JP2006210546A - Substrate holding board for exposure process and manufacturing method thereof - Google Patents

Substrate holding board for exposure process and manufacturing method thereof Download PDF

Info

Publication number
JP2006210546A
JP2006210546A JP2005019161A JP2005019161A JP2006210546A JP 2006210546 A JP2006210546 A JP 2006210546A JP 2005019161 A JP2005019161 A JP 2005019161A JP 2005019161 A JP2005019161 A JP 2005019161A JP 2006210546 A JP2006210546 A JP 2006210546A
Authority
JP
Japan
Prior art keywords
substrate
substrate holding
substrate holder
exposure processing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019161A
Other languages
Japanese (ja)
Inventor
Toru Yaginuma
徹 柳沼
Tomohiko Ogata
知彦 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005019161A priority Critical patent/JP2006210546A/en
Publication of JP2006210546A publication Critical patent/JP2006210546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate holding board for exposure process for returning reflectivity to that of the material, where such reflectivity has been raised by the process even if reflectivity of a material itself is lower when a ceramics material is used as the low reflectivity material. <P>SOLUTION: In the substrate holding board for exposure process, at least a substrate holding side surface is formed of a ceramics material, saturation index b* is positive at the surface of the substrate holding side, luminosity index L* is 70 or less, and surface roughness Ra is 0.6 μm or less. In the preferable profile of the same substrate holding board for exposure process, the total reflectivity in the range of the optical wavelength of 250 to 550 nm at the surface of substrate holding side is 13% or less. Moreover, the saturation index b* at the surface of substrate holding side is positive, and a main element of ceramics is silicon carbide or alumina. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体素子や液晶ディスプレイを製造するための露光装置等の露光処理用基板保持盤に関し、特にウェハなど露光処理用基板を透過した照明光の反射によって露光、アライメントまたはフォーカス調整の精度を損なうことのない露光処理用基板保持盤に関するものである。 The present invention relates to an exposure processing substrate holder such as an exposure apparatus for manufacturing a semiconductor element or a liquid crystal display, and in particular, the accuracy of exposure, alignment, or focus adjustment is achieved by reflection of illumination light transmitted through the exposure processing substrate such as a wafer. The present invention relates to a substrate holder for exposure processing that is not damaged.

従来、セラミックス素材に要求される特性としては、耐熱性等の熱的特性、強度などの機械的特性や耐食性などの科学的特性、および伝導性などの電磁気的特性が挙げられる。近年、電子部品、半導体製造装置用部品および各種測定装置などにおいては、黒色など彩度の低い光学的特性をもったセラミックスが要求されてきている。これは、僅かな塵埃でもこれらの部品の精度や特性に大きく影響するため、黒色など彩度の低い材質の場合には、これらの塵埃の存在をいち早く見いだすことができ、また、部品が摩耗したり、破損した場合、その部位を識別することが容易であるからである。   Conventionally, characteristics required for ceramic materials include thermal characteristics such as heat resistance, mechanical characteristics such as strength, scientific characteristics such as corrosion resistance, and electromagnetic characteristics such as conductivity. In recent years, ceramics having optical characteristics with low saturation such as black have been required for electronic parts, parts for semiconductor manufacturing equipment, various measuring devices, and the like. This is because even a small amount of dust greatly affects the accuracy and characteristics of these parts, so in the case of a low-saturation material such as black, the presence of these dusts can be quickly found, and the parts wear out. It is because it is easy to identify the part when it is damaged.

これに加え近年、このような分野においては、レーザー、紫外線および可視光等の光を露光しあるいは測定する目的の装置が多く、このような装置に用いられる部材は、不要な光の反射(乱反射を含む)や透過を嫌う場合が多く、光の反射や透過が少ない材料が必要とされる場合が多い。
半導体素子や液晶ディスプレイを製造するための露光装置のウェハチャック等の露光処理用基板保持盤には、これまでアルミナ系の金属からなる母材にアルマイトメッキを施したものや、ステンレスやアルマイトセラミックからなる母材にTiC等の被覆を施したものが用いられていた。このような基板保持盤にウェハなど基板(以下、単に「基板」と呼ぶことがある)を保持させて、露光用の照明光あるいはアライメントやフォーカス調整用の照明光を照射された照明光の一部が基板を透過して基板保持盤に到達し、その一部が基板保持盤の表面で反射され露光精度低下の原因の一つとなっている。
In addition to this, in recent years, in such fields, there are many devices for the purpose of exposing or measuring light such as laser, ultraviolet light and visible light, and members used in such devices are used for reflection of unwanted light (irregular reflection). In many cases, a material that does not reflect or transmit light is required.
For substrate holders for exposure processing, such as wafer chucks for exposure devices for manufacturing semiconductor elements and liquid crystal displays, we have used alumite-plated base materials made of alumina metals, stainless steel and anodized ceramics. The base material to be coated with TiC or the like was used. A substrate such as a wafer (hereinafter sometimes simply referred to as a “substrate”) is held on such a substrate holding plate, and is one of the illumination light irradiated with illumination light for exposure or illumination light for alignment or focus adjustment. The portion passes through the substrate and reaches the substrate holding plate, and a part of the portion is reflected by the surface of the substrate holding plate, which is one of the causes of a decrease in exposure accuracy.

例えば、半導体素子や液晶ディスプレイを製造するための露光装置の基板保持盤では、アルミニウム系の金属からなる母材に、アルマイト処理を施した物や、SiC焼結体、HIP(Hot Isostatic Pressing、熱間静水圧圧縮法)処理したアルミナ焼結体、HIP処理したTiC焼結体のような比較的光の反射が少ない黒色系セラミックス材料を用いたり、光を乱反射させるために表面を粗く加工した物を用いた事例が提案されている(特許文献1、特許文献2、特許文献3および特許文献4参照)。
特開平5−205997号公報 特開平5−254922号公報 特開平8−12416号公報 特開平9−45753号公報
For example, in a substrate holder of an exposure apparatus for manufacturing a semiconductor element or a liquid crystal display, a base material made of an aluminum-based metal is subjected to alumite treatment, a SiC sintered body, HIP (Hot Isostatic Pressing), heat Interstitial hydrostatic compression method) Uses a black ceramic material with relatively little light reflection, such as a treated alumina sintered body or a HIP treated TiC sintered body, or a surface processed rough in order to diffusely reflect light The example using this is proposed (refer patent document 1, patent document 2, patent document 3, and patent document 4).
Japanese Patent Laid-Open No. 5-205997 JP-A-5-254922 JP-A-8-12416 JP 9-45753 A

しかしながら、高性能化の要求は更に厳しくなり、前述のような方法を用いても十分な低反射率が得られなくなってきている。また、サンプル素材の反射率では十分に低い反射率であっても、露光処理用の基板保持盤として使用するために加工された面においては、サンプルで測定された低反射率が実現出来ていないため、液晶ガラスの露光装置等の板状の透明被処理物であるガラス基板に入射した照明光の一部分が、露光処理用の基板保持盤の表面によって反射されて、再び前記基板の特定箇所に入射し、レジストの不要な部分が露光されたり、アライメントやフォーカス調整の精度を低下させる問題を発生させている。   However, the demand for higher performance has become more severe, and it has become impossible to obtain a sufficiently low reflectance even when the above-described method is used. Also, even if the reflectivity of the sample material is sufficiently low, the low reflectivity measured with the sample cannot be realized on the surface processed for use as a substrate holder for exposure processing. Therefore, a part of the illumination light incident on the glass substrate, which is a plate-like transparent object to be processed such as an exposure apparatus for liquid crystal glass, is reflected by the surface of the substrate holder for exposure processing, and again returns to a specific portion of the substrate. Incidence occurs, and unnecessary portions of the resist are exposed, and problems such as a decrease in the accuracy of alignment and focus adjustment occur.

本発明者らは、上記の課題を解決するために鋭意検討を重ね、反射率の低いセラミックスを露光処理用基板保持盤に用いた場合、前記反射率の低いセラミックスであっても、面の仕上げ状態により反射率を変化することを見いだし、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies and, when a low-reflectance ceramic is used for the substrate holder for exposure processing, even if the low-reflectance ceramic is a surface finish, The inventors have found that the reflectance changes depending on the state, and have completed the present invention.

本発明の目的は、特にウェハなど露光処理用の基板を透過した照明光の反射によって露光、アライメントまたはフォーカス調整の精度を損なうことのない露光処理用基板保持盤を提供することにある。   An object of the present invention is to provide an exposure processing substrate holder that does not impair the accuracy of exposure, alignment, or focus adjustment due to the reflection of illumination light that has passed through an exposure processing substrate such as a wafer.

本発明の露光処理用基板保持盤は、少なくとも基板保持側表面がセラミックスからなり、該基板保持側表面の彩度指数b*がプラスであり、明度指数L*が70以下で、かつ面粗度Raが0.6μm以下であることを特徴とする露光処理用基板保持盤である。   In the substrate holder for exposure processing of the present invention, at least the substrate holding side surface is made of ceramics, the saturation index b * of the substrate holding side surface is positive, the lightness index L * is 70 or less, and the surface roughness. Ra is a substrate holder for exposure processing, characterized in that it is 0.6 μm or less.

また、本発明の露光処理用基板保持盤には、次の好ましい態様が含まれている。
(a) 前記基板保持側表面の光波長250〜550nmの範囲における全反射率が13%以下であること。
(b) 前記基板保持側表面を構成するセラミックスの結晶粒径が3μm以上であること。
(c) 前記セラミックスの成分が、炭化硅素またはアルミナであること。
(d) 前記露光処理用基板保持盤が、Fe、Mn、Cr、CoO、TiO、CuO、NiO、TiC、SiCおよびCからなる群から選ばれた少なくとも1つの添加物を含むこと。
(e) 前記基板保持盤に載置される基板が、照明光が照射される基板であること。
また、本発明の露光処理用基板保持盤の製造方法は、少なくとも基板保持側となる表面が、彩度指数b*がプラスであるセラミックスからなる母材に基板保持パターンを加工した後、その加工面を遊離砥粒を用いて研磨することを特徴とする露光処理用基板保持盤の製造方法である。
The substrate holder for exposure processing of the present invention includes the following preferred modes.
(a) The total reflectance in the light wavelength range of 250 to 550 nm on the substrate holding side surface is 13% or less.
(b) The crystal grain size of the ceramic constituting the substrate holding side surface is 3 μm or more.
(c) The ceramic component is silicon carbide or alumina.
(d) The substrate holder for exposure processing is at least one selected from the group consisting of Fe 2 O 3 , Mn 2 O 3 , Cr 2 O 3 , CoO, TiO 2 , CuO, NiO, TiC, SiC and C. Containing one additive.
(e) The substrate placed on the substrate holding plate is a substrate irradiated with illumination light.
In addition, in the method for manufacturing a substrate holder for exposure processing according to the present invention, at least the surface on the substrate holding side is processed after processing the substrate holding pattern on a base material made of ceramics having a positive chroma index b *. A method of manufacturing a substrate holder for exposure processing, wherein the surface is polished using loose abrasive grains.

本発明の露光処理用基板保持盤は、光の反射率が低く、かつ繰り返し使用される基板保持盤としては耐摩耗性に優れ、密度が低く高ヤング率であるために自重や移動による慣性力による歪みが発生しにくく基板の処理精度を低下させない等の優れた特性を有し、電子部品、半導体製造装置用部品、液晶製造装置用部品、各種測定装置等の精密部材として有用である。   The substrate holder for exposure processing according to the present invention has low light reflectivity and excellent wear resistance as a substrate holder that is used repeatedly, and has a low density and high Young's modulus. It has excellent characteristics such that it does not easily cause distortion due to the substrate and does not reduce the processing accuracy of the substrate, and is useful as a precision member for electronic parts, parts for semiconductor manufacturing equipment, parts for liquid crystal manufacturing equipment, various measuring devices and the like.

以下、本発明の露光処理用基板保持盤について、具体的に詳細に説明する。
本発明の露光処理用基板保持盤は、半導体素子や液晶ディスプレイ用ガラス板等の、薄い平状をなす被処理物である露光処理用の基板を、処理装置内で保持するために用いられる保持盤を言う。また、面粗度Raは、JIS B0601(2001)で定義される算術平均粗さのことを言う。
本発明の露光処理用基板保持盤は、少なくとも基板保持側となる表面がセラミックスからなる母材で構成されている。
Hereinafter, the substrate holder for exposure processing of the present invention will be specifically described in detail.
The substrate holder for exposure processing of the present invention is a holder used to hold an exposure processing substrate, which is a thin flat object to be processed, such as a semiconductor element or a glass plate for a liquid crystal display, in a processing apparatus. Say the board. The surface roughness Ra is an arithmetic average roughness defined by JIS B0601 (2001).
In the substrate holder for exposure processing of the present invention, at least the surface on the substrate holding side is composed of a base material made of ceramics.

本発明において用いられる反射率の低いセラミックスを用いた基板保持盤は、面粗度Raが0.6μm以下であることが必須である。これまで一般的に材料の反射率は、面粗度が粗いほど低いと言われていたが、これは人間の目で見た場合、鏡のように綺麗に物が映る表面が反射率が高いと感じているためである。しかしながら、本発明で問題にしている反射率は、正反射だけでなく人間の目では感じにくい乱反射光を全て含めた全反射量を問題にしており、人間の目で感じ取れる反射率とは若干異なるものである。特に、面粗度の粗い面においては、正反射が少なく乱反射量が多いために反射率が低く感じやすいが、ある材料の光の反射量は基本的にその材料の光の屈折率と密接な関係があり、材料特有の数値であり、面粗度は前述のとおり正反射量と乱反射量のバランスが変化するだけで、全反射量は変化しない。   It is essential that the substrate holding disk using the low-reflectance ceramic used in the present invention has a surface roughness Ra of 0.6 μm or less. Until now, it was generally said that the reflectivity of a material is lower as the surface roughness is higher. However, when viewed with the human eye, this is a mirror-like surface that has a high reflectivity. This is because I feel that. However, the reflectance that is a problem in the present invention is not only the regular reflection but also the total reflection amount including all irregularly reflected light that is difficult to be felt by the human eye, and is slightly different from the reflectance that can be felt by the human eye. Is. In particular, on a surface with a rough surface roughness, the reflectance is low because the regular reflection is small and the diffuse reflection amount is large, but the light reflection amount of a material is basically close to the refractive index of the light of the material. There is a relationship and is a numerical value specific to the material. As described above, the surface roughness only changes the balance between the regular reflection amount and the irregular reflection amount, and the total reflection amount does not change.

しかしながら、このセラミックス材料における光の反射量について詳細に検討した結果、全反射量は面粗度と密接な関係にあることを発見した。
全反射率は、面粗度が小さいほど材料特有のある反射率に落ち着き、この面粗度が大きくなるほど全反射率は大きくなる。これは、面粗度の粗い面においては、その面を生成するために行った加工と密接な関係がある。セラミックス材料の場合、一般的にダイヤモンドやアルミナ、あるいは炭化珪素等の硬質砥粒を用いた砥石や遊離砥粒を用いて加工する。このとき、大きな粒径の砥粒を用いるほど面粗度は粗くなり、小さな砥粒を使用することにより、より面粗度を小さく出来ることは知られている。このとき、大きな砥粒で生成される面は大きな加工力で材料表面の破壊を行うために、セラミックス材料の場合、材料表面近傍にはマイクロクラックなどの加工変質層が存在することが知られている。
However, as a result of a detailed examination of the amount of light reflected by this ceramic material, it was discovered that the total reflection amount is closely related to the surface roughness.
The total reflectivity is settled to reflect a material specific as the surface roughness is small, and the total reflectivity is increased as the surface roughness is increased. This is closely related to the processing performed to generate the surface of the surface having a rough surface. In the case of a ceramic material, processing is generally performed using a grindstone or free abrasive grains using hard abrasive grains such as diamond, alumina, or silicon carbide. At this time, it is known that the surface roughness becomes coarser as the abrasive grains having a larger particle diameter are used, and the surface roughness can be further reduced by using smaller abrasive grains. At this time, in order to destroy the surface of the material generated with large abrasive grains with a large processing force, it is known that there is a work-affected layer such as a microcrack near the material surface in the case of ceramic materials. Yes.

この加工変質層は、大きな砥粒を使用するほど深く、大きな欠陥を発生させる。セラミックス材料に欠陥が存在すると、光が照射されたときに、材料表面で反射される光と内部に入射する透過光に分かれる。セラミックス材料の内部に入射した光は、減衰しながらセラミックス結晶内部を進み結晶粒界にあたる。このとき、粒界の異方性により、光はここでも反射と透過に分かれる。これを繰り返して反射されて材料内部から反射光として出てくる光もある。欠陥の無い場合は材料特有の反射率となるが、結晶内に欠陥が存在した場合、ここでも光は反射と透過を行うこととなり、結果的に反射光が増えることとなる。このことにより欠陥の多い材料では反射率が高くなると想定される。   This work-affected layer is so deep that large abrasive grains are used, and large defects are generated. If there is a defect in the ceramic material, it is divided into light reflected by the surface of the material and transmitted light incident on the inside when irradiated with light. Light incident on the inside of the ceramic material travels through the inside of the ceramic crystal while being attenuated and hits the grain boundary. At this time, light is divided into reflection and transmission here due to the anisotropy of the grain boundary. There is also light that is reflected repeatedly and emerges as reflected light from within the material. When there is no defect, the reflectivity is specific to the material. However, when a defect exists in the crystal, light is reflected and transmitted again, resulting in an increase in reflected light. For this reason, it is assumed that the reflectivity of a material with many defects is increased.

この反射率を達成するために、反射率の低い材料で前述の欠陥の量と大きさを勘案すると、面粗度算術平均粗さで少なくとも面粗度Raが0.6μm以下であることが必要がある。望ましくは面粗度Raは0.5μm以下であり、更に望ましくは面粗度Raは0.4μm以下である。
材料表面の加工変質層や材料欠陥を緩和したり取り除いたりする方法としては、再度焼結温度付近の温度域で10時間から100時間かけてエージングをする方法や、加工変質層を形成しにくい#600以上の砥石で加工する方法、鋳物や銅、錫などの定盤を用いて遊離と粒でラップ加工を行う方法や、パターンが形成されている場合は遊離砥粒を用いて布やブラシでバフ研磨を行う方法などが挙げられる。
In order to achieve this reflectivity, it is necessary that the surface roughness Ra is 0.6 μm or less in terms of the arithmetic average roughness of the surface roughness, considering the amount and size of the above-mentioned defects with a material with low reflectivity. There is. The surface roughness Ra is desirably 0.5 μm or less, and more desirably, the surface roughness Ra is 0.4 μm or less.
As a method of relaxing or removing the work-affected layer and material defects on the material surface, a method of aging again for 10 hours to 100 hours in the temperature range near the sintering temperature, or a process-affected layer is difficult to form # A method of processing with 600 or more grindstones, a method of lapping with free and grain using a platen such as casting, copper, tin, etc., if a pattern is formed, using a free abrasive grain with a cloth or brush For example, a buffing method may be used.

光の反射の量は、JIS K 7105に規定する全反射率を用いる方法を採用することができる。本発明のようにセラミックス材料(焼結体)を適用する分野においては、乱反射を含む全ての光の反射を嫌う用途であり、全反射率を用いて評価することが最も適している。全反射率とは、正反射成分と拡散反射成分とを、球状の積分球を使用して合わせて測定したものであり、ここではJIS K 7105に従って測定した。   For the amount of light reflection, a method using the total reflectance defined in JIS K 7105 can be employed. In the field of applying a ceramic material (sintered body) as in the present invention, it is an application that dislikes reflection of all light including irregular reflection, and it is most suitable to evaluate using total reflectance. The total reflectance is measured by combining a regular reflection component and a diffuse reflection component using a spherical integrating sphere, and is measured according to JIS K 7105 here.

通常、レーザー光や紫外線を使用する装置に使用する部材で、低反射率を必要とする部材においては、ブラッククロームメッキ処理品やブラックアルマイト処理品が使用される。これらの処理品の全反射率は、ブラッククロームメッキ処理品では、光波長200〜950nmにおいて5〜7%であり、また、ブラックアルマイト処理品では光波長200nmから650nmにおいて6〜8%であり、700〜950nmでは10〜60%となる。全反射率は、低ければ低いほど光の反射を防止することができるので好ましいが、一般的に光波長200〜550nmの範囲で全反射率が13%以下であれば、上記光の反射を嫌う装置の部材においても実用上問題無く用いることができる。全反射率は、11%以下であればより好ましい結果を得ることができる。液晶などの特に透明度の高いガラスに露光する装置においては、特に全反射率が低いことが求められ、同分野に使用する材料としては、全反射率が10%以下であることが好ましい。好ましい全反射率を得るためには、以下に示すような焼結雰囲気の制御や添加剤を付与することで達成することが可能である。
本発明の露光処理用基板保持盤は、その基板保持側表面の彩度指数b*がプラスであることが重要である。彩度指数b*がゼロ以下では、550nm以下の短波長での反射率が高くなる。そのため、彩度指数b*は、好ましくは0を超え30以下の範囲である。彩度指数b*が30を超えると、反射率が全波長において高くなり易いため、反射率が高くなる恐れが生じることがある。
Usually, a member used in an apparatus that uses laser light or ultraviolet light, and a member that requires low reflectance, a black chrome-plated product or a black anodized product is used. The total reflectance of these processed products is 5 to 7% at a light wavelength of 200 to 950 nm in a black chrome plated product, and 6 to 8% at a light wavelength of 200 to 650 nm in a black anodized product. It becomes 10 to 60% at 700 to 950 nm. The lower the total reflectivity, the better the light reflection can be prevented. However, in general, when the total reflectivity is 13% or less in the light wavelength range of 200 to 550 nm, the reflection of the light is disliked. It can also be used practically without problems in the members of the apparatus. More preferable results can be obtained if the total reflectance is 11% or less. In an apparatus that exposes glass having a particularly high transparency such as liquid crystal, the total reflectance is particularly required to be low, and the total reflectance is preferably 10% or less as a material used in this field. In order to obtain a preferable total reflectance, it can be achieved by controlling the sintering atmosphere and adding an additive as shown below.
It is important that the saturation index b * of the substrate holding side surface of the substrate holder for exposure processing of the present invention is positive. When the saturation index b * is zero or less, the reflectance at a short wavelength of 550 nm or less increases. Therefore, the saturation index b * is preferably in the range of more than 0 and 30 or less. If the saturation index b * exceeds 30, the reflectivity tends to be high at all wavelengths, which may increase the reflectivity.

また、本発明の露光処理用基板保持盤は、その基板保持側表面の明度指数L*が70以下であることが必要である。明度指数L*が70を超えると、過度に明る過ぎて反射率が高くなり好ましくない。明度指数L*は、好ましくは60以下である。   In addition, the substrate holder for exposure processing of the present invention requires that the lightness index L * of the substrate holding side surface be 70 or less. If the lightness index L * exceeds 70, it is excessively bright and the reflectance becomes high, which is not preferable. The lightness index L * is preferably 60 or less.

彩度指数b*は、国際照明委員会で規格化された測定方法で求められる値である(CIE 1976(L*a*b*))。なお、日本工業規格ではJIS Z 8729(1980)に当たる。ここで、L*は明度、a*とb*は彩度を表し、それぞれ以下のような意味を持つものである。
a*=+60、b*=0 :純赤
a*=−60、b*=0 :純緑
a*= 0 、b*=+60 :純黄
a*= 0 、b*=−60 :純青
L*max=100、a*=0、b*=0 :真っ白
L*max=0 、a*=0、b*=0 :真っ黒
このように明度と彩度が調整されたセラミックスは、例えば、炭化珪素や窒化アルミニウム、アルミナチタンカーバイド等をアルゴン、ヘリウム、窒素、真空等の非酸化性雰囲気中で焼成することによって得ることができ、また、酸化アルミニウムや酸化ジルコニウム等の酸化物の場合は、彩度を低くするための無機添加物を加えて得ることができる。
The saturation index b * is a value obtained by a measurement method standardized by the International Commission on Illumination (CIE 1976 (L * a * b *)). In Japanese Industrial Standards, it corresponds to JIS Z 8729 (1980). Here, L * represents lightness, and a * and b * represent saturation, each having the following meaning.
a * = + 60, b * = 0: Pure red a * = − 60, b * = 0: Pure green a * = 0, b * = + 60: Pure yellow a * = 0, b * = − 60: Pure blue L * max = 100, a * = 0, b * = 0: Pure white L * max = 0, a * = 0, b * = 0: Pure black The ceramics whose brightness and saturation are adjusted in this way are, for example, It can be obtained by firing silicon carbide, aluminum nitride, alumina titanium carbide, etc. in a non-oxidizing atmosphere such as argon, helium, nitrogen, vacuum, etc., and in the case of oxides such as aluminum oxide and zirconium oxide, It can be obtained by adding an inorganic additive for lowering the saturation.

明度と彩度を調整するために用いられる無機物の好ましい例としては、Fe、Mn、Cr、CoO、TiO、CuO、NiO、TiC、SiCおよびC等が挙げられる。特に彩度指数b*をプラスにするためには、Fe、Mn、Cr、TiC、SiCおよびCが好ましく使用される。 Preferable examples of inorganic substances used for adjusting the brightness and saturation include Fe 2 O 3 , Mn 2 O 3 , Cr 2 O 3 , CoO, TiO 2 , CuO, NiO, TiC, SiC, and C. It is done. In particular, in order to make the saturation index b * positive, Fe 2 O 3 , Mn 2 O 3 , Cr 2 O 3 , TiC, SiC and C are preferably used.

ここで、アルミナ以外の無機物の存在を測定する方法としては、例えば、誘導結合プラズマ発光分光分析(Inductivelt Coupled Plasma Atomic Emission)等の公知の方法を使用することができる。   Here, as a method for measuring the presence of an inorganic substance other than alumina, for example, a known method such as inductively coupled plasma atomic emission (Inductive Coupled Plasma Atomic Emission) can be used.

本発明において、セラミックス(アルミナ質焼結体)の平均結晶粒子径は、3μm以上であることが好ましい。平均結晶粒子径は、より好ましくは3μm以上20μm以下である。粒界を減らしポアの存在自体を減らすために、結晶粒径をある一定以上に保つことが効果的であるからである。平均結晶粒径を大きくするには、例えば、焼結温度を高くすることで可能であるが、SiやTi等のアルミナの粒成長を促進する添加剤により平均結晶粒径を大きくすることも可能である。しかしながら、平均結晶粒径が20μmよりも大きくなりすぎると強度等機械的物性が低下するので、Mg等でスピネルによるピン留め効果で平均結晶粒径を制御することが望ましい。平均結晶粒径の測定方法については後述する。   In the present invention, the average crystal particle diameter of the ceramic (alumina sintered body) is preferably 3 μm or more. The average crystal particle diameter is more preferably 3 μm or more and 20 μm or less. This is because it is effective to keep the crystal grain size above a certain level in order to reduce grain boundaries and reduce the presence of pores. To increase the average crystal grain size, for example, it is possible to increase the sintering temperature, but it is also possible to increase the average crystal grain size with an additive that promotes the grain growth of alumina such as Si and Ti. It is. However, since the mechanical properties such as strength are lowered when the average crystal grain size is too larger than 20 μm, it is desirable to control the average crystal grain size by the pinning effect of spinel with Mg or the like. A method for measuring the average crystal grain size will be described later.

本発明において、少なくとも基板保持盤側となる表面が低反射率のセラミックスで構成されていれば、露光処理用基板保持盤としての性能を満足できる。表面のみセラミックスとしたときの母材としては特に限定されるものではないが、アルミニウム合金やマグネシウム合金などの比較的軽量で剛性の高い金属の表面にセラミックス部を溶射したり、薄板状のセラミックス表面を接着やネジ止めにより固定することができる。また、金属を母材に用いるときには機械の発熱による温度上昇で、線膨張係数の違うセラミックスと金属とのバイメタル効果により基板保持盤の平面度が狂うような場合は、インバーと呼ばれる低熱膨張の金属を用いることが望ましい。また、表面は低反射率のセラミックスであることが必須であるが、基板保持盤の剛性を高めるために、炭化珪素や窒化珪素といったアルミナよりも剛性の高いセラミックスとしてもよい。   In the present invention, if at least the surface on the substrate holding plate side is made of a low-reflectance ceramic, the performance as a substrate holding plate for exposure processing can be satisfied. There is no particular limitation on the base material when only the surface is made of ceramic, but the ceramic part is sprayed on the surface of a relatively light and rigid metal such as an aluminum alloy or magnesium alloy, or a thin plate-like ceramic surface. Can be fixed by bonding or screwing. In addition, when metal is used as a base material, a low thermal expansion metal called Invar is used when the flatness of the substrate holding plate is distorted due to the bimetallic effect of ceramics and metals with different linear expansion coefficients due to temperature rise due to heat generated by the machine. It is desirable to use Further, although the surface is required to be a ceramic having a low reflectance, it may be a ceramic having higher rigidity than alumina such as silicon carbide or silicon nitride in order to increase the rigidity of the substrate holder.

上述したような素材を用いた素材を基板保持盤として使用する場合、基板を基板保持盤上に固定するために、静電気や真空が利用されている。どのような場合も、基板を外すときに接触面積が多いと、吸着力が低下するのに時間を要するようになるため、接触面積は出来るだけ少なく、かつ、特に真空の場合には吸着力により基板を歪ませる恐れがあるので、基板を保持していない部分の長さは短い程良い。これを両立させるためには、出来るだけ小さい面積の基板保持部を、小さなピッチで並べることが望ましい。
本発明では、少なくとも基板保持側となる表面がセラミックスからなる母材に基板保持パターンを加工した後、その加工面を遊離砥粒を用いて研磨することにより、露光処理用基板保持盤を得ることができる。
この基板保持部のパターン加工は特に限定されるものではないが、細軸の砥石で溝を形成しても良いし、パターンの形状にマスキングした基板保持盤を、サンドブラストなどによって加工するなどの方法がある。
When a material using the above-described material is used as a substrate holding plate, static electricity or vacuum is used to fix the substrate on the substrate holding plate. In any case, if the contact area is large when removing the substrate, it will take time to reduce the adsorption force. Therefore, the contact area is as small as possible, and especially in the case of vacuum, Since the substrate may be distorted, the shorter the length of the portion not holding the substrate is better. In order to make this compatible, it is desirable to arrange the substrate holding portions having the smallest possible area at a small pitch.
In the present invention, a substrate holding pattern is obtained by processing a substrate holding pattern on a base material made of ceramics at least on the substrate holding side, and then polishing the processed surface using loose abrasive grains. Can do.
The pattern processing of the substrate holding portion is not particularly limited, but a groove may be formed with a fine-shaft grindstone, or a method of processing a substrate holding disc masked in a pattern shape by sandblasting or the like There is.

これらのパターン加工を行ったときには、セラミックス材料の場合、必ず前述の加工変質層が存在することになる。パターンを傷つけずに表面の加工変質層のみ取り除くために、遊離砥粒を用いてフェルトや不織布、織物や編物等の布地を重ね合わせた物や、ゴムやウレタン等の樹脂や木片等を加工したホイールやパット、ブラシなどの軟質物でバフ研磨することが可能である。研磨に遊離砥粒を用いる場合、特に限定されるものではないが、例えば、以下のような方法で実施することができる。   When these pattern processings are performed, the above-mentioned work-affected layer always exists in the case of a ceramic material. In order to remove only the process-affected layer on the surface without damaging the pattern, loose abrasives were used to fabricate felt, non-woven fabrics, fabrics such as woven fabrics and knitted fabrics, and rubber and urethane resins and wood chips. It is possible to buff with a soft material such as a wheel, pad or brush. When using free abrasive grains for polishing, it is not particularly limited, but for example, it can be carried out by the following method.

遊離砥粒としては、ダイヤモンドやアルミナ、炭化珪素などの一般に市販されている砥粒を使用することが出来る。研磨加工の効率を高くするためには、加工初期は硬度が高く、加工効率の良いダイヤモンドの10〜50μm程度のパウダーを使用し、徐々に遊離砥粒の粒径を小さくしてゆき、最終的に10μm以下の砥粒で仕上げることが出来る。また、加工効率は劣るが、より加工変質層の少ない面に仕上げる為には、非加工物との硬度の差が少ない、アルミナや炭化珪素、シリカおよびセリアなどの粒子を使用することも出来る。   As the free abrasive grains, generally available abrasive grains such as diamond, alumina, silicon carbide and the like can be used. In order to increase the efficiency of the polishing process, use a diamond of about 10 to 50 μm, which has high hardness and good processing efficiency at the beginning of the process, and gradually reduces the grain size of the free abrasive grains. And finished with abrasive grains of 10 μm or less. In addition, in order to finish the surface with a less work-affected layer, although the processing efficiency is inferior, particles such as alumina, silicon carbide, silica, and ceria that have a small difference in hardness from the non-processed material can be used.

本発明の露光処理用基板保持盤は、液晶やELのようなディスプレー用のTFTやカラーフィルター製造や、薄型コンピューターに使用されるガラス基板へCPUを製作するための露光などに好適に用いることが出来る。   The substrate holder for exposure processing according to the present invention can be suitably used for manufacturing TFTs for display such as liquid crystal and EL, color filters, and exposure for manufacturing a CPU on a glass substrate used in a thin computer. I can do it.

以下、本発明の露光処理用基板保持盤を実施例に基づいて説明する。なお、実施例の物性の測定と評価は以下のように行った。   Hereinafter, the substrate holder for exposure processing of the present invention will be described based on examples. In addition, the measurement and evaluation of the physical property of an Example were performed as follows.

(1)面粗度Raの測定
粉末を冷間静水圧装置(Cold Isotatic Press)を用いて、1ton/cmの条件で成形し、その成形体をφ25×L25mmの円柱に加工し、焼結した。得られた焼結体を厚さ5mmに切断し、平面部を、#200の砥石にて切り込み深さ0.02mmで、焼結面から0.3mm除去した後に、サンドブラストにて#200のアルミナ砥粒を用いて粗面化を行ったものを、ダイヤモンド砥粒を用いてバフ研磨し、これを試料として用いた。面粗度は、JIS B0601(2001)の算術平均粗さを、東京精密製の表面粗度測定器SURFCOM1400Dを用いて測定を行った。測定は、試料の任意の位置を5回測定し、その平均値を面粗度とした。この測定の目的は、粗加工によって付けられた凹凸を小さくすることではなく、表面層を取り除くことであるため、粗加工により付けられた局部的な凹凸が除去できれば、大域的には粗さ曲線がうねっていることは問題ではないことから、測定条件は次のようにした。測定長さ0.4mm、カットオフは波長0.08mmでガウシアンを用い、測定速度0.15mm/秒、傾斜の補正には最小二乗直線補正を用いた。
(1) Measurement of surface roughness Ra The powder was molded under the condition of 1 ton / cm 2 using a cold isostatic press (Cold Isostatic Press), the molded body was processed into a cylinder of φ25 × L25 mm, and sintered. did. The obtained sintered body was cut to a thickness of 5 mm, and the flat portion was cut with a # 200 grindstone at a depth of 0.02 mm and 0.3 mm from the sintered surface, and then # 200 alumina by sandblasting. What was roughened with abrasive grains was buffed with diamond abrasive grains and used as a sample. For the surface roughness, the arithmetic average roughness of JIS B0601 (2001) was measured using a surface roughness measuring device SURFCOM 1400D manufactured by Tokyo Seimitsu. In the measurement, an arbitrary position of the sample was measured five times, and the average value was defined as the surface roughness. The purpose of this measurement is not to reduce the unevenness created by the roughing process, but to remove the surface layer. Therefore, if the local unevenness created by the roughing process can be removed, the roughness curve will be global. However, it is not a problem to swell, so the measurement conditions were as follows. The measurement length was 0.4 mm, the cutoff was a wavelength of 0.08 mm, Gaussian was used, the measurement speed was 0.15 mm / second, and the least-squares linear correction was used to correct the inclination.

(2)全反射率の測定
面粗度Raを測定した円柱状焼結体を、日立製作所製分光光度計U3210型を用いて、光波長を250nmから550nmに変化させ、反射光を積分球で捕集測定を行い、その範囲で最も大きな測定値を反射率とした。
(2) Measuring surface roughness Ra of the total reflectance of the cylindrical sintered body using a Hitachi spectrophotometer U3210 type, changing the light wavelength from 250 nm to 550 nm, and the reflected light with an integrating sphere Collection measurement was performed, and the largest measured value in the range was defined as the reflectance.

(3)平均結晶粒径の測定
面粗度の測定で使用した試料と同じものの平面部を鏡面仕上げし、焼結した温度より50℃低い温度で3時間サーマルエッチングした。走査型電子顕微鏡を用いてそのサンプルを観察し、任意の点5カ所で2000倍の写真を撮った。画像処理装置を用いて、撮影した写真の結晶粒子の平均円相当径を求めた。なお、一枚の写真当たり、10cm以上の面積について平均円相当径を求め、5枚の写真の平均円相当径を平均結晶粒子径とした。
(3) Measurement of average crystal grain size The flat part of the same sample used for the measurement of surface roughness was mirror finished and thermally etched at a temperature 50 ° C. lower than the sintered temperature for 3 hours. The sample was observed using a scanning electron microscope, and 2000-times photographs were taken at five arbitrary points. Using an image processing apparatus, the average equivalent circle diameter of the crystal grains of the photographed photograph was determined. The average equivalent circle diameter was determined for an area of 10 cm 2 or more per photograph, and the average equivalent circle diameter of the five photographs was taken as the average crystal particle diameter.

(4)彩度の測定と再度指数b*と明度指数L*
厚み5mmの円柱状焼結体の両面を平面研削盤にて、#600の砥石を用いて研削加工し測定サンプルとした。測定装置は、株式会社ミノルタ社製の色差色彩測定装置CM−2002を用いた。測定は、入射光の一部がサンプルに吸収され、反射、散乱した残光を積分球で捕集、検出した。光源は、キセノンランプを使用し、積分球に設置された2個の分光器で測光し、400〜700nmの波長光を10nm単位で分光し、演算し、標準光源D65で観察視野2°の条件で測定された物体色としてm、その絶対値がL*a*b*表色系で求められる。本測定では、反射散乱光の全てを検出するSCI(Specular Component Include)モードで測定し、JIS規格の標準白色板を基準色とした。本測定方法は、JIS Z 8722(1982)およびJIS Z 8103(計測用語)、8105(1982)(色に関する用語)8120(1986)(光学用語)に定義されている。
(4) Saturation measurement and index b * and lightness index L * again
Both surfaces of a cylindrical sintered body having a thickness of 5 mm were ground with a surface grinder using a # 600 grindstone to obtain a measurement sample. As a measuring device, a color difference color measuring device CM-2002 manufactured by Minolta Co., Ltd. was used. In the measurement, a part of incident light was absorbed by the sample, and reflected and scattered afterglow was collected and detected by an integrating sphere. The light source uses a xenon lamp, and the light is measured with two spectroscopes installed on the integrating sphere, and the light with a wavelength of 400 to 700 nm is dispersed and calculated in units of 10 nm. M as the object color measured in (1), and its absolute value is obtained in the L * a * b * color system. In this measurement, measurement was performed in an SCI (Special Component Included) mode that detects all of the reflected scattered light, and a JIS standard white plate was used as a reference color. This measurement method is defined in JIS Z 8722 (1982) and JIS Z 8103 (measurement terms), 8105 (1982) (terms relating to color) 8120 (1986) (optical terms).

(実施例1)
純度99.99%のαアルミナ粉末10kg、無機物としてFe 350g、MnO 150g、イオン交換水(溶媒)30kg、酸化マグネシウム150g、分散剤(ポリカルボン酸アンモニウム)50g、バインダーとしてポリビニルアルコールの10重量%溶液3000g、および可塑剤としてポリエチレングリコール#400 200gを、ボールミルにて、24時間湿式にて攪拌混合してスラリーを調製した。このスラリーを、スプレードライヤーにより噴霧乾燥し、平均粒径60μmの顆粒を製作した。この顆粒を含水率0.5重量%に調湿した後、成形圧1.0ton/cmの荷重でラバープレス成形し、直径20mm、高さ10mmの円柱状成形体を製作した。次に、このようにして得られた円柱状成形体を、大気中で1600℃の温度で3時間焼結した。この焼結体を、円筒研削盤にて、直径15mm、平面研削盤にて、高さ5mmに加工を施し、この加工平面を、更に#200のアルミナ粒子にてサンドブラストを用いて粗面化加工を行った。この加工面について20μmのダイヤモンドパウダーを用いて布製バフで表面に光沢がでるまで加工を行った。このときの彩度指数b*は3.5で、明度指数L*は39であった。また面粗度Raは0.48μmであり、全反射率は11%であった。結果を表1に示す。この試験片の表面にレジスト膜を塗布した透明ガラス基板を載置してパターンを露光したところ、二重露光によるパターンの線切れ等の問題は起こすことなく、きれいな矩形断面のパターンを形成することができた。
Example 1
Alpha alumina powder of 99.99% purity, 350 g of Fe 2 O 3 as an inorganic substance, 150 g of MnO, 30 kg of ion exchange water (solvent), 150 g of magnesium oxide, 50 g of a dispersant (ammonium polycarboxylate), 10 of polyvinyl alcohol as a binder A slurry was prepared by stirring and mixing 3000 g of a weight% solution and 200 g of polyethylene glycol # 400 as a plasticizer with a ball mill in a wet manner for 24 hours. This slurry was spray-dried with a spray dryer to produce granules having an average particle size of 60 μm. The granules were conditioned to a moisture content of 0.5% by weight and then subjected to rubber press molding with a molding pressure of 1.0 ton / cm 2 to produce a cylindrical molded body having a diameter of 20 mm and a height of 10 mm. Next, the cylindrical molded body thus obtained was sintered in the atmosphere at a temperature of 1600 ° C. for 3 hours. This sintered body is processed to a diameter of 15 mm with a cylindrical grinder and to a height of 5 mm with a surface grinder, and this processed plane is further roughened by sandblasting with # 200 alumina particles. Went. The processed surface was processed with a cloth buff using 20 μm diamond powder until the surface was glossy. At this time, the saturation index b * was 3.5, and the lightness index L * was 39. The surface roughness Ra was 0.48 μm and the total reflectance was 11%. The results are shown in Table 1. When a transparent glass substrate coated with a resist film is placed on the surface of this test piece and the pattern is exposed, a pattern with a clean rectangular cross section can be formed without causing problems such as line breakage due to double exposure. I was able to.

(実施例2)
実施例1で作成したサンプルを、更に6μmのダイヤモンドパウダーを用いて布製バフで加工を行った。この加工面の彩度指数b*は3.5、明度指数L*は32、面粗度Raは0.12μmであり、全反射率は6.5%であった。結果を表1に示す。この試験片の表面に透明ガラス基板を載置してパターンを露光したところ、二重露光によるパターンの線切れ等の問題は起こすことなく、きれいな矩形断面のパターンを形成することができた。
(Example 2)
The sample prepared in Example 1 was further processed with a cloth buff using 6 μm diamond powder. The processed surface had a saturation index b * of 3.5, a brightness index L * of 32, a surface roughness Ra of 0.12 μm, and a total reflectance of 6.5%. The results are shown in Table 1. When a transparent glass substrate was placed on the surface of the test piece and the pattern was exposed, a pattern with a clean rectangular cross section could be formed without causing problems such as line breakage of the pattern due to double exposure.

(比較例1)
実施例2で作成したサンプルを、再度、#200のアルミナ粒子にてサンドブラストで粗面化加工を行った。このときの彩度指数b*は3.5、明度指数L*は41、面粗度Raは1.02μmであり、全反射率は15.5%であった。結果を表1に示す。
(Comparative Example 1)
The sample prepared in Example 2 was again roughened by sandblasting with # 200 alumina particles. At this time, the saturation index b * was 3.5, the lightness index L * was 41, the surface roughness Ra was 1.02 μm, and the total reflectance was 15.5%. The results are shown in Table 1.

(比較例2)
純度99.99%のαアルミナ粉末10kg、無機物としてFe 350g、CoO 150g、イオン交換水(溶媒)30kg、酸化マグネシウム150g、分散剤(ポリカルボン酸アンモニウム)50g、バインダーとしてポリビニルアルコールの10重量%溶液3000g、および可塑剤としてポリエチレングリコール#400 200gを、ボールミルにて24時間湿式にて攪拌混合してスラリーを調製した。このスラリーを、スプレードライヤーにより噴霧乾燥し、平均粒径50μmの顆粒を製作した。この顆粒を含水率0.5重量%に調湿した後、成形圧1.0ton/cmの荷重でラバープレス成形し、直径20mm、高さ10mmの円柱状成形体を製作した。次に、このようにして得られた円柱状成形体を大気中で1600℃の温度で3時間焼結した。この焼結体を、円筒研削盤にて、直径15mm、平面研削盤にて、高さ5mmに加工を施し、この加工平面を、更に#200のアルミナ粒子にてサンドブラストを用いて粗面化加工を行った。この加工面について20μmのダイヤモンドパウダーを用いて布製バフで加工を行い、更に6μmのダイヤモンドパウダーで仕上げのバフ研磨を行った。このときの彩度指数b*は−4.2、明度指数L*は48、面粗度Raは0.32μmであり、全反射率は17.8%であった。結果を表1に示す。
(Comparative Example 2)
Α alumina powder of 99.99% purity, 350 g of Fe 2 O 3 as inorganic material, 150 g of CoO, 30 kg of ion exchange water (solvent), 150 g of magnesium oxide, 50 g of dispersant (ammonium polycarboxylate), 10 of polyvinyl alcohol as a binder A slurry was prepared by mixing 3000 g of a weight% solution and 200 g of polyethylene glycol # 400 as a plasticizer with a ball mill for 24 hours by wet mixing. This slurry was spray-dried with a spray dryer to produce granules having an average particle size of 50 μm. The granules were conditioned to a moisture content of 0.5% by weight and then subjected to rubber press molding with a molding pressure of 1.0 ton / cm 2 to produce a cylindrical molded body having a diameter of 20 mm and a height of 10 mm. Next, the cylindrical molded body thus obtained was sintered in the atmosphere at a temperature of 1600 ° C. for 3 hours. This sintered body is processed to a diameter of 15 mm with a cylindrical grinder and to a height of 5 mm with a surface grinder, and this processed plane is further roughened by sandblasting with # 200 alumina particles. Went. The processed surface was processed with a cloth buff using 20 μm diamond powder, and further finished with a 6 μm diamond powder. At this time, the saturation index b * was −4.2, the lightness index L * was 48, the surface roughness Ra was 0.32 μm, and the total reflectance was 17.8%. The results are shown in Table 1.

(実施例3)
実施例1で成形したものと同様の円柱状成形体について、真空中にて1550℃の温度で3時間焼結をした。このようにして得られた焼結体を円筒研削盤にて、直径15mm、平面研削盤にて高さ5mmに加工を施し、この加工平面を、更に#200のアルミナ粒子にてサンドブラストで粗面化加工を施した。この面を20μmのダイヤモンドパウダーを用いてバフ加工を行った。この加工面の彩度指数b*は2.7、明度指数L*は45、面粗度Raは0.52であり、反射率は9.2であった。結果を表1に示す。この試験片の表面にレジスト膜を塗布した透明ガラス基板を載置しパターンを露光したところ、二重露光によるパターンの線切れ等の問題は起こすことなく、きれいな矩形断面のパターンを形成することができた。
(Example 3)
The cylindrical molded body similar to that molded in Example 1 was sintered in a vacuum at a temperature of 1550 ° C. for 3 hours. The sintered body thus obtained was processed with a cylindrical grinder to a diameter of 15 mm and a surface grinder to a height of 5 mm, and this processed plane was further roughened by sandblasting with # 200 alumina particles. It was processed. This surface was buffed with 20 μm diamond powder. The processed surface had a saturation index b * of 2.7, a lightness index L * of 45, a surface roughness Ra of 0.52, and a reflectance of 9.2. The results are shown in Table 1. When a transparent glass substrate coated with a resist film was placed on the surface of this test piece and the pattern was exposed, it was possible to form a clean rectangular cross-section pattern without causing problems such as line breakage due to double exposure. did it.

(比較例3)
純度99.99%のαアルミナ粉末10kg、イオン交換水(溶媒)30kg、酸化マグネシウム150g、分散剤(ポリカルボン酸アンモニウム)50g、バインダーとしてポリビニルアルコールの10重量%溶液3000g、および可塑剤としてポリエチレングリコール#400 200gを、ボールミルにて24時間湿式にて攪拌混合してスラリーを調製した。このスラリーを、スプレードライヤーにより噴霧乾燥し、平均粒径60μmの顆粒を製作した。この顆粒を含水率0.5重量%に調湿した後、成形圧1.0ton/cmの荷重でラバープレス成形し、直径20mm、高さ10mmの円柱状成形体を製作した。次に、このようにして得られた円柱状成形体を大気中で1600℃の温度で3時間焼結した。このようにして得られた焼結体を、円筒研削盤にて、直径15mm、平面研削盤にて、高さ5mmに加工を施し、この加工平面を、更に#200のアルミナ粒子にてサンドブラストを用いて粗面化加工を行った。この加工面について20μmのダイヤモンドパウダーを用いて布製バフで加工を行い、更に6μmのダイヤモンドパウダーで仕上げのバフ研磨を行った。このときの彩度指数b*は4.8、明度指数L*は91、面粗度Raは0.18μmであり、全反射率は83.2%であった。結果を表1に示す。この試験片に実施例1と同様にレジスト膜を塗布した透明ガラス基板を載置してパターン露光を行ったところ、二重露光によりパターンが痩せて線切れを起こしてしまった。
(Comparative Example 3)
10 kg of α-alumina powder with a purity of 99.99%, 30 kg of ion exchange water (solvent), 150 g of magnesium oxide, 50 g of a dispersant (ammonium polycarboxylate), 3000 g of a 10 wt% solution of polyvinyl alcohol as a binder, and polyethylene glycol as a plasticizer 200 g of # 400 was stirred and mixed in a ball mill for 24 hours to prepare a slurry. This slurry was spray-dried with a spray dryer to produce granules having an average particle size of 60 μm. The granules were conditioned to a moisture content of 0.5% by weight and then subjected to rubber press molding with a molding pressure of 1.0 ton / cm 2 to produce a cylindrical molded body having a diameter of 20 mm and a height of 10 mm. Next, the cylindrical molded body thus obtained was sintered in the atmosphere at a temperature of 1600 ° C. for 3 hours. The sintered body thus obtained was processed with a cylindrical grinder to a diameter of 15 mm and a surface grinder to a height of 5 mm, and this processed plane was further sandblasted with # 200 alumina particles. The surface roughening process was performed using it. The processed surface was processed with a cloth buff using 20 μm diamond powder, and further finished with a 6 μm diamond powder. At this time, the saturation index b * was 4.8, the lightness index L * was 91, the surface roughness Ra was 0.18 μm, and the total reflectance was 83.2%. The results are shown in Table 1. When a transparent glass substrate coated with a resist film was placed on the test piece in the same manner as in Example 1 and pattern exposure was performed, the pattern faded due to double exposure, causing line breakage.

本発明の露光処理用基板保持盤は、電子部品、半導体製造装置用部品、液晶製造装置用部品および各種測定装置等の精密部材として有用であり、特に、半導体素子や液晶ディスプレイを製造するための露光装置等に好適に用いられる。 The substrate holder for exposure processing of the present invention is useful as a precision member for electronic parts, parts for semiconductor manufacturing equipment, parts for liquid crystal manufacturing equipment, and various measuring devices, particularly for manufacturing semiconductor elements and liquid crystal displays. It is suitably used for an exposure apparatus or the like.

Claims (7)

少なくとも基板保持側表面がセラミックスからなり、該基板保持側表面の彩度指数b*がプラスであり、明度指数L*が70以下で、かつ面粗度Raが0.6μm以下であることを特徴とする露光処理用基板保持盤。   At least the substrate holding side surface is made of ceramics, the saturation index b * of the substrate holding side surface is positive, the lightness index L * is 70 or less, and the surface roughness Ra is 0.6 μm or less. A substrate holder for exposure processing. 基板保持側表面の光波長250〜550nmの範囲における全反射率が13%以下であることを特徴とする請求項1記載の露光処理用基板保持盤。   2. The substrate holder for exposure processing according to claim 1, wherein the total reflectance in the light wavelength range of 250 to 550 nm on the surface of the substrate holding side is 13% or less. 少なくとも基板の保持側表面を構成するセラミックスの結晶粒径が3μm以上であることを特徴とする請求項1または2記載の露光処理用基板保持盤。   3. The substrate holder for exposure processing according to claim 1, wherein the crystal grain size of the ceramic constituting at least the holding side surface of the substrate is 3 [mu] m or more. セラミックスの主成分が、炭化硅素またはアルミナであることを特徴とする請求項1〜3のいずれかに記載の露光処理用基板保持盤。   4. The substrate holder for exposure processing according to claim 1, wherein the main component of the ceramic is silicon carbide or alumina. Fe、Mn、Cr、CoO、TiO、CuO、NiO、TiC、SiCおよびCからなる群から選ばれた少なくとも1つの添加物を含むことを特徴とする請求項1〜4のいずれかに記載の露光処理用基板保持盤。 The composition includes at least one additive selected from the group consisting of Fe 2 O 3 , Mn 2 O 3 , Cr 2 O 3 , CoO, TiO 2 , CuO, NiO, TiC, SiC, and C. The substrate holder for exposure processing according to any one of 1 to 4. 基板保持盤に載置される基板は、照明光が照射される基板であることを特徴とする請求項1〜5のいずれかに記載の露光処理用基板保持盤。   6. The substrate holder for exposure processing according to claim 1, wherein the substrate placed on the substrate holder is a substrate irradiated with illumination light. 少なくとも基板保持側となる表面が、彩度指数b*がプラスであるセラミックスからなる母材に基板保持パターンを加工した後、その加工面を遊離砥粒を用いて研磨することを特徴とする露光処理用基板保持盤の製造方法。 An exposure characterized in that at least the surface on the substrate holding side has a substrate holding pattern processed into a base material made of ceramics with a positive chroma index b *, and then the processed surface is polished with free abrasive grains A method of manufacturing a substrate holder for processing.
JP2005019161A 2005-01-27 2005-01-27 Substrate holding board for exposure process and manufacturing method thereof Pending JP2006210546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019161A JP2006210546A (en) 2005-01-27 2005-01-27 Substrate holding board for exposure process and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019161A JP2006210546A (en) 2005-01-27 2005-01-27 Substrate holding board for exposure process and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006210546A true JP2006210546A (en) 2006-08-10

Family

ID=36967064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019161A Pending JP2006210546A (en) 2005-01-27 2005-01-27 Substrate holding board for exposure process and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006210546A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168420A (en) * 2010-02-17 2011-09-01 Kikusui Chemical Industries Co Ltd Alumina sintered compact and substrate holding board formed by alumina sintered compact
US8899564B2 (en) 2009-02-23 2014-12-02 Sodick Co., Ltd. Colored ceramic vacuum chuck and manufacturing method thereof
JP2015101496A (en) * 2013-11-22 2015-06-04 京セラ株式会社 Holding member
CN104810315A (en) * 2014-01-29 2015-07-29 上海微电子装备有限公司 Clamping device for LED substrate exposure
JP2016038458A (en) * 2014-08-07 2016-03-22 京セラ株式会社 Low reflection member
JP2016122091A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame
JP2016122092A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame
WO2017158914A1 (en) 2016-03-14 2017-09-21 富士フイルム株式会社 Composition, film, cured film, optical sensor and method for producing film
JP2017200872A (en) * 2016-04-28 2017-11-09 京セラ株式会社 Porous ceramic body, member for adsorption and method for producing porous ceramic body
JP2018019017A (en) * 2016-07-29 2018-02-01 京セラ株式会社 Member for placement
WO2018139673A1 (en) * 2017-01-30 2018-08-02 京セラ株式会社 Semiconductive ceramic member and holder for wafer conveyance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021963A (en) * 1998-07-06 2000-01-21 Nippon Steel Corp Electrostatic chuck device
JP2004140132A (en) * 2002-10-17 2004-05-13 Taiheiyo Cement Corp Testpiece mounting stage
JP2004323268A (en) * 2003-04-23 2004-11-18 Toray Ind Inc Alumina-base sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021963A (en) * 1998-07-06 2000-01-21 Nippon Steel Corp Electrostatic chuck device
JP2004140132A (en) * 2002-10-17 2004-05-13 Taiheiyo Cement Corp Testpiece mounting stage
JP2004323268A (en) * 2003-04-23 2004-11-18 Toray Ind Inc Alumina-base sintered compact

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899564B2 (en) 2009-02-23 2014-12-02 Sodick Co., Ltd. Colored ceramic vacuum chuck and manufacturing method thereof
JP2011168420A (en) * 2010-02-17 2011-09-01 Kikusui Chemical Industries Co Ltd Alumina sintered compact and substrate holding board formed by alumina sintered compact
JP2015101496A (en) * 2013-11-22 2015-06-04 京セラ株式会社 Holding member
CN104810315A (en) * 2014-01-29 2015-07-29 上海微电子装备有限公司 Clamping device for LED substrate exposure
JP2016038458A (en) * 2014-08-07 2016-03-22 京セラ株式会社 Low reflection member
JP2016122092A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame
JP2016122091A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame
WO2017158914A1 (en) 2016-03-14 2017-09-21 富士フイルム株式会社 Composition, film, cured film, optical sensor and method for producing film
KR20180107255A (en) 2016-03-14 2018-10-01 후지필름 가부시키가이샤 Composition, film, cured film, optical sensor and method of manufacturing film
US10678131B2 (en) 2016-03-14 2020-06-09 Fujifilm Corporation Composition, film, cured film, optical sensor, and method for producing film
JP2017200872A (en) * 2016-04-28 2017-11-09 京セラ株式会社 Porous ceramic body, member for adsorption and method for producing porous ceramic body
JP2018019017A (en) * 2016-07-29 2018-02-01 京セラ株式会社 Member for placement
WO2018139673A1 (en) * 2017-01-30 2018-08-02 京セラ株式会社 Semiconductive ceramic member and holder for wafer conveyance
JPWO2018139673A1 (en) * 2017-01-30 2019-11-07 京セラ株式会社 Semiconductive ceramic member and wafer transfer holder

Similar Documents

Publication Publication Date Title
JP2006210546A (en) Substrate holding board for exposure process and manufacturing method thereof
KR101168863B1 (en) Colored ceramic vacuum chuck and manufacturing method thereof
FI118180B (en) Suitable for polishing optical surfaces
TWI229061B (en) Translucent polycrystalline ceramic and method for making same
JP5332249B2 (en) Glass substrate polishing method
EP0976697B1 (en) Alumina sintered body and process for producing the same
JP4723055B2 (en) Alumina sintered body, manufacturing method thereof, sintered alumina member and arc tube
KR100963178B1 (en) Sintered ceramics for mounting light emitting element
JP6848904B2 (en) Manufacturing method of transparent ceramics, transparent ceramics and magneto-optical devices
US9030798B2 (en) Electrostatic chuck
US20130201598A1 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP2011168420A (en) Alumina sintered compact and substrate holding board formed by alumina sintered compact
JP6509603B2 (en) Method of manufacturing pellicle frame
US20020016146A1 (en) Abrasive molding and abrasive disc provided with same
JP6460778B2 (en) Pellicle frame and method for manufacturing pellicle frame
JP7497210B2 (en) Mounting member, inspection device and processing device
JP6491472B2 (en) Pellicle frame and method for manufacturing pellicle frame
JP3843545B2 (en) Polishing molded body, polishing surface plate and polishing method using the same
TW200521213A (en) A slurry for color photoresist planarization
CN110494956B (en) Temporary fixing substrate and molding method of electronic component
JP2001099789A (en) Method of observing sintered compact, ito sintered compact, and manufacturing method of its sputtering target and ito sintered compact
JP4761948B2 (en) Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same
EP3287428A1 (en) Cordierite sintered body
JP4518876B2 (en) Liquid crystal substrate holder and manufacturing method thereof
JP2004323268A (en) Alumina-base sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012