. Either a seamless steel pipe manufactured by a generally known method or a welded steel pipe such as an ERW steel pipe manufactured by a generally known method can be suitably used.

縮径圧延に際し、鋼管を加熱する方法は特に限定する必要はない。加熱炉による加熱、誘導加熱による加熱等いずれも利用することが可能である。なお、継目無鋼管のような熱間で造管・製管されるものは、製管後、直に縮径圧延装置に送り、縮径圧延することもできる。また、再加熱したのち、縮径圧延することも可能である。
再加熱する場合、縮径圧延の加熱温度は、1100℃以下とすることが好ましい。加熱温度が1100℃を超えると、鋼管の表面性状が劣化する。圧延後、研磨あるいはエッチング処理等を施して使用する場合には、加熱温度の上限を限定する必要はない。なお、加熱温度は700℃以上、高純度系組成の鋼管を用いる場合は750℃以上とすることが好ましい。700℃未満、あるいは高純度系組成の鋼管を用いる場合は750℃未満では、変形抵抗が高くなり所定以上の縮径率を確保することがむずかしくなるとともに、冷却後の鋼管に縮径圧延の歪が残留し電磁特性が低下する。なお、電縫鋼管等の溶接部を有する鋼管では、加熱温度はAc変態点以上とすることが、非定常部を除去し、鋼管全体の電磁特性を向上させる観点から好ましい。上記した加熱温度の下限値は所定温度以上の縮径圧延の圧延終了温度を確保するために必要となる。
There is no need to specifically limit the method of heating the steel pipe during the diameter reduction rolling. Either heating by a heating furnace, heating by induction heating, or the like can be used. In addition, what is pipe-formed and manufactured hot like a seamless steel pipe can be directly sent to a reduced diameter rolling apparatus and reduced in diameter after the production. It is also possible to reduce the diameter after reheating.
In the case of reheating, the heating temperature of the reduced diameter rolling is preferably 1100 ° C. or less. When the heating temperature exceeds 1100 ° C, the surface properties of the steel pipe deteriorate. When using after rolling or polishing or etching, it is not necessary to limit the upper limit of the heating temperature. The heating temperature is preferably 700 ° C. or higher, and is preferably 750 ° C. or higher when a steel pipe having a high purity composition is used. When using a steel pipe of less than 700 ° C or a high-purity composition, if it is less than 750 ° C, the deformation resistance becomes high and it is difficult to ensure a diameter reduction ratio of a predetermined value or more. Remains and electromagnetic characteristics deteriorate. Note that, in a steel pipe having a welded portion such as an electric resistance welded steel pipe, it is preferable that the heating temperature is set to the Ac 3 transformation point or higher from the viewpoint of removing the unsteady portion and improving the electromagnetic characteristics of the entire steel pipe. The lower limit value of the heating temperature described above is necessary to ensure the rolling end temperature of the reduced diameter rolling equal to or higher than the predetermined temperature.

縮径圧延は、縮径率:15%以上で、圧延終了温度が(Ar変態点−10)℃以下である圧延とすることが好ましい。なお、高純度系組成の鋼管の場合には、縮径率:15%以上、圧延終了温度が730℃以上900℃以下である圧延とすることが好ましい。これにより、鋼管組織を、円周方向に<100>方向、圧延方向に<110>方向が配向した結晶方位を有し、粒成長し比較的粗大な結晶を有する組織とすることができる。 The diameter reduction rolling is preferably a rolling with a reduction ratio of 15% or more and a rolling end temperature of (Ar 3 transformation point −10) ° C. or less. In the case of a steel pipe having a high-purity composition, it is preferable to perform rolling with a diameter reduction ratio of 15% or more and a rolling end temperature of 730 ° C. or more and 900 ° C. or less. As a result, the steel pipe structure can be made to have a crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction, and grains grow and have relatively coarse crystals.

縮径率が、15%未満では、縮径量が不足し、結晶が上記した所望の結晶方位に配向しにくくなる。一方、縮径率の上限は、製品寸法や、圧延機の能力により決定され、とくに限定されないが、85〜90%程度とすることが好ましい。なお、より好ましくは縮径率は45〜80%である。
縮径圧延の圧延終了温度は、(Ar変態点−10)℃以下、高純度系組成の鋼管の場合には900℃以下、とすることが好ましい。縮径圧延の圧延終了温度が、(Ar変態点−10)℃(高純度系組成の鋼管の場合には、900℃)、を超えて高くなると、オーステナイト域で縮径圧延を完了していることになり、上記した所望の結晶方位に配向せず、ランダム方位となり、磁気特性が向上しない。なお、ここでいう圧延終了温度は、鋼管表面で測定した温度を用いるものとする。なお、圧延終了温度は400℃以上(高純度系組成の鋼管の場合には、730℃以上)、とすることが好ましい。400℃未満(高純度系組成の鋼管の場合には730℃未満)では縮径圧延の歪が残留するとともに、円周方向に<100>方位、圧延方向に<110>方位が配向した結晶方位を得にくくなり、磁気特性が低下する。より好ましくは600℃以上(純鉄系組成の鋼管の場合には750℃以上)である。
When the diameter reduction ratio is less than 15%, the amount of diameter reduction is insufficient, and the crystal is difficult to be oriented in the desired crystal orientation described above. On the other hand, the upper limit of the diameter reduction rate is determined by the product size and the capability of the rolling mill and is not particularly limited, but is preferably about 85 to 90%. More preferably, the diameter reduction rate is 45 to 80%.
The rolling end temperature of the reduced diameter rolling is preferably (Ar 3 transformation point −10) ° C. or lower, and 900 ° C. or lower in the case of a steel pipe having a high purity composition. When the rolling end temperature of the reduced diameter rolling becomes higher than (Ar 3 transformation point−10) ° C. (900 ° C. in the case of a steel pipe having a high purity composition), the reduced diameter rolling is completed in the austenite region. As a result, it is not oriented in the desired crystal orientation described above, but random orientation is obtained, and the magnetic properties are not improved. In addition, the temperature measured on the steel pipe surface shall be used for the rolling completion temperature here. Note that the rolling end temperature is preferably 400 ° C. or higher (730 ° C. or higher in the case of a steel pipe having a high purity composition). Less than 400 ° C. (less than 730 ° C. in the case of a steel tube with a high-purity composition), the strain of reduced diameter rolling remains, and the crystal orientation in which the <100> orientation is oriented in the circumferential direction and the <110> orientation is oriented in the rolling direction It becomes difficult to obtain, and the magnetic properties deteriorate. More preferably, it is 600 ° C. or higher (750 ° C. or higher in the case of a steel pipe having a pure iron composition).

また、本発明では、縮径圧延を、減肉率:40%以下、あるいは増肉率:40%以下の縮径圧延とすることがより好ましい。減肉率あるいは増肉率が40%を超えて大きくなると、結晶方位の回転が大きくなりすぎて、結晶方位の配向に影響し、上記した所望の結晶方位の配向が得られなくなる。このため、縮径圧延の減肉率は40%以下、あるいは増肉率は40%以下に限定することがより好ましい。なお、縮径圧延ままの状態で使用する場合には、増肉率を10〜25%にすることがより好ましい。一方、縮径圧延後、焼鈍処理を施す場合には、減肉率を10〜25%にすることがより好ましい。このように範囲を限定することによって、円周方向の<100>方位の配向が強まり、それに伴い、電磁特性がより向上する。   In the present invention, it is more preferable that the diameter reduction rolling be reduced diameter rolling with a reduction ratio of 40% or less, or a reduction ratio of 40% or less. When the thickness reduction ratio or the thickness increase ratio exceeds 40%, the rotation of the crystal orientation becomes too large, affecting the orientation of the crystal orientation, and the desired orientation of the crystal orientation cannot be obtained. For this reason, it is more preferable that the thickness reduction ratio of the reduced diameter rolling is limited to 40% or less, or the thickness increase ratio is limited to 40% or less. In addition, when using it in the state as reduced diameter rolling, it is more preferable to make the thickness increase rate 10 to 25%. On the other hand, when the annealing treatment is performed after the diameter reduction rolling, it is more preferable to set the thickness reduction rate to 10 to 25%. By limiting the range in this way, the orientation in the <100> orientation in the circumferential direction is strengthened, and accordingly, the electromagnetic characteristics are further improved.

なお、減肉率、増肉率、すなわち肉厚変化率は、次式
肉厚変化率=[{(縮径圧延の肉厚)−(素管の肉厚)}/(素管の肉厚)]×100(%)
で算出された値を使用するものとする。
また、本発明では、上記した縮径圧延後に、あるいはさらに所望形状に加工したのちに、550℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことが好ましい。なお焼鈍処理温度は、高純度系組成の鋼管の場合には750℃以上Ac 1 変態点以下の温度とすることが好ましい。
The thickness reduction rate, the rate of increase of wall thickness, that is, the rate of change in thickness is the following formula: rate of change in thickness = [{(thickness of reduced diameter rolling) − (thickness of blank tube)} / (thickness of blank tube) )] X 100 (%)
The value calculated in is used.
In the present invention, it is preferable to perform an annealing treatment at a temperature not lower than 550 ° C. and not higher than the Ac 1 transformation point after the above-described reduction rolling or after further processing into a desired shape. The annealing temperature is preferably 750 ° C. or more and Ac 1 transformation point or less in the case of a steel pipe having a high purity composition.

550℃以上Ac 1 変態点以下の温度、高純度系組成の鋼管の場合には750℃以上Ac 1 変態点以下の温度で、焼鈍処理を施すことにより、結晶粒がさらに成長し、電磁特性がより向上する。焼鈍温度が550℃未満(高純度系組成の鋼管の場合には750℃未満)では、結晶粒の成長が遅く、望ましい粒径の結晶粒まで成長させるために長時間を要する。一方、焼鈍温度がAc 1 変態点を超えて高くなると、結晶方位が崩れはじめる。このため、焼鈍処理は550℃以上Ac 1 変態点以下(高純度系組成の鋼管の場合には750℃以上Ac 1 変態点以下)の温度で行なうとした。なお、焼鈍後の冷却は、電磁特性の観点から徐冷とすることが好ましい。焼鈍処理は、縮径圧延後でも、所望の製品形状に加工したのちでもいずれでも効果は同じである。焼鈍処理の条件を適正化することにより、容易に平均結晶粒径を20μm以上、好ましくは40μm以上にすることができる。 By annealing at a temperature of 550 ° C or higher and below the Ac 1 transformation point, and in the case of a high purity steel pipe at a temperature of 750 ° C or higher and below the Ac 1 transformation point, crystal grains further grow and electromagnetic characteristics are improved. More improved. When the annealing temperature is less than 550 ° C. (less than 750 ° C. in the case of a steel pipe having a high purity composition), the growth of crystal grains is slow, and it takes a long time to grow to crystal grains having a desired grain size. On the other hand, when the annealing temperature becomes higher than the Ac 1 transformation point, the crystal orientation starts to collapse. For this reason, the annealing treatment is performed at a temperature of 550 ° C. or more and Ac 1 transformation point or less (in the case of a steel pipe having a high purity composition, it is 750 ° C. or more and Ac 1 transformation point or less). Note that the cooling after annealing is preferably slow cooling from the viewpoint of electromagnetic characteristics. The effect of the annealing treatment is the same both after the reduced diameter rolling and after being processed into a desired product shape. By optimizing the conditions for the annealing treatment, the average crystal grain size can be easily made 20 μm or more, preferably 40 μm or more.

なお、縮径圧延後で上記した焼鈍処理前に、冷間引抜加工を施すことが好ましい。これにより、さらに優れた電磁特性を有する鋼管となる。これは、冷間引抜加工により結晶粒の回転をある程度拘束した状態で冷間歪が印加されるため、焼鈍時に結晶粒の配向、粒の成長が促進されるためと考えられる。なお、冷間引抜加工は、減面率で15%以上60%以下の加工とすることが好ましい。なお、減面率は、次式
減面率(%)={(引抜前の鋼管断面積)−(引抜後の鋼管断面積)}/
(引抜前の鋼管断面積)×100
で計算するものとする。
In addition, it is preferable to perform a cold drawing process after the diameter reduction rolling and before the above-described annealing treatment. Thereby, it becomes a steel pipe which has the further outstanding electromagnetic property. This is probably because cold strain is applied in a state in which the rotation of crystal grains is restricted to some extent by cold drawing, so that crystal grain orientation and grain growth are promoted during annealing. In addition, it is preferable that the cold drawing process is a process with a reduction in area of 15% or more and 60% or less. The area reduction ratio is the following formula: Area reduction ratio (%) = {(steel pipe cross-sectional area before drawing)-(steel pipe cross-sectional area after drawing)} /
(Cross-sectional area of steel pipe before drawing) × 100
It shall be calculated in

表1に示す組成の薄鋼帯板をロール成形しオープン管とし、端部を電縫溶接して得られた電縫鋼管、および表1に示す組成を有する鋳片をマンネスマン方式で製管して得られた継目無鋼管を、素材鋼管とした。
これら素材鋼管を900〜1000℃に加熱したのち、表2に示す条件(縮径率、減肉(−)率/増肉(+)率、圧延終了温度)の縮径圧延を施した。得られた鋼管の一部には、さらに冷間引抜加工、および/または、焼鈍処理を施した。なお、冷間引抜加工は減面率:30%とした。焼鈍処理は、500〜900℃の範囲の温度で保持する処理とした。
A thin steel strip having the composition shown in Table 1 is roll-formed to form an open pipe, and an ERW steel pipe obtained by electro-welding the ends and a slab having the composition shown in Table 1 are manufactured by the Mannesmann method. The seamless steel pipe obtained in this way was used as the raw steel pipe.
After these steel tubes were heated to 900 to 1000 ° C., they were subjected to reduction rolling under the conditions shown in Table 2 (reduction ratio, thickness reduction (−) ratio / thickening (+) ratio, rolling end temperature). A part of the obtained steel pipe was further subjected to cold drawing and / or annealing. The cold drawing process was performed with a surface reduction rate of 30%. The annealing treatment was performed at a temperature in the range of 500 to 900 ° C.

得られた鋼管について、電磁特性の測定、組織調査、r値測定を実施した。測定方法はつぎの通りとした。
(1)電磁特性
得られた鋼管を、長さ5〜10mmに輪切りにし、切断面を研磨したのち、一次巻数:250巻、二次巻数:100巻として、直流磁化特性を測定した。10000A/mまでの磁化力を作用させて透磁率を測定し最大値(最大透磁率)を求め、最大比透磁率を算出した。また、さらに磁化力:200A/mにおける磁束密度を求めた。なお、測定は、酸洗によりスケールを除去したのち、行なった。なお、最大比透磁率は、その後の処理を施さない電縫鋼管のまま(鋼管No.1)を基準(1.0)とし、基準に対する比(最大比透磁率比)で評価した。
(2)組織調査
得られた鋼管について、結晶粒径の測定、結晶方位の測定を実施した。
The obtained steel pipe was subjected to measurement of electromagnetic characteristics, structure investigation, and r value measurement. The measurement method was as follows.
(1) Electromagnetic characteristics The obtained steel pipe was cut into a length of 5 to 10 mm, the cut surface was polished, and then the direct current magnetization characteristics were measured with a primary winding number of 250 and a secondary winding number of 100. The magnetic force was measured up to 10000 A / m, the magnetic permeability was measured to obtain the maximum value (maximum magnetic permeability), and the maximum relative magnetic permeability was calculated. Further, the magnetic flux density at a magnetizing force of 200 A / m was obtained. The measurement was carried out after removing the scale by pickling. The maximum relative permeability was evaluated as a ratio (maximum relative permeability ratio) with respect to the reference, with the electric resistance welded steel pipe not subjected to the subsequent treatment (steel pipe No. 1) as the reference (1.0).
(2) Structure investigation The obtained steel pipe was measured for crystal grain size and crystal orientation.

結晶粒径は、鋼管のL方向断面について、腐食液:ナイタールでエッチングし顕微鏡で観察して、直線交差線分法を用いて算出した。なお、測定位置は、最表層100μmを除いた板厚中央部とした。L方向に沿って結晶粒500個の線分長さを測定し、かつ、板厚方向に沿って同様に結晶粒500個の線分の長さを測定して、それぞれの方向における線分の長さをフェライト粒数で除し、粒径サイズを算出したあと、平均をとって、平均結晶粒径とした。   The crystal grain size was calculated using a straight line segment method for the L direction cross section of the steel pipe, etching with a corrosive solution: nital and observing with a microscope. The measurement position was the center of the plate thickness excluding the outermost layer of 100 μm. The lengths of 500 crystal grains along the L direction are measured, and the lengths of 500 crystal grains are similarly measured along the plate thickness direction. After dividing the length by the number of ferrite grains and calculating the grain size, the average was taken as the average grain size.

また、結晶方位は、X線回折法を用いて三次元ランダム強度比を測定して求めた。鋼管を平板展開して得られた試片について、表層500μm以上を研磨により除去し、鋼管の肉厚中央部付近から鏡面仕上した試験片を採取した。これら試験片にさらに研磨時の加工歪を除去するために化学研磨(腐食液:2〜3%フッ酸+過酸化水素水)を施した。
得られた測定用試験片について、X線回析装置を用いて、反射法による不完全極点図を測定した。得られた結果から鋼管の円周方向に<100>方向かつ圧延方向に<110>方向が配向した結晶方位の積分強度を、ランダム強度で規格化し三次元ランダム強度比を求めた。なお、X線源はCuKαを用いた。
(3)r値測定
得られた鋼管を平板展開した試験片または鋼管から切出した試験片(JIS 12号試験片)を用いて、r値を評価した。r値の測定方法は前記した方法と同様とした。
The crystal orientation was determined by measuring a three-dimensional random intensity ratio using an X-ray diffraction method. About the specimen obtained by flattening the steel pipe, a surface layer of 500 μm or more was removed by polishing, and a specimen having a mirror finish was collected from the vicinity of the thickness center of the steel pipe. These test pieces were further subjected to chemical polishing (corrosive solution: 2-3% hydrofluoric acid + hydrogen peroxide solution) in order to remove processing distortion during polishing.
About the obtained test piece for a measurement, the incomplete pole figure by the reflection method was measured using the X-ray diffraction apparatus. From the obtained results, the integrated strength of the crystal orientation in which the <100> direction in the circumferential direction of the steel pipe and the <110> direction in the rolling direction were oriented was normalized by the random strength to obtain a three-dimensional random strength ratio. Note that CuKα was used as the X-ray source.
(3) Measurement of r value The r value was evaluated using a test piece obtained by flattening the obtained steel pipe or a test piece cut out from the steel pipe (JIS No. 12 test piece). The r value was measured in the same manner as described above.

得られた結果を表2に併記する。   The obtained results are also shown in Table 2.

本発明例はいずれも、円周方向に<100>方向、圧延方向に<110>方向が強く配向し、X線の三次元ランダム強度比が3.0以上を有しており、最大比透磁率比が電縫鋼管まま(鋼管No.1)と比べて高く、優れた特性を示している。また、本発明例では、低磁場(200A/m)における磁束密度も電縫鋼管まま(鋼No.1)に比べ、大きくなっている。   In all of the examples of the present invention, the <100> direction in the circumferential direction and the <110> direction in the rolling direction are strongly oriented, the X-ray three-dimensional random intensity ratio is 3.0 or more, and the maximum relative permeability ratio Is higher than that of ERW steel pipes (steel pipe No. 1) and shows excellent characteristics. Moreover, in the example of this invention, the magnetic flux density in a low magnetic field (200 A / m) is also large compared with an electric-resistance-welded steel pipe (steel No. 1).

特に本発明例(鋼管No.11、13〜16、19、20、22、23、25)では円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線三次元ランダム強度比が8.0以上となっており、特に電磁特性が顕著に向上している。また、本発明例(鋼管No.13、16、25)では、10.0以上となって、一層優れた特性を示している。また、縮径圧延後に、550℃以上の焼鈍処理(鋼管No.15、16)、あるいは冷間引抜加工および550℃以上の焼鈍処理(鋼管No.13)を施すことにより、結晶粒が粗大化し、電磁特性がさらに顕著に向上する。また、縮径圧延後に焼鈍処理を施す本発明例(鋼管No.19〜21)では、10〜25%減肉圧延することにより、増減肉がないものと比べて、電磁特性が更に向上している。一方、縮径圧延のみの場合で焼鈍処理を施さない場合には、10〜25%増肉圧延とすることにより増減肉のないものと比べて、電磁特性が更に向上する。なお、肉厚変化率が25%を超えると、電磁特性向上の効果が少なくなる。また、円周方向のr値が1.2以上、圧延方向のr値が、(円周方向のr値+1.0)以上を示す鋼管は、いずれも、円周方向に<100>方向、圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上を有し、優れた電磁特性を示している。   Particularly in the present invention examples (steel pipe Nos. 11, 13 to 16, 19, 20, 22, 23, 25), the crystal orientation X is oriented in the <100> direction in the circumferential direction and the <110> direction in the rolling direction. The line three-dimensional random intensity ratio is 8.0 or more, and the electromagnetic characteristics are particularly improved. Further, in the inventive examples (steel pipe Nos. 13, 16, and 25), the value is 10.0 or more, which shows more excellent characteristics. In addition, after shrinking rolling, the crystal grains are coarsened by annealing at 550 ° C or higher (steel pipe Nos. 15 and 16), or cold drawing and annealing at 550 ° C or higher (steel pipe No. 13). In addition, the electromagnetic characteristics are further remarkably improved. Moreover, in the present invention examples (steel pipe Nos. 19 to 21) in which the annealing treatment is performed after the diameter reduction rolling, the electromagnetic characteristics are further improved by performing the thickness reduction rolling by 10 to 25% compared to the case where there is no increase or decrease in the thickness. Yes. On the other hand, in the case where only the diameter reduction rolling is performed and the annealing treatment is not performed, the electromagnetic characteristics are further improved by increasing the thickness to 10 to 25% as compared with the case without increasing or decreasing the thickness. If the thickness change rate exceeds 25%, the effect of improving electromagnetic characteristics is reduced. Moreover, all the steel pipes in which the r value in the circumferential direction is 1.2 or more and the r value in the rolling direction is (circumferential r value + 1.0) or more are <100> directions in the circumferential direction and the rolling direction. Furthermore, the X-ray three-dimensional random intensity ratio of the crystal orientation in which the <110> direction is oriented is 3.0 or more, and exhibits excellent electromagnetic characteristics.

一方、本発明の範囲を外れる比較例は、円周方向に<100>方向、圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0未満となり、電磁特性の向上が認められない。
C含有量が本発明範囲を外れる比較例(鋼管No.7)では、最大比透磁率比が比較例(鋼管No.1)の0.8と低い。また、縮径圧延の縮径率が本発明の好適範囲を外れ、X線の三次元ランダム強度比が3.0未満となる。
On the other hand, in the comparative example out of the scope of the present invention, the X-ray three-dimensional random intensity ratio of the crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction is less than 3.0. Improvement is not recognized.
In the comparative example (steel pipe No. 7) in which the C content is out of the range of the present invention, the maximum relative permeability ratio is as low as 0.8 of the comparative example (steel pipe No. 1). Further, the reduction ratio of the reduction rolling is out of the preferred range of the present invention, and the three-dimensional random intensity ratio of X-rays is less than 3.0.

また、縮径圧延の縮径率が本発明の好適範囲を低く外れる比較例(鋼管No.10)の最大比透磁率比は、素材鋼管ままの比較例(鋼管No.1)と同じレベルにとどまり、何ら向上が認められない。また、縮径圧延の圧延終了温度が本発明の好適範囲を高く外れる比較例(鋼管No.12)の最大比透磁率比は、素材鋼管まま(鋼管No.1)と同じレベルに留り、何ら向上が認められない。また、縮径圧延後の焼鈍処理温度が本発明の好適範囲を高く外れる比較例(鋼管No.17、18)では、粒成長し、素材鋼管まま(鋼管No.1)よりも最大比透磁率比が高くなっているが、三次元ランダム強度比は3.0未満であり、縮径圧延時に作り込んだ結晶方位が崩れて、ランダム化していることが分かる。そのため、鋼管No.17、18(比較例)の200A/mでの磁束密度は素材鋼管まま(鋼管No.1)とほぼ同等で、鋼管No.15、16(本発明例)におけるような電磁特性の顕著な向上は認められない。   In addition, the maximum relative permeability ratio of the comparative example (steel pipe No. 10) in which the reduction ratio of the reduced diameter rolling falls outside the preferred range of the present invention is at the same level as the comparative example (steel pipe No. 1) as the raw steel pipe. No improvement is observed. In addition, the maximum relative permeability ratio of the comparative example (steel pipe No. 12) in which the rolling end temperature of the reduced diameter rolling deviates from the preferred range of the present invention remains at the same level as the raw steel pipe (steel pipe No. 1), No improvement is recognized. Moreover, in the comparative examples (steel pipe Nos. 17 and 18) in which the annealing treatment temperature after diameter reduction is far from the preferred range of the present invention, the grains grow and the maximum relative permeability is higher than that of the raw steel pipe (steel pipe No. 1). Although the ratio is high, the three-dimensional random strength ratio is less than 3.0, and it can be seen that the crystal orientation formed during the diameter reduction rolling collapses and is randomized. Therefore, the magnetic flux density at 200 A / m of steel pipes Nos. 17 and 18 (comparative example) is almost the same as that of the raw steel pipes (steel pipe No. 1), and electromagnetic waves as in steel pipes Nos. 15 and 16 (examples of the present invention). There is no noticeable improvement in properties.

表3に示す高純度系組成の薄鋼帯板をロール成形しオープン管とし、端部を電縫溶接して得られた電縫鋼管を、素材鋼管とした。
これら素材鋼管を900〜1000℃に加熱したのち、表4に示す条件(縮径率、減肉(−)率/増肉(+)率、圧延終了温度)の縮径圧延を施した。得られた鋼管の一部には、さらに冷間引抜加工、および/または、焼鈍処理を施した。なお、冷間引抜加工は減面率:30%とした。焼鈍処理は、500〜950℃の範囲の温度で保持する処理とした。
A thin steel strip having a high-purity composition shown in Table 3 was roll-formed to form an open pipe, and an electric-welded steel pipe obtained by electro-welding the ends was used as a material steel pipe.
After these steel tubes were heated to 900 to 1000 ° C., they were subjected to reduction rolling under the conditions shown in Table 4 (reduction ratio, thickness reduction (−) ratio / thickening (+) ratio, rolling end temperature). A part of the obtained steel pipe was further subjected to cold drawing and / or annealing. The cold drawing process was performed with a surface reduction rate of 30%. The annealing treatment was carried out at a temperature in the range of 500 to 950 ° C.

得られた鋼管について、電磁特性の測定、組織調査、r値測定を実施した。測定方法は、実施例1とほぼ同様に、次のとおりとした。
(1)電磁特性
得られた鋼管を、長さ5〜10mmに輪切りにし、切断面を研磨したのち、一次巻数:250巻、二次巻数:100巻として、直流磁化特性を測定した。10000A/mまでの磁化力を作用させて透磁率を測定し最大値(最大透磁率)を求め、最大比透磁率を算出した。また、さらに磁化力:200A/mにおける磁束密度を評価した。なお、測定は、酸洗によりスケールを除去したのち、行なった。
(2)組織調査
得られた鋼管について、結晶粒径の測定、結晶方位の測定を実施した。
The obtained steel pipe was subjected to measurement of electromagnetic characteristics, structure investigation, and r value measurement. The measurement method was as follows in substantially the same manner as in Example 1.
(1) Electromagnetic characteristics The obtained steel pipe was cut into a length of 5 to 10 mm, the cut surface was polished, and then the direct current magnetization characteristics were measured with a primary winding number of 250 and a secondary winding number of 100. The magnetic force was measured up to 10000 A / m, the magnetic permeability was measured to obtain the maximum value (maximum magnetic permeability), and the maximum relative magnetic permeability was calculated. Further, the magnetic flux density at a magnetizing force of 200 A / m was evaluated. The measurement was carried out after removing the scale by pickling.
(2) Structure investigation The obtained steel pipe was measured for crystal grain size and crystal orientation.

結晶粒径は、鋼管のC断面について、腐食液でエッチングし顕微鏡で観察して、直線交差線分法を用いて算出した。腐食液は、ナイタールと、ピクラール若しくはピクリン酸飽和水溶液とし、試験片を両腐食液に交互に浸漬しながら、組織を現出させて粒径を測定した。なお、粒径の測定に際しては、明瞭に識別できる粒界(大傾角粒界)のみとし、「くもの糸」のように非常に薄く腐食された粒界は存在しないものとして無視した。   The crystal grain size was calculated using a straight line segment method for the C cross section of the steel pipe, etching with a corrosive solution and observing with a microscope. The corrosive solution was nital and a saturated aqueous solution of picral or picric acid, and the test piece was immersed in the two corrosive solutions alternately to reveal the structure and measure the particle size. In the measurement of the particle size, only the grain boundaries that were clearly identifiable (large tilt grain boundaries) were used, and the grain boundaries that were corroded very thinly such as “spider yarn” were ignored.

測定位置は、最表層100μmを除いた板厚中央部とした。鋼管表層に沿った方向で結晶粒200個の線分長さを測定し、線分の長さをフェライト粒数で除し、粒径サイズを算出し、平均結晶粒径とした。なお、平均結晶粒径が明らかに100μmを超えるものは正確な粒径は測定せず、100μm超(>100μm)として表示した。焼鈍処理を施した鋼管では、結晶粒は整粒であるが、高純度系組成の鋼管では縮径圧延ままの組織は、結晶粒が肉厚方向(鋼管の外側から内側方向)に伸びた組織となっている。   The measurement position was the center of the plate thickness excluding the outermost layer of 100 μm. The line segment length of 200 crystal grains was measured in the direction along the steel pipe surface layer, the length of the line segment was divided by the number of ferrite grains, and the particle size was calculated to obtain the average crystal grain size. When the average crystal grain size clearly exceeded 100 μm, the exact grain size was not measured and displayed as more than 100 μm (> 100 μm). In steel pipes that have been annealed, the crystal grains are sized, but in high-purity steel pipes, the as-rolled structure is a structure in which the crystal grains extend in the thickness direction (from the outside to the inside of the steel pipe). It has become.

また、結晶方位は、X線回折法を用いて三次元ランダム強度比を測定して求めた。鋼管を平板展開して得られた試片について、表層500μm以上を研磨により除去し、鋼管の肉厚中央部付近から鏡面仕上した試験片を採取した。これら試験片にさらに研磨時の加工歪を除去するために化学研磨(腐食液:2〜3%フッ酸+過酸化水素水)を施した。
得られた測定用試験片について、X線回析装置を用いて、反射法による不完全極点図を測定した。得られた結果から鋼管の円周方向に<100>方向かつ圧延方向に<110>方向が配向した結晶方位の積分強度を、ランダム強度で規格化し三次元ランダム強度比を求めた。なお、X線源はCuKαを用いた。
(3)r値測定
得られた鋼管から切出した弧状試験片(JIS 12号試験片)を用いて、前記した測定方法と同様の方法で試験片に歪ゲージを貼付し、円周方向と圧延方向の歪を測定し、r値を評価した。なお、伸び7〜8%時の歪を用いて算出した。
The crystal orientation was determined by measuring a three-dimensional random intensity ratio using an X-ray diffraction method. About the specimen obtained by flattening the steel pipe, a surface layer of 500 μm or more was removed by polishing, and a specimen having a mirror finish was collected from the vicinity of the thickness center of the steel pipe. These test pieces were further subjected to chemical polishing (corrosive solution: 2-3% hydrofluoric acid + hydrogen peroxide solution) in order to remove processing distortion during polishing.
About the obtained test piece for a measurement, the incomplete pole figure by the reflection method was measured using the X-ray diffraction apparatus. From the obtained results, the integrated strength of the crystal orientation in which the <100> direction in the circumferential direction of the steel pipe and the <110> direction in the rolling direction were oriented was normalized by the random strength to obtain a three-dimensional random strength ratio. Note that CuKα was used as the X-ray source.
(3) Measurement of r value Using an arc-shaped test piece (JIS No. 12 test piece) cut out from the obtained steel pipe, a strain gauge was attached to the test piece by the same method as described above, and the circumferential direction and rolling Directional strain was measured and the r value was evaluated. In addition, it calculated using the distortion at the time of elongation 7 to 8%.

得られた結果を表4に併記する。   The obtained results are also shown in Table 4.

本発明例はいずれも、C:0.01%未満、Fe:95%以上の高純度系組成を有し、円周方向に<100>方向、圧延方向に<110>方向が強く配向し、X線の三次元ランダム強度比が3.0以上を有し、最大比透磁率が2500以上、低磁場(200A/m)における磁束密度が0.8T以上の優れた電磁特性を示している。また、本発明例はいずれも、平均結晶粒径が20μm以上、圧延方向のr値が2.0以上を示している。平均結晶粒径が20μm以上、圧延方向のr値が2.0以上であれば、概ね良好な電磁特性を示している。   Each of the inventive examples has a high purity composition of C: less than 0.01% and Fe: 95% or more, and the <100> direction in the circumferential direction and the <110> direction in the rolling direction are strongly oriented. The three-dimensional random strength ratio is 3.0 or more, the maximum relative permeability is 2500 or more, and the magnetic flux density in a low magnetic field (200 A / m) is 0.8 T or more. Further, all of the examples of the present invention have an average crystal grain size of 20 μm or more and an r value in the rolling direction of 2.0 or more. When the average grain size is 20 μm or more and the r value in the rolling direction is 2.0 or more, generally good electromagnetic characteristics are shown.

特に、縮径圧延後に焼鈍処理を施した本発明例(鋼管No.2−2〜No.2−4、No.2−7〜No.2−10、No.2−18〜No.2−20、No.2−22、No.2−26、No.2−27、No.2−28、No.2−29)は、最大比透磁率が7500以上、低磁場(200A/m)における磁束密度が1.0T以上の非常に優れた磁気特性を示している。
また、Si及びAl含有量が高い本発明例(鋼管No.2−28)は、最大比透磁率が61280、低磁場(200A/m)における磁束密度が1.9Tと電磁特性が顕著に向上している。また、Crを1.5%含有する本発明例(鋼管No.2−29)は、最大比透磁率や、低磁場(200A/m)における磁束密度では、Crを含有しない本発明例(鋼管No.2−2〜No.2−4、No.2−7〜No.2−10)とほぼ同程度であるが、400Hzで磁束密度0.1Tでの鉄損が、Crを含有する鋼管No.2−29では2.01W/kgであるのに対し、Crを含有しない鋼管No.2−10では2.48W/kgと、Crを含有することにより高周波域における電磁特性が顕著に向上することがわかる。また、引抜加工を施された本発明例(鋼管No. 2−27)は引抜加工なしの比較例(鋼管No.2−26)に比べて最大比透磁率、磁束密度がともに向上している。
In particular, the invention examples (steel pipe No. 2-2 to No. 2-4, No. 2-7 to No. 2-10, No. 2-18 to No. 2- 20, No. 2-22, No. 2-26, No. 2-27, No. 2-28, No. 2-29) have a maximum relative permeability of 7500 or more in a low magnetic field (200 A / m). It shows very excellent magnetic properties with a magnetic flux density of 1.0T or more.
In addition, the present invention example (steel pipe No. 2-28) having a high Si and Al content has a maximum magnetic permeability of 61280, a magnetic flux density of 1.9 T in a low magnetic field (200 A / m), and the electromagnetic characteristics are remarkably improved. ing. In addition, the present invention example (steel pipe No. 2-29) containing 1.5% of Cr is the present invention example (steel pipe No. 2-29) containing no Cr at the maximum relative magnetic permeability and the magnetic flux density in a low magnetic field (200 A / m). 2-2 to No.2-4, No.2-7 to No.2-10), but the iron loss at a magnetic flux density of 0.1 T at 400 Hz is a steel pipe No. 2 containing Cr. It can be seen that steel pipe No. 2-10 that does not contain Cr is 2.48 W / kg, and the electromagnetic characteristics in the high frequency region are significantly improved by containing Cr, while -29 is 2.01 W / kg. In addition, the present invention example (steel pipe No. 2-27) subjected to the drawing process has both the maximum relative permeability and the magnetic flux density improved compared to the comparative example without the drawing process (steel pipe No. 2-26). .

また、縮径圧延の圧延終了温度が、高純度組成鋼管における好適範囲を外れる本発明例(鋼管No.2−12、No.2−13、2−17)では、電磁特性が若干低下している。また、縮径圧延の縮径率が、本発明の好適範囲を外れる本発明例(鋼管No.2−21)では、電磁特性が若干低下している。また、縮径圧延後の焼鈍処理温度が、高純度組成鋼管における好適範囲を外れる本発明例(鋼管No.2−6、2−11)では、電磁特性が若干低下している。   Moreover, in the present invention examples (steel pipes No. 2-12, No. 2-13, 2-17) in which the rolling end temperature of the diameter reduction rolling is outside the preferable range in the high purity composition steel pipe, the electromagnetic characteristics are slightly lowered. Yes. Moreover, in the present invention example (steel pipe No. 2-21) in which the diameter reduction ratio of the diameter reduction rolling is outside the preferable range of the present invention, the electromagnetic characteristics are slightly deteriorated. Further, in the present invention examples (steel pipe Nos. 2-6 and 2-11) in which the annealing temperature after the diameter reduction rolling is out of the preferable range in the high purity composition steel pipe, the electromagnetic characteristics are slightly lowered.

また、縮径圧延ままの本発明例(鋼管No.2−1)は、同一組成の電縫管ままの比較例(鋼管No.2−14)にくらべ、最大比透磁率が20%以上、低磁場(200A/m)における磁束密度が200%以上と向上している。また、縮径圧延後焼鈍処理を施された本発明例(例えば鋼管No.2−7〜No.2−10、鋼管No.2−17〜No.2−22)は、同一組成の電縫管造管後焼鈍処理を施された比較例(例えば鋼管No.2−15、鋼管No.2−24)にくらべ、最大比透磁率が20%以上、低磁場(200A/m)における磁束密度が200%以上と向上している。   In addition, the present invention example (steel pipe No. 2-1) as it is in the reduced diameter rolling has a maximum relative permeability of 20% or more, compared with the comparative example (steel pipe No. 2-14) as it is as an electric resistance welded pipe of the same composition. The magnetic flux density in a low magnetic field (200 A / m) is improved to 200% or more. In addition, examples of the present invention (for example, steel pipe No. 2-7 to No. 2-10, steel pipe No. 2-17 to No. 2-22) subjected to annealing treatment after diameter reduction rolling have the same composition. Compared to comparative examples (for example, steel pipe No. 2-15 and steel pipe No. 2-24) subjected to post-annealing annealing, the maximum relative permeability is 20% or more, and the magnetic flux density in a low magnetic field (200 A / m) Has improved to over 200%.

なお、縮径圧延の焼鈍温度が好適範囲から低く外れる鋼管No.2−6は、同一組成の電縫管ままの比較例(鋼管No.2−14)にくらべ、電磁特性は向上しているが、結晶粒径が細かく、同一組成の電縫管造管後焼鈍処理を施された比較例(例えば鋼管No.2−15、鋼管No.2−16)にくらべ、電磁特性の向上量は少ない。また、縮径圧延の圧延終了温度が本発明の好適範囲から外れる本発明例(縮径圧延後焼鈍処理を施された鋼管)(鋼管No.2−17)では、同一組成の電縫管造管後焼準処理を施された比較例(鋼管No.2−25)に比べて、最大比透磁率が若干低下しているものの、磁束密度は向上している。これは、鋼管No.2−25では、電縫管造管後の熱処理(焼鈍処理)により結晶粒が成長しているが、縮径圧延を施されていないため、結晶粒の配向性が不足しているためであると考えられる。   In addition, steel pipe No. 2-6 in which the annealing temperature of reduced diameter rolling deviates from the preferred range is lower in electromagnetic characteristics than the comparative example (steel pipe No. 2-14) with the same composition as an electric resistance welded pipe. However, compared with comparative examples (for example, steel pipe No. 2-15 and steel pipe No. 2-16), which have a fine crystal grain size and are subjected to post-annealing processing of the same composition, the improvement in electromagnetic characteristics is Few. Further, in the present invention example (steel pipe subjected to annealing treatment after diameter reduction rolling) (steel pipe No. 2-17) in which the rolling end temperature of the diameter reduction rolling deviates from the preferred range of the present invention, the electric resistance welded pipe structure having the same composition Compared with the comparative example (steel pipe No. 2-25) subjected to post-tube normalization, the maximum relative permeability is slightly reduced, but the magnetic flux density is improved. In steel pipe No.2-25, the crystal grains are grown by heat treatment (annealing treatment) after forming the ERW pipe, but since the diameter reduction rolling is not performed, the orientation of the crystal grains is insufficient. It is thought that it is because it is doing.

一方、X線の三次元ランダム強度比が3.0未満と本発明の範囲を外れる比較例では、本発明例に比べて、最大比透磁率または低磁場(200A/m)における磁束密度が低下し、電磁特性が劣化している。
比較例である鋼管No.2−5、鋼管No.2−11では、縮径圧延後の焼鈍処理加熱温度が本発明の好適範囲を高く外れ、オーステナイト単相域まで加熱されたため、縮径圧延時に作り込んだ結晶方位がランダム化してX線の三次元ランダム強度比が3.0未満となり、電磁特性が低下している。また、比較例である鋼管No.2−23では、縮径圧延の圧延終了温度が高く、X線の三次元ランダム強度比が3.0未満となり、電磁特性が低下している。
On the other hand, in the comparative example in which the three-dimensional random intensity ratio of X-rays is less than 3.0 and out of the scope of the present invention, the maximum relative permeability or the magnetic flux density at a low magnetic field (200 A / m) is reduced as compared with the present invention example. The electromagnetic characteristics are degraded.
In the steel pipe No. 2-5 and the steel pipe No. 2-11 which are comparative examples, the annealing treatment heating temperature after the diameter reduction rolling deviated from the preferred range of the present invention, and was heated to the austenite single phase region. Occasionally, the crystal orientation is randomized, and the three-dimensional random intensity ratio of X-rays is less than 3.0, and electromagnetic characteristics are degraded. Moreover, in steel pipe No.2-23 which is a comparative example, the rolling end temperature of diameter reduction rolling is high, the three-dimensional random intensity ratio of X-rays is less than 3.0, and electromagnetic characteristics are degraded.

Claims (26)

質量%で、C:0.5%以下を含み、Feを85%以上含む組成を有する鋼管であって、円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有することを特徴とする電磁特性に優れた鋼管。   A steel pipe having a composition containing, in mass%, C: 0.5% or less and Fe containing 85% or more, and having a crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction, A steel pipe excellent in electromagnetic characteristics, characterized by having a structure having a three-dimensional random intensity ratio of X-rays of 3.0 or more. 円周方向のr値が1.2以上、圧延方向のr値が(円周方向のr値+1.0)以上を有することを特徴とする請求項1に記載の鋼管。   2. The steel pipe according to claim 1, wherein the r value in the circumferential direction is 1.2 or more and the r value in the rolling direction is (r value in the circumferential direction +1.0) or more. 前記組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする請求項1または2に記載の鋼管。   The steel pipe according to claim 1 or 2, wherein the structure is a structure having an average crystal grain size of 20 µm or more. 前記組成が、質量%で、C:0.5%以下を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項1ないし3のいずれかに記載の鋼管。   The composition contains, by mass%, C: 0.5% or less, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01-0.06%, N The steel pipe according to any one of claims 1 to 3, wherein the steel pipe contains 0.005% or less and has a balance of Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、下記A〜C群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項4に記載の鋼管。

A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
B群:Cr:15%以下、Ni:0.5%以下、Mo:0.3%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
The steel pipe according to claim 4, further comprising one group or two or more groups selected from the following groups A to C in mass% in addition to the composition.
Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: One or more of 0.005% or less,
Group B: Cr: 15% or less, Ni: 0.5% or less, Mo: 0.3% or less, 1 type or 2 types or more,
Group C: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
質量%で、C:0.5%以下を含み、Feを85%以上とする組成を有する鋼管を、加熱したのち、縮径圧延を施すに当たり、前記縮径圧延を、縮径率が15%以上、圧延終了温度が(Ar変態点−10)℃以下である圧延とすることを特徴とする電磁特性に優れた鋼管の製造方法。 In mass%, C: 0.5% or less, and a steel pipe having a composition with Fe of 85% or more is heated, and then subjected to diameter reduction rolling, the diameter reduction rolling is performed at a reduction ratio of 15% or more, A method for producing a steel pipe excellent in electromagnetic characteristics, characterized in that the rolling end temperature is (Ar 3 transformation point −10) ° C. or less. 前記組成が、質量%で、C:0.5%以下を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項6に記載の鋼管の製造方法。   The composition contains, by mass%, C: 0.5% or less, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01-0.06%, N The method for producing a steel pipe according to claim 6, wherein the composition contains 0.005% or less and the balance is Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、下記A〜C群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項7に記載の鋼管の製造方法。

A群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
B群:Cr:15%以下、Ni:0.5%以下、Mo:0.3%以下のうちの1種または2種以上、
C群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
The method for manufacturing a steel pipe according to claim 7, further comprising one group or two or more groups selected from the following groups A to C in mass% in addition to the composition.
Group A: Ti: 0.05% or less, Nb: 0.05% or less, B: One or more of 0.005% or less,
Group B: Cr: 15% or less, Ni: 0.5% or less, Mo: 0.3% or less, 1 type or 2 types or more,
Group C: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
前記縮径圧延後、あるいはさらに所望形状に加工したのち、550℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことを特徴とする請求項6ないし8のいずれかに記載の鋼管の製造方法。 The method for manufacturing a steel pipe according to any one of claims 6 to 8, wherein annealing treatment is performed at a temperature not lower than 550 ° C and not higher than the Ac 1 transformation point after the diameter reduction rolling or further processing into a desired shape. . 前記縮径圧延後で前記焼鈍処理前に、冷間引抜加工を施すことを特徴とする請求項9に記載の鋼管の製造方法。   The method for manufacturing a steel pipe according to claim 9, wherein cold drawing is performed after the diameter reduction rolling and before the annealing treatment. 前記縮径圧延が、増肉率:40%以下の縮径圧延であることを特徴とする請求項6ないし10のいずれかに記載の鋼管の製造方法。   The method for manufacturing a steel pipe according to any one of claims 6 to 10, wherein the reduced diameter rolling is reduced diameter rolling with a thickness increase ratio of 40% or less. 前記縮径圧延が、減肉率:40%以下の縮径圧延であることを特徴とする請求項6ないし10のいずれかに記載の鋼管の製造方法。   The method of manufacturing a steel pipe according to any one of claims 6 to 10, wherein the reduced diameter rolling is reduced diameter rolling with a reduction ratio of 40% or less. 質量%で、C:0.01%未満を含み、Feを95%以上含む組成を有する鋼管であって、円周方向に<100>方向、かつ圧延方向に<110>方向が配向した結晶方位の、X線の三次元ランダム強度比が3.0以上である組織を有することを特徴とする電磁特性に優れた鋼管。   A steel pipe having a composition containing less than 0.01% by mass and C: less than 95% by mass and having Fe of 95% or more, having a crystal orientation in which the <100> direction is oriented in the circumferential direction and the <110> direction is oriented in the rolling direction, A steel pipe excellent in electromagnetic characteristics, characterized by having a structure having a three-dimensional random intensity ratio of X-rays of 3.0 or more. 圧延方向のr値が2.0以上を有することを特徴とする請求項13に記載の鋼管。   The steel pipe according to claim 13, wherein the r value in the rolling direction is 2.0 or more. 前記組織が、20μm以上の平均結晶粒径を有する組織であることを特徴とする請求項13または14に記載の鋼管。   The steel structure according to claim 13 or 14, wherein the structure is a structure having an average crystal grain size of 20 µm or more. 前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項13ないし15のいずれかに記載の鋼管。   The composition contains, by mass%, C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01-0.06%, N The steel pipe according to any one of claims 13 to 15, wherein the steel pipe has a composition containing 0.005% or less, the balance being Fe and inevitable impurities. 前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項13ないし15のいずれかに記載の鋼管。   The composition contains, by mass%, C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, Al: more than 0.06% The steel pipe according to any one of claims 13 to 15, wherein the steel pipe contains 0.5% or less, N: 0.005% or less, and is composed of the remaining Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、下記D〜F群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項16または17に記載の鋼管。

D群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
E群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
F群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
The steel pipe according to claim 16 or 17, further comprising one group or two or more groups selected from the following groups D to F in mass% in addition to the composition.
Group D: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less, 1 type or 2 types or more,
Group E: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group F: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
質量%で、C:0.01%未満を含み、Feを95%以上とする組成を有する鋼管を、加熱したのち、縮径圧延を施すに当たり、前記縮径圧延を、縮径率が15%以上、圧延終了温度が730℃以上900℃以下である圧延とすることを特徴とする電磁特性に優れた鋼管の製造方法。   When the steel pipe having a composition containing less than 0.01% by mass and Fe of 95% or more is heated and then subjected to reduction rolling, the reduction rolling is performed at a reduction ratio of 15% or more. A method for producing a steel pipe excellent in electromagnetic characteristics, characterized in that the rolling finish temperature is 730 ° C. or higher and 900 ° C. or lower. 前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.01〜0.06%、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項19に記載の鋼管の製造方法。   The composition contains, by mass%, C: less than 0.01%, Si: 0.45% or less, Mn: 0.1-1.4%, S: 0.01% or less, P: 0.025% or less, Al: 0.01-0.06%, N 20. The method for producing a steel pipe according to claim 19, wherein the steel pipe contains 0.005% or less, and has a balance of Fe and inevitable impurities. 前記組成が、質量%で、C:0.01%未満を含みさらに、Si:0.45%超3.5%以下、Mn:0.1〜1.4%、S:0.01%以下、P:0.025%以下、Al:0.06%超え0.5%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項19に記載の鋼管の製造方法。   The composition contains, by mass%, C: less than 0.01%, Si: more than 0.45%, 3.5% or less, Mn: 0.1 to 1.4%, S: 0.01% or less, P: 0.025% or less, Al: more than 0.06% 20. The method for manufacturing a steel pipe according to claim 19, wherein the composition contains 0.5% or less, N: 0.005% or less, and the balance is Fe and inevitable impurities. 前記組成に加えてさらに、質量%で、下記D〜F群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項20または21に記載の鋼管の製造方法。

D群:Ti:0.05%以下、Nb:0.05%以下、B:0.005%以下のうちの1種または2種以 上、
E群:Cr:5%以下、Ni:5%以下、Mo:0.05%以下のうちの1種または2種以上、
F群:Ca:0.005%以下、REM:0.05%以下のうちの1種または2種
The method for manufacturing a steel pipe according to claim 20 or 21, further comprising one group or two or more groups selected from the following groups D to F in mass% in addition to the composition.
Group D: Ti: 0.05% or less, Nb: 0.05% or less, B: 0.005% or less, 1 type or 2 types or more,
Group E: Cr: 5% or less, Ni: 5% or less, Mo: 0.05% or less
Group F: Ca: 0.005% or less, REM: 0.05% or less, 1 type or 2 types
前記縮径圧延後、あるいはさらに所望形状に加工したのち、750℃以上Ac 1 変態点以下の温度で焼鈍処理を施すことを特徴とする請求項19ないし22のいずれかに記載の鋼管の製造方法。 The method for manufacturing a steel pipe according to any one of claims 19 to 22, wherein annealing treatment is performed at a temperature not lower than 750 ° C and not higher than the Ac 1 transformation point after the diameter reduction rolling or further processing into a desired shape. . 前記縮径圧延後で前記焼鈍処理前に、冷間引抜加工を施すことを特徴とする請求項23に記載の鋼管の製造方法。   The method of manufacturing a steel pipe according to claim 23, wherein cold drawing is performed after the diameter reduction rolling and before the annealing treatment. 前記縮径圧延が、増肉率:40%以下の縮径圧延であることを特徴とする請求項19ないし24のいずれかに記載の鋼管の製造方法。   The method for manufacturing a steel pipe according to any one of claims 19 to 24, wherein the reduced diameter rolling is reduced diameter rolling with a thickness increase ratio of 40% or less. 前記縮径圧延が、減肉率:40%以下の縮径圧延であることを特徴とする請求項19ないし24のいずれかに記載の鋼管の製造方法。   The method of manufacturing a steel pipe according to any one of claims 19 to 24, wherein the reduced diameter rolling is reduced diameter rolling with a reduction ratio of 40% or less.
JP2004342024A 2004-03-02 2004-11-26 Steel pipe with excellent electromagnetic characteristics and method for producing the same Expired - Fee Related JP4701687B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004342024A JP4701687B2 (en) 2004-03-02 2004-11-26 Steel pipe with excellent electromagnetic characteristics and method for producing the same
US11/791,503 US7942984B2 (en) 2004-11-26 2005-09-01 Steel pipe with good magnetic properties and method of producing the same
PCT/JP2005/016472 WO2006057098A1 (en) 2004-11-26 2005-09-01 Steel pipe having excellent electromagnetic properties and process for producing the same
CN2005800404593A CN101065508B (en) 2004-11-26 2005-09-01 Steel pipe having excellent electromagnetic properties and process for producing the same
EP05781981A EP1816225A4 (en) 2004-11-26 2005-09-01 Steel pipe having excellent electromagnetic properties and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004057875 2004-03-02
JP2004057875 2004-03-02
JP2004342024A JP4701687B2 (en) 2004-03-02 2004-11-26 Steel pipe with excellent electromagnetic characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005281853A true JP2005281853A (en) 2005-10-13
JP4701687B2 JP4701687B2 (en) 2011-06-15

Family

ID=35180563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342024A Expired - Fee Related JP4701687B2 (en) 2004-03-02 2004-11-26 Steel pipe with excellent electromagnetic characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4701687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
CN111748730A (en) * 2019-03-28 2020-10-09 宝山钢铁股份有限公司 900 MPa-grade high-toughness high-magnetism hot-rolled magnetic yoke steel and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096143A (en) * 1998-09-22 2000-04-04 Kawasaki Steel Corp Manufacture of steel tube
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096143A (en) * 1998-09-22 2000-04-04 Kawasaki Steel Corp Manufacture of steel tube
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
CN111748730A (en) * 2019-03-28 2020-10-09 宝山钢铁股份有限公司 900 MPa-grade high-toughness high-magnetism hot-rolled magnetic yoke steel and production method thereof
CN111748730B (en) * 2019-03-28 2022-06-21 宝山钢铁股份有限公司 900 MPa-grade high-toughness high-magnetism hot-rolled magnetic yoke steel and production method thereof

Also Published As

Publication number Publication date
JP4701687B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
CN108495945B (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and method for producing same
TWI406957B (en) High-frequency iron loss low non-directional electromagnetic steel sheet and its manufacturing method
WO2018179169A1 (en) As-rolled type electric-resistance-welded steel pipe for line pipes
JP6855895B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JPWO2016148010A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007254797A (en) Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
CN103857812A (en) Hot-rolled ferritic stainless steel sheet with excellent cold cracking resistance and manufacturing process therefor
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP6315157B1 (en) ERW steel pipe for torsion beam
KR102656381B1 (en) Non-oriented electromagnetic steel sheet
JP2005002385A (en) Steel tube having excellent formability and toughness, and its production method
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
US7942984B2 (en) Steel pipe with good magnetic properties and method of producing the same
EP3556888A1 (en) Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor
JP5206017B2 (en) Method for producing high silicon steel sheet
WO2014203472A1 (en) Method for producing hot-rolled martensitic stainless steel strip for welded steel pipe for line pipe
JP4701687B2 (en) Steel pipe with excellent electromagnetic characteristics and method for producing the same
JP6123234B2 (en) Electrical steel sheet
JP3932821B2 (en) ERW steel pipe excellent in strength and toughness and method for producing the same
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP5034190B2 (en) Electromagnetic shielding material
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP6011509B2 (en) Steel pipe with excellent magnetic shielding characteristics and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees