JP7497210B2 - Mounting member, inspection device and processing device - Google Patents

Mounting member, inspection device and processing device Download PDF

Info

Publication number
JP7497210B2
JP7497210B2 JP2020092425A JP2020092425A JP7497210B2 JP 7497210 B2 JP7497210 B2 JP 7497210B2 JP 2020092425 A JP2020092425 A JP 2020092425A JP 2020092425 A JP2020092425 A JP 2020092425A JP 7497210 B2 JP7497210 B2 JP 7497210B2
Authority
JP
Japan
Prior art keywords
mass
less
mounting member
adsorption
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020092425A
Other languages
Japanese (ja)
Other versions
JP2020196662A (en
Inventor
茂伸 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2020196662A publication Critical patent/JP2020196662A/en
Application granted granted Critical
Publication of JP7497210B2 publication Critical patent/JP7497210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Description

本開示は、載置用部材、検査装置および加工装置に関する。 This disclosure relates to a mounting member, an inspection device, and a processing device.

従来、シリコンウエハーを検査あるいは加工するために、真空チャック等の吸着用部材が用いられている。 Conventionally, suction members such as vacuum chucks have been used to inspect or process silicon wafers.

このような吸着用部材として、本件出願人は、例えば、特許文献1で、多孔質材料をそれぞれ含んだ複数の吸着部と、複数の吸着部の間に設けられる隔離部とを備え、隔離部は、隔離部に含まれる粒子が前記複数の吸着部の孔部内に入り込むことにより前記複数の吸着部に接合されている真空吸着部材を提案している。 As such an adsorption member, the applicant has proposed, for example, in Patent Document 1, a vacuum adsorption member that includes a plurality of adsorption sections each containing a porous material and an isolation section provided between the plurality of adsorption sections, and the isolation section is joined to the plurality of adsorption sections by particles contained in the isolation section entering the holes of the plurality of adsorption sections.

そして、真空吸着部材は、吸着部を支持する支持部を備え、この支持部は、アルミナを主成分とする緻密質セラミックスからなることが好適であることが記載されている。 The document also describes that the vacuum suction member has a support portion that supports the suction portion, and that this support portion is preferably made of dense ceramics whose main component is alumina.

特開2010-274378号公報JP 2010-274378 A

特許文献1に記載された吸着用部材の吸着部にシリコンウェハー等の被吸着体を吸着、保持させた状態で、被吸着体の表面に高い強度の白色光を照射して検査しようとすると、表面の外周側では、被吸着体、支持部ともに白く見えていた。このことが原因となって、被吸着体の輪郭がぼやけ、輪郭の誤認識を発生させてしまうという問題があった。 When an object to be attracted, such as a silicon wafer, is attracted and held by the suction part of the suction member described in Patent Document 1 and an inspection is performed by irradiating the surface of the object with high-intensity white light, both the object to be attracted and the supporting part appear white on the outer periphery of the surface. This causes the outline of the object to be attracted to become blurred, leading to a problem of the outline being misrecognized.

本発明は、拡散反射率を低くすることによって、被吸着体の輪郭の誤認識を防止することができる載置用部材と、この載置用部材を備えた検査装置および加工装置を提供する。 The present invention provides a mounting member that can prevent erroneous recognition of the contour of an object to be attached by reducing the diffuse reflectance, and an inspection device and a processing device that are equipped with this mounting member.

本開示の載置用部材は、被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなる。 The mounting member of the present disclosure is a mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less.

本開示の検査装置は、上記載置用部材を備えてなる。 The inspection device disclosed herein is equipped with the above-described mounting member.

本開示の加工装置は、上記載置用部材を備えてなる。 The processing device disclosed herein is equipped with the above-described mounting member.

本開示の載置部用部材は、被吸着体の輪郭の誤認識を防止することができる。 The mounting member disclosed herein can prevent erroneous recognition of the contour of the object to be attached.

本開示の載置用部材の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a mounting member according to the present disclosure. 図1の載置用部材に被吸着体を載置した一例を示す、(a)は、平面図、(b)は、(a)のA-A’線における断面図である。2A and 2B show an example of an object to be attached placed on the mounting member of FIG. 1, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line A-A' in FIG. 本開示の載置用部材の他の例を示す斜視図である。FIG. 11 is a perspective view showing another example of a mounting member according to the present disclosure. 図3の載置用部材に被吸着体を載置した一例を示す、(a)は、平面図、(b)は、(a)のB-B’線における断面図である。4A and 4B show an example of an object to be attached placed on the mounting member of FIG. 3, where FIG. 4A is a plan view and FIG. 4B is a cross-sectional view taken along line B-B' in FIG. 図1に示す載置用部材の環状面の反射率を示すグラフである。2 is a graph showing the reflectance of the annular surface of the mounting member shown in FIG. 1 . 図1に示す載置用部材を備えた本開示の検査装置の一例を示す模式図である。2 is a schematic diagram showing an example of an inspection device according to the present disclosure that includes the mounting member shown in FIG. 1 .

以下、図面を参照して、本発明の実施形態について詳細に説明する。 The following describes in detail an embodiment of the present invention with reference to the drawings.

図1は、本開示の載置用部材の一例を示す斜視図である。図2は、図1の載置用部材に被吸着体を載置した一例を示す、(a)は、平面図、(b)は、(a)のA-A’線における断面図である。 Figure 1 is a perspective view showing an example of a mounting member of the present disclosure. Figure 2 shows an example of an object to be attached placed on the mounting member of Figure 1, where (a) is a plan view and (b) is a cross-sectional view taken along line A-A' in (a).

図1および図2に示す載置用部材1は、半導体ウエハやガラス基板等の被吸着体Wを吸着して保持する部材であって、被吸着体Wを吸着、保持するための吸着面2aを有する吸着部2と、吸着面2aを囲繞する環状面3aを有する支持部3とを備えてなる。 The mounting member 1 shown in Figures 1 and 2 is a member that adsorbs and holds an adsorbed object W, such as a semiconductor wafer or a glass substrate, and is equipped with an adsorption portion 2 having an adsorption surface 2a for adsorbing and holding the adsorbed object W, and a support portion 3 having an annular surface 3a that surrounds the adsorption surface 2a.

吸着部2は多孔質セラミックスからなり、支持部3は緻密質セラミックスからなる。 The adsorption part 2 is made of porous ceramics, and the support part 3 is made of dense ceramics.

支持部3は、底面側に円周方向に帯状部3bを備え、帯状部3bには円周方向に沿って等間隔に取り付け穴3cが設置され、ボルト(不図示)等を介して、固定ベース(不図示)に連結、固定される。 The support part 3 has a band-shaped part 3b on the bottom side in the circumferential direction, and mounting holes 3c are provided at equal intervals along the circumferential direction in the band-shaped part 3b, and is connected and fixed to a fixed base (not shown) via bolts (not shown) or the like.

支持部3は、厚み方向に位置する通気路3dと、通気路3dが吸着部2側に同心円状や格子状等に開口する吸引溝3eとを備えており、真空ポンプ等の吸引手段(図示しない)を通気路3dに接続、吸引することにより、吸着面2aに載置した被吸着体を吸着して保持する。環状面3aは、吸着面2aと面一とされ、環状面3aの内周側に、例えば、直径が300mmのシリコンウェハーWの外周部が当接する。 The support part 3 has an air passage 3d located in the thickness direction and suction grooves 3e in which the air passage 3d opens concentrically or in a grid pattern on the suction part 2 side. A suction means (not shown) such as a vacuum pump is connected to the air passage 3d and sucks the object to be adsorbed placed on the adsorption surface 2a, and the object is adsorbed and held. The annular surface 3a is flush with the adsorption surface 2a, and the outer periphery of a silicon wafer W with a diameter of, for example, 300 mm abuts against the inner periphery of the annular surface 3a.

多孔質セラミックスの気孔率は、例えば、28体積%以上38体積%以下である。多孔質セラミックスの気孔率が28体積%以上であると、多孔質セラミックス全体における通気抵抗が低くなるので、吸着部2は低い吸引力で被吸着体Wを固定することができる。また、多孔質セラミックスの気孔率が38体積%以下であると、多孔質セラミックス全体の放熱特性は高くなるので、速やかな放熱が求められる被吸着体Wにも適用させることができる。 The porosity of the porous ceramic is, for example, 28% by volume or more and 38% by volume or less. If the porosity of the porous ceramic is 28% by volume or more, the air flow resistance of the entire porous ceramic is low, so the adsorption part 2 can fix the adsorbate W with low suction force. Furthermore, if the porosity of the porous ceramic is 38% by volume or less, the heat dissipation characteristics of the entire porous ceramic are high, so it can be applied to adsorbates W that require rapid heat dissipation.

ここで、吸着部2の気孔率は、JIS R 1655-2003に準拠した水銀圧入法に準拠して求めることができる。 Here, the porosity of the adsorption portion 2 can be determined according to the mercury intrusion method in accordance with JIS R 1655-2003.

一方、緻密質セラミックスの相対密度は、98%以上である。 On the other hand, the relative density of dense ceramics is 98% or more.

この相対密度は、セラミックスの理論密度に対する支持部3の見掛密度の百分率である。なお、セラミックスの理論密度を求めるには、まず、支持部3の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP(Inductively Coupled Plasma)発光分光分析装置(例えば、(株)島津製作所製(ICPS-8100))によって金属成分の含有量を求める。支持部3を構成する各成分はCuKα線を用いたX線回折装置によって同定する。同定された成分が、Alであれば、ICP(Inductively Coupled Plasma)発光分光分析装置により求めたAlの含有量の値を用いてAlに換算する。同定さ
れた成分が、MnOおよびCoであれば、同じ方法で、それぞれMnO、Coに換算すればよい。支持部3の見掛密度は、JIS R 1634-1998に準拠して求めればよい。
This relative density is the percentage of the apparent density of the support part 3 relative to the theoretical density of the ceramic. To determine the theoretical density of the ceramic, first, a part of the support part 3 is crushed, and the resulting powder is dissolved in a solution such as hydrochloric acid, and then the content of the metal component is determined by an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (for example, ICPS-8100 manufactured by Shimadzu Corporation). Each component constituting the support part 3 is identified by an X-ray diffraction device using CuKα rays. If the identified component is Al 2 O 3 , it is converted to Al 2 O 3 using the content value of Al determined by the ICP (Inductively Coupled Plasma) emission spectroscopic analyzer. If the identified components are MnO and Co 3 O 4 , they may be converted to MnO and Co 3 O 4 , respectively, by the same method. The apparent density of the support part 3 may be determined in accordance with JIS R 1634-1998.

そして、セラミックスを構成する主成分が酸化アルミニウムであり、主成分以外の成分が酸化マンガンおよび酸化コバルトである場合、含有量がそれぞれa質量%,b質量%、c質量%であるとすると、各成分の理論密度の値(酸化アルミニウム=3.99g/cm、酸化マンガン=5.03g/cmおよび酸化コバルト=6.11g/cm)を用いて、以下の式(1)によりセラミックスの理論密度(T.D)を求めることができる。T.D=1/(0.01×(a/3.99+b/5.03+c/6.11))・・・(1) When the main component constituting the ceramic is aluminum oxide and the other components are manganese oxide and cobalt oxide, and the contents are a mass %, b mass %, and c mass %, respectively, the theoretical density of each component (aluminum oxide = 3.99 g/cm 3 , manganese oxide = 5.03 g/cm 3 , and cobalt oxide = 6.11 g/cm 3 ) can be used to calculate the theoretical density (T.D) of the ceramic according to the following formula (1): T.D = 1/(0.01 x (a/3.99 + b/5.03 + c/6.11)) ... (1)

例えば、セラミックスを構成する成分の含有量が、酸化アルミニウムが94.7質量%であり、酸化マンガンが4質量%、酸化コバルト1.3質量%であるときには、式(1)を用いて計算すると、セラミックスの理論密度(T.D)は、4.04g/cmとなり、JIS R 1634-1998に準拠して求めたセラミックスの見掛密度を、この理論密度(T.D)4.04g/cmで除すことにより相対密度を求めることができる。 For example, when the contents of the components constituting the ceramic are 94.7% by mass of aluminum oxide, 4% by mass of manganese oxide, and 1.3% by mass of cobalt oxide, the theoretical density (T.D.) of the ceramic is 4.04 g/ cm3 when calculated using formula (1), and the relative density can be obtained by dividing the apparent density of the ceramic obtained in accordance with JIS R 1634-1998 by this theoretical density (T.D.) of 4.04 g/ cm3 .

吸着部2は、ガラスによって支持部3に接合されており、ガラスの成分は、酸化珪素、酸化アルミニウムおよび酸化カルシウムを含み、例えば、酸化珪素が50質量%以上60質量%以下、酸化アルミニウムが10質量%以上20質量%以下、酸化カルシウムが10質量%以上20質量%以下である。 The adsorption portion 2 is joined to the support portion 3 by glass, and the components of the glass include silicon oxide, aluminum oxide, and calcium oxide, for example, silicon oxide is 50% by mass to 60% by mass, aluminum oxide is 10% by mass to 20% by mass, and calcium oxide is 10% by mass to 20% by mass.

図3は、本開示の載置用部材の他の例を示す斜視図である。図4は、図3の載置用部材に被吸着体を載置した一例を示す、(a)は、平面図、(b)は、(a)のB-B’線における断面図である。 Figure 3 is a perspective view showing another example of the mounting member of the present disclosure. Figure 4 shows an example of an object to be attached placed on the mounting member of Figure 3, where (a) is a plan view and (b) is a cross-sectional view taken along line B-B' in (a).

図3および図4に示す載置用部材10は、吸着面2aを径方向に分割する分割面4aを有する環状隔壁部4が備えられ、環状隔壁部4と支持部3とは一体的に形成されてなる。環状隔壁部4は、その側面が上記ガラスによって吸着部2と接合されている。直径が小さいシリコンウェハーを吸着面2aに載置する場合、分割面4aの内周側に、例えば、直径が200mmのシリコンウェハーWの外周部が当接する。この場合、環状隔壁部4の内周側に位置する通気路3dおよび吸引溝3eのみを介して吸着部2の内部の空気を吸引すればよい。 The mounting member 10 shown in Figures 3 and 4 is provided with an annular partition 4 having a dividing surface 4a that divides the suction surface 2a in the radial direction, and the annular partition 4 and the support portion 3 are formed integrally. The side of the annular partition 4 is joined to the suction portion 2 by the above-mentioned glass. When a silicon wafer with a small diameter is placed on the suction surface 2a, the outer periphery of a silicon wafer W with a diameter of, for example, 200 mm abuts against the inner periphery of the dividing surface 4a. In this case, the air inside the suction portion 2 needs to be sucked only through the ventilation passage 3d and suction groove 3e located on the inner periphery of the annular partition 4.

なお、図3および図4では、吸着部2は環状隔壁部4を単数備えた載置用部材1を示したが、環状隔壁部4を複数備えたものであってもよい。 In addition, in Figures 3 and 4, the suction portion 2 shows a mounting member 1 having a single annular partition portion 4, but it may also have multiple annular partition portions 4.

本開示の載置用部材1,10は、支持部3がマンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、マンガンの酸化物の含有量が2質量%以上6質量%以下であり、コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなる。 The mounting members 1 and 10 of the present disclosure are made of aluminum oxide ceramics in which the support portion 3 contains oxides of manganese, cobalt and silicon, the content of manganese oxide being 2% by mass or more and 6% by mass or less, the content of cobalt oxide being 0.6% by mass or more and 2% by mass or less, and the content of silicon oxide being 0.02% by mass or more and 3% by mass or less.

ここで、酸化アルミニウム質セラミックスとは、セラミックスを構成する全成分の合計100質量%のうち、酸化アルミニウム(Al)の含有量が89質量%以上であるセラミックスのことを指す。 Here, aluminum oxide ceramics refers to ceramics in which the content of aluminum oxide (Al 2 O 3 ) is 89 mass % or more out of a total of 100 mass % of all components constituting the ceramics.

そして、載置用部材1,10を構成する酸化アルミニウム質セラミックスに含まれるマンガンの酸化物およびコバルトの酸化物は、着色成分である。そして、マンガンの酸化物の含有量は2質量%以上6質量%以下であり、コバルトの酸化物の含有量は0.6質量%
以上2質量%以下である。本開示の載置用部材10はこのような着色成分を含むことによって、色調を暗色(黒色)にすることができるため、波長域360nm~650nmにおける全反射率が15%以下と低くなる。このように全反射率が低くなることによって、被吸着体Wの輪郭とのコントラストが明確になり、被吸着体Wの輪郭の誤認識を防止することができる。
The manganese oxide and cobalt oxide contained in the aluminum oxide ceramics constituting the mounting member 1, 10 are coloring components. The manganese oxide content is 2% by mass or more and 6% by mass or less, and the cobalt oxide content is 0.6% by mass or less.
The content of the color component is 2% by mass or more. By including such a coloring component, the mounting member 10 of the present disclosure can have a dark color (black), and therefore the total reflectance in the wavelength range of 360 nm to 650 nm is reduced to 15% or less. By reducing the total reflectance in this manner, the contrast with the contour of the adsorbate W becomes clear, and it is possible to prevent erroneous recognition of the contour of the adsorbate W.

ここで、マンガンの酸化物は、光を吸収し、着色成分がマンガンの酸化物のみである酸化アルミニウム質セラミックスの場合には、赤色を呈する。また、コバルトの酸化物は、光を吸収し、着色成分がコバルトの酸化物のみである酸化アルミニウム質セラミックスの場合には、酸化度によって青色や緑色を呈する。マンガンの酸化物およびコバルトの酸化物の含有量をそれぞれ上記範囲とすることで、環状面3aや分割面4aを反射率の低い黒色とすることができる。 Here, manganese oxide absorbs light, and in the case of aluminum oxide ceramics in which the only coloring component is manganese oxide, it exhibits a red color. Cobalt oxide absorbs light, and in the case of aluminum oxide ceramics in which the only coloring component is cobalt oxide, it exhibits a blue or green color depending on the degree of oxidation. By setting the content of manganese oxide and cobalt oxide within the above ranges, respectively, the annular surface 3a and the dividing surface 4a can be made black with low reflectance.

また、珪素の酸化物は、結晶同士を結合する粒界相を形成して破壊靭性を向上させ、着色成分であるマンガンの酸化物やコバルトの酸化物と結合して、着色剤の脱色を抑制する成分である。珪素の酸化物の含有量は、0.02質量%以上3質量%以下である。珪素の酸化物の含有量が、0.02質量%以上とすることにより結晶同士を結合する粒界相を形成して破壊靭性を向上させ、着色成分であるマンガンの酸化物やコバルトの酸化物と結合して、着色剤の脱色を抑制するが、3質量%を超えると、アルミノケイ酸塩が生成される可能性が高くなり、このアルミノケイ酸塩が生成されると、環状面3aや分割面4aにしみが残るおそれが生じる。 In addition, silicon oxide is a component that forms a grain boundary phase that bonds crystals together to improve fracture toughness, and combines with the coloring components manganese oxide and cobalt oxide to suppress discoloration of the colorant. The content of silicon oxide is 0.02% by mass or more and 3% by mass or less. By making the content of silicon oxide 0.02% by mass or more, a grain boundary phase that bonds crystals together is formed to improve fracture toughness, and it combines with the coloring components manganese oxide and cobalt oxide to suppress discoloration of the colorant, but if the content exceeds 3% by mass, there is a high possibility that aluminosilicates will be generated, and if this aluminosilicate is generated, there is a risk that stains will remain on the annular surface 3a and the dividing surface 4a.

また、酸化アルミニウム質セラミックスは、上記成分以外に、焼結助剤としての作用をなし、主に粒界相を構成する成分として、マグネシウムの酸化物およびカルシウムの酸化物を含んでいてもよい。マグネシウムの酸化物およびカルシウムの酸化物の含有量の合計は、酸化アルミニウム質セラミックスを構成する全成分の合計100質量%のうち、例えば、0.1質量%以上0.2質量%以下である。 In addition to the above components, the aluminum oxide ceramic may contain magnesium oxide and calcium oxide as components that act as sintering aids and mainly constitute the grain boundary phase. The total content of magnesium oxide and calcium oxide is, for example, 0.1 mass% or more and 0.2 mass% or less out of 100 mass% of the total of all components that constitute the aluminum oxide ceramic.

本開示の載置用部材1,10の環状面3aおよび分割面4aの少なくともいずれかは、算術平均粗さRaが0.4μm以下であるとよい。 At least one of the annular surface 3a and the dividing surface 4a of the mounting member 1, 10 of the present disclosure may have an arithmetic mean roughness Ra of 0.4 μm or less.

算術平均粗さRaが上記範囲であると、正反射率はわずかに増加するものの、拡散反射率は大幅に減少するため、被吸着体Wの輪郭の誤認識を防止することがより容易になる。 When the arithmetic mean roughness Ra is within the above range, the specular reflectance increases slightly but the diffuse reflectance decreases significantly, making it easier to prevent erroneous recognition of the contour of the object to be attracted W.

特に、載置用部材1,10の環状面3aおよび分割面4aの少なくともいずれかは、算術平均粗さRaが0.11μm以上0.35μm以下であるとよい。 In particular, it is preferable that at least one of the annular surface 3a and the dividing surface 4a of the mounting member 1, 10 has an arithmetic mean roughness Ra of 0.11 μm or more and 0.35 μm or less.

算術平均粗さRaが0.11μm以上であると、被吸着体Wを吸着面に吸着、保持して研磨する場合、研磨用スラリーに含まれる、砥粒や研磨屑が吸着面上に固着しにくくなるので、研磨終了後、次の被吸着体Wの吸着、保持が容易となる。 If the arithmetic mean roughness Ra is 0.11 μm or more, when the adsorbate W is adsorbed and held on the adsorption surface for polishing, the abrasive grains and polishing debris contained in the polishing slurry are less likely to adhere to the adsorption surface, making it easier to adsorb and hold the next adsorbate W after polishing is completed.

算術平均粗さRaが0.35μm以下であると、その面の波長域360nm~650nmにおける拡散反射率はさらに低くなり、11%以下となる。また、純水等で環状面3aおよび分割面4aを洗浄する場合、純水に対する接触角が小さくなるので、洗浄効率が向上する。 When the arithmetic mean roughness Ra is 0.35 μm or less, the diffuse reflectance of that surface in the wavelength range of 360 nm to 650 nm is further reduced to 11% or less. In addition, when the annular surface 3a and the divided surface 4a are washed with pure water or the like, the contact angle with the pure water is reduced, improving the washing efficiency.

また、環状面3aおよび分割面4aの少なくともいずれかは、外周側の算術平均粗さRaが内周側の算術平均粗さRaよりも小さくてもよい。なお、環状面3aの外周側とは、環状面3aにおける、内周と外周との中央よりも外周側に位置する部位を言い、環状面3aの内周側とは、環状面3aにおける、内周と外周との中央よりも内周側の部位を言う。 In addition, the arithmetic mean roughness Ra of at least one of the annular surface 3a and the dividing surface 4a on the outer periphery side may be smaller than the arithmetic mean roughness Ra on the inner periphery side. Note that the outer periphery side of the annular surface 3a refers to a portion of the annular surface 3a that is located on the outer periphery side of the center between the inner periphery and the outer periphery, and the inner periphery side of the annular surface 3a refers to a portion of the annular surface 3a that is located on the inner periphery side of the center between the inner periphery and the outer periphery.

同様に、分割面4aの外周側とは、分割面4aにおける、内周と外周との中央よりも外周側の部位を言い、分割面4aの内周側とは、分割面4aにおける、内周と外周との中央よりも内周側に位置する部位を言う。 Similarly, the outer periphery of the dividing surface 4a refers to the portion of the dividing surface 4a that is closer to the outer periphery than the center between the inner and outer periphery, and the inner periphery of the dividing surface 4a refers to the portion of the dividing surface 4a that is closer to the inner periphery than the center between the inner and outer periphery.

環状面3aの外周側の算術平均粗さRaが内周側の算術平均粗さRaよりも小さいと、環状面3aの外周側の拡散反射率がさらに低下するので、外周部が環状面3aの内周側に当接する、直径の大きな被吸着体Wの輪郭の誤認識を防止する効果がさらに高くなる。この場合、環状面3aの内周側の算術平均粗さRaが環状面3aの外周側の算術平均粗さRaよりも大きくなるので、被吸着体Wに対するアンカー効果が向上するため、被吸着体Wの保持力が高くなる。 If the arithmetic mean roughness Ra of the outer periphery of the annular surface 3a is smaller than the arithmetic mean roughness Ra of the inner periphery, the diffuse reflectance of the outer periphery of the annular surface 3a is further reduced, and the effect of preventing erroneous recognition of the contour of a large-diameter object to be attracted W, whose outer periphery abuts the inner periphery of the annular surface 3a, is further enhanced. In this case, the arithmetic mean roughness Ra of the inner periphery of the annular surface 3a is larger than the arithmetic mean roughness Ra of the outer periphery of the annular surface 3a, and therefore the anchor effect on the object to be attracted W is improved, and the holding force of the object to be attracted W is increased.

環状面3aの外周側の算術平均粗さRaと内周側の算術平均粗さRaとの差は、例えば、0.01μm以上0.13μm以下である。 The difference between the arithmetic mean roughness Ra of the outer periphery side of the annular surface 3a and the arithmetic mean roughness Ra of the inner periphery side is, for example, 0.01 μm or more and 0.13 μm or less.

同様に、分割面4aの外周側の算術平均粗さRaが内周側の算術平均粗さRaよりも小さいと、分割面4aの外周側の拡散反射率がさらに低下するので、外周部が分割面4aの内周側に当接する、直径の小さな被吸着体Wの輪郭の誤認識を防止する効果がさらに高くなる。この場合、分割面4aの内周側の算術平均粗さRaが分割面4aの外周側の算術平均粗さRaよりも大きくなるので、被吸着体Wに対するアンカー効果が向上するため、被吸着体Wの保持力が高くなる。 Similarly, if the arithmetic mean roughness Ra of the outer periphery of the dividing surface 4a is smaller than the arithmetic mean roughness Ra of the inner periphery, the diffuse reflectance of the outer periphery of the dividing surface 4a is further reduced, and the effect of preventing erroneous recognition of the contour of the small-diameter adsorbate W, whose outer periphery abuts the inner periphery of the dividing surface 4a, is further enhanced. In this case, the arithmetic mean roughness Ra of the inner periphery of the dividing surface 4a is larger than the arithmetic mean roughness Ra of the outer periphery of the dividing surface 4a, and therefore the anchor effect on the adsorbate W is improved, and the holding force of the adsorbate W is increased.

分割面4aの外周側の算術平均粗さRaと内周側の算術平均粗さRaとの差は、例えば、0.01μm以上0.13μm以下である。 The difference between the arithmetic mean roughness Ra of the outer periphery side of the dividing surface 4a and the arithmetic mean roughness Ra of the inner periphery side is, for example, 0.01 μm or more and 0.13 μm or less.

環状面3aおよび分割面4aの少なくともいずれかの粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、粗さ曲線における切断レベル差(Rδc)が0.7μm以下であるとよい。 The cut level difference (Rδc) in the roughness curve, which represents the difference between the cut level at a load length ratio of 25% in the roughness curve of at least one of the annular surface 3a and the divided surface 4a and the cut level at a load length ratio of 75% in the roughness curve, is preferably 0.7 μm or less.

ここで、切断レベル差(Rδc)とは、JIS B0601:2001で規定されている粗さ曲線における負荷長さ率Rmr1、Rmr2にそれぞれ一致する切断レベルC(Rrm1)、C(Rrm2)の高さ方向の差である。切断レベル差(Rδc)が大きい場合、測定の対象とする面の凹凸は大きくなり、小さい場合には、その面の凹凸は小さくなる。 Here, the cut level difference (Rδc) is the difference in height between the cut levels C (Rrm1) and C (Rrm2) that correspond to the load length ratios Rmr1 and Rmr2, respectively, in the roughness curve specified in JIS B0601:2001. If the cut level difference (Rδc) is large, the unevenness of the surface being measured will be large, and if it is small, the unevenness of the surface will be small.

切断レベル差(Rδc)が上記範囲であると、正反射率はわずかに増加するものの、拡散反射率は大幅に減少し、拡散反射率が低下するので、被吸着体Wの輪郭の誤認識を防止することがより容易になる。 When the cut level difference (Rδc) is within the above range, the specular reflectance increases slightly, but the diffuse reflectance decreases significantly, making it easier to prevent erroneous recognition of the contour of the adsorbate W.

環状面3aの外周側の切断レベル差(Rδc)が内周側の切断レベル差(Rδc)よりも小さいと、環状面3aの外周側の拡散反射率がさらに低下するので、外周部が環状面3aの内周側に当接する、直径の大きな被吸着体Wの輪郭の誤認識を防止する効果がさらに高くなる。この場合、環状面3aの内周側の切断レベル差(Rδc)が環状面3aの外周側の切断レベル差(Rδc)よりも大きくなるので、被吸着体Wに対するアンカー効果が向上するため、被吸着体Wの保持力が高くなる。 When the cut level difference (Rδc) on the outer periphery of the annular surface 3a is smaller than the cut level difference (Rδc) on the inner periphery, the diffuse reflectance on the outer periphery of the annular surface 3a is further reduced, and the effect of preventing erroneous recognition of the contour of a large-diameter object to be attracted W, whose outer periphery abuts the inner periphery of the annular surface 3a, is further enhanced. In this case, the cut level difference (Rδc) on the inner periphery of the annular surface 3a is larger than the cut level difference (Rδc) on the outer periphery of the annular surface 3a, and therefore the anchor effect on the object to be attracted W is improved, and the holding force of the object to be attracted W is increased.

環状面3aの外周側の切断レベル差(Rδc)と内周側の切断レベル差(Rδc)との差は、例えば、0.04μm以上0.25μm以下である。 The difference between the cutting level difference (Rδc) on the outer periphery side of the annular surface 3a and the cutting level difference (Rδc) on the inner periphery side is, for example, 0.04 μm or more and 0.25 μm or less.

同様に、分割面4aの外周側の切断レベル差(Rδc)が内周側の切断レベル差(Rδ
c)よりも小さいと、分割面4aの外周側の拡散反射率がさらに低下するので、外周部が分割面4aの内周側に当接する、直径の小さな被吸着体Wの輪郭の誤認識を防止する効果がさらに高くなる。この場合、分割面4aの内周側の切断レベル差(Rδc)が分割面4aの外周側の切断レベル差(Rδc)よりも大きくなるので、被吸着体Wに対するアンカー効果が向上するため、被吸着体Wの保持力が高くなる。
Similarly, the cut level difference (Rδc) on the outer periphery side of the dividing surface 4a is
If Rδc is smaller than c), the diffuse reflectance on the outer periphery of the dividing surface 4a is further decreased, and the effect of preventing erroneous recognition of the contour of the small-diameter object W whose outer periphery abuts against the inner periphery of the dividing surface 4a is further increased. In this case, the cutting level difference (Rδc) on the inner periphery of the dividing surface 4a is larger than the cutting level difference (Rδc) on the outer periphery of the dividing surface 4a, and therefore the anchor effect on the object W is improved, and the holding force of the object W is increased.

分割面4aの外周側の切断レベル差(Rδc)と内周側の切断レベル差(Rδc)との差は、例えば、0.04μm以上0.25μm以下である。 The difference between the cutting level difference (Rδc) on the outer periphery side of the dividing surface 4a and the cutting level difference (Rδc) on the inner periphery side is, for example, 0.04 μm or more and 0.25 μm or less.

なお、算術平均粗さRaおよび切断レベル差(Rδc)は、JIS B 0601-2001に準拠し、レーザー顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1000またはその後継機種))を用いて測定することができる。測定条件としては、カットオフ値λsを無し、カットオフ値λcを0.08mm、測定対象とする環状面3aあるいは分割面4aから1か所当たりの測定範囲を1404μm×1053μmを設定して、各測定範囲毎に長手方向に沿って、略等間隔となるように4本測定対象とする線を引けばよい。そして、環状面3aあるいは分割面4aの円周上に、略等間隔に8か所上記測定範囲を設定して、合計32本の測定対象とする線に対して線粗さ計測を行えばよい。 The arithmetic mean roughness Ra and the cut level difference (Rδc) can be measured in accordance with JIS B 0601-2001 using a laser microscope (Keyence Corporation, Ultra-Deep Color 3D Shape Measuring Microscope (VK-X1000 or its successor model)). The measurement conditions are as follows: no cutoff value λs, cutoff value λc of 0.08 mm, measurement range per point from the annular surface 3a or divided surface 4a to be measured of 1404 μm x 1053 μm, and four lines to be measured are drawn at approximately equal intervals along the longitudinal direction for each measurement range. Then, eight measurement ranges are set at approximately equal intervals on the circumference of the annular surface 3a or divided surface 4a, and line roughness measurements are performed on a total of 32 lines to be measured.

環状面3aおよび分割面4aの少なくともいずれかを測定対象面とし、測定対象面のCIE1976L*a*b*色空間における明度指数L*が40以下であって、クロマティクネス指数a*,b*がいずれも-1以上1以下であってもよい。明度指数L*およびクロマティクネス指数a*,b*がこの範囲であると、可視光線領域全般に亘って黒色系の無彩色化の傾向が強くなるので、反射率を低減することができる。さらに、無彩色化の傾向が強くなるため、色むらが抑制される。 At least one of the annular surface 3a and the divided surface 4a is used as the measurement target surface, and the lightness index L* in the CIE 1976 L*a*b* color space of the measurement target surface may be 40 or less, and the chromaticness indices a* and b* may be between -1 and 1. When the lightness index L* and the chromaticness indices a* and b* are in this range, the tendency toward black-based achromatic colors increases across the entire visible light range, making it possible to reduce the reflectance. Furthermore, the tendency toward achromatic colors increases, suppressing color unevenness.

測定対象面の色差ΔE*abは0.5以下(但し、0を除く)であってもよい。色差ΔE*abが上記範囲であると、測定対象面の色調感のばらつきが低減して、そのばらつきを視認しにくくなるので、商品価値が向上する。 The color difference ΔE*ab of the surface to be measured may be 0.5 or less (excluding 0). When the color difference ΔE*ab is within the above range, the variation in the color tone of the surface to be measured is reduced and the variation becomes less noticeable, thereby improving the product value.

ここで、色差ΔE*abは、色調感のばらつきを示す指標であり、以下の式(2)で示される。
ΔE*ab=〔(ΔL*)+(Δa*)+(Δb*)1/2 (2)
(ΔL*は、環状面3aあるいは分割面4aの外周側に位置する第1測定対象点の明度指数L1*と第1測定対象点の径方向内周側に位置する第2測定対象点の明度指数L2*との差、Δa*は上記第1測定対象点のクロマティクネス指数a1*と上記第2測定対象点の明度指数a2*との差、Δb*は上記第1測定対象点のクロマティクネス指数b1*と上記第2測定対象点の明度指数b2*との差である。)
Here, the color difference ΔE*ab is an index showing the variation in color tone, and is expressed by the following formula (2).
ΔE*ab=[(ΔL*) 2 +(Δa*) 2 +(Δb*) 2 ] 1/2 (2)
(ΔL* is the difference between the lightness index L1* of a first measurement point located on the outer periphery of the annular surface 3a or the divided surface 4a and the lightness index L2* of a second measurement point located on the radially inner periphery of the first measurement point, Δa* is the difference between the chromaticness index a1* of the first measurement point and the lightness index a2* of the second measurement point, and Δb* is the difference between the chromaticness index b1* of the first measurement point and the lightness index b2* of the second measurement point.)

環状面3aあるいは分割面4aの円周上に、略等間隔に4か所それぞれについて、第1測定対象点および第2測定対象点を設定して明度指数L*およびクロマティクネス指数a*,b*を測定すればよい。 The lightness index L* and chromaticness indices a*, b* can be measured by setting the first and second measurement points at four locations approximately equally spaced apart on the circumference of the annular surface 3a or the divided surface 4a.

明度指数L*およびクロマティクネス指数a*,b*の値は、JIS Z 8722:2009に準拠して求めることができる。例えば、分光色差計(日本電色工業(株)製NF777またはその後継機種)を用い、測定条件としては、光源をCIE標準光源D65、視野角を2°に設定すればよい。 The values of the lightness index L* and the chromaticness indices a* and b* can be determined in accordance with JIS Z 8722:2009. For example, a spectrophotometer (NF777 manufactured by Nippon Denshoku Industries Co., Ltd. or its successor model) can be used, and the measurement conditions can be set to a CIE standard light source D65 and a viewing angle of 2°.

環状面3aおよび分割面4aの少なくともいずれかの反射率は、波長が700nmから400nmに向かって多項式近似曲線に従って減少していてもよい。 The reflectance of at least one of the annular surface 3a and the dividing surface 4a may decrease according to a polynomial approximation curve from 700 nm to 400 nm wavelength.

波長が700nmから400nmに向かって、反射率が多項式近似曲線に従って減少していると、例えば、波長域が400nm~640nmに分光分布のピークを有する白色光(例えば、LED光源による白色光)を照射して被吸着体Wの検査する場合、被吸着体Wの輪郭をより鮮明にすることができる。 If the reflectance decreases according to a polynomial approximation curve as the wavelength moves from 700 nm to 400 nm, the contour of the adherend object W can be made clearer when inspecting the adherend object W by irradiating it with white light (e.g., white light from an LED light source) that has a peak in its spectral distribution in the wavelength range of 400 nm to 640 nm.

図5は、図1に示す載置用部材の環状面の反射率を示すグラフである。 Figure 5 is a graph showing the reflectance of the annular surface of the mounting member shown in Figure 1.

具体的には、このグラフは、波長域が400nm~700nmの範囲で波長の間隔を20nmとして、上記第1測定対象点および第2測定対象点の反射率をそれぞれプロットし、各プロットを曲線で繋いだグラフである。 Specifically, this graph plots the reflectance of the first and second measurement points in the wavelength range of 400 nm to 700 nm with wavelength intervals of 20 nm, and connects each plot with a curve.

波長が700nmから400nmに向かって多項式近似曲線に従って減少している状態を判断するには、まず、Excel(登録商標、Microsoft Corporation)に備えられているグラフツールを用いてプロットを曲線で繋いだグラフに最も近い近似曲線を選択する。選択した近似曲線が多項式近似曲線であれば、多項式近似曲線がグラフに最も近くなるように多項式近似曲線の次数(図5に示すグラフでは、次数はいずれも4)を選定した後、相関係数Rを算出する。そして、r表(相関係数検定表)を用いて、有意水準5%(両側確率)で相関係数Rを検定する。有意であれば、波長が700nmから400nmに向かって多項式近似曲線に従って減少していると言える。被吸着体Wの 第1測定対象点の反射率をプロットして得られる曲線の多項式近似式および決定係数Rは、図4に示す通りであり、相関係数Rは0.9921、サンプル数は16である。 To determine whether the wavelength is decreasing from 700 nm to 400 nm according to a polynomial approximation curve, first, use the graph tool provided in Excel (registered trademark, Microsoft Corporation) to select the approximation curve that is closest to the graph in which the plots are connected by a curve. If the selected approximation curve is a polynomial approximation curve, select the degree of the polynomial approximation curve (in the graph shown in FIG. 5, the degree is 4 for all) so that the polynomial approximation curve is closest to the graph, and then calculate the correlation coefficient R. Then, using the r table (correlation coefficient test table), the correlation coefficient R is tested at a significance level of 5% (two-sided probability). If it is significant, it can be said that the wavelength is decreasing from 700 nm to 400 nm according to a polynomial approximation curve. The polynomial approximation formula and the determination coefficient R 2 of the curve obtained by plotting the reflectance of the first measurement target point of the adsorbent W are as shown in FIG. 4, the correlation coefficient R is 0.9921, and the number of samples is 16.

第2測定対象点の反射率をプロットして得られる曲線の多項式近似式および決定係数Rは、図4に示す通りであり、相関係数Rは0.9926、サンプル数は16である。反射率をプロットして得られる曲線は相関係数Rを有意水準5%で検定するといずれも有意である。 The polynomial approximation equation and the coefficient of determination R2 of the curve obtained by plotting the reflectance of the second measurement target point are as shown in Figure 4, the correlation coefficient R is 0.9926, and the number of samples is 16. All of the curves obtained by plotting the reflectance are significant when the correlation coefficient R is tested at a significance level of 5%.

波長が700nmから640nm向かって反射率は急激に低下し、640nmから400nnmに向かって反射率は徐々に低下している。 The reflectance drops sharply as the wavelength increases from 700 nm to 640 nm, and then drops gradually from 640 nm to 400 nm.

図6は、図1に示す載置用部材を備えた本開示の検査装置の一例を示す模式図である。 Figure 6 is a schematic diagram showing an example of an inspection device of the present disclosure equipped with the mounting member shown in Figure 1.

検査装置20は、載置用部材1,10と、吸引手段としての真空ポンプ21と、光照射手段としての照射部22と、撮像手段としてのCCDカメラ23とを備えている。 The inspection device 20 includes the mounting members 1 and 10, a vacuum pump 21 as a suction means, an irradiation unit 22 as a light irradiation means, and a CCD camera 23 as an imaging means.

照射部22は、真空ポンプ21の吸引によって吸着面2aに吸着、保持された被吸着体Wの外縁部表面および環状面3aに反射ミラー24を介して光を照射する。CCDカメラ23は、被吸着体Wの外縁部表面および環状面3aから正反射された光を受光し、その光をもとに画像を撮像して、画像処理部24に出力する。 The irradiation unit 22 irradiates light via a reflection mirror 24 onto the outer edge surface and annular surface 3a of the adherend W that is adhered and held on the adsorption surface 2a by the suction of the vacuum pump 21. The CCD camera 23 receives the light specularly reflected from the outer edge surface and annular surface 3a of the adherend W, captures an image based on that light, and outputs it to the image processing unit 24.

ここで、CCDカメラ23は、外縁部表面および環状面3aから拡散反射された光を受光しにくい位置に設けられている。 Here, the CCD camera 23 is installed in a position where it is difficult to receive light diffusely reflected from the outer edge surface and the annular surface 3a.

画像処理部24はCCDカメラ23から入力した画像に所定のしきい値で2値化処理を施して、2値画像を得る。この2値画像から被吸着体Wの輪郭を抽出して、被吸着体Wの中心位置を抽出する。画像処理部24は、抽出した被吸着体Wの中心位置を制御部に出力することにより、様々な制御を施されるようにされている。 The image processing unit 24 performs binarization processing on the image input from the CCD camera 23 using a predetermined threshold value to obtain a binary image. From this binary image, the contour of the object to be attracted W is extracted, and the center position of the object to be attracted W is extracted. The image processing unit 24 outputs the extracted center position of the object to be attracted W to the control unit, so that various controls can be performed.

また、本開示の加工装置(図示しない)は、例えば、検査装置20を備えた、被吸着体
Wを格子状に切断する切断装置、あるいは、被吸着体Wの表面を研磨する研磨装置である。切断装置は、検査装置と、被吸着体を格子状に切断する切断ブレードと、この切断ブレードを回転駆動させる駆動手段とを備えている。また、研磨装置は、検査装置と、被吸着体の表面を研磨する研磨板と、この研磨板と被吸着体Wとを相対的に摺動させる回転駆動させる駆動手段とを備えている。
Furthermore, the processing device (not shown) of the present disclosure is, for example, a cutting device that cuts the attractant W into a lattice shape, or a polishing device that polishes the surface of the attractant W, and is equipped with an inspection device 20. The cutting device is equipped with an inspection device, a cutting blade that cuts the attractant W into a lattice shape, and a driving means for rotating the cutting blade. Furthermore, the polishing device is equipped with an inspection device, a polishing plate that polishes the surface of the attractant, and a driving means for rotating the polishing plate and the attractant W to slide relative to each other.

このような加工装置は、被吸着体Wの輪郭の誤認識を防止することができる本開示の載置用部材を用いているので、被吸着体Wを精度よく加工することができる。 Such a processing device uses the mounting member of the present disclosure, which can prevent erroneous recognition of the contour of the object to be attracted W, and can therefore process the object to be attracted W with high precision.

次に、載置用部材の製造方法の一例について説明する。
まず、主成分の原料である酸化アルミニウム(Al)粉末、焼結助剤として酸化珪素(SiO)粉末、着色成分として酸化マンガン(MnO)粉末および酸化コバルト(Co)粉末を準備する。
Next, an example of a method for manufacturing the mounting member will be described.
First, aluminum oxide (Al 2 O 3 ) powder as the main raw material, silicon oxide (SiO 2 ) powder as the sintering aid, manganese oxide (MnO 2 ) powder and cobalt oxide (Co 3 O 4 ) powder as the coloring components are prepared.

次に、これらの粉末を所望量秤量して1次原料粉末とする。例えば、焼結助剤は、セラミック焼結体を構成する全成分100質量%のうち、珪素をSiOに換算した含有量の合計が0.02質量%以上3質量%以下となるように秤量する。また、着色成分は、セラミック焼結体を構成する全成分100質量%のうち、マンガンをMnOに換算した含有量が2質量%6質量%以下、コバルトをCoに換算した含有量が0.6質量%以上2質量%以下となるように秤量する。そして、残部が酸化アルミニウム(Al)粉末となるように秤量する。次に、1次原料粉末100質量部に対し、0.1質量部以上1質量部以下のPEG(ポリエチレングリコール)などのバインダと、100質量部の溶媒とを秤量し、1次原料粉末とともに混合・攪拌してスラリーを得る。 Next, these powders are weighed in desired amounts to obtain primary raw material powder. For example, the sintering aid is weighed so that the total content of silicon converted to SiO2 is 0.02% to 3% by mass out of 100% by mass of all components constituting the ceramic sintered body. The coloring component is weighed so that the content of manganese converted to MnO2 is 2% to 6% by mass out of 100% by mass of all components constituting the ceramic sintered body, and the content of cobalt converted to Co3O4 is 0.6% to 2% by mass out of 100 % by mass of all components constituting the ceramic sintered body. Then, the remainder is weighed so that aluminum oxide ( Al2O3 ) powder is obtained. Next, a binder such as PEG ( polyethylene glycol ) in an amount of 0.1 to 1 part by mass and a solvent in an amount of 100 parts by mass are weighed out relative to 100 parts by mass of the primary raw material powder, and the mixture is mixed and stirred with the primary raw material powder to obtain a slurry.

その後、噴霧造粒装置(スプレードライヤー)を用いてスラリーを噴霧造粒して顆粒を得た後、粉末プレス成形法や静水圧プレス成形法(ラバープレス法)により円板状の成形体を成形し、この成形体に、吸着部を装着するための凹部を切削加工によって形成する。 The slurry is then spray-granulated using a spray granulation device (spray dryer) to obtain granules, which are then molded into a disk-shaped compact using powder press molding or isostatic press molding (rubber press method), and a recess for attaching the adsorption part is formed in the compact by cutting.

そして、凹部が形成された成形体を大気(酸化)雰囲気中、例えば、1400℃以上1500℃以下で所望時間保持することにより、緻密質セラミックスからなる支持部を得ることができる。 Then, the molded body with the recesses formed therein is held in an air (oxidizing) atmosphere, for example at 1400°C or higher and 1500°C or lower, for a desired period of time, to obtain a support part made of dense ceramics.

支持部の凹部の内周面および底面に、ガラスを塗布し、予め、作製された円板状の多孔質セラミックスからなる吸着部を凹部に載置し、厚み方向から加圧する。温度を、例えば、900℃以上1100℃として、所定時間保持することで支持部と吸着部とが接合された接合体を得ることができる。 Glass is applied to the inner circumferential surface and bottom surface of the recess of the support part, and a previously prepared disk-shaped porous ceramic adsorption part is placed in the recess and pressure is applied in the thickness direction. The temperature is set to, for example, 900°C to 1100°C and maintained for a predetermined time to obtain a bonded body in which the support part and adsorption part are bonded.

そして、平均粒径が8μm以上12μm以下のダイヤモンド砥粒と、鍛鉄または鋳鉄製の研磨板とを用いて、接合体の上面を対象に第1の研磨を行う。次に、平均粒径が2μm以上6μm以下のダイヤモンド砥粒と、銅製または鋳鉄製の研磨板とを用いて第2の研磨を行う。第1の研磨および第2の研磨に用いられる研磨板は、特に、球状黒鉛含有鋳鉄製であるとよい。 Then, a first polishing is performed on the upper surface of the joint using diamond abrasive grains with an average grain size of 8 μm to 12 μm and a polishing plate made of wrought iron or cast iron. Next, a second polishing is performed using diamond abrasive grains with an average grain size of 2 μm to 6 μm and a polishing plate made of copper or cast iron. The polishing plate used for the first polishing and the second polishing is preferably made of cast iron containing spheroidal graphite.

最後に、平均粒径が1μm以上3μm以下のダイヤモンド砥粒と、錫製または錫鉛合金製の研磨板を用いて第3の研磨を行う。 Finally, a third polishing is performed using diamond abrasive grains with an average grain size of 1 μm to 3 μm and a polishing plate made of tin or tin-lead alloy.

そして、接合体の上面を、平均粒径が10μm以下のダイヤモンド砥粒を含むスラリーを、例えば、鋳鉄製の研磨板に滴下し、ハンドラップすることにより、本開示の載置用部材を得ることができる。 Then, a slurry containing diamond abrasive grains with an average grain size of 10 μm or less is dropped onto, for example, a cast iron polishing plate, and the upper surface of the bonded body is hand-lapped to obtain the mounting member of the present disclosure.

算術平均粗さRa、切断レベル差(Rδc)、明度指数L*およびクロマティクネス指数a*、b*については、研磨板の材質、ダイヤモンド砥粒の平均粒径、被研摩面である接合体の上面に対する面圧およびスラリーの単位時間当たりの供給量を適宜調整しながらハンドラップすることで、所定の値とすることができる。 The arithmetic mean roughness Ra, cutting level difference (Rδc), lightness index L*, and chromaticness indexes a* and b* can be adjusted to the desired values by hand lapping while appropriately adjusting the material of the polishing plate, the average grain size of the diamond abrasive grains, the surface pressure on the upper surface of the bonded body (the surface to be polished), and the amount of slurry supplied per unit time.

以上、本開示の載置用部材について説明したが、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよい。 The above describes the mounting member of the present disclosure, but the present disclosure is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the spirit and scope of the present disclosure.

1、10:載置用部材
2 :吸着部
2a :吸着面
3 :支持部
3a :環状面
3b :帯状部
3c :取り付け穴
3d :通気路
3e :吸引溝
4 :環状隔壁部
4a :分割面
20 :検査装置
21 :真空ポンプ
22 :照射部
23 :CCDカメラ
24 :反射ミラー
25 :画像処理部
26 :制御部
W :被吸着体(ウェハー)
1, 10: Mounting member 2: Adsorption portion 2a: Adsorption surface 3: Support portion 3a: Annular surface 3b: Strip portion 3c: Mounting hole 3d: Air passage 3e: Suction groove 4: Annular partition portion 4a: Partition surface 20: Inspection device 21: Vacuum pump 22: Irradiation portion 23: CCD camera 24: Reflection mirror 25: Image processing portion 26: Control portion W: Adsorbed object (wafer)

Claims (15)

被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、
前記吸着面を径方向に分割する分割面を有する環状隔壁部が備えられ、該環状隔壁部は前記酸化アルミニウム質セラミックスからなり、
前記環状面および前記分割面の少なくともいずれかは、算術平均粗さRaが0.4μm以下である、載置用部材。
A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less ,
an annular partition portion having a dividing surface that divides the adsorption surface in a radial direction is provided, the annular partition portion being made of the aluminum oxide ceramics;
At least one of the annular surface and the divided surface has an arithmetic mean roughness Ra of 0.4 μm or less .
前記環状面および前記分割面の少なくともいずれかは、外周側の算術平均粗さRaが内周側の算術平均粗さRaよりも小さい、請求項に記載の載置用部材。 2. The mounting member according to claim 1 , wherein at least one of the annular surface and the divided surface has an arithmetic mean roughness Ra on an outer circumferential side smaller than an arithmetic mean roughness Ra on an inner circumferential side. 被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、
前記吸着面を径方向に分割する分割面を有する環状隔壁部が備えられ、該環状隔壁部は前記酸化アルミニウム質セラミックスからなり、
前記環状面および前記分割面の少なくともいずれかの粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)が0.7μm以下である、載置用部材。
A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
an annular partition portion having a dividing surface that divides the adsorption surface in a radial direction is provided, the annular partition portion being made of the aluminum oxide ceramics;
A mounting member, wherein a cut level difference (Rδc) in the roughness curve, which represents a difference between a cut level at a load length ratio of 25% in a roughness curve of at least one of the annular surface and the divided surface and a cut level at a load length ratio of 75% in the roughness curve, is 0.7 μm or less.
前記環状面および前記分割面の少なくともいずれかは、外周側の前記切断レベル差(Rδc)が内周側の前記切断レベル差(Rδc)よりも小さい、請求項に記載の載置用部材。 4. The mounting member according to claim 3 , wherein at least one of the annular surface and the divided surface has a cut level difference (R.delta.c) on an outer circumferential side smaller than a cut level difference (R.delta.c) on an inner circumferential side. 被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、
前記吸着面を径方向に分割する分割面を有する環状隔壁部が備えられ、該環状隔壁部は前記酸化アルミニウム質セラミックスからなり、
前記環状面および前記分割面の少なくともいずれかを測定対象面とし、該測定対象面のCIE1976L*a*b*色空間における明度指数L*が40以下であり、クロマティクネス指数a*が-1以上1以下であり、クロマティクネス指数b*が-1以上1以下である、載置用部材。
A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
an annular partition portion having a dividing surface that divides the adsorption surface in a radial direction is provided, the annular partition portion being made of the aluminum oxide ceramics;
A mounting member, wherein at least one of the annular surface and the divided surface is a measurement target surface, and the measurement target surface has a lightness index L* of 40 or less, a chromaticness index a* of -1 or more and 1 or less, and a chromaticness index b* of -1 or more and 1 or less in a CIE 1976 L*a*b* color space.
被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、
前記吸着面を径方向に分割する分割面を有する環状隔壁部が備えられ、該環状隔壁部は前記酸化アルミニウム質セラミックスからなり、
前記環状面および前記分割面の少なくともいずれかの反射率は、波長が700nmから400nmに向かって多項式近似曲線に従って減少する、載置用部材。
A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
an annular partition portion having a dividing surface that divides the adsorption surface in a radial direction is provided, the annular partition portion being made of the aluminum oxide ceramics;
A mounting member, wherein the reflectance of at least one of the annular surface and the divided surfaces decreases according to a polynomial approximation curve from 700 nm to 400 nm in wavelength.
被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
前記環状面は、算術平均粗さRaが0.4μm以下である、載置用部材。The annular surface has an arithmetic mean roughness Ra of 0.4 μm or less.
前記環状面は、外周側の算術平均粗さRaが内周側の算術平均粗さRaよりも小さい、請求項7に記載の載置用部材。8. The mounting member according to claim 7, wherein the annular surface has an arithmetic mean roughness Ra on an outer circumferential side smaller than an arithmetic mean roughness Ra on an inner circumferential side. 被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
前記環状面の粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)が0.7μm以下である、載置用部材。A mounting member, wherein a cut level difference (Rδc) in the roughness curve, which represents the difference between a cut level at a load length rate of 25% in the roughness curve of the annular surface and a cut level at a load length rate of 75% in the roughness curve, is 0.7 μm or less.
前記環状面は、外周側の前記切断レベル差(Rδc)が内周側の前記切断レベル差(Rδc)よりも小さい、請求項9に記載の載置用部材。The mounting member according to claim 9 , wherein the cut level difference (Rδc) on the outer periphery side of the annular surface is smaller than the cut level difference (Rδc) on the inner periphery side. 被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
前記環状面を測定対象面とし、該測定対象面のCIE1976L*a*b*色空間における明度指数L*が40以下であり、クロマティクネス指数a*が-1以上1以下であり、クロマティクネス指数b*が-1以上1以下である、載置用部材。The annular surface is a measurement target surface, and the measurement target surface has a lightness index L* of 40 or less, a chromaticness index a* of -1 or more and 1 or less, and a chromaticness index b* of -1 or more and 1 or less in the CIE1976 L*a*b* color space.
前記測定対象面の色差ΔE*abは0.5以下(但し、0を除く)である、請求項5または11に記載の載置用部材。 12. The mounting member according to claim 5 or 11 , wherein the color difference ΔE*ab of the measurement surface is 0.5 or less (excluding 0). 被吸着体を吸着、保持するための吸着面を有する吸着部と、前記吸着面を囲繞する環状面を有する支持部とを備えてなる載置用部材であって、前記支持部は、マンガンの酸化物、コバルトの酸化物および珪素の酸化物を含み、前記マンガンの酸化物の含有量が2質量%以上6質量%以下であり、前記コバルトの酸化物の含有量が0.6質量%以上2質量%以下であり、前記珪素の酸化物の含有量が0.02質量%以上3質量%以下である酸化アルミニウム質セラミックスからなり、A mounting member comprising an adsorption section having an adsorption surface for adsorbing and holding an adsorbed object, and a support section having an annular surface surrounding the adsorption surface, the support section being made of an aluminum oxide ceramic containing manganese oxide, cobalt oxide, and silicon oxide, the manganese oxide content being 2% by mass or more and 6% by mass or less, the cobalt oxide content being 0.6% by mass or more and 2% by mass or less, and the silicon oxide content being 0.02% by mass or more and 3% by mass or less,
前記環状面の反射率は、波長が700nmから400nmに向かって多項式近似曲線に従って減少する、載置用部材。A mounting member, wherein the reflectance of the annular surface decreases according to a polynomial approximation curve from 700 nm to 400 nm in wavelength.
請求項1乃至請求項13のいずれかに記載の載置用部材を備えてなる、検査装置。 An inspection device comprising the mounting member according to any one of claims 1 to 13 . 請求項1乃至請求項13のいずれかに記載の載置用部材を備えてなる、加工装置。 A processing device comprising the mounting member according to any one of claims 1 to 13 .
JP2020092425A 2019-05-30 2020-05-27 Mounting member, inspection device and processing device Active JP7497210B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019101506 2019-05-30
JP2019101506 2019-05-30

Publications (2)

Publication Number Publication Date
JP2020196662A JP2020196662A (en) 2020-12-10
JP7497210B2 true JP7497210B2 (en) 2024-06-10

Family

ID=73648958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092425A Active JP7497210B2 (en) 2019-05-30 2020-05-27 Mounting member, inspection device and processing device

Country Status (1)

Country Link
JP (1) JP7497210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250097A1 (en) * 2021-05-27 2022-12-01 京セラ株式会社 Focus ring and plasma treatment device
KR20230174262A (en) * 2021-05-27 2023-12-27 교세라 가부시키가이샤 Focus ring and plasma processing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323268A (en) 2003-04-23 2004-11-18 Toray Ind Inc Alumina-base sintered compact
JP2005275345A (en) 2004-02-25 2005-10-06 Kyocera Corp Liquid crystal substrate holding disk and its manufacturing method
JP2008227125A (en) 2007-03-13 2008-09-25 Kyocera Corp Vacuum suction device and suction method using the same
WO2010095719A1 (en) 2009-02-23 2010-08-26 株式会社ソディック Colored ceramic vacuum chuck and manufacturing method thereof
JP2011168420A (en) 2010-02-17 2011-09-01 Kikusui Chemical Industries Co Ltd Alumina sintered compact and substrate holding board formed by alumina sintered compact
KR101692219B1 (en) 2016-08-19 2017-01-05 한국세라믹기술원 Composite for vacuum-chuck and manufacturing method of the same
JP2018019017A (en) 2016-07-29 2018-02-01 京セラ株式会社 Member for placement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323268A (en) 2003-04-23 2004-11-18 Toray Ind Inc Alumina-base sintered compact
JP2005275345A (en) 2004-02-25 2005-10-06 Kyocera Corp Liquid crystal substrate holding disk and its manufacturing method
JP2008227125A (en) 2007-03-13 2008-09-25 Kyocera Corp Vacuum suction device and suction method using the same
WO2010095719A1 (en) 2009-02-23 2010-08-26 株式会社ソディック Colored ceramic vacuum chuck and manufacturing method thereof
JP2011168420A (en) 2010-02-17 2011-09-01 Kikusui Chemical Industries Co Ltd Alumina sintered compact and substrate holding board formed by alumina sintered compact
JP2018019017A (en) 2016-07-29 2018-02-01 京セラ株式会社 Member for placement
KR101692219B1 (en) 2016-08-19 2017-01-05 한국세라믹기술원 Composite for vacuum-chuck and manufacturing method of the same

Also Published As

Publication number Publication date
JP2020196662A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP7497210B2 (en) Mounting member, inspection device and processing device
JP4761334B2 (en) Colored ceramic vacuum chuck and manufacturing method thereof
WO2016117623A1 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JP6430123B2 (en) Wavelength converter and light emitting device using the same
KR100963178B1 (en) Sintered ceramics for mounting light emitting element
JP6708460B2 (en) Method for manufacturing joined body
TWI570093B (en) Strong scattering ceramic converter and its preparation method
JP6984599B2 (en) Sintered phosphors, light emitting devices, lighting devices and indicator lights for vehicles
JP6659493B2 (en) Mounting member
JP2006210546A (en) Substrate holding board for exposure process and manufacturing method thereof
JP6763422B2 (en) Manufacturing method of wavelength conversion member and wavelength conversion member
JP6976710B2 (en) Porous ceramic body, adsorption member and method for manufacturing the porous ceramic body
JP6462449B2 (en) High-frequency window member, semiconductor manufacturing device member, and flat panel display (FPD) manufacturing device member
JP6495595B2 (en) Low reflection member
JP6608750B2 (en) Mounting member
EP4039770A1 (en) Wavelength conversion member
JP4959113B2 (en) Alumina sintered body
JP7140968B2 (en) CERAMIC COMPOSITE, LIGHT SOURCE FOR PROJECTOR, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
JP2019067941A (en) Member for mounting
WO2022092023A1 (en) Structure for relieving charging
JP4880898B2 (en) Dark porous sintered body and method for producing the same
JP2023176280A (en) Adsorption member
JP4890883B2 (en) Molded body and grindstone containing SiOx powder, and grinding method using the same
JP2004323268A (en) Alumina-base sintered compact
WO2022202035A1 (en) Phosphor plate and light emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240529

R150 Certificate of patent or registration of utility model

Ref document number: 7497210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150