JP2005275345A - Liquid crystal substrate holding disk and its manufacturing method - Google Patents

Liquid crystal substrate holding disk and its manufacturing method Download PDF

Info

Publication number
JP2005275345A
JP2005275345A JP2004247206A JP2004247206A JP2005275345A JP 2005275345 A JP2005275345 A JP 2005275345A JP 2004247206 A JP2004247206 A JP 2004247206A JP 2004247206 A JP2004247206 A JP 2004247206A JP 2005275345 A JP2005275345 A JP 2005275345A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal substrate
substrate holding
support surface
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004247206A
Other languages
Japanese (ja)
Other versions
JP4518876B2 (en
Inventor
Tetsuya Inoue
徹彌 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004247206A priority Critical patent/JP4518876B2/en
Publication of JP2005275345A publication Critical patent/JP2005275345A/en
Application granted granted Critical
Publication of JP4518876B2 publication Critical patent/JP4518876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal substrate holding disk which less reflects regularly reflected light on its surface and has high precision even when made large sized. <P>SOLUTION: The liquid crystal substrate holding disk which has a support surface holding a translucent or translucent liquid crystal substrate on the top surface of a base body and a non-support surface lowered below the support surface is formed of black ceramics of ≥80 GPa cm<SP>3</SP>/g in specific rigidity as the base body and the arithmetic mean roughness of the support surface is 0.3 to 1.2 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶ディスプレイを製造するための露光装置等の液晶基板保持盤に関し、特に透明または半透明液晶基板を透過した照明光の反射によって露光、アライメントまたはフォーカス調整の精度を損なうことのない液晶基板保持盤及びその製造方法に関するものである。   The present invention relates to a liquid crystal substrate holder such as an exposure apparatus for manufacturing a liquid crystal display, and in particular, a liquid crystal that does not impair the accuracy of exposure, alignment, or focus adjustment due to reflection of illumination light transmitted through a transparent or translucent liquid crystal substrate. The present invention relates to a substrate holder and a method for manufacturing the same.

従来、液晶ディスプレイを製造するための露光装置に使用される液晶基板保持盤は、アルミニウム系の金属からなる母材にアルマイトメッキを施したものや、ステンレスやアルマイト系のセラミックまたはアルマイトセラミックからなる母材にTiC等の被覆を施したものが用いられていた。   Conventionally, a liquid crystal substrate holding disk used in an exposure apparatus for manufacturing a liquid crystal display has a base material made of an aluminum-based metal anodized, a base material made of stainless steel, anodized ceramic, or an anodized ceramic. A material in which a material such as TiC was coated was used.

図6(a)は、従来の液晶基板保持盤の一例であるチャックの概略図を示す斜視図である。   FIG. 6A is a perspective view showing a schematic view of a chuck which is an example of a conventional liquid crystal substrate holding disk.

従来から液晶基板保持盤11は、図6(a)に示すように基体14の上面に、透明または半透明の液晶基板6を保持する支持面12と、その支持面12よりも下がった非支持面13とを形成したものであり、液晶基板6を保持させて、露光用の照明光あるいはアライメントやフォーカス調整のために照明光を照射させていた。そして、液晶基板6に照射された照明光の一部分は、液晶基板6を透過して液晶基板保持盤11に到達するので、照射光の反射をできる限り抑えるためにも、支持面12を形成することによって、液晶基板6に当接する液晶基板保持盤11の面積を少なくし、照射光の多くが液晶基板保持盤11の非支持面12の表面で反射されるようにしていた。   Conventionally, as shown in FIG. 6A, the liquid crystal substrate holder 11 has a support surface 12 for holding the transparent or translucent liquid crystal substrate 6 on the upper surface of the base 14 and an unsupported lower than the support surface 12. The liquid crystal substrate 6 is held, and illumination light for exposure or illumination light is applied for alignment or focus adjustment. And since a part of illumination light irradiated to the liquid crystal substrate 6 permeate | transmits the liquid crystal substrate 6, and reaches | attains the liquid crystal substrate holding | maintenance board 11, in order to suppress reflection of irradiation light as much as possible, the support surface 12 is formed. As a result, the area of the liquid crystal substrate holding plate 11 in contact with the liquid crystal substrate 6 is reduced, and most of the irradiation light is reflected by the surface of the non-supporting surface 12 of the liquid crystal substrate holding plate 11.

これら液晶基板保持盤11は経年的に高精度に保持することが求められる為、一般的には高剛性を有したセラミックスが多用される。特に液晶ディスプレイを製造するための露光装置に搭載される液晶基板保持盤11には、黒色を呈するセラミックスが用いられるようになっていた。   Since these liquid crystal substrate holders 11 are required to be held with high accuracy over time, generally, ceramics having high rigidity are frequently used. In particular, black ceramics have been used for the liquid crystal substrate holding plate 11 mounted on an exposure apparatus for manufacturing a liquid crystal display.

一例を図6(b)に示す。図6(b)は(a)の液晶基板保持盤の一部を拡大した断面図である。図に示すように支持面12、非支持面13の表面にセラミックスからなる被覆層17を形成したものであり、具体的には、基体14の表面上に粗面化した表面をもつ反射率の低いSiCからなる第1の被膜層(不図示)と、この第1の被覆層上に平滑な表面をもつ透明材料Alからなる第2の被覆層(不図示)によって被覆されているものである(特許文献1参照)。 An example is shown in FIG. FIG. 6B is an enlarged cross-sectional view of a part of the liquid crystal substrate holding disk of FIG. As shown in the figure, a coating layer 17 made of ceramic is formed on the surfaces of the support surface 12 and the non-support surface 13, and more specifically, the reflectance of the substrate 14 having a roughened surface. A first coating layer (not shown) made of low SiC and a second coating layer (not shown) made of a transparent material Al 2 O 3 having a smooth surface on the first coating layer. (See Patent Document 1).

ところで、上述した反射率を下げる方法として、一般的には液晶基板保持盤11を形成するセラミックスの呈色として、光を反射しやすい白色や乳白色を呈するセラミックスよりも、光を吸収しやすい黒色を呈するセラミックスが適していることは知られているが、特に安価で加工費用の安いアルミナが望まれていた。   By the way, as a method for lowering the reflectance described above, generally, the color of the ceramic forming the liquid crystal substrate holding plate 11 is black, which absorbs light more easily than white or milky white ceramics that easily reflect light. Although it is known that the ceramics to be exhibited are suitable, alumina that is particularly inexpensive and low in processing cost has been desired.

黒色を呈するアルミナの例としては、特許文献2に、Alを主成分とし、Mn、Fe、CoO、Crの成分を含有する黒色アルミナ焼結体が提案されている。また、特許文献3には、LiOが0〜2.5重量%含有する黒色低熱膨張セラミックス焼結体が提案されている。さらに、特許文献4には、Alを主成分とし、FeO、CoO、CuOの成分を含有する着色系セラミックスが提案されている。
特開平5−205997号公報 特開平5−238810号公報 特開2001−19540号公報 特開平5−254922号公報
As an example of alumina exhibiting black color, Patent Document 2 discloses a black alumina sintered body containing Al 2 O 3 as a main component and components of Mn 2 O 3 , Fe 2 O 3 , CoO, and Cr 2 O 3. Proposed. Patent Document 3 proposes a black low thermal expansion ceramic sintered body containing 0 to 2.5% by weight of Li 2 O. Furthermore, Patent Document 4 proposes a colored ceramic containing Al 2 O 3 as a main component and containing Fe 2 O 3 , Co 2 O 3 , and CuO components.
Japanese Patent Laid-Open No. 5-205997 JP-A-5-238810 JP 2001-19540 A JP-A-5-254922

しかしながら、液晶基板6に入射した照明光の一部分が、液晶基板保持盤11の表面によって反射されて再び液晶基板6の特定箇所に入射すれば、これによってエッチングを行わないレジストの不要な部分が露光し、アライメントやフォーカス調整の精度を低下させることや、照射光が液晶基板6を透過して、液晶基板保持盤11の表面で反射して、露光した像と同じ像を液晶基板6の下面から照射してしまうことが原因で二重露光等の弊害が発生するといった課題があった。特に、液晶基板6は透明または半透明のガラスであるため、入射光は透過しやすいものであった。   However, if a part of the illumination light incident on the liquid crystal substrate 6 is reflected by the surface of the liquid crystal substrate holding plate 11 and enters the specific portion of the liquid crystal substrate 6 again, an unnecessary portion of the resist that is not etched is exposed. Then, the accuracy of alignment and focus adjustment is lowered, or the irradiated light is transmitted through the liquid crystal substrate 6 and reflected by the surface of the liquid crystal substrate holding plate 11, and the same image as the exposed image is seen from the lower surface of the liquid crystal substrate 6. There has been a problem that adverse effects such as double exposure occur due to the irradiation. In particular, since the liquid crystal substrate 6 is transparent or translucent glass, incident light is easily transmitted.

その為、液晶基板6を透過した照明光の反射によって、レジストの不要部分が露光させない低反射率を有する液晶基板保持盤11が望まれていた。   Therefore, there has been a demand for a liquid crystal substrate holding plate 11 having a low reflectance that does not expose unnecessary portions of the resist due to reflection of illumination light transmitted through the liquid crystal substrate 6.

ここで、光の反射は光の進行波が、進行中の媒質と異なる媒質あるいは不連続的変化のある境界面にあたって方向を変え、もとの媒質中の新しい方向に進む現象をいうが、入射角と反射角が等しい反射を正反射(または鏡面反射)と呼んでいる。また、境界面の凹凸が波長と同程度、あるいはそれより大きければ、反射波は種々の方向に進む。このような反射を拡散反射(または乱反射)と呼ぶ。そして、入射波強度に対する境界面で反射波の強度の百分率を反射率(正反射率、拡散反射率)と呼び、正反射率と拡散反射率とを併せた値を反射率と呼んでいる。   Here, reflection of light refers to a phenomenon in which a traveling wave of light changes its direction on a medium different from the ongoing medium or a boundary surface with a discontinuous change, and proceeds in a new direction in the original medium. Reflection with the same angle and reflection angle is called regular reflection (or specular reflection). Further, if the unevenness of the boundary surface is about the same as or larger than the wavelength, the reflected wave travels in various directions. Such reflection is called diffuse reflection (or irregular reflection). The percentage of the intensity of the reflected wave at the boundary with respect to the incident wave intensity is called reflectance (regular reflectance, diffuse reflectance), and the value obtained by combining the regular reflectance and diffuse reflectance is called reflectance.

ところで、黒色アルミナを用いた特許文献2、4は、上述のような低反射率に言及しているものではなく、単純に黒色アルミナを採用しても、近年の液晶ディスプレイの大型化に伴い、面の状態の条件によっては、充分に低反射とはならず、二重露光を防止するのに至らないという問題があった。   By the way, Patent Documents 2 and 4 using black alumina do not refer to the low reflectance as described above, and even if black alumina is simply adopted, with the recent increase in size of liquid crystal displays, Depending on the surface condition, there is a problem that the reflection is not sufficiently low and double exposure cannot be prevented.

これは、次の理由によるものと思われる。即ち、近年の液晶ディスプレイの大型化に伴い、液晶基板16が大型化し、液晶基板保持盤11を用いた製造工程では支持面12よりも非支持面13の領域が大きくなってきている。従って、反射の中でも拡散反射が大きく占めるようになっている。ここで、低反射とするのに液晶基板保持盤11の表面を鏡面にして反射の大部分を占める拡散反射を抑え、反射率を低くすることが考えられるが、このように拡散反射を低くしたとしても、液晶基板6を透過する照射光が、鏡面としている液晶基板保持盤11の支持面12に接近しているので、正反射による光が液晶基板6の下面に照射しやすい状態となっており、拡散反射を従来よりも低下させたとしても二重露光が発生しやすくなっているものと思われる。つまり、二重露光に一番影響を与えるのは、像に同じ像が重なる正反射光であり、この正反射光を低減するにはどのような面状態を選択すればよいのかが課題であった。   This is probably due to the following reasons. That is, with the recent increase in size of the liquid crystal display, the liquid crystal substrate 16 is increased in size, and the region of the non-support surface 13 is larger than the support surface 12 in the manufacturing process using the liquid crystal substrate holder 11. Therefore, diffuse reflection is a major part of the reflection. Here, it is conceivable to reduce the reflectance by reducing the diffuse reflection, which occupies most of the reflection by using the surface of the liquid crystal substrate holding plate 11 as a mirror surface to make the reflection low, but the diffuse reflection is lowered in this way. However, since the irradiation light transmitted through the liquid crystal substrate 6 is close to the support surface 12 of the liquid crystal substrate holding plate 11 which is a mirror surface, it becomes easy to irradiate the lower surface of the liquid crystal substrate 6 with light by regular reflection. Thus, even if the diffuse reflection is lowered than before, double exposure is likely to occur. In other words, it is the specular reflection light that overlaps the same image that has the most influence on double exposure, and the problem is what surface state should be selected to reduce this specular reflection light. It was.

一方、特許文献3のセラミックスの材料特性は、ヤング率が165GPa以下、比剛性が68.5GPa・cm/g以下であり、露光装置の液晶基板保持盤11に使用される基体14には、他の部材への取り付け穴や溝加工など複雑な加工を行うことが多く、マシニング加工などを行う際の材質の変形を防ぐ目的や、それ自体で液晶基板6を支持することが必要となるので、比剛性が低いと高精度加工が困難といった課題があった。 On the other hand, the material properties of the ceramics of Patent Document 3 are Young's modulus of 165 GPa or less and specific rigidity of 68.5 GPa · cm 3 / g or less. The substrate 14 used for the liquid crystal substrate holding plate 11 of the exposure apparatus includes: In many cases, complicated processing such as mounting holes and grooves in other members is performed, and it is necessary to support the liquid crystal substrate 6 for the purpose of preventing deformation of the material when performing machining processing or the like. When the specific rigidity is low, there is a problem that high-precision machining is difficult.

また、被覆層17を表面に形成している特許文献1は、支持面12が平坦化させるのが難しく高精度に仕上げることができず、また、被膜時の熱による内部応力が発生し、剥離するといった課題があった。さらに、被腹膜17をコートする為の装置も大形となり、設備的な制約があるという課題があった。   Further, in Patent Document 1 in which the coating layer 17 is formed on the surface, the support surface 12 is difficult to flatten and cannot be finished with high precision, and internal stress is generated due to heat at the time of coating, causing peeling. There was a problem to do. Furthermore, the apparatus for coating the peritoneum 17 is also large, and there is a problem that there are restrictions on facilities.

そこで、本発明は、上記の技術の有する解決すべき課題に鑑みてなされたものであり、液晶基板6を透過した照明光の反射によって、レジストの不要な部分が露光し、アライメントやフォーカス調整の精度を低下させることなく、二重露光を防止することのできる高精度加工が可能な、安価で大型な液晶基板保持盤を提供することを目的とするものである。   Therefore, the present invention has been made in view of the problems to be solved by the above-described technology. Unnecessary portions of the resist are exposed by the reflection of the illumination light transmitted through the liquid crystal substrate 6 to perform alignment and focus adjustment. An object of the present invention is to provide an inexpensive and large-sized liquid crystal substrate holding plate capable of high-accuracy processing capable of preventing double exposure without reducing accuracy.

上記の課題を解決するために、本発明の液晶基板保持盤は、基体上面に透明または半透明液晶基板を保持する支持面と、該支持面よりも下がった非支持面とを有する液晶基板保持盤において、上記基体の比剛性が80GPa・cm/g以上の黒色系セラミックスから形成され、上記支持面の算術平均粗さが0.3〜1.2μmの範囲としたことを特徴としている。 In order to solve the above-mentioned problems, a liquid crystal substrate holding disk according to the present invention has a support surface for holding a transparent or translucent liquid crystal substrate on the upper surface of the substrate and a non-support surface that is lower than the support surface. The board is characterized in that the substrate is made of black ceramics having a specific rigidity of 80 GPa · cm 3 / g or more, and the arithmetic average roughness of the support surface is in the range of 0.3 to 1.2 μm.

また、上記基体がTiO、CoO、MnO、またはFeのいずれか1種以上を含有したアルミナから形成したことを特徴としている。 Further, the substrate is formed of alumina containing any one or more of TiO 2 , CoO, MnO 2 , and Fe 2 O 3 .

さらに、本発明の液晶基板保持盤は、上記非支持面の算術平均粗さが1.0〜2.0μmの範囲であることを特徴としている。   Furthermore, the liquid crystal substrate holding disk of the present invention is characterized in that the arithmetic average roughness of the non-supporting surface is in the range of 1.0 to 2.0 μm.

またさらに、本発明の液晶基板保持盤は、上記アルミナの純度が90%以上であることを特徴としている。   Furthermore, the liquid crystal substrate holding disk of the present invention is characterized in that the alumina has a purity of 90% or more.

次に、本発明の液晶基板保持盤の製造方法は、黒色系セラミックスからなる基体を用意し、該基体の上面を算術平均粗さが0.6〜1.2μmの範囲に仕上げ、しかる後ブラスト加工にて透明または半透明液晶基板を保持する支持面と非支持面を形成したことを特徴としている。   Next, according to the method for manufacturing a liquid crystal substrate holding disk of the present invention, a base made of black ceramics is prepared, and the upper surface of the base is finished so that the arithmetic average roughness is in the range of 0.6 to 1.2 μm. A feature is that a supporting surface and a non-supporting surface for holding a transparent or translucent liquid crystal substrate are formed by processing.

本発明の構成によれば、基体の比剛性が80GPa・cm/g以上の黒色系セラミックスから形成されるとともに上記支持面の算術平均粗さが0.3〜1.2μmの範囲としたために、大型の液晶基板保持盤としても、加工時の材質の変形を防ぎ高精度に加工が可能であり、しかも、液晶基板を透過する照射光の正反射を有効に防止して反射率を低下させることができるので照射光が液晶基板に生じる二重露光を防ぐことができる。 According to the configuration of the present invention, since the specific rigidity of the substrate is formed of black ceramics having 80 GPa · cm 3 / g or more and the arithmetic average roughness of the support surface is in the range of 0.3 to 1.2 μm. Even a large LCD substrate holder can be processed with high accuracy by preventing deformation of the material during processing, and also effectively prevents regular reflection of irradiation light transmitted through the liquid crystal substrate and lowers reflectivity. Therefore, it is possible to prevent double exposure in which irradiation light is generated on the liquid crystal substrate.

また、上記基体がTiO、CoO、MnO、またはFeのいずれか1種以上を含有したアルミナから形成したことにより、照射光の正反射率が低い黒色の基体を得ることができる。低反射率を実現するためには黒色の基体とすることで、できるだけ光線を吸収することができる。 Further, the substrate by forming alumina which contains TiO 2, CoO, MnO 2, or any one or more of Fe 2 O 3, it is possible to obtain a substrate of a black regular reflectance is low irradiation light . In order to realize a low reflectance, a black substrate can be used to absorb light as much as possible.

さらに、上記非支持面の算術平均粗さ(Ra)が1.0〜2.0μmの範囲であることで、液晶基板の接触面だけでなく、他の面でも正反射率が低い液晶基板保持盤を提供できる。   Furthermore, since the arithmetic average roughness (Ra) of the non-support surface is in the range of 1.0 to 2.0 μm, not only the contact surface of the liquid crystal substrate but also the other surface has a low regular reflectance. A board can be provided.

またさらに、上記アルミナの純度が90%以上であることで、高強度で、比剛性の高い基体を得ることができ、高精度な加工を施すことが可能になる。   Furthermore, when the alumina has a purity of 90% or more, a substrate having high strength and high specific rigidity can be obtained, and high-precision processing can be performed.

次に、黒色系セラミックスからなる基体を用意し、その基体の上面を算術平均粗さが0.3〜1.2μmの範囲に仕上げ、しかる後ブラスト加工にて透明または半透明液晶基板を保持する支持面と非支持面を形成したことを特徴とする液晶基板保持盤の製造方法を提供することにより、正反射率が低く、高精度で大型品にも対応できる最適な液晶保持盤を提供することができる。   Next, a substrate made of black ceramics is prepared, and the upper surface of the substrate is finished so that the arithmetic average roughness is in the range of 0.3 to 1.2 μm, and then a transparent or translucent liquid crystal substrate is held by blasting. By providing a manufacturing method of a liquid crystal substrate holding disk characterized by forming a supporting surface and a non-supporting surface, a liquid crystal substrate holding disk having a low regular reflectance, high accuracy and capable of accommodating a large-sized product is provided. be able to.

以下、本発明の実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明に係る液晶基板保持盤の一例であるチャックの概略図を示す図で、(a)はその斜視図を、(b)は上記液晶基板保持盤の一部を拡大した断面図をそれぞれ示している。また、図2は、本発明に係る液晶基板保持盤の支持部の一部を拡大して示す斜視図である。   1A and 1B are schematic views of a chuck which is an example of a liquid crystal substrate holding plate according to the present invention. FIG. 1A is a perspective view thereof, and FIG. 1B is an enlarged cross-sectional view of a part of the liquid crystal substrate holding plate. Each figure is shown. FIG. 2 is an enlarged perspective view showing a part of the support portion of the liquid crystal substrate holding disk according to the present invention.

本発明の液晶基板保持盤1は、比剛性が80GPa・cm/g以上の黒色系セラミックスからなる平板状体の基体4からなり、その表面に複数の突起200が形成されており、各突起200は液晶基板6に接触してこれを支持する支持面2と、支持面2よりも下がった非支持面3とから構成されている。 The liquid crystal substrate holding disk 1 of the present invention comprises a flat substrate 4 made of black ceramics having a specific rigidity of 80 GPa · cm 3 / g or more, and a plurality of protrusions 200 are formed on the surface thereof. Reference numeral 200 denotes a support surface 2 that contacts and supports the liquid crystal substrate 6, and a non-support surface 3 that is lower than the support surface 2.

ところで、本発明の液晶基板保持盤1において、表面に液晶基板6を支持して上部から露光を行った際、反射率を低くする方が、アライメントやフォーカス調整の精度を低下させることもなく、また、二重露光を防止する点においても好ましいと考えられる。従って、液晶基板保持盤1の表面が黒色のものを利用し反射率を低下させると良いことは知られているが、単に反射率を低下させるだけでは液晶基板6の製造工程において二重露光を防止することは困難である。これに対して本発明では支持面2の表面の算術平均粗さ(Ra)を0.3〜1.2μmの範囲とすることで、二重露光が防止できるものである。   By the way, in the liquid crystal substrate holding plate 1 of the present invention, when the liquid crystal substrate 6 is supported on the surface and the exposure is performed from the upper side, the reflectance is lowered without reducing the accuracy of alignment or focus adjustment. It is also considered preferable in terms of preventing double exposure. Accordingly, it is known that the reflectance of the liquid crystal substrate holding plate 1 should be reduced by using a black surface, but double exposure is performed in the manufacturing process of the liquid crystal substrate 6 simply by reducing the reflectance. It is difficult to prevent. On the other hand, in this invention, double exposure can be prevented by making arithmetic mean roughness (Ra) of the surface of the support surface 2 into the range of 0.3-1.2 micrometers.

以下に本発明に至った理由を説明する。   The reason for reaching the present invention will be described below.

ここで本発明の液晶基板保持盤1によれば、液晶基板6を支持する表面の支持面2よりも非支持面3の領域が大きいため、液晶基板6上から照射した光を液晶基板保持盤1の表面における拡散反射率と正反射率とで比べると、正反射率よりも拡散反射率の占める割合が高く、反射の大半は拡散反射であるので、拡散反射率が反射率の大半を占めることになる。従って、一見、表面を鏡面状態として乱反射が起きにくくすることにより反射率を抑えて反射率を低下できるように思われる。   Here, according to the liquid crystal substrate holding disk 1 of the present invention, since the area of the non-supporting surface 3 is larger than the support surface 2 of the surface supporting the liquid crystal substrate 6, the light irradiated from above the liquid crystal substrate 6 is used. When the diffuse reflectance and the regular reflectance on the surface of 1 are compared, the ratio of the diffuse reflectance is higher than that of the regular reflectance, and most of the reflection is diffuse reflection. Therefore, the diffuse reflectance accounts for the majority of the reflectance. It will be. Therefore, at first glance, it seems that the reflectance can be reduced by suppressing the reflectivity by making the surface difficult to cause irregular reflection.

しかしながら、本発明者は液晶基板保持盤1を利用する液晶基板6の製造工程において二重露光の課題を鋭意検討の結果、二重露光の原因となる光線は正反射光が支配的であり、逆に拡散反射光は液晶基板6を通過する中で減衰して、反射しても像がぼやけてしまい、レジストを露光させる異常光とはならない事を初めて見出し、液晶基板6に一番近い支持面2の算術平均粗さ(Ra)を0.3〜1.2μmの範囲とすることで正反射光を抑えて二重露光を防止できる本発明に至ったものである。   However, as a result of earnest examination of the problem of double exposure in the manufacturing process of the liquid crystal substrate 6 using the liquid crystal substrate holding plate 1, the present inventors have dominantly reflected light as the cause of double exposure. On the contrary, the diffuse reflection light attenuates while passing through the liquid crystal substrate 6 and the image is blurred even if it is reflected, and it is found for the first time that it does not become an abnormal light that exposes the resist. The arithmetic mean roughness (Ra) of the surface 2 is set in the range of 0.3 to 1.2 μm, and the present invention has been achieved to suppress double reflection by suppressing regular reflection light.

従って、算術平均粗さ(Ra)が0.3μmよりも小さい値であると、照射光が垂直に戻る正反射率が高くなり、液晶基板6への二重露光の原因となる。逆に、算術平均粗さが1.2μmよりも大きい値の場合、支持面2に接触する液晶基板6の表面に傷を付けてしまうことがあり、液晶基板6の製品としての価値が損なわれてしまう。その為、支持面2の算術平均粗さ(Ra)は0.3〜1.2μmの範囲であることが必要で、好ましくは0.6〜1.0μmの範囲にあることが良い。   Therefore, when the arithmetic average roughness (Ra) is a value smaller than 0.3 μm, the regular reflectance at which the irradiated light returns vertically becomes high, which causes double exposure to the liquid crystal substrate 6. On the contrary, when the arithmetic average roughness is larger than 1.2 μm, the surface of the liquid crystal substrate 6 in contact with the support surface 2 may be damaged, and the value of the liquid crystal substrate 6 as a product is impaired. End up. Therefore, the arithmetic average roughness (Ra) of the support surface 2 needs to be in the range of 0.3 to 1.2 μm, and preferably in the range of 0.6 to 1.0 μm.

液晶基板6への露光の際に使用される照射光としては、紫外線領域の照射光を用いることが多く、一般的に、紫外線領域400nm以下の波長領域で考えれば良いが、安全を見ると450nmまでの波長領域の照射光が含まれることがあり、450nm以下の照射光で、正反射率が1%以下となることが望まれ、液晶基板6において、二重露光は発生しない。   As the irradiation light used for the exposure to the liquid crystal substrate 6, irradiation light in the ultraviolet region is often used, and in general, it may be considered in the wavelength region of the ultraviolet region of 400 nm or less. Irradiation light in the wavelength range up to 4 nm may be included, and it is desired that the regular reflectance is 1% or less with irradiation light of 450 nm or less, and double exposure does not occur in the liquid crystal substrate 6.

そして、支持面2と非支持面3の形成方法は、研削加工やブラスト加工で形成すればよく、表面を粗い状態とすることで、算術平均粗さ(Ra)が1〜2μmの範囲の仕上げ面とすればよい。この範囲であれば、反射光が液晶基板の裏面に逆照射されても、ウエハ表面のレジスト膜を露光し、アライメントあるいはフォーカス調整の障害となることはない。   And the formation method of the support surface 2 and the non-support surface 3 should just be formed by grinding processing or blast processing, and finishes the arithmetic mean roughness (Ra) in the range of 1-2 micrometers by making the surface into a rough state. The surface can be used. Within this range, even if the reflected light is reversely applied to the back surface of the liquid crystal substrate, the resist film on the wafer surface is exposed and does not hinder alignment or focus adjustment.

ところで、算術平均粗さ(Ra)が2μmよりも大きい値の場合、ブラストの砥粒を粗く大きなものにする必要があるが、その場合、ブラスト加工時のマスクのパターンを細かくすることができなかったり、またパターンが破れるといった不具合があった。逆に算術平均粗さ(Ra)が1μmよりも小さい値の場合、ブラストの砥粒を細かいものとする必要があるので加工に時間がかかるといった不具合があることや、面が良すぎることによる正反射光の反射率が高くなる為に、二重露光の懸念が生じてしまう。その為、ブラスト加工に使用する砥粒は#200〜#1000の範囲を使用すれば良く、その結果得られる非支持面3の表面は算術平均粗さ(Ra)で1.0〜2.0μmの範囲が良く、遊離砥粒等による磨き加工を行わないままの面であることが良い。   By the way, when the arithmetic average roughness (Ra) is a value larger than 2 μm, it is necessary to make the abrasive grains coarse and large, but in this case, the mask pattern at the time of blasting cannot be made fine. And the pattern was broken. On the other hand, when the arithmetic average roughness (Ra) is smaller than 1 μm, it is necessary to make the abrasive grains of the blast fine, so that there is a problem that it takes a long time to process, or the surface is too good. Since the reflectance of the reflected light increases, there is a concern about double exposure. Therefore, the abrasive grains used for blasting may be in the range of # 200 to # 1000, and the surface of the non-supporting surface 3 obtained as a result is 1.0 to 2.0 μm in terms of arithmetic average roughness (Ra). It is preferable that the surface is not subjected to polishing with loose abrasive grains.

上述したように、算術平均粗さ(Ra)が低い場合、正反射率は高くなるが、拡散反射率は低くすることができるが、全反射の大半は拡散反射であり、拡散反射率が反射率を決めることになる。従って、特定の箇所に集中することはなく、全体的にぼやけた反射となる。   As described above, when the arithmetic average roughness (Ra) is low, the regular reflectance is high, but the diffuse reflectance can be lowered, but most of the total reflection is diffuse reflection, and the diffuse reflectance is reflected. The rate will be decided. Therefore, it does not concentrate on a specific part, but the reflection is blurred overall.

これにより、高精度に加工した支持面2を含め、液晶基板保持盤1表面に反射率の低い材料を被覆させる必要がないため、被覆膜による精度劣化や、該被覆膜の剥離による不具合が無くなり、液晶基板保持盤1に吸着された液晶基板6の平坦度が、高精度に支持されたままで保持することが可能となる。   As a result, it is not necessary to cover the surface of the liquid crystal substrate holding disk 1 including the support surface 2 processed with high accuracy, so that the accuracy of the coating film is deteriorated, and the defect due to the peeling of the coating film is caused. Thus, the flatness of the liquid crystal substrate 6 adsorbed on the liquid crystal substrate holding plate 1 can be held while being supported with high accuracy.

ところで、本発明の液晶基板保持盤1を形成する基体4は黒色系セラミックスであることが必要であるが、黒色系セラミックスの黒色系とは黒色に近い暗い色を呈するものを指し、茶褐色や茶色、赤褐色、緑褐色、群青色、小豆色などの呈色であればよい。好ましくは黒色を呈する色調のものが良い。   By the way, the substrate 4 forming the liquid crystal substrate holding disk 1 of the present invention is required to be black ceramics. The black type of black ceramics indicates a dark color close to black, brown or brown. , Reddish brown, green brown, ultramarine blue, red bean color, etc. may be used. The thing of the color tone which exhibits black is preferable.

黒色系として日本の工業分野での色彩管理における色差の測定に最も広く用いられているL表色系を用いるとよい。ここで、本発明に用いられる黒色系セラミックスの色調は上述のL表色系における明度指数がL<60の範囲のものを用いるのが好ましい。明度指数がLが60よりも大きい値の範囲であれば、反射率が高くなり、本発明の構成であっても非支持面3からの反射の影響を受けてしまい、全体的にぼやけた像となる。その為、さらに好ましくは、明度指数がL<40の範囲であることが良い。 As the black system, the L * a * b * color system that is most widely used for color difference measurement in color management in the Japanese industrial field may be used. Here, it is preferable to use the color tone of the black ceramic used in the present invention having a lightness index in the above L * a * b * color system in the range of L * <60. If the lightness index is in a range where L * is larger than 60, the reflectivity is high, and even in the configuration of the present invention, it is affected by the reflection from the non-supporting surface 3 and is totally blurred. Become a statue. Therefore, more preferably, the brightness index is in the range of L * <40.

なお、L表色系において、Lは明度指数、即ち明暗知覚の度合いを示すもので、a及びbは、知覚色度指数、即ち色相と飽和度の二つの属性を総合して考えた視知覚の属性を示すものである。色相a及びbは反射率に影響を与える因子にはあまり関係がなく、一番に影響を与えるのが明度指数Lであることが解っており、この明度指数Lがどのような値になっているのかに注目すればよく、その場合のaの知覚色度指数の依存性が低いことから、黒色だけでなくそれに近い色調であってもよいことが解る。 In the L * a * b * color system, L * indicates a lightness index, that is, the degree of brightness perception, and a * and b * are perceptual chromaticity indices, that is, two attributes of hue and saturation. It shows the attributes of visual perception that are considered together. Hue a * and b * not very relevant to the factors influencing the reflectance, it is known that it affects the most a lightness index L *, what is the lightness index L * It is sufficient to pay attention to whether the value is a value, and since the dependence of the perceptual chromaticity index of a * b * in that case is low, it can be understood that the color tone may be close to that of black.

本発明では日本電色(株)製,色差光沢計(Σ90)を用いて、JIS K 5600−4−5に準じて三刺激値を測定し、CIE1976(L,a,b)色空間の色座標を算出する。 In the present invention, tristimulus values are measured according to JIS K 5600-4-5 using a color difference gloss meter (Σ90) manufactured by Nippon Denshoku Co., Ltd., and CIE 1976 (L * , a * , b * ) color. Calculate the color coordinates of the space.

なお、今回比較する材料が無いため、以下のJIS K 5600−4−5に準じた。   In addition, since there is no material to compare this time, it conformed to the following JIS K 5600-4-5.

:明度を表す指数(0〜100)。0が最も暗く、100が最も明るい値となる
:+側は赤、−側は緑、0は無彩色を表し、絶対値が大きいほど彩度が高くなる
:+側は黄、−側は青、0は無彩色を表し、絶対値が大きいほど彩度が高くなる
本発明の液晶基板保持盤1は、アルミナ純度が90%以上であることが好ましい。アルミナ純度が90%よりも少ないと、剛性が損なわれる。比剛性80GPa・cm/g以上を実現する為には、ヤング率が310GPa以上であることが好ましく、これらを達成する為にはアルミナ純度が90%以上であることが好ましい。
L * : Index representing lightness (0 to 100). 0 is the darkest value and 100 is the brightest value a * : red is on the + side, green is on the-side, 0 is an achromatic color, and the saturation is higher as the absolute value is larger b * : yellow is on the + side The minus side represents blue, 0 represents an achromatic color, and the greater the absolute value, the higher the saturation. The liquid crystal substrate holding disk 1 of the present invention preferably has an alumina purity of 90% or more. If the alumina purity is less than 90%, the rigidity is impaired. In order to achieve a specific rigidity of 80 GPa · cm 3 / g or more, the Young's modulus is preferably 310 GPa or more, and in order to achieve these, the alumina purity is preferably 90% or more.

なお、液晶基板保持盤1に支持される液晶基板6は公知の吸着手段によってこれに吸着される。例えば、大気中で使用する場合は液晶基板6を真空吸着することで吸着することができる。あるいは、単に載置して、液晶基板を機械的に取り付けて保持するのでも構わない。   Note that the liquid crystal substrate 6 supported by the liquid crystal substrate holding plate 1 is adsorbed thereto by a known adsorbing means. For example, when used in the atmosphere, the liquid crystal substrate 6 can be sucked by vacuum suction. Alternatively, it may be simply placed and the liquid crystal substrate is mechanically attached and held.

次に、本発明の製造方法について説明する。   Next, the manufacturing method of this invention is demonstrated.

まず、90重量%以上のAlに、従来から焼結助剤として用いられるSiO、MgO等を添加し、さらに黒色とするため、Fe、MnO、CoO、TiOを湿式にて混合、粉砕した後、スプレードライヤーを用いて噴霧乾燥・造粒を行い、2次原料を作製する。得られた2次原料は、CIP成形またはメカプレス成形にて80〜200MPaの範囲の圧力にて所望の形状に成形する。 First, SiO 2 , MgO or the like conventionally used as a sintering aid is added to 90% by weight or more of Al 2 O 3 , and in order to further blacken, Fe 2 O 3 , MnO 2 , CoO, TiO 2 are added. After mixing and pulverizing in a wet manner, spray drying and granulation are performed using a spray dryer to produce a secondary material. The obtained secondary raw material is molded into a desired shape at a pressure in the range of 80 to 200 MPa by CIP molding or mechanical press molding.

次に、最高温度が1400〜1700℃の範囲となるように酸化雰囲気にて焼成を行うことでアルミナセラミックスを得る。そして、基体4の板状体を形成した後、上面を算術平均粗さが0.3〜1.2μmの範囲に仕上げ、しかる後ブラスト加工にて透明または半透明液晶基板6を保持する支持面2と非支持面3を形成する。   Next, alumina ceramics are obtained by firing in an oxidizing atmosphere so that the maximum temperature is in the range of 1400 to 1700 ° C. Then, after forming the plate-like body of the base body 4, the upper surface is finished to an arithmetic average roughness in the range of 0.3 to 1.2 μm, and then a supporting surface for holding the transparent or translucent liquid crystal substrate 6 by blasting. 2 and the non-supporting surface 3 are formed.

照明光を反射する表面である各支持面2は、研削もしくはラッピングによる研磨によって高精度加工され、支持面2以外の非支持面3は研削やブラスト加工によって粗面化することができる。   Each support surface 2 that is a surface that reflects illumination light is processed with high accuracy by grinding or lapping polishing, and the non-support surface 3 other than the support surface 2 can be roughened by grinding or blasting.

ところで、基体4を形成する黒色系セラミックスとしては、TiO、CoO、MnO、及びFeを含有したアルミナから形成されるのがよく、アルミナ純度が90%以上であることを特徴とし、従来から焼結助剤として用いられる公知なSiO、MgO等を添加して形成される。好ましい範囲としては、Feを0.5〜1.0重量%、MnOを4.0〜5.5重量%、CoOを1.0〜2.0重量%、TiOを0.5〜1.0重量%混合すればよい。 By the way, the black ceramics forming the substrate 4 is preferably formed from alumina containing TiO 2 , CoO, MnO 2 , and Fe 2 O 3 , and the alumina purity is 90% or more. It is formed by adding known SiO 2 , MgO or the like conventionally used as a sintering aid. As preferable ranges, Fe 2 O 3 is 0.5 to 1.0% by weight, MnO 2 is 4.0 to 5.5% by weight, CoO is 1.0 to 2.0% by weight, and TiO 2 is 0.0% by weight. What is necessary is just to mix 5 to 1.0 weight%.

その結果、得られたアルミナは黒色系セラミックスとなり、液晶基板を透過した照明光の多くは反射率の低い黒色の表面に吸収することが可能となる。   As a result, the obtained alumina becomes black ceramics, and much of the illumination light transmitted through the liquid crystal substrate can be absorbed by the black surface with low reflectivity.

さらに、アルミナの純度は90%以上が望ましく、90%を下回れば、ヤング率の低下を招き、液晶基板保持盤1としての面精度を保つことができない。特に比剛性(ヤング率/比重)が液晶基板保持盤1において重要な要素となり、比剛性が80GPa・cm3/gより小さい値となり、液晶基板保持盤1が大形化していくのに伴い設計上好ましくない。アルミナ純度が90%以上で、比剛性の高い材料であることから、支持面1を、例えば□600mm以上の大きさの液晶基板保持盤11であってもその平坦度を10μm以下の高精度に仕上げることが可能となる。   Furthermore, the purity of alumina is desirably 90% or more. If the purity is less than 90%, the Young's modulus is lowered, and the surface accuracy as the liquid crystal substrate holding disk 1 cannot be maintained. In particular, the specific rigidity (Young's modulus / specific gravity) is an important factor in the liquid crystal substrate holder 1, and the specific rigidity becomes a value smaller than 80 GPa · cm 3 / g, and the design is increased as the liquid crystal substrate holder 1 becomes larger. It is not preferable. Since the alumina purity is 90% or higher and the material has a high specific rigidity, even if the support surface 1 is a liquid crystal substrate holding plate 11 having a size of □ 600 mm or more, for example, the flatness thereof is highly accurate to 10 μm or less. It can be finished.

ところで、上記の組成の材料によれば、ヤング率が300〜350GPa、ビッカース硬度(HV1)12〜14GPa、3点曲げ強度が300〜350MPaと機械的強度の高い材質を得ることができる。   By the way, according to the material having the above composition, a material having a high mechanical strength such as a Young's modulus of 300 to 350 GPa, a Vickers hardness (HV1) of 12 to 14 GPa, and a three-point bending strength of 300 to 350 MPa can be obtained.

さらに、ボイド占有率が4%以下で、平均ボイド径が4μm、見掛け密度が3.8〜3.9g/cm3の緻密なアルミナを得ることができる。ここで、ボイド占有率が4%以下であれば、ボイドによって入射した光波が様々な方向に反射する確率が低くなり、拡散反射率を低減することができる。また、平均ボイド径が小さくなる程、同様のことが可能となる。さらに見掛け密度が前記の範囲になることが好ましく、その範囲よりも大きくなれば比剛性を低下させることになり、小さければ、ヤング率の低下を招き、同様に比剛性を低下させる要因になる。   Further, a dense alumina having a void occupancy of 4% or less, an average void diameter of 4 μm, and an apparent density of 3.8 to 3.9 g / cm 3 can be obtained. Here, if the void occupancy is 4% or less, the probability that the light wave incident by the void is reflected in various directions becomes low, and the diffuse reflectance can be reduced. Moreover, the same thing becomes possible, so that an average void diameter becomes small. Furthermore, it is preferable that the apparent density falls within the above range. If the apparent density is larger than the above range, the specific rigidity is lowered. If the apparent density is smaller, the Young's modulus is lowered, and the specific rigidity is similarly reduced.

また、本発明の液晶基板保持盤1は、円板形状や角板等形状を問わず、液晶基板6を保持するのに適した形状であればどのような形状であっても構わない。   Further, the liquid crystal substrate holding disk 1 of the present invention may have any shape as long as it is suitable for holding the liquid crystal substrate 6 regardless of the shape of a disc or a square plate.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実験例1)
91重量%のAl粉末に、黒色とするため、Fe:0.7重量%、MnO:4.7重量%、CoO:1.6重量%、TiO:0.8重量%の各粉末を焼結助剤として添加し、さらにSiOやMgOを添加して湿式にて混合し、スプレードライヤーを用いて噴霧乾燥を行った。その後、湿式状態にて混合、粉砕したあと、スプレードライヤーを用いて噴霧乾燥・造粒を行い、2次原料を作製する。得られた2次原料は、CIP成形にて80MPaの圧力にて板状体に成形した。
(Experimental example 1)
In order to make the 91% by weight Al 2 O 3 powder black, Fe 2 O 3 : 0.7% by weight, MnO 2 : 4.7% by weight, CoO: 1.6% by weight, TiO 2 : 0.8 Weight percent of each powder was added as a sintering aid, and SiO 2 and MgO were further added and mixed in a wet manner, followed by spray drying using a spray dryer. Then, after mixing and pulverizing in a wet state, spray drying and granulation are performed using a spray dryer to produce a secondary raw material. The obtained secondary raw material was molded into a plate-like body at a pressure of 80 MPa by CIP molding.

次に1430℃の酸化雰囲気にて焼成し、アルミナ焼結体を得た後、φ30mm×8mmの円盤を製作する。そして、その円盤の表面を算術平均粗さ(Ra)で0.12μm、0.33μm、0.63μm、1.30μmの4種類に仕上げ液晶基板保持盤とした。出来上がった液晶保持盤はL表色系における明度指数のLが45.86、aが−0.61、b−0.64であった。 Next, after firing in an oxidizing atmosphere at 1430 ° C. to obtain an alumina sintered body, a φ30 mm × 8 mm disk is manufactured. The surface of the disk was finished into four types of arithmetic average roughness (Ra) of 0.12 μm, 0.33 μm, 0.63 μm, and 1.30 μm to form a liquid crystal substrate holding disk. The finished liquid crystal holding plate had a lightness index L * of 45.86, a * of −0.61, and b * −0.64 in the L * a * b * color system.

そして、それぞれに360nm〜740nmの光を照射し、その反射率、拡散反射率を測定した。また、反射率から拡散反射率を引いた数値を正反射率として算出した。   And each was irradiated with the light of 360 nm-740 nm, and the reflectance and diffuse reflectance were measured. A numerical value obtained by subtracting the diffuse reflectance from the reflectance was calculated as the regular reflectance.

結果はそれぞれ図3〜図5に示す。図3は各種算術平均粗さ(Ra)における反射率のデータを、図4は拡散反射率のデータを、図5は正反射率のデータをそれぞれ示すものである。   The results are shown in FIGS. FIG. 3 shows reflectance data for various arithmetic average roughnesses (Ra), FIG. 4 shows diffuse reflectance data, and FIG. 5 shows regular reflectance data.

なお、算術平均粗さ(Ra)0.12μm、0.33μm、0.63μmはラッピング加工にて、1.30μmはブラスト加工にてそれぞれ仕上げた。   Arithmetic average roughness (Ra) 0.12 μm, 0.33 μm, and 0.63 μm were finished by lapping and 1.30 μm was finished by blasting, respectively.

ところで、これらの反射率の測定は、ミノルタ社の分光測色計CM−3700d装置を用いて、波長範囲360nm〜740nmの範囲で測定すればよい。   By the way, these reflectances may be measured in a wavelength range of 360 nm to 740 nm by using a spectrocolorimeter CM-3700d apparatus manufactured by Minolta.

以上の結果から、算術平均粗さ(Ra)が0.4μm以下の表面で、450nmの波長領域において正反射率が1%以下にすることができることが判った。   From the above results, it was found that the regular reflectance can be reduced to 1% or less in the wavelength region of 450 nm on the surface having an arithmetic average roughness (Ra) of 0.4 μm or less.

また、このLotと同一の製造方法にて製作されたアルミナであれば、ヤング率が314GPa、3点曲げ強度324MPa、ビッカース硬度(Hv1)12.7GPa、見掛密度3.86g/cmの材料特性が得られ、比剛性が81.3GPa・cm/gとなり、高精度加工が可能な材質を得ることができた。 Further, if the alumina is manufactured by the same manufacturing method as this Lot, the material has a Young's modulus of 314 GPa, a three-point bending strength of 324 MPa, a Vickers hardness (Hv1) of 12.7 GPa, and an apparent density of 3.86 g / cm 3 . The characteristics were obtained, and the specific rigidity was 81.3 GPa · cm 3 / g, and a material capable of high-precision machining could be obtained.

本発明に係る液晶基板保持盤の一例であるチャックの概略図を示す図で、(a)はその斜視図を、(b)は上記液晶基板保持盤の一部を拡大した断面図をそれぞれ示している。1A and 1B are schematic views of a chuck which is an example of a liquid crystal substrate holding plate according to the present invention, in which FIG. 1A is a perspective view and FIG. 2B is an enlarged cross-sectional view of a part of the liquid crystal substrate holding plate. ing. 本発明に係る液晶基板保持盤の支持部の一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of support part of the liquid crystal substrate holding | maintenance board based on this invention. 本発明の基体による反射率の測定データを示すグラフである。It is a graph which shows the measurement data of the reflectance by the base | substrate of this invention. 本発明の基体による拡散反射率の測定データを示すグラフである。It is a graph which shows the measurement data of the diffuse reflectance by the base | substrate of this invention. 本発明の基体による正反射率の測定データを示すグラフである。It is a graph which shows the measurement data of the regular reflectance by the base | substrate of this invention. 従来の液晶基板保持盤の一例であるチャックの概略図を示す図で、(a)はその斜視図を、(b)は上記液晶基板保持盤の一部を拡大した断面図をそれぞれ示している。It is a figure which shows the schematic of the chuck | zipper which is an example of the conventional liquid crystal substrate holding | maintenance board, (a) is the perspective view, (b) has shown sectional drawing to which a part of said liquid crystal substrate holding board was expanded, respectively. .

符号の説明Explanation of symbols

1、11 …液晶基板保持盤
2、12…支持面
3、13… 非支持面
4、14…基体
5…液晶基板保持装置
6…液晶基板
17…被覆層
DESCRIPTION OF SYMBOLS 1, 11 ... Liquid crystal substrate holding disk 2, 12 ... Support surface 3, 13 ... Non-support surface 4, 14 ... Base | substrate 5 ... Liquid crystal substrate holding device 6 ... Liquid crystal substrate 17 ... Coating layer

Claims (5)

基体上面に透明または半透明の液晶基板を保持する支持面と、該支持面よりも下がった非支持面とを有する液晶基板保持盤において、上記基体の比剛性が80GPa・cm/g以上の黒色系セラミックスから形成されるとともに、上記支持面の算術平均粗さが0.3〜1.2μmの範囲としたことを特徴とする液晶基板保持盤。 In a liquid crystal substrate holder having a support surface for holding a transparent or translucent liquid crystal substrate on the upper surface of the substrate and a non-support surface that is lower than the support surface, the specific rigidity of the substrate is 80 GPa · cm 3 / g or more. A liquid crystal substrate holding plate formed of black ceramics and having an arithmetic average roughness of the support surface in a range of 0.3 to 1.2 μm. 上記基体がTiO、CoO、MnO、またはFeのいずれか1種以上を含有したアルミナから形成したことを特徴とする請求項1に記載の液晶基板保持盤。 2. The liquid crystal substrate holding disk according to claim 1, wherein the substrate is made of alumina containing at least one of TiO 2 , CoO, MnO 2 , and Fe 2 O 3 . 上記非支持面の算術平均粗さ(Ra)が1.0〜2.0μmの範囲であることを特徴とする請求項1又は2に記載の液晶基板保持盤。 3. The liquid crystal substrate holding disk according to claim 1, wherein the arithmetic average roughness (Ra) of the non-supporting surface is in a range of 1.0 to 2.0 μm. 上記アルミナの純度が90%以上であることを特徴とする請求項1〜3のいずれかに記載の液晶基板保持盤。 The liquid crystal substrate holder according to any one of claims 1 to 3, wherein the alumina has a purity of 90% or more. 黒色系セラミックスからなる基体を用意し、該基体の上面を算術平均粗さが0.3〜1.2μmの範囲に仕上げ、しかる後ブラスト加工にて透明または半透明液晶基板を保持する支持面と非支持面を形成したことを特徴とする液晶基板保持盤の製造方法。 A base made of a black ceramic is prepared, and the upper surface of the base is finished to have an arithmetic average roughness in the range of 0.3 to 1.2 μm, and then a supporting surface for holding a transparent or translucent liquid crystal substrate by blasting; A method of manufacturing a liquid crystal substrate holding disk, wherein a non-supporting surface is formed.
JP2004247206A 2004-02-25 2004-08-26 Liquid crystal substrate holder and manufacturing method thereof Expired - Lifetime JP4518876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247206A JP4518876B2 (en) 2004-02-25 2004-08-26 Liquid crystal substrate holder and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004049557 2004-02-25
JP2004247206A JP4518876B2 (en) 2004-02-25 2004-08-26 Liquid crystal substrate holder and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005275345A true JP2005275345A (en) 2005-10-06
JP4518876B2 JP4518876B2 (en) 2010-08-04

Family

ID=35175035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247206A Expired - Lifetime JP4518876B2 (en) 2004-02-25 2004-08-26 Liquid crystal substrate holder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4518876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497210B2 (en) 2019-05-30 2024-06-10 京セラ株式会社 Mounting member, inspection device and processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230159A (en) * 1988-07-20 1990-01-31 Nikon Corp Substrate sucking device
JPH09283605A (en) * 1996-04-09 1997-10-31 Canon Inc Substrate sucking and holding device and manufacturing method therefor
JP2003086664A (en) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd Suction fixing device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230159A (en) * 1988-07-20 1990-01-31 Nikon Corp Substrate sucking device
JPH09283605A (en) * 1996-04-09 1997-10-31 Canon Inc Substrate sucking and holding device and manufacturing method therefor
JP2003086664A (en) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd Suction fixing device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497210B2 (en) 2019-05-30 2024-06-10 京セラ株式会社 Mounting member, inspection device and processing device

Also Published As

Publication number Publication date
JP4518876B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4761334B2 (en) Colored ceramic vacuum chuck and manufacturing method thereof
JP5714672B2 (en) Mask blank substrate, mask blank, exposure mask, semiconductor device manufacturing method, and mask blank substrate manufacturing method
JP2006210546A (en) Substrate holding board for exposure process and manufacturing method thereof
WO2012102313A1 (en) Method for manufacturing photomask
TW201007349A (en) Mask blank substrate, mask blank, photomask, and methods of manufacturing the same
KR102328233B1 (en) Ceramic member for semiconductor exposure apparatus
KR20210037612A (en) Black sintered body and its manufacturing method
JP4502746B2 (en) Liquid crystal substrate holder and manufacturing method thereof
JP2010514173A (en) Transmissive optical element
JP4518876B2 (en) Liquid crystal substrate holder and manufacturing method thereof
JP4803576B2 (en) Mask blank substrate, mask blank, exposure mask, semiconductor device manufacturing method, and mask blank substrate manufacturing method
JP6460778B2 (en) Pellicle frame and method for manufacturing pellicle frame
JP2004012597A (en) Pellicle
JP6976799B2 (en) Mounting member
JP6491472B2 (en) Pellicle frame and method for manufacturing pellicle frame
JP2012017218A (en) Substrate, substrate production method, nd filter, and optical characteristic measurement device
TWI821375B (en) Optical member and manufacturing method thereof
EP2998768A1 (en) Optical component
KR102205981B1 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank substrate, mask blank and transfer mask
JP2005099638A (en) Galvano mirror and image projector using the same
WO2021215518A1 (en) Mirror mounting member, position measurement mirror using same, exposure device, and charged particle beam device
JP7359335B1 (en) Zirconia laminate
JP2018080064A (en) Orange-colored zirconia sintered compact, and its production method
JP2011037641A (en) Method for producing translucent spinel ceramics structure and translucent spinel ceramics structure
TW202230040A (en) Member for exposure device, manufacturing method for member for exposure device, and composite member for exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4