JP2023176280A - Adsorption member - Google Patents

Adsorption member Download PDF

Info

Publication number
JP2023176280A
JP2023176280A JP2022088477A JP2022088477A JP2023176280A JP 2023176280 A JP2023176280 A JP 2023176280A JP 2022088477 A JP2022088477 A JP 2022088477A JP 2022088477 A JP2022088477 A JP 2022088477A JP 2023176280 A JP2023176280 A JP 2023176280A
Authority
JP
Japan
Prior art keywords
film
suction
adsorption
less
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022088477A
Other languages
Japanese (ja)
Inventor
大樹 富田
Daiki Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2022088477A priority Critical patent/JP2023176280A/en
Publication of JP2023176280A publication Critical patent/JP2023176280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide an adsorption member that has excellent adsorption properties to an adsorbed object, does not easily damage the back side of the adsorbed object, and has high cleaning efficiency.SOLUTION: An adsorption member according to the present disclosure includes a first film having an adsorption surface for adsorbing an object to be adsorbed, and a porous substrate supporting the first film. The average value of the arithmetic mean inclination angle (RΔa) in the roughness curve of the suction surface is 15° or more and 45° or less.SELECTED DRAWING: Figure 2

Description

本発明は、吸着用部材、ならびにこの吸着用部材を用いた加工装置および検査装置に関する。 The present invention relates to a suction member, and a processing device and an inspection device using this suction member.

従来、メモリ、IC(集積回路)などの製造工程において、半導体ウエハなどの被吸着体を吸着および保持するために、吸着用部材が用いられている。このような吸着用部材としては、例えば、特許文献1に記載のような、多孔質部材を用いた真空吸着部材が挙げられる。 2. Description of the Related Art Conventionally, in the manufacturing process of memories, ICs (integrated circuits), etc., suction members have been used to suction and hold objects to be suctioned, such as semiconductor wafers. Examples of such an adsorption member include a vacuum adsorption member using a porous member as described in Patent Document 1.

特開2019-12757号公報JP 2019-12757 Publication

多孔質部材を用いた真空吸着部材は、多孔質部材を構成している粒子が脱粒し、真空吸着部材の吸着面と被吸着体の裏面との間に、脱粒して浮遊している粒子が挟み込まれる場合がある。このような浮遊している粒子が、真空吸着部材の吸着面と被吸着体の裏面との間に挟み込まれると、被吸着体の裏面が損傷する。 In a vacuum suction member using a porous member, the particles constituting the porous member are shed, and the suspended particles are left between the suction surface of the vacuum suction member and the back surface of the object to be adsorbed. It may get caught. If such floating particles are caught between the suction surface of the vacuum suction member and the back surface of the object to be adsorbed, the back surface of the object to be adsorbed will be damaged.

本開示の課題は、被吸着体に対して優れた吸着性を有し、被吸着体の裏面を損傷しにくく、洗浄効率の高い吸着用部材を提供することである。 An object of the present disclosure is to provide an adsorption member that has excellent adsorption properties to an adsorbed object, does not easily damage the back surface of the adsorbed object, and has high cleaning efficiency.

(1)本開示に係る吸着用部材は、被吸着体を吸着するための吸着面を有する第1膜と、第1膜を支持する多孔質基体とを含む。吸着面の粗さ曲線における算術平均傾斜角(RΔa)の平均値は、15°以上45°以下である。 (1) An adsorption member according to the present disclosure includes a first film having an adsorption surface for adsorbing an object to be adsorbed, and a porous substrate that supports the first film. The average value of the arithmetic mean inclination angle (RΔa) in the roughness curve of the suction surface is 15° or more and 45° or less.

(2)上記(1)に記載の吸着用部材において、吸着面を囲繞する環状面を有する第2膜と、第2膜を支持し、多孔質基体を収容する有底環状体を有する支持部とを、さらに備える。
(3)上記(2)に記載の吸着用部材において、吸着面および環状面は、半導電性を有する。
(4)上記(2)または(3)に記載の吸着用部材において、第2膜は、有底環状体よりも破壊靭性が高く、有底環状体の外周面の延長上に位置する第2膜の外周部の厚みは、第1膜の厚みよりも大きい。
(5)上記(1)~(4)のいずれかに記載の吸着用部材において、吸着面は黒色を呈し、波長域360nm~740nmにおける10nm間隔毎の波長と、吸着面の反射率R(λ)(但し、λは、波長域内の波長(nm))とが正の相関を有し、対数近似して得られる回帰式の傾きが、2以下である。
(6)上記(2)~(5)のいずれかに記載の吸着用部材において、環状面は黒色を呈し、波長域360nm~740nmにおける10nm間隔毎の波長と、環状面および吸着面の少なくともいずれかの反射率R(λ)(但し、λは、前記波長域内の波長(nm))とが正の相関を有し、対数近似して得られる回帰式の傾きが、2以下である。
(7)上記(1)~(6)のいずれかに記載の吸着用部材において、吸着面は黒色を呈し、吸着面内の色差が3以下(但し、0を除く)である。
(8)上記(2)~(7)のいずれかに記載の吸着用部材において、環状面は黒色を呈し、環状面内の色差が3以下(但し、0を除く)である。
(2) In the adsorption member according to (1) above, the support part has a second film having an annular surface surrounding the adsorption surface, and a bottomed annular body that supports the second film and accommodates the porous substrate. In addition, it is equipped with the following.
(3) In the attraction member according to (2) above, the attraction surface and the annular surface have semiconductivity.
(4) In the adsorption member according to (2) or (3) above, the second film has higher fracture toughness than the bottomed annular body, and the second film is located on an extension of the outer peripheral surface of the bottomed annular body. The thickness of the outer peripheral portion of the membrane is greater than the thickness of the first membrane.
(5) In the suction member according to any one of (1) to (4) above, the suction surface exhibits a black color, and the wavelength at every 10 nm interval in the wavelength range 360 nm to 740 nm and the reflectance R (λ ) (However, λ has a positive correlation with the wavelength (nm) within the wavelength range), and the slope of the regression equation obtained by logarithmic approximation is 2 or less.
(6) In the adsorption member according to any one of (2) to (5) above, the annular surface exhibits a black color, and at least one of the annular surface and the adsorption surface has a wavelength of 10 nm intervals in a wavelength range of 360 nm to 740 nm. The reflectance R(λ) (where λ is a wavelength (nm) within the wavelength range) has a positive correlation, and the slope of the regression equation obtained by logarithmic approximation is 2 or less.
(7) In the suction member according to any one of (1) to (6) above, the suction surface exhibits a black color, and the color difference within the suction surface is 3 or less (excluding 0).
(8) In the suction member according to any one of (2) to (7) above, the annular surface exhibits a black color, and the color difference within the annular surface is 3 or less (excluding 0).

(9)本開示に係る加工装置は、上記(1)~(8)のいずれかに記載の吸着用部材を備える。さらに、(10)本開示に係る検査装置は、上記(1)~(8)のいずれかに記載の吸着用部材を備える。 (9) A processing device according to the present disclosure includes the suction member according to any one of (1) to (8) above. Furthermore, (10) the inspection device according to the present disclosure includes the suction member according to any one of (1) to (8) above.

本開示に係る吸着用部材は、上記のように、吸着面の粗さ曲線における算術平均傾斜角(RΔa)の平均値は、15°以上45°以下である。したがって、本開示に係る吸着用部材は、被吸着体に対して優れた吸着性を有し、被吸着体の裏面を損傷しにくく、洗浄効率も高い。 As described above, in the suction member according to the present disclosure, the average value of the arithmetic mean inclination angle (RΔa) in the roughness curve of the suction surface is 15° or more and 45° or less. Therefore, the adsorption member according to the present disclosure has excellent adsorption properties to the adsorbed object, does not easily damage the back surface of the adsorbed object, and has high cleaning efficiency.

さらに、本開示に係る加工装置および検査装置は、本開示に係る吸着用部材を備える。したがって、本開示に係る加工装置および検査装置は、被吸着体に対して優れた吸着性を有し、被吸着体の裏面を損傷しにくく、洗浄効率も高い。 Furthermore, the processing device and the inspection device according to the present disclosure include the suction member according to the present disclosure. Therefore, the processing device and the inspection device according to the present disclosure have excellent adsorption properties to the adsorbed object, are less likely to damage the back surface of the adsorbed object, and have high cleaning efficiency.

本開示の一実施形態に係る吸着用部材を示す斜視図である。FIG. 1 is a perspective view showing an adsorption member according to an embodiment of the present disclosure. 図1に示すX-X線で切断した断面を示す説明図である。FIG. 2 is an explanatory diagram showing a cross section taken along the line XX shown in FIG. 1. FIG. 本開示の他の実施形態に係る吸着用部材の断面を示す説明図である。FIG. 7 is an explanatory diagram showing a cross section of an adsorption member according to another embodiment of the present disclosure. 図3に示す領域Yの種々の実施形態を説明するための説明図である。4 is an explanatory diagram for explaining various embodiments of region Y shown in FIG. 3. FIG. 図1に示す吸着用部材を備えた本開示の一実施形態に係る検査装置を示す模式図である。FIG. 2 is a schematic diagram showing an inspection device according to an embodiment of the present disclosure, including the suction member shown in FIG. 1. FIG.

本開示の一実施形態に係る吸着用部材を、図1および2に基づいて説明する。図1および2に示すように、一実施形態に係る吸着用部材1は、第1膜2、多孔質基体3および支持部4を含む。図1は一実施形態に係る吸着用部材1を示す斜視図であり、図2は図1に示すX-X線で切断した断面を示す説明図である。 An adsorption member according to an embodiment of the present disclosure will be described based on FIGS. 1 and 2. As shown in FIGS. 1 and 2, an adsorption member 1 according to one embodiment includes a first membrane 2, a porous substrate 3, and a support section 4. FIG. 1 is a perspective view showing a suction member 1 according to one embodiment, and FIG. 2 is an explanatory view showing a cross section taken along the line XX shown in FIG.

第1膜2は被吸着体を吸着するための吸着面2aを有する。第1膜2を形成している原料としては限定されず、例えば、ダイヤモンドライクカーボン(DLC)、炭化珪素、チタン、窒化チタン、炭化チタン、炭窒化チタンまたは化学量論組成から酸素が欠損した酸化チタンもしくはチタン酸アルミニウムなどが挙げられる。第1膜2は、例えば、0.5μm以上3μm以下の厚みを有し、後述する多孔質基体3と対向する面から吸着面2aまで貫通する貫通孔を有する。第1膜2に、このような貫通孔が存在することによって、多孔質基体3側から吸引すると、被吸着体が吸着面2aに吸着される。第1膜2に存在する貫通孔の平均径は、例えば、30μm以上70μm以下である。第1膜2は、上記の貫通孔を有していれば、多孔質膜であってもよく、緻密質膜であってもよい。 The first film 2 has an adsorption surface 2a for adsorbing an object to be adsorbed. The raw material forming the first film 2 is not limited, and includes, for example, diamond-like carbon (DLC), silicon carbide, titanium, titanium nitride, titanium carbide, titanium carbonitride, or oxidized material in which oxygen is deficient from the stoichiometric composition. Examples include titanium or aluminum titanate. The first membrane 2 has a thickness of, for example, 0.5 μm or more and 3 μm or less, and has a through hole that penetrates from a surface facing a porous substrate 3 (described later) to an adsorption surface 2a. Due to the presence of such through holes in the first membrane 2, when suction is applied from the porous substrate 3 side, the object to be adsorbed is adsorbed to the adsorption surface 2a. The average diameter of the through holes present in the first film 2 is, for example, 30 μm or more and 70 μm or less. The first membrane 2 may be a porous membrane or a dense membrane as long as it has the above-mentioned through holes.

一実施形態に係る吸着用部材1において、第1膜2の吸着面2aの粗さ曲線における算術平均傾斜角(RΔa)の平均値は、15°以上45°以下である。算術平均傾斜角(RΔa)の平均値が15°以上であると、吸着面2aが被吸着体の裏面に接触する面積が減少する。そのため、浮遊する粒子が、吸着面2aと裏面との間に挟み込まれにくくなる。その結果、被吸着体の裏面が損傷しにくくなる。一方、算術平均傾斜角(RΔa)の平均値が45°以下であると、後述する支持部4の有底環状体41の裏面側から逆洗しても、通気抵抗が上昇しにくくなる。その結果、第1膜2および多孔質基体3が支持部4から外れにくく、効率的に洗浄することができる。 In the adsorption member 1 according to one embodiment, the average value of the arithmetic mean inclination angle (RΔa) in the roughness curve of the adsorption surface 2a of the first film 2 is 15° or more and 45° or less. When the average value of the arithmetic mean inclination angle (RΔa) is 15° or more, the area where the attraction surface 2a contacts the back surface of the object to be attracted decreases. Therefore, floating particles are less likely to be caught between the adsorption surface 2a and the back surface. As a result, the back surface of the adsorbed object is less likely to be damaged. On the other hand, if the average value of the arithmetic mean inclination angle (RΔa) is 45° or less, the ventilation resistance will be difficult to increase even if backwashing is performed from the back side of the bottomed annular body 41 of the support portion 4, which will be described later. As a result, the first membrane 2 and the porous substrate 3 are difficult to come off from the support part 4, and can be efficiently cleaned.

算術平均傾斜角(RΔa)は、JIS B 0601:2001に準拠し、形状解析レーザ顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1100またはその後継機種))を用いて測定することができる。具体的には、照明方式を同軸落射、倍率を240倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、カットオフ値λfを無し、終端効果の補正を有り、測定対象とする吸着面から1か所当たりの測定範囲を、1420μm×1070μmに設定すればよい。各測定範囲に、測定範囲の長手方向に沿って測定対象とする線を略等間隔に4本引いて、線粗さ計測を行えばよい。測定の対象とする線1本当たりの長さは、1282μmとする。測定範囲は、円周方向に沿って略等間隔に6箇所設定し、測定対象とする線は合計24本とする。算術平均傾斜角(RΔa)の平均値は、この24本の線から得られる測定値の平均値である。 The arithmetic mean tilt angle (RΔa) is measured using a shape analysis laser microscope (manufactured by Keyence Corporation, ultra-deep color 3D shape measurement microscope (VK-X1100 or its successor model)) in accordance with JIS B 0601:2001. can do. Specifically, the illumination method is coaxial epi-illumination, the magnification is 240 times, there is no cutoff value λs, the cutoff value λc is 0.08 mm, there is no cutoff value λf, and there is correction for end effects, and the measurement target is The measurement range per point from the suction surface may be set to 1420 μm×1070 μm. Line roughness measurement may be performed by drawing four lines to be measured at approximately equal intervals in each measurement range along the longitudinal direction of the measurement range. The length of each line to be measured is 1282 μm. The measurement range is set at six locations at approximately equal intervals along the circumferential direction, and the number of lines to be measured is 24 in total. The average value of the arithmetic mean slope angle (RΔa) is the average value of the measured values obtained from these 24 lines.

第1膜2の吸着面2aは、半導電性を有していてもよい。本明細書において「半導電性」とは、表面抵抗値が10Ω以上1011Ω以下であることを意味する。第1膜2の吸着面2aが半導電性を有していると、吸着面2aから被吸着体を取り外す際に生じやすい剥離帯電による急激な放電の発生を、より緩和することができる。表面抵抗値は、二針電気抵抗計(PROSTAT社製、PRS-802)を用い、端子間距離を10mm、印加電圧を100Vとして求めればよい。 The adsorption surface 2a of the first film 2 may have semiconductivity. In this specification, "semiconductivity" means that the surface resistance value is 10 4 Ω or more and 10 11 Ω or less. When the suction surface 2a of the first film 2 has semiconductivity, it is possible to further reduce the occurrence of sudden discharge due to peeling electrification that tends to occur when an object to be suctioned is removed from the suction surface 2a. The surface resistance value may be determined using a two-needle electrical resistance meter (PRS-802, manufactured by PROSTAT), with a terminal distance of 10 mm and an applied voltage of 100 V.

第1膜2の吸着面2aは、黒色を呈していてもよい。第1膜2の吸着面2aが黒色の場合、波長域360nm~740nmにおける10nm間隔毎の波長と、吸着面2aの反射率R(λ)(但し、λは、波長域内の波長(nm))とが正の相関を有し、対数近似して得られる回帰式の傾きが、2以下であってもよい。回帰式の傾きが2以下であれば、回帰式の傾きは小さく、波長が大きい領域でも反射率が収束する傾向を示す。そのため、小さい波長域における反射率と大きい波長域における反射率との差が小さくなる。その結果、色むらが生じにくくなり、被吸着体の検出および識別がしやすくなる。特に、目視による検出および識別がしやすくなる。 The adsorption surface 2a of the first film 2 may be black. When the adsorption surface 2a of the first film 2 is black, the wavelength at every 10 nm interval in the wavelength range 360 nm to 740 nm and the reflectance R (λ) of the adsorption surface 2a (where λ is the wavelength (nm) within the wavelength range) may have a positive correlation, and the slope of the regression equation obtained by logarithmic approximation may be 2 or less. If the slope of the regression equation is 2 or less, the slope of the regression equation is small, and the reflectance tends to converge even in a region where the wavelength is large. Therefore, the difference between the reflectance in a small wavelength range and the reflectance in a large wavelength range becomes small. As a result, color unevenness is less likely to occur, making it easier to detect and identify the adsorbed object. In particular, visual detection and identification become easier.

第1膜2の吸着面2aが黒色の場合、吸着面2a内の色差が3以下(但し0を除く)であってもよい。吸着面2a内の色差が3以下であれば、色むらがより小さくなる。色むらが小さくなることによって、吸着用部材1の商品価値も向上する。 When the suction surface 2a of the first film 2 is black, the color difference within the suction surface 2a may be 3 or less (excluding 0). If the color difference within the suction surface 2a is 3 or less, color unevenness will be smaller. By reducing color unevenness, the commercial value of the suction member 1 is also improved.

吸着面2aの反射率R(λ)および色差は、例えば、分光測色計(コニカミノルタ(株)製、CM-2600dまたはその後継機種)を用い、測定条件は、光源をCIE標準光源D65、視野角を2°に設定することで求められる。色差を求める場合、まず、吸着面2aの円周方向に沿って、測定点を略等間隔に、例えば、5点とする。この5点の測定点のうち、任意の1点を基準測定点、他を比較測定点とし、色差(ΔE*ab)は、以下の数式(A)で求めればよい。 The reflectance R (λ) and color difference of the suction surface 2a are measured using, for example, a spectrophotometer (manufactured by Konica Minolta, Inc., CM-2600d or its successor model), and the measurement conditions are as follows: the light source is CIE standard illuminant D65; It is determined by setting the viewing angle to 2°. When determining the color difference, first, measurement points are set at approximately equal intervals, for example, five points, along the circumferential direction of the suction surface 2a. The color difference (ΔE*ab) may be calculated using the following formula (A) by setting any one of these five measurement points as a reference measurement point and the others as comparison measurement points.

ΔE*ab=((ΔL*)+(Δa*)+(Δb*)))1/2・・・(A)
ΔL*:基準測定点に対する比較測定点の明度指数L*の差
Δa*:基準測定点に対する比較測定点のクロマティクネス指数a*の差
Δb*:基準測定点に対する比較測定点のクロマティクネス指数b*の差
ΔE*ab=((ΔL*) 2 + (Δa*) 2 + (Δb*) 2 )) 1/2 ...(A)
ΔL*: Difference in lightness index L* of the comparison measurement point with respect to the reference measurement point Δa*: Difference in the chromaticness index a* of the comparison measurement point with respect to the reference measurement point Δb*: Chromaticity index b of the comparison measurement point with respect to the reference measurement point *difference

多孔質基体3は、第1膜2を支持するための部材である。多孔質基体3に第1膜2を支持する方法は限定されない。多孔質基体3は、第1膜2を支持し得る大きさであれば、特に限定されない。多孔質基体3は、例えば、5mm以上20mm以下の厚みを有する。多孔質基体3は、例えば、70mm以上203mm以下の直径を有する。 The porous substrate 3 is a member for supporting the first membrane 2. The method of supporting the first membrane 2 on the porous substrate 3 is not limited. The porous substrate 3 is not particularly limited as long as it has a size that can support the first membrane 2. The porous substrate 3 has a thickness of, for example, 5 mm or more and 20 mm or less. The porous substrate 3 has a diameter of, for example, 70 mm or more and 203 mm or less.

多孔質基体3は、例えば、セラミックスで形成されている。このようなセラミックスの原料としては、例えば、酸化アルミニウム、酸化珪素などの酸化物を主成分とするセラミックス原料が挙げられる。本明細書において多孔質基体3とは、水銀圧入法で求められる気孔率が20体積%以上の基体を意味する。水銀圧入法とは、水銀圧入型ポロシメータを用いて、多孔質基体3(試料)の気孔に水銀を圧入(水銀圧入法)し、気孔率を求める方法であり、JIS R 1655-2003に準拠して求めればよい。 The porous substrate 3 is made of ceramics, for example. Examples of raw materials for such ceramics include ceramic raw materials containing oxides such as aluminum oxide and silicon oxide as a main component. In this specification, the porous substrate 3 means a substrate having a porosity of 20% by volume or more as determined by mercury intrusion porosimetry. The mercury intrusion method is a method of injecting mercury (mercury intrusion method) into the pores of a porous substrate 3 (sample) using a mercury intrusion porosimeter to determine the porosity, and is based on JIS R 1655-2003. Just ask.

多孔質基体3は、厚み方向に連通する気孔を含み、多孔質基体3に含まれる気孔の気孔率は、20体積%以上であれば限定されない。多孔質基体3に含まれる気孔の気孔率は、例えば、28体積%以上38体積%以下であってもよい。気孔率がこのような範囲であれば、機械的強度を低下させることなく、通気抵抗をより低くすることができる。多孔質基体3に存在する気孔の平均径は、例えば30μm以上70μm以下である。 The porous substrate 3 includes pores communicating in the thickness direction, and the porosity of the pores contained in the porous substrate 3 is not limited as long as it is 20% by volume or more. The porosity of the pores included in the porous substrate 3 may be, for example, 28 volume % or more and 38 volume % or less. If the porosity is within this range, ventilation resistance can be lowered without reducing mechanical strength. The average diameter of the pores present in the porous substrate 3 is, for example, 30 μm or more and 70 μm or less.

多孔質基体3に含まれる気孔と第1膜2に含まれる少なくとも一部の貫通孔とは、連通している。気孔と貫通孔とが連通していることによって、多孔質基体3側から吸引すると、第1膜2の吸着面2aに被吸着体が吸着される。 The pores included in the porous substrate 3 and at least some of the through holes included in the first membrane 2 are in communication with each other. Due to the communication between the pores and the through-holes, when suction is applied from the porous substrate 3 side, the adsorbed object is adsorbed onto the adsorption surface 2a of the first membrane 2.

図1に示すように、一実施形態に係る吸着用部材1において、第1膜2を支持している多孔質基体3は、支持部4に収容されている。支持部4は、多孔質基体3を収容するための有底環状体41を有し、底部の外縁部には、加工装置、検査装置などの各種装置に取り付けるための取り付け穴4aが形成されている。支持部4は、緻密質のセラミックスからなる。緻密質のセラミックスとは、相対密度が、例えば、94%以上のセラミックスをいう。 As shown in FIG. 1, in an adsorption member 1 according to one embodiment, a porous substrate 3 supporting a first membrane 2 is housed in a support portion 4. As shown in FIG. The support part 4 has a bottomed annular body 41 for accommodating the porous substrate 3, and an attachment hole 4a is formed at the outer edge of the bottom for attachment to various devices such as processing equipment and inspection equipment. There is. The support portion 4 is made of dense ceramics. Dense ceramics refers to ceramics with a relative density of, for example, 94% or more.

この相対密度は、セラミックスの理論密度に対するJIS R 1634:1998に準拠して求められたセラミックスの見掛密度の百分率である。セラミックスの理論密度については、セラミックスを構成するそれぞれの含有量をICP(Inductively Coupled Plasma)発光分光分析法または蛍光X線分析法により求め、各成分はCuKα線を用いたX線回折法によって同定すればよい。 This relative density is a percentage of the apparent density of the ceramic determined in accordance with JIS R 1634:1998 with respect to the theoretical density of the ceramic. Regarding the theoretical density of ceramics, the content of each component constituting the ceramic is determined by ICP (Inductively Coupled Plasma) emission spectroscopy or fluorescent X-ray analysis, and each component is identified by X-ray diffraction using CuKα rays. Bye.

図2に示すように、支持部4の底部には、取り付け穴4a以外に、底部の厚み方向に位置する吸引路4bが形成されており、吸引路4bと多孔質基体3との間には、溝4cが位置している。支持部4に形成された吸引路4bおよび溝4cは、多孔質基体3に含まれる気孔と連通している。そのため、多孔質基体3が支持部4に収容されていても、支持部4の底部から吸引することによって、第1膜2の吸着面2aに被吸着体を吸着することができる。吸引路4bおよび溝4cは、少なくとも1つ形成されていればよく、例えば、複数の吸引路4bおよび溝4cが同心円状に形成されていてもよく、列状や格子状など直線状に形成されていてもよく、ランダムに形成されていてもよい。 As shown in FIG. 2, in addition to the attachment hole 4a, a suction path 4b located in the thickness direction of the bottom is formed at the bottom of the support portion 4, and between the suction path 4b and the porous substrate 3. , groove 4c is located. The suction passages 4b and grooves 4c formed in the support portion 4 communicate with pores included in the porous substrate 3. Therefore, even if the porous substrate 3 is accommodated in the support part 4, the object to be adsorbed can be adsorbed to the adsorption surface 2a of the first membrane 2 by suctioning from the bottom of the support part 4. At least one suction path 4b and groove 4c may be formed. For example, a plurality of suction paths 4b and grooves 4c may be formed concentrically, or may be formed in a linear shape such as a row or a grid. They may be formed randomly or may be formed randomly.

図3に示すように、支持部4の有底環状体41の上面41aには、第2膜5が支持されていてもよい。図3は、本開示の他の実施形態に係る吸着用部材1’の断面を示す説明図である。図1および図2に示す部材と同じ部材については、同一の符号を付しており、詳細な説明は省略する。 As shown in FIG. 3, the second membrane 5 may be supported on the upper surface 41a of the bottomed annular body 41 of the support portion 4. FIG. 3 is an explanatory diagram showing a cross section of an adsorption member 1' according to another embodiment of the present disclosure. The same members as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

吸着用部材1’において、第2膜5は第1膜2の吸着面2aを囲繞する環状面5aを有する。第2膜5の環状面5aと第1膜2の吸着面2aとは、略面一となるように位置している。支持部4の有底環状体41の上面41aに第2膜5が支持されていることによって、被吸着体を加工する際に生じる熱を、第1膜2から第2膜5に速やかに逃がすことができる。 In the suction member 1', the second membrane 5 has an annular surface 5a surrounding the suction surface 2a of the first membrane 2. The annular surface 5a of the second membrane 5 and the adsorption surface 2a of the first membrane 2 are located so as to be substantially flush with each other. Since the second film 5 is supported on the upper surface 41a of the bottomed annular body 41 of the support part 4, the heat generated when processing the adsorbed object is quickly released from the first film 2 to the second film 5. be able to.

第2膜5の環状面5aは、第1膜2の吸着面2aと同様、半導電性を有していてもよい。半導電性については上述の通りであり、詳細な説明は省略する。第2膜5の環状面5aが半導電性を有していると、吸着面2aから被吸着体を取り外す際に生じやすい剥離帯電による急激な放電の発生を、より緩和することができる。 The annular surface 5a of the second film 5 may have semiconductivity, similar to the adsorption surface 2a of the first film 2. The semiconductivity is as described above, and detailed explanation will be omitted. If the annular surface 5a of the second film 5 has semiconductivity, it is possible to further reduce the occurrence of rapid discharge due to peeling electrification that tends to occur when the object to be attracted is removed from the attraction surface 2a.

第2膜5を形成している原料としては限定されず、第1膜2と同様、ダイヤモンドライクカーボン(DLC)、炭化珪素、チタン、窒化チタン、炭化チタン、炭窒化チタンまたは化学量論組成から酸素が欠損した酸化チタンもしくはチタン酸アルミニウムなどが挙げられる。第2膜5は、第1膜2と一体的に形成されていてもよく、第1膜2と別に形成されていてもよい。例えば、第1膜2と第2膜5とが一体的に形成されていると、第1膜2の吸着面2aと第2膜5の環状面5aとが略面一になりやすい。 The raw material forming the second film 5 is not limited, and like the first film 2, diamond-like carbon (DLC), silicon carbide, titanium, titanium nitride, titanium carbide, titanium carbonitride, or stoichiometric composition can be used. Examples include oxygen-deficient titanium oxide or aluminum titanate. The second film 5 may be formed integrally with the first film 2, or may be formed separately from the first film 2. For example, when the first film 2 and the second film 5 are integrally formed, the adsorption surface 2a of the first film 2 and the annular surface 5a of the second film 5 tend to be substantially flush.

第1膜2や第2膜5がダイヤモンドライクカーボン(DLC)を主成分とする場合、ラマン分光分析装置で同定することができる。具体的には、ラマン分光分析装置によって測定するとグラファイトのピーク位置である1555cm-1の近傍とダイヤモンドのピーク位置である1333cm-1の近傍にそれぞれピークを有する。ダイヤモンドライクカーボン(DLC)を主成分とする場合、ラマン分光スペクトルにおいて、波数が1500~1640cm-1の範囲にGバンドが、波数が1300~1400cm-1の範囲にDバンドが観測される。第2膜5は、ラマン分光スペクトルにおいて、1500~1640cm-1に存在するピークのうち最も強度の強いピーク強度をH、波数が1300~1400cm-1の範囲に存在するピークのうち最も強度の高いピーク強度をHとしたとき、H>Hであるとよい。この関係を満足していると、第2膜5の緻密性を維持することができる。第1膜2や第2膜5は、ダイヤモンドライクカーボン(DLC)以外、例えば、Feを0.05質量ppm以下、Niを0.01質量ppm以下含んでいてもよい。 If the first film 2 or the second film 5 has diamond-like carbon (DLC) as its main component, it can be identified using a Raman spectrometer. Specifically, when measured using a Raman spectrometer, there are peaks near 1555 cm -1 , which is the peak position of graphite, and near 1333 cm -1 , which is the peak position of diamond. When diamond-like carbon (DLC) is the main component, in the Raman spectrum, the G band is observed in the wave number range of 1500 to 1640 cm -1 , and the D band is observed in the wave number range of 1300 to 1400 cm -1 . The second film 5 has the strongest peak intensity among the peaks existing in the range of 1500 to 1640 cm -1 in the Raman spectroscopic spectrum as H G and the strongest peak among the peaks existing in the wave number range of 1300 to 1400 cm -1 as When the high peak intensity is defined as HD , it is preferable that H G > HD . If this relationship is satisfied, the denseness of the second film 5 can be maintained. The first film 2 and the second film 5 may contain other than diamond-like carbon (DLC), for example, Fe at 0.05 mass ppm or less and Ni at 0.01 mass ppm or less.

第1膜2や第2膜5が炭化珪素などの無機物を主成分とする場合、CuKα線を用いたX線回折装置によって同定することができる。各成分の含有量は、例えばICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置により求めることができる。第1膜2および第2膜5における主成分とは、それぞれの膜を構成する成分の合計100質量%中、90質量%以上を占める成分をいう。 When the first film 2 and the second film 5 mainly contain an inorganic substance such as silicon carbide, they can be identified by an X-ray diffraction apparatus using CuKα rays. The content of each component can be determined using, for example, an ICP (Inductively Coupled Plasma) emission spectrometer or a fluorescent X-ray analyzer. The main component in the first film 2 and the second film 5 refers to a component that accounts for 90% by mass or more out of the total 100% by mass of the components constituting each film.

第2膜5は、支持部4の有底環状体41よりも、高い破壊靭性を有していてもよい。第2膜5の破壊靭性が、有底環状体41の破壊靭性よりも高いと、有底環状体41の上面41aが高い破壊靭性を有する第2膜5によって被覆される。その結果、有底環状体41の上面41aの端部から粒子が脱離しにくくなり、浮遊する粒子を低減することができる。 The second film 5 may have higher fracture toughness than the bottomed annular body 41 of the support portion 4 . When the fracture toughness of the second film 5 is higher than that of the bottomed annular body 41, the upper surface 41a of the bottomed annular body 41 is covered with the second film 5 having high fracture toughness. As a result, particles are less likely to detach from the end of the upper surface 41a of the bottomed annular body 41, and floating particles can be reduced.

第2膜5の破壊靭性と、有底環状体41の破壊靭性との差は、例えば1MPa・m1/2以上であるとよい。例えば、第2膜5の破壊靭性は、4.5MPa・m1/2以上11MPa・m1/2以下であり、有底環状体41の破壊靭性は、3MPa・m1/2以上4MPa・m1/2以下である。第2膜5が薄いため、破壊靭性は、第2膜5、有底環状体4ともISO 14577ー1に準拠し、ナノインデンテーション法を用いて求めればよい。 The difference between the fracture toughness of the second film 5 and the fracture toughness of the bottomed annular body 41 is preferably 1 MPa·m 1/2 or more, for example. For example, the fracture toughness of the second film 5 is 4.5 MPa·m 1/2 or more and 11 MPa·m 1/2 or less, and the fracture toughness of the bottomed annular body 41 is 3 MPa·m 1/2 or more and 4 MPa·m It is 1/2 or less. Since the second film 5 is thin, the fracture toughness of both the second film 5 and the bottomed annular body 4 may be determined using a nanoindentation method in accordance with ISO 14577-1.

図4に示すように、第2膜5の厚みは均一であってもよく、有底環状体41の外周面41bの延長上に位置する第2膜5の外周部5bの厚みは、第1膜2の厚みよりも大きくてもよい。図4は、図3に示す領域Yの種々の実施形態を説明するための説明図である。第2膜5の外周部5bの厚みが、第1膜2の厚みよりも大きい場合、第2膜5が有底環状体41の上面41aから剥離しにくくなる。第2膜5の外周部5bの厚みは、例えば、第1膜2の厚みの1.1倍以上1.5倍以下である。 As shown in FIG. 4, the thickness of the second film 5 may be uniform, and the thickness of the outer peripheral part 5b of the second film 5 located on the extension of the outer peripheral surface 41b of the bottomed annular body 41 is the same as that of the first film. It may be larger than the thickness of the film 2. FIG. 4 is an explanatory diagram for explaining various embodiments of the area Y shown in FIG. 3. When the thickness of the outer peripheral portion 5b of the second film 5 is larger than the thickness of the first film 2, the second film 5 becomes difficult to peel off from the upper surface 41a of the bottomed annular body 41. The thickness of the outer peripheral portion 5b of the second film 5 is, for example, 1.1 times or more and 1.5 times or less the thickness of the first film 2.

第2膜5の環状面5aは、黒色を呈していてもよい。第1膜2の吸着面2aが黒色の場合、波長域360nm~740nmにおける10nm間隔毎の波長と、環状面5aおよび吸着面2aの少なくともいずれかの反射率R(λ)(但し、λは、波長域内の波長(nm))とが正の相関を有し、対数近似して得られる回帰式の傾きが、2以下であってもよい。 The annular surface 5a of the second film 5 may be black. When the adsorption surface 2a of the first film 2 is black, the reflectance R(λ) of the wavelength at every 10 nm interval in the wavelength range 360 nm to 740 nm and at least one of the annular surface 5a and the adsorption surface 2a (however, λ is The wavelength (nm) within the wavelength range may have a positive correlation, and the slope of the regression equation obtained by logarithmic approximation may be 2 or less.

回帰式の傾きが2以下であれば、回帰式の傾きは小さく、波長が大きい領域でも反射率が収束する傾向を示す。そのため、小さい波長域における反射率と大きい波長域における反射率との差が小さくなる。その結果、色むらが生じにくくなり、被吸着体の検出および識別がしやすくなる。特に、目視による検出および識別がしやすくなる。環状面5aの反射率R(λ)は、上述した吸着面2aの反射率R(λ)を求めた方法と同じ方法で求めればよい。 If the slope of the regression equation is 2 or less, the slope of the regression equation is small, and the reflectance tends to converge even in a region where the wavelength is large. Therefore, the difference between the reflectance in a small wavelength range and the reflectance in a large wavelength range becomes small. As a result, color unevenness is less likely to occur, making it easier to detect and identify the adsorbed object. In particular, visual detection and identification become easier. The reflectance R(λ) of the annular surface 5a may be determined by the same method as the method for determining the reflectance R(λ) of the adsorption surface 2a described above.

第2膜5の環状面5aが黒色の場合、環状面5a内の色差が3以下(但し0を除く)であってもよい。環状面5a内の色差が3以下であれば、色むらがより小さくなる。色むらが小さくなることによって、吸着用部材1の商品価値も向上する。環状面5aの色差は、上述した吸着面2aの色差を求めた方法と同じ方法で求めればよい。 When the annular surface 5a of the second film 5 is black, the color difference within the annular surface 5a may be 3 or less (excluding 0). If the color difference within the annular surface 5a is 3 or less, color unevenness will be smaller. By reducing color unevenness, the commercial value of the suction member 1 is also improved. The color difference of the annular surface 5a may be determined by the same method as the method for determining the color difference of the suction surface 2a described above.

次に、本開示に係る吸着用部材の製造方法について説明する。本開示に係る吸着用部材の製造方法は限定されず、例えば、次のような手順で製造される。 Next, a method for manufacturing an adsorption member according to the present disclosure will be described. The method for manufacturing the adsorption member according to the present disclosure is not limited, and for example, the adsorption member can be manufactured using the following procedure.

まず、多孔質基体の製造方法について説明する。多孔質基体を形成しているセラミックスの主成分が酸化アルミニウムである場合、酸化珪素が16質量%以上22質量%以下、酸化チタンが2質量%以上3.4質量%以下、水酸化マグネシウムが1質量%以上1.6質量%以下、炭酸カルシウムが0.7質量%以上1.1質量%以下、残部が酸化アルミニウムである混合粉末を調製する。調製した混合粉末には、合計で3質量%以下であれば不純物が含まれていてもよい。 First, a method for manufacturing a porous substrate will be explained. When the main component of the ceramic forming the porous substrate is aluminum oxide, silicon oxide is 16% by mass or more and 22% by mass or less, titanium oxide is 2% by mass or more and 3.4% by mass or less, and magnesium hydroxide is 1% by mass or less. A mixed powder is prepared in which the amount of calcium carbonate is 0.7% by mass or more and 1.1% by mass or less, and the balance is aluminum oxide. The prepared mixed powder may contain impurities in a total amount of 3% by mass or less.

次いで、得られた混合粉末と溶媒とを、湿式で混合および粉砕してスラリーを得る。混合および粉砕は、例えば、バレルミル、回転ミル、振動ミル、ビーズミル、アトライターなどを用いて行われる。 Next, the obtained mixed powder and solvent are wet mixed and pulverized to obtain a slurry. Mixing and grinding are performed using, for example, a barrel mill, rotary mill, vibratory mill, bead mill, attritor, or the like.

得られた混合粉末100質量部に対して、気孔形成材として球状樹脂を30質量部以上70質量部以下の割合で添加してもよい。球状樹脂は、粉末ポリエチレン、酢酸ビニール、セルロース、ポリプロピレン、ポリビニルアルコール、アクリル樹脂などが挙げられる。これらの気孔形成材は、後述する焼成工程で焼失して、気孔を形成する。球状樹脂の平均粒径は限定されず、例えば、50μm以上106μm以下であれば、後述する焼成によって、平均気孔径が40μm以上85μm以下である多孔質基体を得ることができる。 A spherical resin may be added as a pore-forming material at a ratio of 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the obtained mixed powder. Examples of the spherical resin include powdered polyethylene, vinyl acetate, cellulose, polypropylene, polyvinyl alcohol, and acrylic resin. These pore-forming materials are burned out in the firing process described later to form pores. The average particle diameter of the spherical resin is not limited, and if it is, for example, 50 μm or more and 106 μm or less, a porous substrate having an average pore diameter of 40 μm or more and 85 μm or less can be obtained by firing as described below.

次いで、噴霧乾燥装置を用いてスラリーを噴霧乾燥することにより造粒した顆粒を得る。この顆粒を、例えば圧力を80MPaとして静水圧プレス成形装置により成形した後、必要に応じて切削加工を施して円板状の成形体を得ることができる。得られた成形体を、大気雰囲気中で1500℃以上1600℃以下の温度、例えば1550℃程度で焼成することによって、気孔率が35体積%以上40体積%以下である多孔質体(多孔質基体)が得られる。 Next, granules are obtained by spray drying the slurry using a spray drying device. After molding the granules using an isostatic press molding device at a pressure of, for example, 80 MPa, cutting can be performed as necessary to obtain a disc-shaped molded body. By firing the obtained molded body in an air atmosphere at a temperature of 1500°C or more and 1600°C or less, for example, about 1550°C, a porous body (porous substrate) having a porosity of 35% by volume or more and 40% by volume or less is formed. ) is obtained.

次に、得られた多孔質基体を収容し得る有底環状体を有する支持部を準備する。有底環状体を有する支持部を形成するセラミックスの主成分が酸化アルミニウムである場合、酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)および分散剤とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤、可塑剤および離型剤を添加、混合してスラリーを得る。 Next, a support portion having a bottomed annular body capable of accommodating the obtained porous substrate is prepared. When the main component of the ceramic that forms the support part having a bottomed annular body is aluminum oxide, aluminum oxide powder (purity of 99.9% by mass or more) and powders of magnesium hydroxide, silicon oxide, and calcium carbonate are used. is put into a grinding mill together with a solvent (ion-exchanged water) and a dispersant and ground until the average particle size (D 50 ) of the powder becomes 1.5 μm or less, and then an organic binder, a plasticizer, and a mold release agent are added. and mix to obtain a slurry.

上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.43質量%以上0.53質量%以下、酸化珪素粉末の含有量は0.039質量%以上0.041質量%以下、炭酸カルシウム粉末の含有量は0.020質量%以上0.071質量%以下であり、残部が酸化アルミニウム粉末および不可避不純物である。 The content of magnesium hydroxide powder in the total of 100% by mass of the above powder is 0.43% by mass or more and 0.53% by mass or less, the content of silicon oxide powder is 0.039% by mass or more and 0.041% by mass or less, carbonate The content of calcium powder is 0.020% by mass or more and 0.071% by mass or less, and the remainder is aluminum oxide powder and inevitable impurities.

有機結合剤としては、例えばアクリルエマルジョン、ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキサイドなどが使用可能である。 As the organic binder, for example, acrylic emulsion, polyvinyl alcohol, polyethylene glycol, polyethylene oxide, etc. can be used.

次に、スラリーを噴霧造粒して顆粒を得た後、静水圧プレス成形装置により円板状に成形した後、切削加工を施して凹部を形成する。次に、切削加工後、焼成温度を1500℃以上1650℃以下、保持時間を4時間以上6時間以下として、成形体を焼成することによって支持部が得られる。 Next, the slurry is sprayed and granulated to obtain granules, which are then molded into a disk shape using an isostatic press molding device, and then cut to form recesses. Next, after cutting, the molded body is fired at a firing temperature of 1500° C. or more and 1650° C. or less and a holding time of 4 hours or more and 6 hours or less, thereby obtaining a support portion.

有底環状体の内周面および底面にペースト状のガラスを塗布し、多孔質基体を有底環状体の内部(凹部)に収容し、厚み(上下)方向から加圧する。ペースト状のガラスの厚みは、例えば、40μm以上200μm以下となるように塗布する。ペースト状のガラスは、例えば、それぞれ酸化物換算でSiを30質量%以上65質量%以下、Alを10質量%以上40質量%以下、Bを10質量%以上20質量%以下、Caを4質量%以上5質量%以下、Mgを1質量%以上5質量%以下、Tiを5質量%以下(0質量%を除く)になるように調整された原料粉末と有機溶剤とを含むものである。この加圧状態で、例えば、大気雰囲気中または真空雰囲気中で、900℃以上1400℃以下、1時間以上10時間以下保持することによって、多孔質基体が支持部に接合された接合体を得る。 Paste glass is applied to the inner peripheral surface and bottom surface of the bottomed annular body, the porous substrate is accommodated inside the bottomed annular body (in the recess), and pressure is applied from the thickness (up and down) direction. The thickness of the paste-like glass is, for example, 40 μm or more and 200 μm or less. Paste-like glass, for example, contains Si from 30% by mass to 65% by mass, Al from 10% by mass to 40% by mass, B from 10% by mass to 20% by mass, and Ca from 4% by mass. % to 5% by mass, Mg to 1% to 5% by mass, and Ti to 5% by mass or less (excluding 0% by mass), and an organic solvent. This pressurized state is held at 900° C. or higher and 1400° C. or lower for 1 hour or more and 10 hours or less, for example, in an air atmosphere or a vacuum atmosphere, thereby obtaining a bonded body in which the porous substrate is joined to the support portion.

次いで、得られた接合体の上面(被吸着体が吸着される面)を研削する。研削には、例えばロータリー研削盤が使用される。研削で用いるダイヤモンド砥石の粒度番号は、JIS R 6001-1:2017(ISO 8486-1(MOD))で定める粒度番号として、例えばF150~F220が挙げられる。 Next, the upper surface (the surface on which the adsorbed object is adsorbed) of the obtained joined body is ground. For example, a rotary grinder is used for the grinding. The grain size number of the diamond grindstone used in grinding is defined by JIS R 6001-1:2017 (ISO 8486-1 (MOD)), and includes, for example, F150 to F220.

次いで、多孔質基体の上面に第1膜、支持部の有底環状体の上面に第2膜を形成する。第1膜および第2膜の主成分がいずれもDLCである場合、処理容器内の所定位置に接合体を配置し、例えば、1.3kPa以下になるまで排気する。その後、アルゴンガス、窒素ガスなどの非酸化性ガス雰囲気中または高真空中で、接合体を100℃以上450℃以下に加熱する。次いで、非酸化性ガス雰囲気中または不活性ガス雰囲気中で、接合体に高周波電力と負のバイアス電圧とを給電して放電プラズマを発生させ、接合体の上面にイオン照射する。このイオン照射により、接合体の上面に被着している酸化被膜および付着物は除去される。 Next, a first film is formed on the upper surface of the porous substrate, and a second film is formed on the upper surface of the bottomed annular body of the support portion. When the main components of both the first film and the second film are DLC, the conjugate is placed at a predetermined position in the processing container, and the temperature is evacuated until the pressure becomes, for example, 1.3 kPa or less. Thereafter, the bonded body is heated to 100° C. or more and 450° C. or less in a non-oxidizing gas atmosphere such as argon gas or nitrogen gas or in a high vacuum. Next, in a non-oxidizing gas atmosphere or an inert gas atmosphere, high frequency power and a negative bias voltage are supplied to the bonded body to generate discharge plasma, and the upper surface of the bonded body is irradiated with ions. This ion irradiation removes the oxide film and deposits adhering to the upper surface of the joined body.

処理容器内にDLC膜形成用原料ガスを供給し、放電プラズマを発生させることによって、DLCを主成分とする膜を、接合体の上面に形成することができる。この膜のうち、多孔質基体の上面に形成される膜が第1膜であり、有底環状体の上面に形成される膜が第2膜である。DLC膜形成用原料ガスとしては、例えば、メタン、アセチレン、トルエンなどの炭化水素ガスが挙げられる。DLC膜形成用原料ガスには、必要に応じて水素が含まれていてもよい。 By supplying a raw material gas for forming a DLC film into the processing container and generating discharge plasma, a film containing DLC as a main component can be formed on the upper surface of the bonded body. Of these films, the film formed on the top surface of the porous substrate is the first film, and the film formed on the top surface of the bottomed annular body is the second film. Examples of the raw material gas for forming a DLC film include hydrocarbon gases such as methane, acetylene, and toluene. The raw material gas for forming a DLC film may contain hydrogen as necessary.

第1膜および第2膜の主成分がいずれも炭化珪素である場合、処理容器内の所定位置に接合体を配置し、例えば、1.3kPa以下になるまで排気する。その後、キャリアガスである水素ガスまたはアルゴンガスと一緒に、SiCHCl、SiHCl、SiHなどのシラン系ガスおよびCH、C、CClなどの炭化水素ガスを、体積比で5%以上20%以下となるように供給する。シラン系ガスおよび炭化水素ガスを含む雰囲気中で、接合体を1100℃以上1500℃以下に加熱することによって、炭化珪素を主成分とする膜を主面に形成することができる。この膜のうち、多孔質基体の上面に形成される膜が第1膜であり、有底環状体の上面に形成される膜が第2膜である。 When the main components of both the first film and the second film are silicon carbide, the bonded body is placed at a predetermined position in the processing container, and the temperature is evacuated until the pressure becomes, for example, 1.3 kPa or less. Thereafter, a silane gas such as SiCH 3 Cl 3 , SiHCl 3 , SiH 4 and a hydrocarbon gas such as CH 4 , C 2 H 4 , CCl 4 are mixed together with hydrogen gas or argon gas as a carrier gas in a volume ratio. Supply so that the amount is 5% or more and 20% or less. By heating the bonded body to 1100° C. or more and 1500° C. or less in an atmosphere containing silane-based gas and hydrocarbon gas, a film containing silicon carbide as a main component can be formed on the main surface. Of these films, the film formed on the top surface of the porous substrate is the first film, and the film formed on the top surface of the bottomed annular body is the second film.

本開示に係る吸着用部材は種々の産業用装置に採用される。このような産業用装置としては、例えば、切断装置、研磨装置、加工装置、検査装置などが挙げられる。 The suction member according to the present disclosure is employed in various industrial devices. Examples of such industrial equipment include cutting equipment, polishing equipment, processing equipment, and inspection equipment.

図5は、図1に示す吸着用部材を備えた本開示の一実施形態に係る検査装置を示す模式図である。検査装置10は、吸着用部材1と、吸引手段としての真空ポンプ11と、光照射手段としての照射部12と、撮像手段としてのCCDカメラ13とを備えている。図5に記載の吸着用部材1については、図1に記載の吸着用部材1よりも、吸引路4bおよび溝4cの数を省略している。 FIG. 5 is a schematic diagram showing an inspection device according to an embodiment of the present disclosure, which includes the suction member shown in FIG. 1. The inspection device 10 includes a suction member 1, a vacuum pump 11 as a suction means, an irradiation section 12 as a light irradiation means, and a CCD camera 13 as an imaging means. Regarding the suction member 1 shown in FIG. 5, the number of suction passages 4b and grooves 4c is omitted compared to the suction member 1 shown in FIG.

照射部12は、真空ポンプ11の吸引によって吸着面に吸着、保持された被吸着体Wの外縁部表面および支持体4の表面に、反射ミラー14を介して光を照射する。CCDカメラ13は、被吸着体Wの外縁部表面および支持体4の表面から正反射された光を受光し、その光をもとに画像を撮像して、画像処理部14に出力する。CCDカメラ13は、外縁部表面および支持体4の表面から拡散反射された光を受光しにくい位置に設けられている。 The irradiation unit 12 irradiates light, via the reflection mirror 14, onto the outer edge surface of the adsorbed object W, which is attracted and held on the adsorption surface by the suction of the vacuum pump 11, and onto the surface of the support body 4. The CCD camera 13 receives light specularly reflected from the outer edge surface of the adsorbed object W and the surface of the support 4, captures an image based on the light, and outputs the image to the image processing section 14. The CCD camera 13 is provided at a position where it is difficult to receive light diffusely reflected from the outer edge surface and the surface of the support 4.

画像処理部15はCCDカメラ13から入力した画像に所定のしきい値で2値化処理を施して、2値画像を得る。この2値画像から被吸着体Wの輪郭を抽出して、被吸着体Wの中心位置を抽出する。画像処理部15は、抽出した被吸着体Wの中心位置を制御部16に出力することにより、様々な制御を施されるようにされている。 The image processing unit 15 performs binarization processing on the image input from the CCD camera 13 using a predetermined threshold value to obtain a binary image. The outline of the target object W is extracted from this binary image, and the center position of the target object W is extracted. The image processing section 15 outputs the extracted center position of the target object W to the control section 16, thereby performing various controls.

本開示の加工装置(図示しない)は、例えば、検査装置10を備えた、被吸着体Wを格子状に切断する切断装置、あるいは、被吸着体Wの表面を研磨する研磨装置である。切断装置は、検査装置と、被吸着体を格子状に切断する切断ブレードと、この切断ブレードを回転駆動させる駆動手段とを備えている。研磨装置は、検査装置と、被吸着体の表面を研磨する研磨板と、この研磨板と被吸着体Wとを相対的に摺動させる回転駆動させる駆動手段とを備えている。 The processing device (not shown) of the present disclosure is, for example, a cutting device that cuts the target object W into a grid pattern, or a polishing device that polishes the surface of the target object W, which includes the inspection device 10. The cutting device includes an inspection device, a cutting blade that cuts the object to be attracted in a grid pattern, and a driving means that rotationally drives the cutting blade. The polishing apparatus includes an inspection device, a polishing plate for polishing the surface of the object to be attracted, and a drive means for rotationally driving the polishing plate and the object to be attracted W to slide relative to each other.

このような加工装置は、被吸着体Wの輪郭の誤認識を防止することができる本開示の吸着装置を用いているので、被吸着体Wを精度よく加工することができる。 Since such a processing device uses the suction device of the present disclosure that can prevent erroneous recognition of the contour of the suction object W, it is possible to process the suction object W with high precision.

本開示に係る吸着用部材は、上述の一実施形態および他の実施形態に限定されない。例えば、上述の吸着用部材1、1’において多孔質基体3は、支持体4に収容されている。しかし、本開示に係る吸着用部材は、多孔質基体が支持体に収容されていなくてもよい。 The adsorption member according to the present disclosure is not limited to the above-described embodiment and other embodiments. For example, in the above-described adsorption members 1 and 1', the porous substrate 3 is accommodated in the support 4. However, in the adsorption member according to the present disclosure, the porous substrate does not need to be housed in the support.

例えば、上述の吸着用部材1、1’は、上面視した場合に、第1膜2も多孔質基体3も円形状を有している。しかし、第1膜および多孔質基体は円形状に限定されず、例えば、所望の用途などに応じて、上面視した場合に、楕円形状であってもよく、三角形状、四角形状、五角形状、六角形状などの多角形状を有していてもよい。 For example, in the above-described adsorption members 1 and 1', both the first membrane 2 and the porous substrate 3 have a circular shape when viewed from above. However, the first membrane and the porous substrate are not limited to a circular shape, and may have an elliptical shape, triangular, square, pentagonal, triangular, square, pentagonal, etc. when viewed from above, depending on the desired use. It may have a polygonal shape such as a hexagonal shape.

さらに、上述の吸着用部材1、1’は、上面視した場合に、第1膜2および多孔質基体3は同一の形状を有している。しかし、第1膜および多孔質基体は、上面視した場合に、同一の形状である必要はない。多孔質基体は第1膜を支持し得る形状であれば、多孔質基体の形状は限定されない。 Furthermore, in the above-described adsorption members 1 and 1', the first membrane 2 and the porous substrate 3 have the same shape when viewed from above. However, the first membrane and the porous substrate do not need to have the same shape when viewed from above. The shape of the porous substrate is not limited as long as it can support the first membrane.

多孔質基体を、下記の手順によって作製した。まず、酸化珪素が19質量%、酸化チタンが2.7質量%、水酸化マグネシウムが1.3質量%、炭酸カルシウムが0.9質量%、残部が酸化アルミニウムである混合粉末を得た。得られた混合粉末に含まれる不純物は、合計1質量%以下であった。 A porous substrate was produced by the following procedure. First, a mixed powder containing 19% by mass of silicon oxide, 2.7% by mass of titanium oxide, 1.3% by mass of magnesium hydroxide, 0.9% by mass of calcium carbonate, and the balance was aluminum oxide was obtained. The total amount of impurities contained in the obtained mixed powder was 1% by mass or less.

次いで、得られた混合粉末と溶媒とをバレルミルに入れて、湿式で混合および粉砕してスラリーを得た。得られたスラリーに、混合粉末100質量部に対して、気孔形成材として球状樹脂を50質量部の割合で添加した。球状樹脂としては、32.5μm平均粒子径を有する粉末ポリエチレンを使用した。 Next, the obtained mixed powder and solvent were placed in a barrel mill, mixed and pulverized in a wet manner to obtain a slurry. To the resulting slurry, 50 parts by mass of spherical resin was added as a pore-forming material to 100 parts by mass of the mixed powder. As the spherical resin, powdered polyethylene having an average particle diameter of 32.5 μm was used.

次いで、噴霧乾燥装置を用いてスラリーを噴霧乾燥することにより造粒した顆粒を得た。この顆粒を、圧力を80MPaとしてCIP法により成形した後、必要に応じて切削加工を施して円板状の成形体を得た。得られた円板状の成形体を、大気雰囲気中、1550℃程度で焼成することによって、気孔率が35体積%である円板形状の多孔質体(多孔質基体)を得た。 Next, the slurry was spray-dried using a spray dryer to obtain granules. The granules were molded by the CIP method at a pressure of 80 MPa, and then cut as necessary to obtain a disc-shaped molded body. The obtained disk-shaped molded body was fired at about 1550° C. in an air atmosphere to obtain a disk-shaped porous body (porous substrate) having a porosity of 35% by volume.

次いで、得られた多孔質基体の上面(被吸着体が吸着される面)を研削した。研削は、表1に示す粒度番号のダイヤモンド砥石を用い、ロータリー研削盤を用いて行った。粒度番号については、JIS R 6001-1:2017(ISO 8486-1(MOD))で定められている。 Next, the upper surface (the surface on which the adsorbed material is adsorbed) of the obtained porous substrate was ground. Grinding was performed using a rotary grinder using a diamond grindstone having the grain size number shown in Table 1. The particle size number is defined in JIS R 6001-1:2017 (ISO 8486-1 (MOD)).

次いで、研削された多孔質基体の上面に、DLCを主成分とする第1膜を形成した。通気抵抗の測定の際に、支持部の影響を考慮しなくてもいいように、支持部は使用していない。 Next, a first film containing DLC as a main component was formed on the upper surface of the ground porous substrate. The support part was not used so that the influence of the support part does not have to be taken into account when measuring the airflow resistance.

DLCを主成分とする第1膜を、次の手順によって形成した。処理容器内の所定位置に、研削された多孔質基体を配置し、1.3kPa以下になるまで排気した。その後、アルゴンガス雰囲気中で、研削された多孔質基体を300℃に加熱する。次いで、アルゴンガス雰囲気中で、研削された多孔質基体に高周波電力と負のバイアス電圧とを給電して放電プラズマを発生させた。研削された多孔質基体の上面にイオン照射した。 A first film containing DLC as a main component was formed by the following procedure. The ground porous substrate was placed at a predetermined position in the processing container, and the air was evacuated until the pressure became 1.3 kPa or less. Thereafter, the ground porous substrate is heated to 300° C. in an argon gas atmosphere. Next, high frequency power and negative bias voltage were supplied to the ground porous substrate in an argon gas atmosphere to generate discharge plasma. The top surface of the ground porous substrate was irradiated with ions.

次いで、処理容器内にDLC膜形成用原料ガスを供給し、放電プラズマを発生させることによって、DLCを主成分とする膜を、研削された多孔質基体の上面に形成した。このようにして、DLCを主成分とする第1膜が、研削された多孔質基体の上面に形成された試料(試料No.1~5)を得た。 Next, a DLC film-forming raw material gas was supplied into the processing container and discharge plasma was generated to form a film containing DLC as a main component on the upper surface of the ground porous substrate. In this way, samples (sample Nos. 1 to 5) were obtained in which a first film containing DLC as a main component was formed on the upper surface of the ground porous substrate.

得られた試料No.1~5について、算術平均傾斜角(RΔa)を測定した。算術平均傾斜角(RΔa)は、JIS B 0601:2001に準拠し、形状解析レーザ顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1100)を用いて測定した。具体的には、まず、照明方式を同軸落射、倍率を240倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、カットオフ値λfを無し、終端効果の補正を有り、測定対象とする吸着面から1か所当たりの測定範囲を、1420μm×1070μmに設定した。そして、各測定範囲に、測定範囲の長手方向に沿って測定対象とする線を4本引いて、線粗さ計測を行った。測定の対象とする線1本当たりの長さは、1282μmとした。測定範囲は、円周方向に沿って略等間隔に6箇所設定し、測定対象とする線は合計24本とした。算術平均傾斜角(RΔa)の平均値は、この24本の線から得られる測定値の平均値である。試料No.1~5について、算術平均傾斜角(RΔa)の平均値を表1に示す。 The obtained sample No. For Nos. 1 to 5, the arithmetic mean slope angle (RΔa) was measured. The arithmetic mean inclination angle (RΔa) was measured using a shape analysis laser microscope (manufactured by Keyence Corporation, ultra-deep color 3D shape measurement microscope (VK-X1100)) in accordance with JIS B 0601:2001.Specifically. First, the illumination method is coaxial epi-illumination, the magnification is 240 times, there is no cutoff value λs, the cutoff value λc is 0.08 mm, there is no cutoff value λf, there is end effect correction, and the adsorption to be measured is The measurement range per point from the surface was set to 1420 μm x 1070 μm.Then, in each measurement range, four lines to be measured were drawn along the longitudinal direction of the measurement range, and the line roughness was measured. The length of each line to be measured was 1282 μm.The measurement range was set at 6 locations at approximately equal intervals along the circumferential direction, and the number of lines to be measured was 24 in total. The average value of the arithmetic mean inclination angle (RΔa) is the average value of the measured values obtained from these 24 lines.Table 1 shows the average value of the arithmetic mean inclination angle (RΔa) for samples No. 1 to 5. Shown below.

次に、得られた試料No.1~5の第1膜の吸着面における通気抵抗を測定した。通気抵抗は、次の手順で測定した。まず、真空ポンプに接続する吸引管の先端に取り付けられたゴムパッドを第1膜の吸着面に設置した。吸引管の途中には真空計が装着されており、通気抵抗を表す減圧値を読み取ることができる。減圧値は、マイナスの値で表示され、その絶対値が小さいほど、通気抵抗が小さく、裏面から吸着面に向かって逆洗する場合の洗浄効率が高いことを示す。ゴムパッドは、設置側が開口するラッパ状の吸着口を有しており、50mmの開口径を有する。ゴムパッドを第1膜の吸着面に設置した後、真空ポンプを作動させて、真空計が示す減圧値を読み取った。試料No.1~5について、減圧値を表1に示す。 Next, the obtained sample No. The ventilation resistance on the adsorption surface of the first membranes Nos. 1 to 5 was measured. Airflow resistance was measured using the following procedure. First, a rubber pad attached to the tip of a suction tube connected to a vacuum pump was placed on the suction surface of the first membrane. A vacuum gauge is installed in the middle of the suction tube, allowing you to read the reduced pressure value that represents ventilation resistance. The reduced pressure value is displayed as a negative value, and the smaller the absolute value, the lower the ventilation resistance and the higher the cleaning efficiency when backwashing from the back surface toward the suction surface. The rubber pad has a trumpet-shaped suction port that opens on the installation side, and has an opening diameter of 50 mm. After installing the rubber pad on the adsorption surface of the first membrane, the vacuum pump was operated and the reduced pressure value indicated by the vacuum gauge was read. Sample No. Table 1 shows the reduced pressure values for Nos. 1 to 5.

次に、被吸着体の裏面に与える傷の数を計測した。まず、上述の手順で円板形状の多孔質体(多孔質基体)を得た。得られた多孔質基体を収容し得る有底環状体を有する支持部を準備した。有底環状体の内周面および底面にガラスを塗布し、多孔質基体を有底環状体の内部(凹部)に収容し、厚み(上下)方向から加圧した。この加圧状態で、大気雰囲気中、1200℃で3時間保持することによって、多孔質基体が支持部に接合された接合体を得た。 Next, the number of scratches on the back surface of the adsorbed object was measured. First, a disk-shaped porous body (porous substrate) was obtained by the above-described procedure. A support portion having a bottomed annular body capable of accommodating the obtained porous substrate was prepared. Glass was applied to the inner circumferential surface and bottom surface of the bottomed annular body, the porous substrate was housed inside the bottomed annular body (in the recess), and pressure was applied from the thickness (up and down) direction. This pressurized state was maintained at 1200° C. in an air atmosphere for 3 hours to obtain a bonded body in which the porous substrate was bonded to the support portion.

次いで、得られた接合体の上面(被吸着体が吸着される面)を研削した。研削は、表2に示す粒度番号のダイヤモンド砥石を用い、ロータリー研削盤を用いて行った。粒度番号については、上述の通りである。 Next, the upper surface (the surface on which the adsorbed object is adsorbed) of the obtained joined body was ground. Grinding was performed using a rotary grinder using a diamond grindstone having the grain size number shown in Table 2. The particle size number is as described above.

次いで、DLCを主成分とする膜を、次の手順によって形成した。処理容器内の所定位置に、研削された接合体を配置し、1.3kPa以下になるまで排気した。その後、アルゴンガス雰囲気中で、研削された接合体を300℃に加熱する。次いで、アルゴンガス雰囲気中で、研削された接合体に高周波電力と負のバイアス電圧とを給電して放電プラズマを発生させた。研削された接合体の上面にイオン照射した。 Next, a film containing DLC as a main component was formed by the following procedure. The ground joined body was placed at a predetermined position in the processing container, and the vacuum was evacuated until the pressure became 1.3 kPa or less. Thereafter, the ground joined body is heated to 300° C. in an argon gas atmosphere. Next, in an argon gas atmosphere, high frequency power and a negative bias voltage were supplied to the ground bonded body to generate discharge plasma. The top surface of the ground joined body was irradiated with ions.

次いで、処理容器内にDLC膜形成用原料ガスを供給し、放電プラズマを発生させることによって、DLCを主成分とする膜を、研削された接合体の上面に形成した。このようにして、DLCを主成分とする第1膜および第2膜が、研削された接合体の上面に形成された試料(試料No.6~10)を得た。 Next, a DLC film-forming raw material gas was supplied into the processing container and discharge plasma was generated to form a film containing DLC as a main component on the upper surface of the ground bonded body. In this way, samples (sample Nos. 6 to 10) were obtained in which a first film and a second film containing DLC as a main component were formed on the upper surface of the ground joined body.

次いで、被吸着体として半導体ウエハを用い、半導体ウエハの脱着を100回繰り返した後、半導体ウエハの裏面を目視で観察し、目視可能な傷の数を計測した。試料No.6~10について、算術平均傾斜角(RΔa)の平均値および目視可能な傷の数を表1に示す。算術平均傾斜角(RΔa)の平均値の求め方については、上述の通りである。 Next, using a semiconductor wafer as an object to be attracted, after repeating the attachment and detachment of the semiconductor wafer 100 times, the back surface of the semiconductor wafer was visually observed, and the number of visible scratches was counted. Sample No. Table 1 shows the average value of the arithmetic mean slope angle (RΔa) and the number of visible scratches for No. 6 to No. 10. The method for determining the average value of the arithmetic mean slope angle (RΔa) is as described above.

表1および2に示すように、試料No.2~4および7~9については、算術平均傾斜角(RΔa)の平均値が15°以上45°以下である。したがって、試料No.2~4および7~9については、被吸着体(半導体ウエハ)の裏面の傷は少なく、通気抵抗も抑制され洗浄効率が高いことがわかる。 As shown in Tables 1 and 2, sample no. For samples 2 to 4 and 7 to 9, the average value of the arithmetic mean inclination angle (RΔa) is 15° or more and 45° or less. Therefore, sample no. It can be seen that for Nos. 2 to 4 and Nos. 7 to 9, there were few scratches on the back surface of the adsorbed object (semiconductor wafer), ventilation resistance was suppressed, and cleaning efficiency was high.

一方、資料No.1および6については、算術平均傾斜角(RΔa)の平均値が45°を超えている。そのため、通気抵抗は抑制されているものの、半導体ウエハの裏面には、多くの傷が存在していることがわかる。資料No.5および10については、算術平均傾斜角(RΔa)の平均値が15°未満である。そのため、半導体ウエハの裏面の傷は少ないものの、通気抵抗が高く洗浄効率が悪いことがわかる。 On the other hand, document no. For Nos. 1 and 6, the average value of the arithmetic mean inclination angle (RΔa) exceeds 45°. Therefore, although the ventilation resistance is suppressed, it can be seen that there are many scratches on the back surface of the semiconductor wafer. Material No. 5 and 10, the average value of the arithmetic mean slope angle (RΔa) is less than 15°. Therefore, although there are few scratches on the back surface of the semiconductor wafer, it can be seen that the ventilation resistance is high and the cleaning efficiency is poor.

1 吸着用部材
2 第1膜
2a 吸着面
3 多孔質基体
4 支持部
4a 取り付け穴
4b 吸引路
4c 溝
41 有底環状体
41a 有底環状体の上面
41b 有底環状体の外周面
5 第2膜
5a 第2膜の環状面
5b 第2膜の外周部
10 検査装置
11 真空ポンプ
12 照射部
13 CCDカメラ
14 反射ミラー
15 画像処理部
16 制御部
1 Adsorption member 2 First membrane 2a Adsorption surface 3 Porous substrate 4 Support part 4a Attachment hole 4b Suction path 4c Groove 41 Bottomed annular body 41a Upper surface of bottomed annular body 41b Outer peripheral surface of bottomed annular body 5 Second membrane 5a Annular surface of second film 5b Outer periphery of second film 10 Inspection device 11 Vacuum pump 12 Irradiation section 13 CCD camera 14 Reflection mirror 15 Image processing section 16 Control section

Claims (10)

被吸着体を吸着するための吸着面を有する第1膜と、
該第1膜を支持する多孔質基体と、
を含み、
前記吸着面の粗さ曲線における算術平均傾斜角(RΔa)の平均値は、15°以上45°以下である、
吸着用部材。
a first film having an adsorption surface for adsorbing an object to be adsorbed;
a porous substrate supporting the first membrane;
including;
The average value of the arithmetic mean inclination angle (RΔa) in the roughness curve of the suction surface is 15° or more and 45° or less,
Adsorption member.
前記吸着面を囲繞する環状面を有する第2膜と、該第2膜を支持し、前記多孔質基体を収容する有底環状体を有する支持部とを、さらに備える、請求項1に記載の吸着用部材。 2. The method according to claim 1, further comprising: a second film having an annular surface surrounding the adsorption surface; and a support portion having a bottomed annular body supporting the second film and accommodating the porous substrate. Adsorption member. 前記吸着面および前記環状面は、半導電性を有する、請求項2に記載の吸着用部材。 The suction member according to claim 2, wherein the suction surface and the annular surface have semiconductivity. 前記第2膜は、前記有底環状体よりも破壊靭性が高く、前記有底環状体の外周面の延長上に位置する前記第2膜の外周部の厚みは、前記第1膜の厚みよりも大きい、請求項2に記載の吸着用部材。 The second film has higher fracture toughness than the bottomed annular body, and the thickness of the outer peripheral part of the second film located on an extension of the outer peripheral surface of the bottomed annular body is greater than the thickness of the first film. The suction member according to claim 2, wherein the suction member is also large. 前記吸着面は黒色を呈し、
波長域360nm~740nmにおける10nm間隔毎の波長と、前記吸着面の反射率R(λ)(但し、λは、前記波長域内の波長(nm))とが正の相関を有し、
対数近似して得られる回帰式の傾きが、2以下である、
請求項1または2に記載の吸着用部材。
The suction surface has a black color,
There is a positive correlation between the wavelengths at intervals of 10 nm in the wavelength range 360 nm to 740 nm and the reflectance R (λ) of the adsorption surface (where λ is the wavelength (nm) within the wavelength range),
The slope of the regression equation obtained by logarithmic approximation is 2 or less,
The adsorption member according to claim 1 or 2.
前記環状面は黒色を呈し、
波長域360nm~740nmにおける10nm間隔毎の波長と、前記環状面および前記吸着面の少なくともいずれかの反射率R(λ)(但し、λは、前記波長域内の波長(nm))とが正の相関を有し、
対数近似して得られる回帰式の傾きが、2以下である、
請求項2に記載の吸着用部材。
the annular surface exhibits black color;
The wavelength at every 10 nm interval in the wavelength range 360 nm to 740 nm and the reflectance R (λ) of at least one of the annular surface and the adsorption surface (where λ is the wavelength (nm) within the wavelength range) are positive. have a correlation,
The slope of the regression equation obtained by logarithmic approximation is 2 or less,
The adsorption member according to claim 2.
前記吸着面は黒色を呈し、前記吸着面内の色差が3以下(但し、0を除く)である、請求項1または2に記載の吸着用部材。 The suction member according to claim 1 or 2, wherein the suction surface has a black color and a color difference within the suction surface is 3 or less (excluding 0). 前記環状面は黒色を呈し、前記環状面内の色差が3以下(但し、0を除く)である、請求項2に記載の吸着用部材。 The suction member according to claim 2, wherein the annular surface exhibits a black color, and the color difference within the annular surface is 3 or less (excluding 0). 請求項1または2に記載の吸着用部材を備える、加工装置。 A processing device comprising the suction member according to claim 1 or 2. 請求項1または2に記載の吸着用部材を備える、検査装置。 An inspection device comprising the suction member according to claim 1 or 2.
JP2022088477A 2022-05-31 2022-05-31 Adsorption member Pending JP2023176280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022088477A JP2023176280A (en) 2022-05-31 2022-05-31 Adsorption member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022088477A JP2023176280A (en) 2022-05-31 2022-05-31 Adsorption member

Publications (1)

Publication Number Publication Date
JP2023176280A true JP2023176280A (en) 2023-12-13

Family

ID=89122706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022088477A Pending JP2023176280A (en) 2022-05-31 2022-05-31 Adsorption member

Country Status (1)

Country Link
JP (1) JP2023176280A (en)

Similar Documents

Publication Publication Date Title
KR102453218B1 (en) ceramic part for apparatus manufacturing a semiconductor device and method for manufacturing thereof
JP6307344B2 (en) Oxide sintered body and sputtering target
US8971010B2 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
JP6166207B2 (en) Oxide sintered body and sputtering target
JP6592188B2 (en) Adsorption member
JP2007201363A (en) Member for vacuum suction of semiconductor wafer
JP2017178665A (en) Porous ceramic, gas dispersion sheet and member for absorption
JP6462449B2 (en) High-frequency window member, semiconductor manufacturing device member, and flat panel display (FPD) manufacturing device member
JP6976710B2 (en) Porous ceramic body, adsorption member and method for manufacturing the porous ceramic body
JP6231924B2 (en) Oxide sintered body and sputtering target
JP6674474B2 (en) Electrostatic chuck
US8231964B2 (en) Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus
JP2023176280A (en) Adsorption member
KR20230088721A (en) Multi-layer sintered ceramic body and manufacturing method
CN114008000B (en) Oxide sintered body
JP2020196662A (en) Mounting member, inspection device and processing device
JP2015214437A (en) Oxide sintered body and sputtering target
WO2022092023A1 (en) Structure for relieving charging
WO2022163657A1 (en) Liquid storage container and production method therefor
JP2009302518A (en) Electrostatic chuck
WO2019022244A1 (en) Member for plasma processing devices
KR102027018B1 (en) Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
TWI814188B (en) Clamp jig apparatus, manufacturing method of clamp jig, and clean apparatus
JP4890883B2 (en) Molded body and grindstone containing SiOx powder, and grinding method using the same
JP2015189630A (en) oxide sintered body and sputtering target