JP4959113B2 - Alumina sintered body - Google Patents

Alumina sintered body Download PDF

Info

Publication number
JP4959113B2
JP4959113B2 JP2004049562A JP2004049562A JP4959113B2 JP 4959113 B2 JP4959113 B2 JP 4959113B2 JP 2004049562 A JP2004049562 A JP 2004049562A JP 2004049562 A JP2004049562 A JP 2004049562A JP 4959113 B2 JP4959113 B2 JP 4959113B2
Authority
JP
Japan
Prior art keywords
sintered body
alumina sintered
less
weight
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004049562A
Other languages
Japanese (ja)
Other versions
JP2005239463A (en
Inventor
貴志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004049562A priority Critical patent/JP4959113B2/en
Publication of JP2005239463A publication Critical patent/JP2005239463A/en
Application granted granted Critical
Publication of JP4959113B2 publication Critical patent/JP4959113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は耐食性を有し、快削性に優れるアルミナ質焼結体に関するものである。   The present invention relates to an alumina sintered body having corrosion resistance and excellent free cutting properties.

アルミナ質焼結体は金属材料に比べ耐食性、耐摩耗性に優れ、かつ原料であるアルミナが炭化珪素、窒化珪素、ジルコニアなどの他のセラミックス材料に比べ安価なため例えば摺動部材、粉砕部材、構造部材等の工業材料として広く使用されている。   Alumina sintered body has excellent corrosion resistance and wear resistance compared to metal materials, and alumina as a raw material is cheaper than other ceramic materials such as silicon carbide, silicon nitride, zirconia, etc. Widely used as industrial materials such as structural members.

また、ハロゲン系腐食ガス、またはそのプラズマ雰囲気に曝される真空チャンバーの内壁材、マイクロ波導入窓、フォーカスリング、クランプリング、サセプタ等の半導体製造装置用部材や液晶製造装置用部材、酸またはアルカリ溶液に接触する耐食性部材等にも使用されている。   Also, semiconductor manufacturing equipment members such as inner walls of vacuum chambers, microwave introduction windows, focus rings, clamp rings, susceptors, liquid crystal manufacturing equipment members, acid or alkali It is also used for corrosion resistant members that come into contact with solutions.

このようなアルミナ焼結体としては、Alを90〜99.99重量%とMgOを0.01〜10重量%とを含有し、Alの平均結晶粒径および最大結晶粒径がそれぞれ10〜50μmおよび70μmであり、3点曲げ抗折強度が250〜450MPaであるアルミナ質焼結体が提案されている。 Such an alumina sintered body contains 90 to 99.99% by weight of Al 2 O 3 and 0.01 to 10% by weight of MgO, and has an average crystal grain size and a maximum crystal grain of Al 2 O 3. Alumina sintered bodies having diameters of 10 to 50 μm and 70 μm, respectively, and a three-point bending strength of 250 to 450 MPa have been proposed.

上記のアルミナ質焼結体であれば、十分な機械的強度を保持しつつ、高い快削性(高い加工性)を得ることができるとされている(特許文献1参照)。   If it is said alumina sintered body, it is supposed that high free-cutting property (high workability) can be obtained, maintaining sufficient mechanical strength (refer patent document 1).

また、主としてAlからなり、SiOが20〜90重量%、MgOが0〜70重量%およびCaOが10〜80重量%の三成分からなる焼結体の各成分を合計量として0.1〜1.0重量%含有し、残部として実質的に不可避成分が0.3重量%以下であり、平均結晶粒径が0.5〜5.0μm、かさ密度3.70×10kg/m以上、粉砕用ボールとして摩耗率が0.2%/h以下である耐摩耗性、耐食性に優れるアルミナ質焼結体が提案されている(特許文献2参照)。
特開2003−286069号公報 特開2003−321270号公報
Further, the total amount of each component of the sintered body made of Al 2 O 3 , consisting of three components of SiO 2 of 20 to 90% by weight, MgO of 0 to 70% by weight and CaO of 10 to 80% by weight is 0 as a total amount. 0.1 to 1.0% by weight, the balance being substantially inevitable components of 0.3% by weight or less, an average crystal grain size of 0.5 to 5.0 μm, and a bulk density of 3.70 × 10 3 kg / m 3 or more, the abrasion resistance the wear rate is not more than 0.2% / h, alumina sintered body having excellent corrosion resistance has been proposed as a grinding balls (see Patent Document 2).
JP 2003-286069 A JP 2003-321270 A

しかしながら、アルミナ質焼結体は金属材料と比較して高い耐食性を有しているが、Alが95重量%程度のアルミナ質焼結体では焼結助剤として添加するガラス成分が強アルカリなどの薬品やハロゲン系腐食ガス、またはそのプラズマ雰囲気に曝された際に溶出するといった問題があった。これを解決するためには焼結助剤の添加量を減らし高アルミナ質焼結体とすればガラス成分が減るため耐食性が向上するとされている。 However, although the alumina sintered body has higher corrosion resistance than the metal material, the alumina component having about 95% by weight of Al 2 O 3 has a strong glass component added as a sintering aid. There has been a problem of elution when exposed to chemicals such as alkali, halogen-based corrosive gases, or their plasma atmosphere. In order to solve this, it is said that if the amount of the sintering aid added is reduced to obtain a high alumina sintered body, the glass component is reduced and the corrosion resistance is improved.

しかしながら、Alが99重量%以上のアルミナ質焼結体を得ようとすると焼結助剤であるガラス成分が減るため焼成温度を高くする必要があり製造コストが高くなる課題があった。また、結晶粒径を小さくする事により、ガラス成分が存在する粒界の厚みが薄くなるため薬品などから浸食されにくくなるといった効果があるが、結晶粒径が小さくなり過ぎると過度に抗折強度や破壊靭性値が高くなり研削、研磨加工の際に多大な時間を要する課題があった。 However, when trying to obtain an alumina sintered body having an Al 2 O 3 content of 99% by weight or more, the glass component as a sintering aid is reduced, so that there is a problem that the firing temperature needs to be increased and the manufacturing cost is increased. . In addition, reducing the crystal grain size reduces the thickness of the grain boundary where the glass component is present, making it difficult to erode from chemicals, etc., but if the crystal grain size becomes too small, the bending strength becomes excessive. In addition, the fracture toughness value is increased, and there is a problem that requires a long time for grinding and polishing.

ここで、特許文献1では、アルミナ質焼結体において快削性を得るためには平均結晶粒径が10μm以上なければならないとしているが、耐食性を考えた場合、平均結晶粒径10μm以上では不利であり、薬品に侵された際に脱落する粒子も大きくなることから脱落粒子による不具合を引き起こす課題があった。また平均結晶粒径が10.0μmを超えると鏡面加工するために時間が掛かったり、もしくは鏡面が得られないなどの課題があった。   Here, in Patent Document 1, it is stated that the average crystal grain size must be 10 μm or more in order to obtain free machinability in the alumina sintered body, but considering the corrosion resistance, it is disadvantageous if the average crystal grain size is 10 μm or more. In addition, since the particles that fall off when invaded by chemicals are also increased, there is a problem that causes problems due to the dropped particles. Further, when the average crystal grain size exceeds 10.0 μm, there are problems such that it takes time to mirror finish or a mirror surface cannot be obtained.

また、特許文献2に記載のアルミナ質焼結体では、耐摩耗性を重視し平均結晶粒径を5.0μm以下としているが研削加工が必要な製品においては加工コストが増大する課題があった。   Further, in the alumina sintered body described in Patent Document 2, the wear resistance is emphasized and the average crystal grain size is set to 5.0 μm or less, but there is a problem that the processing cost increases in products that require grinding. .

さらに、Alの含有率が高く、緻密質なアルミナ質焼結体であっても、開気孔にバラツキがあり、表面開気孔率が大きい場合や、部分的に開気孔が大きい場合が多く見られ、それらの部分が存在すると強アルカリなどの薬品やハロゲン系腐食ガス、またはそのプラズマ雰囲気が開気孔の内部に入り込みやすく、ガラス成分の化学的溶出、脱粒に対しては非常に不利となっていた。 Furthermore, even in the case of a dense alumina sintered body with a high content of Al 2 O 3 , there are cases where the open pores vary, the surface open porosity is large, or the open pores are partially large. Many of them are present, and if they exist, chemicals such as strong alkalis, halogen-based corrosive gases, or their plasma atmospheres can easily enter the inside of the open pores, which is very disadvantageous for chemical elution and degranulation of glass components. It was.

上記課題を解決するため本発明のアルミナ質焼結体は、Alを99.0〜99.75重量%、SiOを0.25重量%以下、MgOを0.50重量%以下およびCaOを0.25重量%以下含有して成るもので、上記アルミナ質焼結体の表面開気孔率が5%未満で平均開気孔径が5μm以下であり、3点曲げ抗折強度が320〜450MPaであることを特徴とする。 In order to solve the above problems, the alumina sintered body of the present invention comprises 99.0 to 99.75% by weight of Al 2 O 3 , 0.25% by weight or less of SiO 2 , 0.50% by weight or less of MgO, and Containing 0.25 wt% or less of CaO, the above-mentioned alumina sintered body has a surface open porosity of less than 5%, an average open pore diameter of 5 μm or less, and a three-point bending strength of 320 to It is 450 MPa.

また、上記アルミナ質焼結体は、SiO−MgO−CaOの3成分組成比において、SiOが5〜40重量%、MgOが30〜80重量%、CaOが5〜50重量%であることが好ましい。 The alumina sintered body has a SiO 2 —MgO—CaO three-component composition ratio of 5 to 40% by weight of SiO 2 , 30 to 80% by weight of MgO, and 5 to 50% by weight of CaO. Is preferred.

また、本発明のアルミナ質焼結体の破壊靭性値は、4.3〜4.8MPa・m1/2であることが好ましい。 The fracture toughness value of the alumina sintered body of the present invention is preferably 4.3 to 4.8 MPa · m 1/2 .

さらに、上記アルミナ質焼結体の見掛密度は、3.90×10kg/m以上であることが好ましい。 Further, the apparent density of the alumina sintered body is preferably 3.90 × 10 3 kg / m 3 or more.

本発明のアルミナ質焼結体は、Alを99.0〜99.75重量%以下、SiOを0.25重量%以下、MgOを0.50重量%以下およびCaOを0.25重量%以下含有して成るアルミナ質焼結体であり、上記アルミナ質焼結体の表面開気孔率が5%未満で平均開気孔径が5μm以下となることから、耐食性に優れたアルミナ質焼結体を得ることができる。また、3点曲げ抗折強度が320〜450MPaであるため構造材料として使用することができる。 The alumina sintered body of the present invention has Al 2 O 3 of 99.0 to 99.75% by weight or less, SiO 2 of 0.25% by weight or less, MgO of 0.50% by weight or less, and CaO of 0.25. Alumina sintered body containing less than 5% by weight. Since the surface porosity of the alumina sintered body is less than 5% and the average open pore diameter is 5 μm or less, the alumina sintered body having excellent corrosion resistance is obtained. A ligation can be obtained. In addition, since the three-point bending strength is 320 to 450 MPa, it can be used as a structural material.

また、上記アルミナ質焼結体は、SiO−MgO−CaOの3成分組成比において、SiOが5〜40重量%、MgOが30〜80重量%、CaOが5〜50重量%であることからより耐食性に優れるアルミナ質焼結体を得ることができる。 The alumina sintered body has a SiO 2 —MgO—CaO three-component composition ratio of 5 to 40% by weight of SiO 2 , 30 to 80% by weight of MgO, and 5 to 50% by weight of CaO. From this, an alumina sintered body having better corrosion resistance can be obtained.

また、上記アルミナ質焼結体の表面開気孔標準偏差が1.0μm以下であることから、表面開気孔のバラツキが小さくなり浸食される粒界も少なくなり耐食性を向上させることができる。また、脱粒物を少なく、小さくする事にも有効である。さらに、開気孔径のバラツキが小さいことより抗折強度のバラツキも小さくすることができる。

In addition, since the standard deviation of the surface open pores of the above-mentioned alumina sintered body is 1.0 μm or less, the variation of the surface open pores is reduced and the number of eroded grain boundaries is reduced, so that the corrosion resistance can be improved. In addition, it is also effective to reduce the size of the crushed material. Further, since the variation in open pore diameter is small, the variation in bending strength can be reduced.

また、上記アルミナ質焼結体の平均結晶粒径が2.0μm〜10.0μmであることから加工効率が良く、耐食性に優れるアルミナ質焼結体を得ることができる。さらに、脱粒物が小さいアルミナ質焼結体を得ることができる。   Moreover, since the average crystal grain size of the alumina sintered body is 2.0 μm to 10.0 μm, it is possible to obtain an alumina sintered body having good processing efficiency and excellent corrosion resistance. Furthermore, an alumina sintered body with a small degranulated material can be obtained.

また、上記アルミナ質焼結体の破壊靭性値が4.3〜4.8MPa・m1/2であると、構造部材として使用する際に十分な強度が得られると同時に、加工性に優れるアルミナ質焼結体を得ることができる。 Further, when the fracture toughness value of the alumina sintered body is 4.3 to 4.8 MPa · m 1/2 , sufficient strength can be obtained when used as a structural member, and at the same time, alumina having excellent workability A quality sintered body can be obtained.

また、上記アルミナ質焼結体の見掛密度が3.90×10kg/m以上であると、表面開気孔率、平均開気孔径、平均開気孔径標準偏差を小さくすることができ、耐食性、機械的強度を向上させることができる。 In addition, when the apparent density of the alumina sintered body is 3.90 × 10 3 kg / m 3 or more, the surface open porosity, the average open pore diameter, and the average open pore diameter standard deviation can be reduced. Corrosion resistance and mechanical strength can be improved.

以下、本発明の実施形態について詳細を説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のアルミナ質焼結体は、Alを99.0〜99.75重量%以下、SiOを0.25重量%以下、MgOを0.50重量%以下およびCaOを0.25重量%以下と、SiO、MgOおよびCaOのガラス成分量を少なくしてあることから、強アルカリなどの溶液、腐食性ガスまたはプラズマ雰囲気に曝されてもガラス成分の浸食もしくは溶出が少なくなる。 The alumina sintered body of the present invention has Al 2 O 3 of 99.0 to 99.75% by weight or less, SiO 2 of 0.25% by weight or less, MgO of 0.50% by weight or less, and CaO of 0.25. Since the glass component amount of SiO 2 , MgO and CaO is reduced by weight% or less, erosion or elution of the glass component is reduced even when exposed to a solution such as strong alkali, corrosive gas or plasma atmosphere.

さらに、アルミナ質焼結体の表面開気孔の内部には、ガラス成分が多く存在する。そこで、アルミナ質焼結体の表面の表面開気孔率を5%未満で表面開気孔径を5μm以下とすることで、アルミナ質焼結体の表面積を少なくまたは小さくすることができ、アルミナ質焼結体の耐食性を向上させることができる。   Furthermore, many glass components are present inside the surface open pores of the alumina sintered body. Therefore, the surface area of the alumina sintered body can be reduced or reduced by setting the surface open porosity of the surface of the alumina sintered body to less than 5% and the surface open pore diameter to 5 μm or less. Corrosion resistance of the bonded body can be improved.

また、表面化気孔率および表面開気孔径が上記の範囲であると、アルミナ質焼結体に負荷が掛かった場合でも、表面開気孔に応力が集中しにくくなり高い強度のアルミナ質焼結体を得ることができる。   In addition, when the surface porosity and the surface open pore diameter are in the above ranges, even when a load is applied to the alumina sintered body, stress is not easily concentrated on the surface open pores, and a high strength alumina sintered body is formed. Obtainable.

また、本発明のアルミナ質焼結体は、3点曲げ抗折強度が320〜450MPaであることを特徴としている。抗折強度が320MPaを下回ると機械的強度を有する構造材料に使えないおそれがある。また、3点曲げ抗折強度が450MPaを超えると加工性が低下するおそれがあるからである。   Moreover, the alumina sintered body of the present invention is characterized in that the three-point bending strength is 320 to 450 MPa. When the bending strength is less than 320 MPa, the structural material having mechanical strength may not be used. Moreover, it is because there exists a possibility that workability may fall when 3 point bending strength exceeds 450 Mpa.

ここで、3点曲げ抗折強度はJIS R 1601に規定されている方法に準拠して行ったものである。   Here, the three-point bending strength is performed in accordance with a method defined in JIS R 1601.

さらに、上記アルミナ質焼結体は、SiO−MgO−CaOの3成分組成比において、SiOが5〜40重量%、MgOが30〜80重量%、CaOが5〜50重量%であることが望ましい。これは、MgOが30重量%未満となりSiOが40重量%以上もしくはCaOが50重量%以上となった場合、ガラス成分が多くなり過度に粒成長が促進され目標とする平均結晶粒径の範囲2.0μm〜10.0μmからはずれるためであり、また、MgOが80重量%より多くなると焼結活性が落ち、焼結しても平均結晶粒径が小さくなるためである。 Furthermore, the alumina sintered body has a SiO 2 —MgO—CaO three-component composition ratio of 5 to 40% by weight of SiO 2 , 30 to 80% by weight of MgO, and 5 to 50% by weight of CaO. Is desirable. This is because when MgO is less than 30% by weight and SiO 2 is 40% by weight or more or CaO is 50% by weight or more, the glass component increases and the grain growth is excessively promoted, and the target average crystal grain size range This is because the amount of MgO is more than 80% by weight, and the sintering activity decreases when the MgO content exceeds 80% by weight.

特に耐食性の観点からは、SiOが10〜30重量%、MgOが40〜60重量%、CaOが10〜30重量%であることが好ましく、加工性の観点からは、SiOが10〜40重量%、MgOが30〜55重量%、CaOが10〜40重量%であることが好ましい。 In particular, from the viewpoint of corrosion resistance, SiO 2 is preferably 10 to 30% by weight, MgO is preferably 40 to 60% by weight, and CaO is preferably 10 to 30% by weight. From the viewpoint of workability, SiO 2 is preferably 10 to 40% by weight. It is preferable that the weight percent is 30 to 55 weight percent MgO and 10 to 40 weight percent CaO.

また、本発明のアルミナ質焼結体は、表面開気孔標準偏差が1.0μm以下であることが好ましい。表面開気孔の標準偏差が大きいという事は開気孔径のバラツキが大きいことを意味するため必然的に大きい開気孔が存在することになる。大きい開気孔は前述したように耐食性、3点曲げ抗折強度の低下を招くためである。

Also, the alumina sintered body of the present invention has a standard deviation of surface open pores of 1 . It is preferably 0 μm or less. A large standard deviation of the surface open pores means that there is a large variation in the open pore diameter, so that there are inevitably large open pores. This is because large open pores lead to a decrease in corrosion resistance and three-point bending strength as described above.

また、上記アルミナ質焼結体の表面開気孔標準偏差が1.0μm以下であることから、表面開気孔のバラツキが小さくなり浸食される粒界も少なくなり耐食性を向上させることができる。また、仮に脱粒物が生じても、それを小さくする事にも有効である。さらに、開気孔径のバラツキが小さいことにより抗折強度のバラツキも小さくすることができる。
In addition, since the standard deviation of the surface open pores of the above-mentioned alumina sintered body is 1.0 μm or less, the variation of the surface open pores is reduced and the number of eroded grain boundaries is reduced, so that the corrosion resistance can be improved. Moreover, even if a degranulated material arises, it is effective also to make it small. Furthermore, since the variation in the open pore diameter is small, the variation in the bending strength can also be reduced.

また、平均結晶粒径の小さい緻密な焼結体を得る事も耐食性を向上させる上で重要である。これは、平均結晶粒径が大きい焼結体に比べ結晶粒径が小さい焼結体は粒界表面積が大きくなり、そのアルミナ結晶を均等に覆うために薄く伸びていると考えられる。つまり、粒界厚みが薄くなる事で薬品に浸食されにくくなるのである。また、粒界が薬品に侵食された場合でも脱粒する粒子は結晶が小さいため小さくなる。このような効果を得るためには平均結晶粒径は10μm以下である事が好ましい。   It is also important to obtain a dense sintered body having a small average crystal grain size in order to improve the corrosion resistance. This is presumably because a sintered body having a smaller crystal grain size has a larger grain boundary surface area than a sintered body having a larger average crystal grain size, and is thinly stretched so as to uniformly cover the alumina crystal. In other words, it becomes difficult for the chemical to be eroded by decreasing the grain boundary thickness. Further, even when the grain boundary is eroded by the chemical, the grains to be shed are small because the crystals are small. In order to obtain such an effect, the average crystal grain size is preferably 10 μm or less.

焼成後、研削加工を必要とするような場合は平均結晶粒径を2.0μm以上にする事がより好ましい。平均結晶粒径が2.0μm以下になると、抗折強度、破壊靭性値がともに大きくなり、加工性が低下する。しかしながら、結晶粒径が10.0μmより大きくなると粒界面積が小さくなる事で粒界厚みが増し粒界のガラス成分が薬品に侵されやすくなり耐食性が低下し脱粒物のサイズも大きくなるため、平均結晶粒径は2.0μm〜10.0μmであることが好ましい。   When grinding is required after firing, it is more preferable to set the average crystal grain size to 2.0 μm or more. When the average crystal grain size is 2.0 μm or less, both the bending strength and the fracture toughness value increase, and the workability decreases. However, when the crystal grain size is larger than 10.0 μm, the grain boundary area is reduced, the grain boundary thickness is increased, the glass component at the grain boundary is likely to be attacked by the chemical, the corrosion resistance is lowered, and the size of the degranulated substance is increased. The average crystal grain size is preferably 2.0 μm to 10.0 μm.

さらに加工性を重視し、快削性を向上させようとするならば、平均結晶粒径は5.0μm〜10.0μmであることがより好ましい。こうする事で耐食性を維持しつつも加工性に優れたアルミナ質焼結体が得られる。   Further, if the workability is emphasized and the free-cutting property is to be improved, the average crystal grain size is more preferably 5.0 μm to 10.0 μm. By doing so, an alumina sintered body excellent in workability can be obtained while maintaining corrosion resistance.

また、構造材料、耐摩耗性部材などに使用するならば破壊靭性値は4.3〜4.8MPa・m1/2である事が好ましい。破壊靭性値は4.3MPa・m1/2を下回ると機械的強度不足である。また、4.8MPa・m1/2を上回ると快削性にかけてしまう。 Further, when used for structural materials, wear-resistant members, etc., the fracture toughness value is preferably 4.3 to 4.8 MPa · m 1/2 . When the fracture toughness value is less than 4.3 MPa · m 1/2 , the mechanical strength is insufficient. On the other hand, if it exceeds 4.8 MPa · m 1/2 , it will be subject to free machinability.

また、破壊靭性値が4.3MPa・m1/2以下になると機械的強度を必要とする構造材料に使用できないおそれがある。一方、破壊靭性値が4.8MPa・m1/2を超えると加工性が低下するおそれがある。破壊靭性値の測定はJIS R 1607に規定されている方法に準拠して行ったものである。 Further, if the fracture toughness value is 4.3 MPa · m 1/2 or less, it may not be used for a structural material that requires mechanical strength. On the other hand, if the fracture toughness value exceeds 4.8 MPa · m 1/2 , the workability may decrease. The fracture toughness value was measured in accordance with the method specified in JIS R 1607.

更に上記アルミナ質焼結体の見掛密度が3.90×10kg/m以上である事が好ましい。つまり、見掛密度が3.90×10kg/m以上であると、アルミナ質焼結体表面の開気孔の体積が小さくなる事になる。従って表面開気孔率、平均開気孔径、平均開気孔径標準偏差を小さくする事が出来るので耐食性、機械的強度がともに上昇する。 Furthermore, it is preferable that the apparent density of the alumina sintered body is 3.90 × 10 3 kg / m 2 or more. That is, when the apparent density is 3.90 × 10 3 kg / m 2 or more, the volume of open pores on the surface of the alumina sintered body becomes small. Accordingly, since the surface open porosity, average open pore diameter, and average open pore diameter standard deviation can be reduced, both corrosion resistance and mechanical strength are increased.

ここで、本発明のアルミナ質焼結体の製造方法関して説明する。   Here, the manufacturing method of the alumina sintered body of the present invention will be described.

まず、平均粒径0.3〜3.0μmのアルミナ粉末に、SiO、MgOおよびCaOを所定量配合し水などの溶媒と共に湿式にで粉砕および混合を行う。 First, a predetermined amount of SiO 2 , MgO and CaO is blended with alumina powder having an average particle size of 0.3 to 3.0 μm, and pulverized and mixed in a wet manner with a solvent such as water.

次いで、成形用バインダーとして、ポリビニルアルコール、アクリル樹脂、ポリエチレングリコール、トリエチレングリコール、ワックスエマルジョン等を添加しさらに混合した後にスラリーを得る。   Next, as a molding binder, polyvinyl alcohol, acrylic resin, polyethylene glycol, triethylene glycol, wax emulsion or the like is added and further mixed to obtain a slurry.

ここで、成形用バインダーの添加量は粉末に対し2%〜8%とする。2%以下では成形体の強度や可とう性が得られず脆い成形体となる。また、8%以上であると焼成の際に脱バインダー性が悪くクラックなどの不具合が出るおそれがある。好ましくは4%〜6.5%である。また、ポリビニルアルコールの量はポリエチレングリコールの4分の1以下の添加量とする。前記の添加量とすることにより、顆粒の潰れ性が良好であり単純な1軸プレス成形においても表面開気孔の状態を良好にする事できるからである。   Here, the amount of the binder for molding is 2% to 8% with respect to the powder. If it is 2% or less, the strength and flexibility of the molded product cannot be obtained, resulting in a brittle molded product. On the other hand, if it is 8% or more, the binder removal property is poor at the time of firing and there is a risk of problems such as cracks. Preferably, it is 4% to 6.5%. Moreover, the amount of polyvinyl alcohol is an addition amount of 1/4 or less of polyethylene glycol. This is because, by setting the addition amount as described above, the collapsibility of the granules is good, and the surface open pores can be made good even in simple uniaxial press molding.

なお、鋳込成形、射出成形、もしくはドクターブレード法などのテープ成形法の場合は、得られたスラリーを用いて所定の形状を有する成形体を得る。一方、金型内に充填して成形するプレス成形、もしくはラバープレス成形法等の方法で成形体を得る場合は、得られたスラリーを噴霧乾燥などの方法により乾燥した後に造粒し成形用の顆粒を得る。   In the case of a tape molding method such as cast molding, injection molding, or doctor blade method, a molded body having a predetermined shape is obtained using the obtained slurry. On the other hand, when a molded product is obtained by a method such as press molding that is filled in a mold and molded, or a rubber press molding method, the obtained slurry is dried by a method such as spray drying and then granulated and molded. Obtain granules.

さらに、得られた成形体を、1580〜1720℃の温度で焼成することにより本発明のアルミナ質焼結体を得ることができる。   Furthermore, the alumina sintered body of the present invention can be obtained by firing the obtained molded body at a temperature of 1580 to 1720 ° C.

(実施例1)
上記のように耐薬品性を有しながらも、加工性に優れたアルミナ質焼結体を得るために開気孔の状態、機械的強度、結晶粒径を調べる実験を行った。
Example 1
In order to obtain an alumina sintered body excellent in workability while having chemical resistance as described above, an experiment was conducted to examine the state of open pores, mechanical strength, and crystal grain size.

本実験では、焼成助剤としてSiO、MgO、およびCaOを用い、Al含有量を99.0〜99.7重量%の範囲で異ならせて粉末顆粒を作製し、プレス成形にて成形圧100MPaの条件で成形した後、1650℃の酸化雰囲気下で焼成し、見掛密度、平均結晶粒径、3点曲げ抗折強度、破壊靭性値、表面開気孔率、平均開気孔径、表面開気孔径標準偏差、耐薬品性について評価した。

In this experiment, SiO 2 , MgO, and CaO were used as firing aids, and powder granules were produced by varying the Al 2 O 3 content in the range of 99.0 to 99.7% by weight. After molding at a molding pressure of 100 MPa, firing in an oxidizing atmosphere at 1650 ° C., apparent density, average crystal grain size, three-point bending strength, fracture toughness value, surface open porosity, average open pore diameter, The surface open pore size standard deviation and chemical resistance were evaluated.

上記のように焼成し得られたアルミナ質焼結体をRa0.1μm以下の鏡面加工を施した後、金属顕微鏡の画像をCCDカメラで取り込み、LUZEX(登録商標)
画像解析を用いて倍率200倍、測定面積2.25×10−2mmの条件にて計20回測定し、表面開気孔率、平均開気孔径を調べた。
After the alumina sintered body obtained by firing as described above is mirror-finished with a Ra of 0.1 μm or less, a metal microscope image is captured with a CCD camera, and LUZEX (registered trademark)
Using image analysis, measurement was performed 20 times in total at a magnification of 200 times and a measurement area of 2.25 × 10 −2 mm 2 , and surface open porosity and average open pore diameter were examined.

また、pH12の強アルカリ性のNaOH溶液を準備し、アルミナ質焼結体を水温20℃の強アルカリ液に投入し3日間放置して得られた溶液をICP発光分光分析装置(セイコー電子工業製JY38P2型)にて、Ca、Si、Mgの定量分析を行った。   Further, a strongly alkaline NaOH solution having a pH of 12 was prepared, and the solution obtained by putting the alumina sintered body into a strong alkaline solution having a water temperature of 20 ° C. and left for 3 days was used as an ICP emission spectroscopic analyzer (JY38P2 manufactured by Seiko Denshi Kogyo). Type), and quantitative analysis of Ca, Si, and Mg.

そして、ICP発光分光分析による定量分析にて得られたSi、Mg、Caのガラス溶出量の合計が、0.1ppm/(cm・日)以下であったものを好適として◎で表し、0.1ppm/(cm・日)より多く0.14未満であるものを良好として○で示し、0.14ppm/(cm・日)以上0.20ppm/(cm・日)未満であるものを不良として△で示し、0.20ppm/(cm・日)以上であるものを更に不適な×で示した。 The total glass elution amount of Si, Mg, and Ca obtained by quantitative analysis by ICP emission spectroscopic analysis is 0.1 ppm / (cm 2 · day) or less, and is represented by ◎, preferably 0 .1ppm / (cm 2 · day) indicated by ○ as good ones is more than 0.14, 0.14ppm / (cm 2 · day) or more 0.20ppm / (cm 2 · day) that is less than Is indicated by Δ as defective, and those not lower than 0.20 ppm / (cm 2 · day) are further indicated by inappropriate x.

結果を表1に示す。
The results are shown in Table 1.

表1から分かるように、No.3〜7、No.11〜13のようにSiOもしくはCaOが0.25%上添加した焼結体は粒成長しすぎて平均結晶粒径が10.0μmを超えてしまい、耐食性も低下する。 As can be seen from Table 1, no. 3-7, no. As in 11-13, the sintered body added with 0.25% of SiO 2 or CaO grows too much grain, the average crystal grain size exceeds 10.0 μm, and the corrosion resistance also decreases.

また、SiO、MgO、CaOの3成分組成においてMgOの組成比が80.0%以上の試料ではガラス成分が少ないため、焼結が進まず、見掛密度が低い。また、それに伴い表面開気孔率、平均開気孔径の状態も悪くなる。この傾向はアルミナ純度が低くなるほど強くなる。 In addition, in a sample with a composition ratio of MgO of 80.0% or more in a three-component composition of SiO 2 , MgO, and CaO, since the glass component is small, sintering does not proceed and the apparent density is low. In addition, the surface open porosity and the average open pore diameter are also deteriorated accordingly. This tendency becomes stronger as the alumina purity becomes lower.

一方、MgOの比率が低く、SiOの比率が40%以上もしくはCaOの比率が50%の試料では粒成長が進み平均結晶粒径が10μm以上になるため、耐食性が低下している。 On the other hand, in a sample with a low MgO ratio and a SiO 2 ratio of 40% or more or a CaO ratio of 50%, the grain growth proceeds and the average crystal grain size becomes 10 μm or more, so the corrosion resistance is reduced.

これに対し、本発明範囲内の試料に関しては結晶粒径が2.0〜10.0μm、見掛密度が3.90×10kg/m以上、開気孔率が5%以下、開気孔径が5μm以下であり、開気孔標準偏差が1.0以下であるためガラス溶出量が0.1ppm以下となる。 On the other hand, regarding the sample within the scope of the present invention, the crystal grain size is 2.0 to 10.0 μm, the apparent density is 3.90 × 10 3 kg / m 3 or more, the open porosity is 5% or less, Since the pore diameter is 5 μm or less and the open pore standard deviation is 1.0 or less, the glass elution amount is 0.1 ppm or less.

故に、99%純度の耐食性を有するアルミナ質焼結体においてはNo.8のようにSiO2を0.25重量%以下、MgOを0.4〜0.5重量%、CaOを0.25%以下にすることが好ましい。   Therefore, in the alumina sintered body having 99% purity corrosion resistance, No. It is preferable to make SiO2 0.25% by weight or less, MgO 0.4 to 0.5% by weight, and CaO 0.25% or less as shown in FIG.

また、MgOを30%〜60%とする事でガラス溶出量0.1ppm以下で且つ、平均結晶粒径が5μm〜10μmの快削性を有したアルミナ質焼結体を得る事できるため好ましい。   Further, it is preferable to set MgO to 30% to 60% because it is possible to obtain an alumina sintered body having a glass elution amount of 0.1 ppm or less and an average crystal grain size of 5 μm to 10 μm and free cutting ability.

さらにアルミナ純度を99.5%とし、SiOが10%〜30%、MgOが50%〜60%、CaOが10%〜30%とすることで、見掛密度が高く、機械的強度が強く、耐食性に優れたアルミナ質焼結体が得られるため好ましい。 Furthermore, by setting the alumina purity to 99.5%, SiO 2 from 10% to 30%, MgO from 50% to 60%, and CaO from 10% to 30%, the apparent density is high and the mechanical strength is strong. It is preferable because an alumina sintered body having excellent corrosion resistance can be obtained.

(実施例2)
次に表2のようにアルミナ純度を99.5%としSiO−MgO−CaOの組成を振り、それぞれの組成において最も見掛密度が上昇する温度で焼成し、快削性と表面粗さを評価するための試料を用意した。
(Example 2)
Next, as shown in Table 2, the alumina purity is set to 99.5%, the composition of SiO 2 —MgO—CaO is shaken, and firing is performed at a temperature at which the apparent density increases most in each composition. A sample for evaluation was prepared.

調製した焼結体を平面研削盤のメタルホイールダイヤモンド研削ツール(直径300mm)によって、ホイール周速1800m/分、平面研削盤のテーブル移動速度150mm/分、切り込み量0.5mmで研削する。この研削時に被研削面の法線方向に向かって研削ツールに加わる抵抗値を研削抵抗値(N)とする。研削抵抗値が25N未満であり、特に優れていると判断された試料については判定欄に◎を、25〜30Nの好適であると判断できる試料については○を、31以上の試料については不適であるとし×を記入した。   The prepared sintered body is ground with a metal wheel diamond grinding tool (diameter 300 mm) of a surface grinder at a wheel peripheral speed of 1800 m / min, a table moving speed of the surface grinder of 150 mm / min, and a cutting depth of 0.5 mm. A resistance value applied to the grinding tool toward the normal direction of the surface to be ground at the time of grinding is defined as a grinding resistance value (N). For samples that have a grinding resistance value of less than 25N and are judged to be particularly excellent, “◎” is given in the judgment column, “○” is shown for samples that can be judged to be suitable from 25 to 30N, and is not suitable for samples of 31 or more. If there is, enter x.

また、表面(又は鏡面)は摺動部材などでは必要な特性であるため、表面(又は鏡面)の出やすさを判定するため、粒度#400のダイヤモンドホイールで研削加工した後の表面粗さRaについても測定した。一般に#400くらいの砥石で研磨した際の表面粗さが低いものは鏡面が出やすいと考えられるため、この実験は表面(又は鏡面)の出やすさを判定するため一つの指標になる。表面の出にくい焼結体は表面を出すためにダイヤモンド研削ツールの粒度を細かくする作業を何度か繰り返す必要があるため生産性に欠ける。   Further, since the surface (or mirror surface) is a necessary characteristic for a sliding member or the like, the surface roughness Ra after grinding with a diamond wheel having a particle size of # 400 is determined in order to determine the easiness of the surface (or mirror surface). Was also measured. In general, it is considered that a surface having a low surface roughness when polished with a # 400 grindstone is likely to have a mirror surface. Therefore, this experiment is an index for determining the surface (or mirror surface). Sintered bodies that are difficult to produce a surface lack productivity because it is necessary to repeat the work of reducing the grain size of the diamond grinding tool several times in order to obtain a surface.

表面粗さはJIS B 0601に準拠して測定した。   The surface roughness was measured according to JIS B 0601.

結果を表2に示す。
The results are shown in Table 2.

表2にあるように、No.42ではMgOの比率が高すぎて焼結させるために高温を要する。また、MgO比率が高いために粒成長が過度に抑制され、それに伴い機械的強度も過度に高くなり研削抵抗値が高くなりすぎてしまっている。   As shown in Table 2, no. In 42, the ratio of MgO is too high, and high temperature is required for sintering. Moreover, since the MgO ratio is high, the grain growth is excessively suppressed, and accordingly, the mechanical strength is excessively increased and the grinding resistance value is excessively increased.

また、MgO比率が低くSiO、CaOの比率が高いNo.43,44は平均結晶粒径が大きくなり研削抵抗値が良好に下がっている。しかし、実施例1で述べたように、このような組成のアルミナ質焼結体では耐食性に劣るため好ましくない。 Further, No. 1 with a low MgO ratio and a high SiO 2 and CaO ratio. Nos. 43 and 44 have a large average crystal grain size and a good grinding resistance value. However, as described in Example 1, an alumina sintered body having such a composition is not preferable because it has poor corrosion resistance.

一方、本発明の組成規定範囲であるNo.45〜50は快削性を有しており、尚かつ#400のダイヤモンドホイールで研削した後の表面粗さRaが0.35μm以下であり、加工しやすく表面(又は鏡面)の出やすい特徴を持つ。   On the other hand, no. No. 45-50 has free-cutting properties, and the surface roughness Ra after grinding with a # 400 diamond wheel is 0.35 μm or less, so that the surface (or mirror surface) is easy to process. Have.

また、SiOが10〜40重量%、MgOが30〜55重量%、CaOが10〜40重量%であることで研削抵抗値が25N以下となりより好ましい。 Further, it is more preferable that the grinding resistance value is 25 N or less because SiO 2 is 10 to 40 wt%, MgO is 30 to 55 wt%, and CaO is 10 to 40 wt%.

Claims (4)

Alを99.0〜99.75重量%、SiOを0.25重量%以下、MgOを0.50重量%以下およびCaOを0.25重量%以下含有して成るアルミナ質焼結体において、上記アルミナ質焼結体の表面気孔率が5%未満で平均開気孔径が5μm以下であり、3点曲げ抗折強度が320〜450MPaである事を特徴とするアルミナ質焼結体。 Sintered alumina containing 99.0 to 99.75% by weight of Al 2 O 3 , 0.25% by weight or less of SiO 2 , 0.50% by weight or less of MgO and 0.25% by weight or less of CaO in the body, the average open pore diameter surface open porosity of the alumina sintered body is less than 5% is not more 5μm or less, the alumina sintered transverse rupture strength three-point bending is characterized in that a 320~450MPa body. 上記アルミナ質焼結体のSiO−MgO−CaOの3成分組成比において、SiOが5〜40重量%、MgOが30〜80重量%、CaOが5〜50重量%であるとを特徴とする請求項1に記載のアルミナ質焼結体。 Wherein the three component composition ratio of SiO 2 -MgO-CaO of the alumina sintered body, SiO 2 is from 5 to 40 wt%, MgO 30 to 80 wt%, and this CaO is 5 to 50 wt% The alumina sintered body according to claim 1. 上記アルミナ質焼結体の破壊靭性値が4.3〜4.8MPa・m1/2であることを特徴とする請求項1〜に記載のアルミナ質焼結体。 The alumina sintered body according to claim 1 or 2 , wherein the alumina sintered body has a fracture toughness value of 4.3 to 4.8 MPa · m 1/2 . 上記アルミナ質焼結体の見掛密度が3.90×10kg/m以上であることを特徴とする請求項1〜に記載のアルミナ質焼結体。
Alumina sintered body according to claim 1 to 3, wherein the apparent density of the alumina sintered body is 3.90 × 10 3 kg / m 3 or more.
JP2004049562A 2004-02-25 2004-02-25 Alumina sintered body Expired - Lifetime JP4959113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049562A JP4959113B2 (en) 2004-02-25 2004-02-25 Alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049562A JP4959113B2 (en) 2004-02-25 2004-02-25 Alumina sintered body

Publications (2)

Publication Number Publication Date
JP2005239463A JP2005239463A (en) 2005-09-08
JP4959113B2 true JP4959113B2 (en) 2012-06-20

Family

ID=35021598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049562A Expired - Lifetime JP4959113B2 (en) 2004-02-25 2004-02-25 Alumina sintered body

Country Status (1)

Country Link
JP (1) JP4959113B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762168B2 (en) * 2006-02-24 2011-08-31 京セラ株式会社 Alumina sintered body, member for processing apparatus using the same, and processing apparatus
CN100371289C (en) * 2006-04-29 2008-02-27 济源市龙晟新陶瓷有限公司 Profiled ceramic for acid-scraping plate and preparation method thereof
JP5351405B2 (en) * 2007-10-09 2013-11-27 株式会社ニッカトー Alumina ceramics with excellent wear resistance
JP2010135744A (en) * 2008-10-29 2010-06-17 Kyocera Corp Suction carrier member and substrate carrier device using the same
JP5725715B2 (en) * 2010-01-27 2015-05-27 京セラ株式会社 Probe card wiring board and probe card using the same
JP6636307B2 (en) * 2015-11-27 2020-01-29 株式会社ニッカトー Alumina sintered body with excellent high temperature properties and corrosion resistance
JP6712652B2 (en) * 2016-12-26 2020-06-24 京セラ株式会社 Corrosion resistant material
WO2019004091A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Alumina substrate and resistor using same
JP7325275B2 (en) * 2019-09-12 2023-08-14 株式会社ニッカトー Wear-resistant alumina sintered body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500212B2 (en) * 1991-12-16 1996-05-29 日本碍子株式会社 Method for producing β-alumina tube
US5587346A (en) * 1995-06-16 1996-12-24 Osram Sylvania, Inc. Translucent polycrystalline alumina
JP3035582B2 (en) * 1996-12-26 2000-04-24 日本特殊陶業株式会社 Alumina sintered body
JP4927292B2 (en) * 2002-04-25 2012-05-09 株式会社ニッカトー Alumina ceramics with excellent wear and corrosion resistance

Also Published As

Publication number Publication date
JP2005239463A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP4959113B2 (en) Alumina sintered body
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JP3035582B2 (en) Alumina sintered body
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
JP2003112963A (en) Alumina sintered compact, and production method therefor
JP2006021990A (en) Yttria ceramic component for use in plasma treatment device and its manufacturing method
JP4122431B2 (en) Aluminum oxide wear-resistant member having a layered structure and method for producing the same
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP4889155B2 (en) High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2006016233A (en) Silicon nitride sintered compact and silicon nitride tool, cutting insert, and cutting tool
JP2002012474A (en) Silicon nitride-based sintered compact and cutting tool using it
US20040033394A1 (en) Abrasion resistant aluminum oxide member and method of production thereof
JP3769416B2 (en) Components for plasma processing equipment
JP2003321270A (en) Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JP6943963B2 (en) Alumina sintered body and its manufacturing method, and parts for semiconductor manufacturing equipment
JP2017173179A (en) Probe guide member and method for manufacturing the same
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
WO2015016269A1 (en) Silicon nitride-based sintered body, and corrosion-resistant member, sliding member and member for paper-making machine each manufactured using same
JP7351071B2 (en) sintered body
US20230114637A1 (en) Yttrium oxide-based sintered body and semiconductor production system member
JP2000053463A (en) Jig for can manufacturing
US20230373807A1 (en) Yag sintered body, method for producing the same, semiconductor manufacturing equipment member, and gas nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150