WO2012102313A1 - Method for manufacturing photomask - Google Patents

Method for manufacturing photomask Download PDF

Info

Publication number
WO2012102313A1
WO2012102313A1 PCT/JP2012/051574 JP2012051574W WO2012102313A1 WO 2012102313 A1 WO2012102313 A1 WO 2012102313A1 JP 2012051574 W JP2012051574 W JP 2012051574W WO 2012102313 A1 WO2012102313 A1 WO 2012102313A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
photomask
thickness distribution
polishing
plate thickness
Prior art date
Application number
PCT/JP2012/051574
Other languages
French (fr)
Japanese (ja)
Inventor
生田 順亮
直弘 梅尾
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012554824A priority Critical patent/JP5880449B2/en
Publication of WO2012102313A1 publication Critical patent/WO2012102313A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging

Definitions

  • the present invention relates to a photomask manufacturing method, and more particularly to a manufacturing method suitable for a reflective photomask for EUV lithography (EUVL) using EUV (Extreme Ultra Violet) light.
  • EUVL EUV lithography
  • EUV Extreme Ultra Violet
  • the exposure apparatus for transferring a fine circuit pattern onto a wafer to manufacture a semiconductor device has been widely used.
  • semiconductor devices are highly integrated, speeded up, and power saved, semiconductor devices are becoming finer.
  • the exposure apparatus is required to form an image of a finer semiconductor device circuit pattern on the wafer surface with a greater depth of focus, and the wavelength of the exposure light source is being shortened.
  • the light used as the exposure light source proceeds from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm) and KrF excimer laser (wavelength 248 nm), and ultraviolet light from an ArF excimer laser (wavelength 193 nm). Is used.
  • EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. At present, the use of light having a wavelength near 13.5 nm as a lithography light source is mainly studied.
  • EUVL The exposure principle of EUV lithography
  • a mask pattern is reduced and projected onto a wafer using a projection optical system, but in the energy region of EUV light.
  • a transmission / refraction optical system using a transmission type photomask usually used in an exposure apparatus that uses light of wavelength 193 to 436 nm as a light source cannot be used, and a reflection optical system is used.
  • the optical member of the reflective optical system is composed of a reflective photomask and a plurality of reflective mirrors, and the ratio of the pattern formed on the mask to the resist formed on the wafer via the reflective mirror is 1/4. Projected at a reduced magnification of ⁇ 1/5.
  • the reflection type photomask mainly includes four procedures (first procedure; preparation of polishing substrate, second procedure; creation of ML blank, third procedure; creation of mask blank, and fourth procedure; photomask It is a kind of optical member (optical member for EUVL) obtained through preparation.
  • FIGS. 1 and 2 For reference, the cross-sectional structures of a mask blank and a reflective photomask are schematically shown in FIGS. 1 and 2, respectively.
  • 1 is a polishing substrate
  • 2 is a multilayer reflective film (hereinafter abbreviated as “ML film”) formed on the surface on which the polishing substrate is formed
  • 3 is a protection formed on the ML film surface.
  • 4 is an absorption film formed on the protective film surface
  • 5 is an antireflection film formed on the absorption film surface
  • 6 is a resist film formed on the antireflection film
  • 7 is formed on the back surface of the polishing substrate.
  • the conductive film made is shown.
  • FIG. 4 shows a side view of the polishing substrate (in the drawing, exaggerated expression is shown for easy understanding of the deformation mode).
  • FIG. 4A shows a polishing substrate before final (local) polishing
  • FIG. 4B shows a polishing substrate after local polishing.
  • a mask pattern is formed on the EUV light absorption film of the mask blank, the EUV light reflection layer is exposed and the EUV light is reflected, and the reflection layer is covered with the absorption film so that the EUV light is hardly reflected. It has a part.
  • a conductive film having a sheet resistance of 100 ⁇ or less (for example, CrN, Cr, CrO, CrON, TaN, etc.) are usually formed.
  • the reflective photomask is attracted and held by an electrostatic chuck using a conductive film formed on the back surface thereof, and the mask pattern formed on the film formation surface is formed on the wafer. Reduced projection and transfer to a resist film. At this time, the flatter the mask pattern formation surface of the reflective photomask is, the more faithfully transferred and formed the mask pattern formed on the reflective photomask deposition surface onto the resist film on the wafer at a desired position. Therefore, it is preferable.
  • the required accuracy with respect to the circuit pattern formation position is 5 nm or less, and further, 3 nm or less, which is extremely strict. Therefore, for the flatness of the surface on which the polishing substrate is formed and the back surface, the conventional required level of 250 nm or less is extremely low, such as 100 nm or less, further 50 nm or less, and further 30 nm or less for the EUVL polishing substrate. Strict levels have been required.
  • the flatness of the polishing substrate is the maximum value of the height difference in the gentle irregularities having a spatial wavelength of 0.1 mm or more on the surface on which the polishing substrate is formed and the back surface. (See FIG. 4 of Non-Patent Document 1).
  • there are no defects such as scratches or leaks having a depth of 1 nm or more and defects such as minute irregularities having a polystyrene latex particle diameter conversion size of 50 nm or more on the surface on which the polishing substrate is formed. That is also sought.
  • the strict requirements as described above are mainly due to the fact that the wavelength of light used for exposure is extremely short, 1/10 or less compared with 193 nm of the current mainstream ArF lithography. It is unique to photomasks.
  • the level of the processing method does not always catch up with the above required level, and in reality, it is possible to obtain a polished substrate that satisfies all of the mirror surface (smoothness), the number of low defects, and the high flatness at the same time. It is extremely difficult. Therefore, a method of using a reflective mask using a polishing substrate that does not reach the required flatness has been proposed (see Patent Documents 1 and 2, Non-Patent Document 1). Specifically, when drawing a mask pattern using an electron beam or the like, the mask pattern depends on the flatness of the surface and the back surface of the polishing substrate constituting the mask blank or the thickness distribution of the polishing substrate. This is a method of adjusting the formation position.
  • the demand for the flatness of the polishing substrate constituting the mask blank is reduced to 300 nm or less.
  • a polishing substrate having a small number of defects such as a flatness of 300 nm or less on the surface to be formed and a back surface, a surface roughness (RMS) of 0.15 nm or less on the surface to be formed, and a size of 50 nm or more on the surface to be formed.
  • the polishing substrate can be processed considerably easily because it can be realized by focusing only on the surface roughness and defects.
  • the adjustment of the mask pattern formation position is not used only for the EUVL reflective photomask, but other photomasks, i.e., i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer Needless to say, the present invention can also be applied to a transmissive photomask for lithography using a laser (wavelength: 193 nm) as a light source.
  • a photomask particularly, a reflective photomask for EUVL
  • a mask pattern of a photomask particularly, a reflective photomask for EUVL
  • the mask pattern formation position is individually adjusted according to the flatness and thickness distribution of the polishing substrate for each mask blank, that is, the mask pattern formation position needs to be adjusted for each mask blank. Therefore, there is a problem that the mask pattern forming operation becomes complicated, and improvement is strongly demanded from the viewpoint of productivity and cost.
  • the present invention provides a photomask (particularly, a reflective type for EUVL) in which the mask pattern forming position does not have to be individually adjusted according to the flatness and thickness distribution of the polishing substrate for each mask blank.
  • An object of the present invention is to provide a manufacturing method of a photomask.
  • a photomask manufacturing method draws a mask pattern on a mask blank having at least a polishing substrate and a light absorption film formed on the polishing substrate based on the mask pattern design.
  • a method of manufacturing a photomask Measured at least one of the surface shape of a plurality of polishing substrates or the surface shape of a plurality of mask blanks, and after calculating a reference surface shape or a reference plate thickness distribution based on the measured surface shape, the calculated A mask pattern forming position at the time of drawing the mask pattern is adjusted based on a reference surface shape or a reference plate thickness distribution.
  • the photomask is a reflective photomask for EUVL
  • the mask blank has a multilayer reflective film (ML film) between the polishing substrate and the light absorption film, and light formed on the ML film.
  • the absorption film is preferably an EUV light absorption film.
  • the reference surface shape is the average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates, or the film formation surface and the back surface of the mask blanks, respectively.
  • the average shape of the surface shape is preferably itself.
  • the reference surface shape is an average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates or each of the film formation surface and the back surface of the plurality of mask blanks. It is also preferable that the average shape of the surface shape is calculated, and the calculated average shape is approximated by a polynomial such as a Legendre polynomial or a Zernike polynomial.
  • the reference surface shape is a surface shape of each of the surface and the back surface of the plurality of polishing substrates or a surface shape of each of the film formation surfaces and the back surface of the plurality of mask blanks. It is also preferable that at least one of these be approximated by a polynomial such as a Legendre polynomial or a Zernike polynomial, and obtained by averaging them.
  • the reference plate thickness distribution is an average of plate thickness distributions of the plurality of polishing substrates or an average of plate thickness distributions of the plurality of mask blanks.
  • the reference plate thickness distribution is calculated by calculating an average plate thickness distribution of the plurality of polishing substrates or an average plate thickness distribution of the plurality of mask blanks, and calculating the calculated average plate thickness distribution. It is also preferable that it is obtained by approximation with a polynomial such as a Legendre polynomial or a Zernike polynomial.
  • the reference plate thickness distribution is a polynomial such as a Legendre polynomial or a Zernike polynomial, wherein at least one of the plate thickness distribution of the plurality of polishing substrates or the plate thickness distribution of the plurality of mask blanks. It is also preferable that they are approximated and obtained by averaging them.
  • the mask pattern formation position is adjusted based on the measurement data, and the mask pattern is drawn, in this manufacturing method, Since a plurality of polishing substrates are drawn by adjusting the mask pattern formation position based on the same reference surface shape or the same reference plate thickness distribution, the mask pattern formation position adjustment time is greatly shortened.
  • the reference surface shape or the reference of the five polishing substrates is used. It only needs to be adjusted once based on the plate thickness distribution. As a result, the productivity of the photomask is significantly improved.
  • This manufacturing method makes it possible to achieve both high productivity of a photomask and provision of a photomask having sufficient accuracy for EUVL, and stably improve the transfer accuracy during EUVL implementation.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a mask blank (for EUVL).
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of a photomask (reflection type for EUVL).
  • FIG. 3 is a top view of the mask blank as viewed from the pattern forming surface side of the photomask (EUVL reflective type).
  • 4 (a) and 4 (b) are side views of the polishing substrate.
  • FIGS. 5A to 5D are diagrams for explaining the procedure for calculating the plate thickness distribution of the polishing substrate used for the mask blank.
  • FIG. 6 is a conceptual diagram illustrating a method for adjusting the formation position of the mask pattern.
  • FIG. 7 shows the measurement result of the surface shape of the surface on which five polishing substrates are deposited and the average shape (reference surface shape).
  • FIG. 8 shows the measurement results of the surface shape of the back surface of five polishing substrates and the average shape (reference surface shape).
  • FIG. 9 is an example in which the average surface shape of each of the surfaces on which the five polishing substrates are deposited is approximated by a Legendre polynomial to obtain the respective reference surface shapes.
  • FIG. 10 shows the thickness distribution of the polishing substrate calculated by adding the measurement result of the surface shape of the surface to be deposited after reversing the measurement result of the surface shape of the back surface of the five polishing substrates, It is an average plate thickness distribution (reference plate thickness distribution) of the polishing substrate.
  • FIG. 11 is an example in which the average plate thickness distribution of five polishing substrates is approximated by a Legendre polynomial to obtain a reference plate thickness distribution.
  • the present invention relates to a photomask manufacturing method.
  • an outline of a photomask manufacturing method is described in the following four procedures (first procedure; preparation of polishing substrate, second procedure; creation of ML blank, third procedure; creation of mask blank, and fourth procedure; photomask ).
  • first procedure preparation of polishing substrate
  • second procedure creation of ML blank
  • third procedure creation of mask blank
  • fourth procedure photomask
  • the second procedure creating an ML blank
  • two opposing surfaces having a smooth and flat surface with a very small surface roughness and no gentle irregularities with a spatial wavelength of 0.1 mm or more and four side surfaces connecting the two opposing surfaces A substrate having the following (hereinafter referred to as a polishing substrate) is prepared. Of the two opposing surfaces having the flat surface, one surface finally becomes a surface on which a semiconductor device circuit pattern is formed (hereinafter referred to as a film formation surface), and the remaining surface on which no pattern is formed (hereinafter referred to as a surface). Called the back side).
  • the polishing substrate is required to have low thermal expansion so that expansion and contraction due to temperature change does not occur as much as possible. Therefore, for example, silica glass containing TiO 2 (hereinafter abbreviated as TiO 2 —SiO 2 glass), silica glass (SiO 2 glass), and the like are preferable materials.
  • TiO 2 —SiO 2 glass silica glass containing TiO 2
  • SiO 2 glass silica glass
  • a rectangular parallelepiped made of the material is manufactured, cut and processed into a slice substrate, and polished to create a polished substrate.
  • an ML blank is produced in which an ML film that reflects EUV light is formed on the surface of the polishing substrate obtained in the first procedure.
  • a multilayer reflective film having a high reflectance by stacking alternately a high refractive index film (for example, Si) and a low refractive index layer (for example, Mo) in EUV light is usually used.
  • a protective film eg, Ru, Si, TiO 2 or the like
  • Ru, Si, TiO 2 or the like may be usually formed on the ML film.
  • a light absorption film is formed on the polishing substrate obtained in the first procedure.
  • EUV light is absorbed on the ML film of the ML blank obtained in the second procedure (or on the protective film if a protective film is formed on the ML film).
  • An absorption film for example, Ta or TaN
  • an antireflection film for example, TaON or TaO
  • a resist film is formed on the absorption film (on the antireflection film if an antireflection film is formed).
  • a mask blank (see FIG. 1 for the cross-sectional structure) is such that an absorption film, an antireflection film, and a resist film are formed in this order on the ML blank in this order.
  • the final fourth procedure is the formation of a mask pattern. That is, (4-1) using a drawing apparatus that uses an electron beam or ultraviolet light as a light source, clamping the side of the mask blank or the vicinity of the outer periphery of the front and back surfaces, and holding the mask blank in some way, Drawing the designed mask pattern on the film, (4-2) heating, (4-3) removing the unnecessary resist film, (4-4) removing the unnecessary resist film, and exposing it
  • This process consists of a series of processes such as etching away the absorbed film (both antireflective film and absorption film when antireflection film is formed) and (4-5) removing the remaining resist film. .
  • the present invention relates to a method of manufacturing a photomask, and is particularly characterized by adjusting a mask pattern forming position.
  • the present invention will be described in detail focusing on this.
  • a polishing substrate is obtained by obtaining a substrate processed to a desired shape accuracy from a lump of material, and using a double-sided lapping (polishing) machine on the surface of the substrate on which the polishing substrate is to be formed and the back surface.
  • a polishing slurry containing water and water can be supplied to a polishing pad or the like to simultaneously polish both surfaces.
  • the local polishing method include mechanical, chemical mechanical, MRF using magnetic abrasive grains, a beam (laser) irradiation method, a gas cluster ion beam etching method, and the like.
  • the polishing substrate is required to have excellent surface smoothness on the surface to be formed and the back surface.
  • the result (RMS) of the surface roughness of the surface to be deposited and the back surface in the quality assurance region measured with an atomic force microscope in a 10 ⁇ m ⁇ 10 ⁇ m square region is 0. It is preferably 0.5 nm or less, more preferably 0.3 nm or less, and further preferably 0.15 nm or less.
  • the quality assurance region is a region in which light such as EUV light for exposure or alignment is irradiated and alignment in a mask blank and a photomask manufactured using the polishing substrate. This is a region irradiated with EUV light or ultraviolet to visible light for mask identification.
  • the quality assurance area on the back surface is an area for attracting and holding the EUVL mask blank and the reflective mask with an electrostatic chuck.
  • the quality assurance area 11 is the quality assurance area.
  • the range of the quality assurance region varies depending on the dimensions of the mask blank (for EUVL), more specifically, the dimensions of the surface and the back surface on which the polishing substrate is formed. In the case of 152 ⁇ 152 mm square, the range of the quality assurance region is a 142 mm ⁇ 142 mm square region excluding the outer edge portion of 5 mm from the end.
  • the polishing substrate is required to have no convex defects such as particles and concave defects such as scratches, leaks, and pits on the surface of the surface on which the film is formed.
  • the number of both concave and convex defects having a polystyrene latex particle size conversion size of 150 nm or more is preferably 10 or less, and more preferably 5 or less. Preferably, it is 0.
  • the number of both concave and convex defects having a silica particle diameter conversion size of 70 nm or more is preferably 100 or less, more preferably 80 or less, and 60 or less. More preferably.
  • the apparatus for measuring the surface shape of the surface on which the polishing substrate is formed and the back surface is a laser interference type flatness meter (for example, Verifire, Mark IV manufactured by Zygo, G310S manufactured by Fujinon, FlatMaster manufactured by Tropel, etc. ), A laser displacement meter, an ultrasonic displacement meter, a contact displacement meter, or the like can be used.
  • the residue obtained by removing the tilt component from the results obtained using various measuring devices is the surface shape, and the difference between the maximum value and the minimum value of the surface shape is the flatness.
  • the wavelength of 300 to 800 nm is used.
  • an interferometer that uses visible light as a light source (for example, Zirgo Verifire, Mark IV, Fujinon G310S, Tropel FlatMaster, etc.)
  • the surface shape of the surface on which another polishing substrate is formed and the surface shape of the back surface are measured by the above-described laser interference type flatness measuring machine, and the thickness is calculated by adding them together.
  • the surface shape measurement result of one of the surface shape (or the surface profile) of the surface to be deposited and the back surface is reversed, and then the other surface It is necessary to add to the shape measurement result.
  • the former method since the obtained maximum plate thickness distribution includes the refractive index distribution of the substrate material, the latter is preferable in the case of a substrate obtained using a material having a refractive index distribution.
  • the latter measurement method will be described in more detail.
  • FIG. 5 is a diagram illustrating a procedure for calculating a plate thickness distribution of the polishing substrate (for EUVL). The procedure will be described below with reference to FIG. First, as shown in FIG. 5A and FIG. 5B, after measuring the surface shapes (or surface profiles) of the surface C and the back surface D to be formed, as shown in FIG. 5C. Invert the measurement result of the surface shape (or surface profile) of the back surface D, add the measurement result of the surface shape (or surface profile) of the surface C to be deposited, and add the tilt component from the addition result. By removing, the plate thickness distribution of the polishing substrate for EUVL shown in FIG. 5D is calculated.
  • the maximum thickness distribution is obtained as the difference between the maximum value and the minimum value of the thickness distribution obtained by both methods.
  • the surface shape measuring method described here can be applied as it is as a surface shape measuring method of a mask blank by changing a measuring object from a polishing substrate to a mask blank.
  • EUV reflected light refers to reflected light generated when a light ray in the wavelength range of EUV light is irradiated at an incident angle of 6 to 10 degrees
  • the reflectance of EUV reflected light refers to EUV reflected light at a wavelength of 12 to 15 nm. It is intended to reflect light having a wavelength of around 13.5 nm.
  • the EUV reflected light from the ML film surface preferably has a maximum reflectance of 60% or more, and more preferably 63% or more.
  • the ML film is not limited to this, and the Ru / Si multilayer reflective film, the Mo / Be multilayer reflective film, the Rh / Si multilayer reflective film, the Pt / Si multilayer reflective film, the Mo compound / Si compound multilayer reflective film, the Si / Mo / Ru multilayer reflective films, Si / Mo / Ru / Mo multilayer reflective films, Si / Ru / Mo / Ru multilayer reflective films, and the like can also be used.
  • each layer constituting the ML film and the number of repeating units of the layer can be appropriately selected according to the film material to be used and the reflectance of EUV reflected light required for the ML film.
  • a Si layer with a film thickness of 4.5 ⁇ 0.1 nm and a film thickness of 2.3 It is preferable to stack a Mo layer of ⁇ 0.1 nm in this order so that the number of repeating units is 30 to 60.
  • each layer constituting the ML film may be formed to have a desired film thickness using a known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
  • the protective film 3 can be provided on the surface of the ML film 2 in order to prevent the surface of the ML film 2 and the vicinity thereof from being naturally oxidized during storage or oxidized during cleaning.
  • As the protective film 3 Si, Ti, Ru, Rh, C, SiC, a mixture of these elements / compounds, or those obtained by adding N, O, B or the like to these elements / compounds can be used.
  • the film thickness can be as thin as 2 to 3 nm, which is particularly preferable because it can also function as a buffer film described later.
  • the uppermost layer can be made to function as a protective film by making the uppermost layer an Si film.
  • the thickness of the uppermost Si film that also serves as a protective film is preferably 5 to 15 nm, which is larger than the usual 4.5 nm.
  • a Ru film serving as both a protective film and a buffer film may be formed on the Si film.
  • the film such as the ML film or the protective film is not necessarily one layer, and may be two or more layers.
  • the maximum value of the reflectance of EUV reflected light from the surface of the protective film needs to satisfy the above range. That is, the maximum value of the reflectance of EUV reflected light from the protective film surface is preferably 60% or more, and more preferably 63% or more.
  • the protective film may be formed to have a desired film thickness using a known film formation method such as a magnetron sputtering method or an ion beam sputtering method.
  • a light absorption film is formed on the polishing substrate obtained in the first procedure.
  • the absorption film 4 is formed on the ML blank surface (on the ML film or on the protective film when a protective film is formed on the ML film).
  • the characteristic particularly required for the absorption film 4 is that the pattern formed on the EUV reflection mask is transferred from the absorption film 4 so that the pattern is faithfully transferred to the resist film on the wafer via the projection optical system of the EUVL exposure machine. Adjusting the intensity and phase of the reflected light.
  • the first method is to reduce the intensity of reflected light from the absorption film 4 as much as possible.
  • the absorption film 4 (when an antireflection film is formed on the absorption film surface)
  • the film thickness and material of the absorption film 4 are adjusted so that the reflectance of EUV light from the antireflection film) surface is 1% or less, particularly 0.7% or less.
  • the second is a method that uses the interference effect of the reflected light from the ML film 2 and the reflected light from the absorption film 4 (or the antireflection film when an antireflection film is formed on the absorption film surface),
  • the reflectance of EUV light from the absorption film 4 is set to 5 to 15%, and the reflected light from the ML film 2 and the absorption film 4 (absorption)
  • the film thickness and material of the absorption film 4 are adjusted so that the phase difference of reflected light from the antireflection film) is 175 to 185 degrees.
  • the material constituting the absorption film 4 is preferably a material containing Ta at least 40 at%, preferably at least 50 at%, more preferably at least 55 at%.
  • the material mainly composed of Ta used for the absorption film 4 preferably contains at least one element of Hf, Si, Zr, Ge, B, Pd, H, and N in addition to Ta.
  • the material containing the above elements other than Ta include TaN, TaNH, TaHf, TaHfN, TaBSi, TaBSiN, TaB, TaBN, TaSi, TaSiN, TaGe, TaGeN, TaZr, TaZrN, TaPd, and the like. It is done. However, it is preferable that the absorption film 4 does not contain oxygen. Specifically, the oxygen content in the absorption film 4 is preferably less than 25 at%.
  • a dry etching process is usually used.
  • an etching gas chlorine gas (including mixed gas) or fluorine-based gas (mixed gas) is used. are usually used.
  • the protective film is less damaged. Is used.
  • the dry etching process of the absorption film 4 is performed using chlorine gas, if the absorption film 4 contains oxygen, the etching rate is lowered, and the damage to the resist film is increased.
  • the oxygen content in the absorption film 4 is more preferably 15 at% or less, further preferably 10 at% or less, and particularly preferably 5 at% or less.
  • the thickness of the absorption film 4 is 60 nm or more so that the reflectance of EUV light from the surface of the absorption film 4 is 1% or less, particularly 0.7% or less. It is particularly preferable that the thickness is 70 nm or more.
  • the range of 40 nm to 60 nm is preferable, and the range of 45 nm to 55 nm is particularly preferable.
  • the absorption film 4 having the above-described configuration can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a buffer film serving as an etching stopper may be provided between the ML film 2 (the protective film 3 when the protective film 3 is formed on the ML film) and the absorption film 4.
  • a material that is not easily affected by the etching process of the absorption film 4 that is, the etching rate is slower than that of the absorption film 4 and is not easily damaged by this etching process is selected.
  • Examples of the material satisfying this condition include Cr, Al, Ru, Ta, and nitrides thereof, and SiO 2 , Si 3 N 4 , Al 2 O 3, and mixtures thereof.
  • Ru, CrN, and SiO 2 are preferable, CrN and Ru are more preferable, and Ru is particularly preferable because it combines the functions of a protective film and a buffer film.
  • the thickness of the buffer film is preferably 1 to 60 nm.
  • the buffer film can be formed using a known film formation method such as a magnetron sputtering method or an ion beam sputtering method.
  • a low-reflective antireflection film may be provided on the absorption film 4 as a mask blank.
  • the antireflection film provides a good contrast when inspecting the mask pattern and facilitates accurate mask pattern defect inspection.
  • the reflectance of the reflected light generated when the mask pattern inspection light is irradiated on the surface of the antireflection film is preferably 15% or less, more preferably 10% or less, and more preferably 5% or less. More preferably it is.
  • inspection light light of about 257 nm is usually used.
  • the antireflection film is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption film.
  • a material mainly containing Ta can be used.
  • at least one element of Hf, Ge, Si, B, N, H, and O can be contained.
  • Specific examples include TaO, TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, SiN, and SiON.
  • the total thickness of the absorption film and the antireflection film is preferably 10 to 65 nm, more preferably 30 to 65 nm, and further preferably 35 to 60 nm.
  • the thickness of the antireflection film is larger than the thickness of the absorption film, the EUV light absorption characteristics in the absorption film may be deteriorated. Therefore, the thickness of the antireflection film is smaller than the thickness of the absorption film. It is preferable. Therefore, the thickness of the antireflection film is preferably 1 to 20 nm, more preferably 3 to 15 nm, and further preferably 5 to 10 nm.
  • a functional film such as a hard mask
  • the hard mask is formed on the surface of an absorption film (an antireflection film when an antireflection film is formed on the absorption film and the hard mask does not have an antireflection film function). Since the dry etching rate described above is slower than that of the absorption film and / or the antireflection film, the resist film can be made thinner and a finer pattern can be produced.
  • a material for such a hard mask Cr 2 O 3 , Ru, Cr (N, O) or the like can be used, and the film thickness is preferably 2 to 10 nm.
  • the basic configuration of the mask blank is to have at least a light absorption film on the surface of the polishing substrate.
  • the basic structure is to have at least an ML film that reflects EUV light on the surface of the polishing substrate and an absorption film that absorbs EUV light on the ML film.
  • a protective film may be formed, both the protective film and the buffer film may be formed, or an antireflection film and a hard mask may be formed on the surface of the absorption film.
  • a conductive film made of a high dielectric material on the back surface of the polishing substrate.
  • the electrical conductivity and thickness of the constituent materials are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
  • a single layer film made of Si, Mo, Cr, TiN, CrO, CrN, CrON, or TaSi or a laminated film thereof can be applied as the constituent material.
  • the thickness of the conductive film is preferably 10 to 1000 nm, for example.
  • the film can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
  • the conductive film may be formed during any one of procedures 1 to 4. For example, it may be performed between the procedure 1 and the procedure 2, that is, before the procedure 2 in which the ML film is formed on the surface to be formed on the back surface of the polishing substrate prepared in the procedure 1.
  • the photomask manufacturing method adjusts the mask pattern formation position according to the reference surface shape of the surface and the back surface on which the polishing substrate is formed, or the reference plate thickness distribution of the polishing substrate. Except for the point of performing line drawing, the mask can be manufactured in accordance with a conventional mask manufacturing process.
  • a resist film is applied to the mask blank produced by the above-described method and heated. Then, according to the reference surface shape of the surface and the back surface of the polishing substrate to be formed or according to the reference plate thickness distribution of the polishing substrate, the mask pattern formation position is adjusted to perform drawing with an electron beam or ultraviolet light, Subsequent development and etching remove unnecessary absorption films, antireflection films, and resists to obtain a photomask.
  • EUV light incident on the reflective photomask at an angle inclined from the mask stage normal by ⁇ from the point A is reflected at the point B on the ideal reflective photomask surface, and is a point of the projection optical system. Projected to point D on the wafer through C. Since the magnification of the projection optical system of this aspect is 1 ⁇ 4, a pattern to be formed at the point D on the wafer is formed at the point B of the ideal reflection type photomask by equaling four times. .
  • is, for example, about 6 °.
  • At least one of the front and back flatness and the maximum thickness distribution of the polishing substrate constituting the reflective photomask is not 0 nm, so that the reflection in the state of being adsorbed to the mask stage of the exposure apparatus As shown by the solid line in FIG. 6, the surface of the mold photomask has gentle irregularities and is shifted from the broken line in FIG.
  • the EUV light incident from the point A is similarly reflected from the surface of the reflective photomask at a point B ′ shifted in the height direction from the broken line, passes through the point C ′ of the projection optical system, and is on the wafer. Projected to point D ′. For this reason, the pattern that should be formed at the point D on the wafer is projected to the point D ′ that is shifted by ⁇ X, and a fine circuit pattern cannot be formed at a desired position, which is not preferable.
  • the pattern on the reflective photomask can be formed at a desired position on the wafer.
  • the actual adjustments include the surface shape of the mask stage of the exposure apparatus in addition to the surface shape and thickness distribution of the polishing substrate constituting the reflective photomask. Further, it is necessary to consider the gap when the reflective photomask is sucked and held on the mask stage, the deformation of the reflective photomask due to the gravity at the time of drawing the pattern on the reflective photomask, etc., which is a more complicated adjustment.
  • the demand for the flatness of the polishing substrate is reduced to 300 nm or less.
  • RMS surface roughness
  • the amount of deviation is calculated by calculating the reference surface shape or reference plate thickness distribution on the surface and the back surface of the polishing substrate, or the reference surface shape or reference plate thickness distribution on the film forming surface and the back surface of the mask blank. Based on. In addition, the reference surface shape and the reference plate thickness distribution are determined not for a single polishing substrate or a single mask blank but for a plurality of polishing substrates or a plurality of mask blanks. Has characteristics.
  • the first method for determining the reference surface shape is the average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates or the mask blanks.
  • the average shape of the surface shapes of the film formation surface and the back surface is defined as a reference surface shape of the film formation surface (or film formation surface) and the back surface.
  • the number of sheets is not particularly limited as long as it is 2 or more, but 4 to 15 sheets, for example, are preferable examples.
  • the average shape is obtained by simply averaging a plurality of target surface shapes.
  • a second method for determining a reference surface shape is an average shape of the surface shapes of the surface and the back surface of a plurality of polishing substrates or a plurality of mask blanks.
  • An average shape of the surface shapes of the film formation surface and the back surface is calculated, and a fitting (approximation) of the surface shape is expressed as a reference surface shape of the film formation surface (or film formation surface) and the back surface.
  • a polynomial a Legendre polynomial, a Zernike polynomial, etc. are mentioned as a preferable polynomial.
  • the Legendre polynomial (up to the 6th order) and the Zernike polynomial (up to the 8th order) in the xyz orthogonal coordinate system are shown in the following formulas 1 and 2, respectively.
  • a polynomial approximation for example, in the case of a Legendre polynomial, it is preferable to use an approximation up to the sixth order in terms of balance between accuracy and time.
  • Z (x, y) a 0 + A 1 + A 2 (3x 2 -1) (3y 2 -1) / 4 + A 3 (5x 3 -3x) (5y 3 -3y) / 4 + A 4 (35x 4 -30x 2 +3) (35y 4 -30y 2 +3) / 64 + A 5 (63x 5 -70x 3 + 15x) (63y 5 -70y 3 + 15x) / 64 + A 6 (231x 6 ⁇ 315x 4 + 105x 2 ⁇ 5) (231y 6 ⁇ 315y 4 + 105y 2 ⁇ 5) / 256
  • a n is a coefficient.
  • a third method for determining a reference surface shape is a method of forming a surface of a plurality of polishing substrates and a surface shape of each of a back surface or a film formation surface of a plurality of mask blanks. And at least one of the surface shapes of the back surface and the back surface is approximated by a polynomial, and the average of them is defined as the surface (or film forming surface) on which the film is formed and the reference surface shape of the back surface.
  • the polynomial those listed in the second reference surface shape are preferably used.
  • the reference plate thickness distribution the following three types of reference plate thickness distributions are defined, and any one of them is preferably used.
  • the plate thickness distribution is determined by measuring the surface shape of each surface on the polishing substrate and the back surface, or measuring the surface shape of each mask blank film forming surface and the back surface, and reversing the measurement results of the back surface shape.
  • the thickness distribution of the polishing substrate or the mask blank was calculated by subtracting the tilt component from the sum of the measurement results of the surface shape of the surface to be deposited (or the deposition surface).
  • the maximum thickness distribution is obtained as the difference between the maximum value and the minimum value of the obtained thickness distribution.
  • the first method for determining the reference plate thickness distribution uses the average of the thickness distribution of a plurality of polishing substrates or the average of the thickness distribution of a plurality of mask blanks as a reference plate.
  • the thickness distribution is assumed.
  • the second method for determining the reference plate thickness distribution (hereinafter referred to as the second reference plate thickness distribution) is to fit (approximate) an average plate thickness distribution of a plurality of polishing substrates or an average plate thickness distribution of a plurality of mask blanks with a polynomial. ) Is used as a reference thickness distribution.
  • the third method for determining the reference plate thickness distribution is at least either the plate thickness distribution of a plurality (n) of polishing substrates or the plate thickness distribution of a plurality of mask blanks. These are fitted (approximate) with a polynomial, and the average of them is used as a reference plate thickness distribution.
  • the second reference plate thickness distribution and the third reference plate thickness distribution as a polynomial, a Legendre polynomial, a Zernike polynomial, or the like can be cited as a preferable polynomial, as in the case of the reference surface shape described above.
  • the polynomial approximation for example, in the case of Legendre polynomial, it is preferable to use approximation up to the sixth order in terms of balance between accuracy and time.
  • the number of polishing base plates or mask blanks for calculating the reference plate thickness distribution is not particularly limited as long as it is 2 or more, but 4 to 15 is an example of a preferable number.
  • the mask pattern formation position adjustment method is preferably adjusted based on at least one of the aforementioned reference surface shape or reference plate thickness distribution. That is, the adjustment may be made based on either the reference surface shape or the reference plate thickness distribution, or may be adjusted based on both the reference surface shape and the reference plate thickness distribution.
  • the above-mentioned reference surface shape or reference plate thickness distribution is obtained by measuring at least one of a plurality of polishing substrates or a plurality of mask blanks and calculating a reference surface shape and / or a reference plate thickness distribution based on the measured shape.
  • the shapes of both the plurality of polishing substrates and the plurality of mask blanks may be measured, and the reference surface shape and / or the reference plate thickness distribution may be calculated based on them.
  • a slice substrate (size: 153 mm square x thickness: 6.75 mm) made of TiO 2 —SiO 2 glass (TiO 2 doped amount: 7% by mass) obtained by flame hydrolysis of silicon tetrachloride and titanium tetrachloride is prepared. To do. This sliced substrate is chamfered using an NC chamfering machine with a # 120 diamond grindstone so that the chamfering width becomes 0.2 to 0.4 mm, the outer diameter is 152 mm square, and the thickness is 6. Finishing was performed to 75 mm.
  • the slice substrate was sandwiched between cast iron surface plates, a polishing slurry containing abrasive grains mainly composed of Al 2 O 3 was supplied, and the surface of the slice substrate was lapped.
  • the side surface of the slice substrate was subjected to side surface polishing using a nylon brush and cerium oxide slurry, and the surface roughness was mirrored to 1 nm (RMS) or less.
  • both the film forming surface and the back surface of the sliced substrate subjected to the side polishing were subjected to first-stage polishing using a hard foam polyurethane pad and a cerium oxide slurry, a soft foam polyurethane suede pad and a cerium oxide slurry.
  • Second stage polishing, soft foamed polyurethane suede pad, third stage polishing using colloidal silica are sequentially polished using a double-side polishing machine, and the surface roughness of the film-formed surface and the back surface is 0.15 nm ( RMS)
  • the following polishing substrates (Examples 1 to 5) were obtained.
  • Both the surface shape of the surface on which the polishing substrate is formed and the back surface are concave shapes having a relatively low center and a relatively high periphery, and the flatness of the film forming surface is 200 to 300 nm.
  • the flatness of the film was 500 to 600 nm.
  • polishing substrate As the polishing substrate for EUVL, the flatness of the surface to be formed and the back surface is relatively large, and the difference in surface shape between the substrates is not suitable for use.
  • Local polishing was performed using cluster ion beam etching (trade name: US50XP, manufactured by Epion).
  • the local polishing amount of each part is a desired surface shape of the surface and the back surface of the polishing substrate after the correction polishing step (a concave shape having a relatively low center and a relatively high periphery).
  • the flatness of the surface to be polished and the back surface is 330 nm and 600 nm, respectively, and the difference between the surface shape measurement results of the surface and the back surface of the polishing substrate before the local polishing is formed. This was done by adjusting the scan speed. Other main local polishing processing conditions are shown below.
  • ⁇ Local polishing conditions Source gas: NF 3 5% and N 2 95% mixed gas, Accelerating voltage: 30 kV Ionization current: 100 ⁇ A, Gas cluster ion beam diameter (FWHM value): 6 mm Etching rate: 50 nm ⁇ cm 2 / sec.
  • the surface roughness of the polishing substrate that has been locally polished is as large as about 0.5 nm (RMS) and is not suitable as a polishing substrate for EUVL. Therefore, the polishing substrate is formed under the following conditions. Final polishing was performed on the surface and the back surface, and the surface roughness was adjusted to 0.15 nm (RMS) or less.
  • Polishing tester Double-sided 24B polishing machine manufactured by Hamai Sangyo Co., Ltd.
  • Polishing pad Bellatrix N7512 manufactured by Kanebo Corporation Polishing plate rotation speed: 10 rpm Polishing time: 30 minutes, Polishing load: 51 cN / cm 2 Polishing amount: 0.06 ⁇ m / surface, Dilution water: Pure water (0.1 ⁇ m or more foreign matter filtration), Slurry flow rate: 10 l / min, Polishing slurry: 20% by mass of colloidal silica having an average primary particle size of less than 20 nm, Polishing amount: 0.02 ⁇ m.
  • the reference surface shapes of the surface and the back surface to be formed are obtained from the average shape of the surface shapes of the surface and the back surface of the five polishing substrates, which are shown in FIGS. 7 and 8, respectively.
  • the second column from the left indicates the surface shape
  • the third column indicates the difference between the surface shape and the reference surface shape (reference; second column in the last row).
  • the flatness of the reference surface shape of the surface to be formed and the back surface was 68 nm and 56 nm.
  • Table 1 shows the result of calculating the maximum value of the difference between the surface shapes of the five polishing substrates to be formed and the back surface from the first reference surface shape.
  • the difference is 46 nm or less, and EUVL having sufficient transfer accuracy when EUVL is performed by adjusting the mask pattern formation position based on the reference surface shape of the film formation surface and the back surface and performing mask pattern drawing.
  • a reflective photomask manufacturing method can be obtained.
  • the second method for determining the reference surface shape is to fit (approximate) the average shape of each surface shape of the surface on which the five polishing substrates are deposited and the back surface with a Legendre polynomial (function) up to the fifth order.
  • the reference surface shape of the surface to be filmed and the back surface is used.
  • FIG. 9 shows the reference surface shapes of the surface (Front surface) and the back surface (Back surface) to be formed.
  • the flatness of the reference surface shape of the surface to be formed and the back surface was 52 nm and 45 nm.
  • Table 2 shows the result of calculating the maximum value of the difference between the surface shape of the surface to be deposited and the back surface of the five polishing substrates from the second reference surface shape.
  • the difference is 57 nm or less, and EUVL having sufficient transfer accuracy when EUVL is performed by adjusting the mask pattern formation position based on the reference surface shape of the film formation surface and the back surface and performing mask pattern drawing.
  • a reflective photomask manufacturing method can be obtained.
  • a polishing substrate was produced in the same manner as in Examples 1-5.
  • the surface shapes of the surface and the back surface of the five polishing substrates thus obtained were measured by the same method as in Examples 1 to 5, and the film was formed after reversing the measurement results of the surface shape of the back surface.
  • the thickness distribution of the polishing substrate was calculated by subtracting the tilt component from the measurement result of the surface shape of the surface (Examples 6 to 10).
  • the maximum sheet thickness distribution was obtained as the difference between the maximum value and the minimum value of the obtained sheet thickness distribution.
  • FIG. 10 shows the plate thickness distribution of five polishing substrates, and Table 3 shows the maximum plate thickness distribution.
  • the second column from the left shows the plate thickness distribution (Thickness variation)
  • the third column shows the difference between the plate thickness distribution and the reference plate thickness distribution (reference; second column in the last row).
  • the first reference plate thickness distribution was determined from the average plate thickness distribution of the five polishing substrates.
  • the reference plate thickness distribution is shown in FIG.
  • the maximum value of the reference plate thickness distribution was 93 nm.
  • Table 3 shows the result of calculating the maximum difference between the thickness distributions of the five polishing substrates from the first reference thickness distribution. The difference is 50 nm or less, and the production of a reflective photomask for EUVL having sufficient transfer accuracy during EUVL by adjusting the mask pattern formation position based on the reference plate thickness distribution and performing mask pattern drawing. You can get the method.
  • the second method for determining the reference plate thickness distribution is a method of fitting (approximate) an average plate thickness distribution of five EUVL polishing substrates with a Legendre polynomial (function) up to the fifth order to obtain a reference plate thickness distribution (second Reference thickness distribution).
  • the reference plate thickness distribution is shown in FIG.
  • the maximum value of the reference plate thickness distribution was 75 nm.
  • Table 4 shows the result of calculating the maximum value of the difference in thickness from the reference thickness distribution of the five prepared EUVL polishing substrates. The difference is 75 nm or less in all cases, and the production of a reflective photomask for EUVL having sufficient transfer accuracy during EUVL by adjusting the mask pattern formation position based on the reference plate thickness distribution and performing mask pattern drawing You can get the method.
  • the transfer accuracy during EUVL can be stably improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention relates to a method for manufacturing a photomask, in which a mask pattern is drawn, according to a mask pattern design, on a mask blank comprising at least a polishing substrate and a light absorption film disposed on the polishing substrate, wherein at least one of the surface shape of a plurality of the polishing substrates and the surface shape of a plurality of the mask blanks is measured, a reference surface shape or reference substrate thickness distribution is calculated based on the measured surface shape, and based on the calculated reference surface shape or reference substrate thickness distribution, a mask pattern-forming position is adjusted when the mask pattern is drawn.

Description

フォトマスクの製造方法Photomask manufacturing method
 本発明は、フォトマスクの製造方法で、特に、EUV(Extreme Ultra Violet:極端紫外)光を使用するEUVリソグラフィ(EUVL)用反射型フォトマスクに好適な製造方法に関する。 The present invention relates to a photomask manufacturing method, and more particularly to a manufacturing method suitable for a reflective photomask for EUV lithography (EUVL) using EUV (Extreme Ultra Violet) light.
 従来から、リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して半導体デバイスを製造するための露光装置が広く利用されている。半導体デバイスの高集積化、高速化及び省電力化に伴い、半導体デバイスの微細化が進んでいる。この動向に対応して、露光装置には、より大きな焦点深度でより微細な半導体デバイス回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。具体的に、露光光源として使用される光は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から進んで、ArFエキシマレーザ(波長193nm)の紫外光が用いられている。 Conventionally, in lithography technology, an exposure apparatus for transferring a fine circuit pattern onto a wafer to manufacture a semiconductor device has been widely used. As semiconductor devices are highly integrated, speeded up, and power saved, semiconductor devices are becoming finer. In response to this trend, the exposure apparatus is required to form an image of a finer semiconductor device circuit pattern on the wafer surface with a greater depth of focus, and the wavelength of the exposure light source is being shortened. Specifically, the light used as the exposure light source proceeds from the conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm) and KrF excimer laser (wavelength 248 nm), and ultraviolet light from an ArF excimer laser (wavelength 193 nm). Is used.
 しかしながら、こうした波長193nmの光を用いたリソグラフィ技術であっても、高々32~45nmの回路寸法を有する半導体デバイスしか作製できず、30nm以下の回路寸法を有する半導体デバイスを作製できる技術の開発が求められている。このような背景のもとに、極紫外光(EUV光)を使用したリソグラフィ技術が、有力候補として注目されており、活発な開発が行われている。EUV光とは軟X線領域又は真空紫外域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。現時点では、リソグラフィ光源として13.5nm付近の波長の光の使用が主に検討されている。 However, even with lithography technology using such light having a wavelength of 193 nm, only semiconductor devices having circuit dimensions of 32 to 45 nm can be produced at the most, and development of techniques capable of producing semiconductor devices having circuit dimensions of 30 nm or less is required. It has been. Against this background, lithography technology using extreme ultraviolet light (EUV light) has attracted attention as a promising candidate and is being actively developed. EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. At present, the use of light having a wavelength near 13.5 nm as a lithography light source is mainly studied.
 EUVリソグラフィ(以下、「EUVL」とも略す)の露光原理は、投影光学系を用いてマスクパターンをウェハ上に縮小投影する点では、従来のリソグラフィと同じであるが、EUV光のエネルギー領域では、光を透過する材料が存在しないために、波長193~436nmの光を光源とする露光装置で通常用いられている透過型フォトマスクを用いた透過屈折光学系が使用できず、反射光学系が使用されている。反射光学系の光学部材は、反射型フォトマスクと複数の反射ミラーから構成されており、マスク上に形成されたパターンを、反射ミラーを介して、ウェハ上に形成されたレジストに比率1/4~1/5倍にて縮小投影するものである。 The exposure principle of EUV lithography (hereinafter also abbreviated as “EUVL”) is the same as that of conventional lithography in that a mask pattern is reduced and projected onto a wafer using a projection optical system, but in the energy region of EUV light, Because there is no light-transmitting material, a transmission / refraction optical system using a transmission type photomask usually used in an exposure apparatus that uses light of wavelength 193 to 436 nm as a light source cannot be used, and a reflection optical system is used. Has been. The optical member of the reflective optical system is composed of a reflective photomask and a plurality of reflective mirrors, and the ratio of the pattern formed on the mask to the resist formed on the wafer via the reflective mirror is 1/4. Projected at a reduced magnification of ~ 1/5.
 ここで、反射型フォトマスクは、主に4つの手順(第1手順;研磨基板の準備、第2手順;MLブランクの作成、第3手順;マスクブランクの作成、及び第4手順;フォトマスクの作成)を経て得られる光学部材(EUVL用光学部材)の一種である。 Here, the reflection type photomask mainly includes four procedures (first procedure; preparation of polishing substrate, second procedure; creation of ML blank, third procedure; creation of mask blank, and fourth procedure; photomask It is a kind of optical member (optical member for EUVL) obtained through preparation.
 参考までに、マスクブランク及び反射型フォトマスクの断面構造を、それぞれ図1、図2に模式的に示す。図1及び図2において、1は研磨基板、2は研磨基板の成膜される面に形成された多層反射膜(以下「ML膜」と略す)、3はML膜面上に形成された保護膜、4は保護膜面上に形成された吸収膜、5は吸収膜面上に形成された反射防止膜、6は反射防止膜上に形成されたレジスト膜、7は研磨基板の裏面に形成された導電膜を示す。 For reference, the cross-sectional structures of a mask blank and a reflective photomask are schematically shown in FIGS. 1 and 2, respectively. 1 and 2, 1 is a polishing substrate, 2 is a multilayer reflective film (hereinafter abbreviated as “ML film”) formed on the surface on which the polishing substrate is formed, and 3 is a protection formed on the ML film surface. 4 is an absorption film formed on the protective film surface, 5 is an antireflection film formed on the absorption film surface, 6 is a resist film formed on the antireflection film, and 7 is formed on the back surface of the polishing substrate. The conductive film made is shown.
 また、図4に研磨基板の側面図(図では、変形の態様を理解しやすいように誇張して表現)を示す。図4(a)は仕上げ(局所)研磨前の研磨基板を、図4(b)は局所研磨後の研磨基板をそれぞれ示す。 FIG. 4 shows a side view of the polishing substrate (in the drawing, exaggerated expression is shown for easy understanding of the deformation mode). FIG. 4A shows a polishing substrate before final (local) polishing, and FIG. 4B shows a polishing substrate after local polishing.
 反射型フォトマスクは、マスクブランクのEUV光吸収膜にマスクパターンが形成され、EUV光反射層が露出しEUV光が反射される部分と、反射層が吸収膜で覆われEUV光が殆ど反射されない部分を有するものである。 In the reflection type photomask, a mask pattern is formed on the EUV light absorption film of the mask blank, the EUV light reflection layer is exposed and the EUV light is reflected, and the reflection layer is covered with the absorption film so that the EUV light is hardly reflected. It has a part.
 また反射型フォトマスクを露光装置のマスクステージに保持する際に静電チャックが一般的に使用されるため、反射型フォトマスクの裏面には、シート抵抗100Ω以下の導電膜(例えばCrNやCr、CrO、CrON、TaNなど)を通常、形成する。 In addition, since an electrostatic chuck is generally used to hold the reflective photomask on the mask stage of the exposure apparatus, a conductive film having a sheet resistance of 100Ω or less (for example, CrN, Cr, CrO, CrON, TaN, etc.) are usually formed.
 ところで、EUV光を光源とする露光装置において、反射型フォトマスクは、その裏面に形成した導電膜を利用して静電チャックにより吸着保持され、その成膜面に形成されたマスクパターンがウェハ上レジスト膜へ縮小投影、転写される。この際、反射型フォトマスクのマスクパターン形成面が平坦であればあるほど、反射型フォトマスクの成膜面に形成されたマスクパターンがウェハ上レジスト膜に、所望の位置により忠実に転写、形成されるため、好ましい。 By the way, in an exposure apparatus using EUV light as a light source, the reflective photomask is attracted and held by an electrostatic chuck using a conductive film formed on the back surface thereof, and the mask pattern formed on the film formation surface is formed on the wafer. Reduced projection and transfer to a resist film. At this time, the flatter the mask pattern formation surface of the reflective photomask is, the more faithfully transferred and formed the mask pattern formed on the reflective photomask deposition surface onto the resist film on the wafer at a desired position. Therefore, it is preferable.
 特にEUVLの適用が検討されている回路寸法が30nm以下の半導体デバイスの場合、回路パターンの形成位置に対する要求精度は5nm以下、さらには3nm以下と非常に厳しい要求がある。そこで、研磨基板の成膜される面及び裏面の平坦度に対しては、従来の250nm以下という要求レベルが、EUVL用研磨基板では100nm以下、さらには50nm以下、さらには30nm以下、という非常に厳しいレベルが要求されるようになってきた。 In particular, in the case of a semiconductor device having a circuit dimension of 30 nm or less for which application of EUVL is being studied, the required accuracy with respect to the circuit pattern formation position is 5 nm or less, and further, 3 nm or less, which is extremely strict. Therefore, for the flatness of the surface on which the polishing substrate is formed and the back surface, the conventional required level of 250 nm or less is extremely low, such as 100 nm or less, further 50 nm or less, and further 30 nm or less for the EUVL polishing substrate. Strict levels have been required.
 ここで研磨基板の平坦度とは、非特許文献1の図4に示すように、研磨基板の成膜される面と裏面における、空間波長0.1mm以上の緩やかな凹凸における高低差の最大値を意図する(非特許文献1の図4参照)。さらに、研磨基板の成膜される面に対しては、平坦度に加えて、深さ1nm以上のスクラッチやスリークなどの欠点及びポリスチレンラテックス粒子径換算サイズ50nm以上の微小な凹凸などの欠点が無いことも求められている。 Here, as shown in FIG. 4 of Non-Patent Document 1, the flatness of the polishing substrate is the maximum value of the height difference in the gentle irregularities having a spatial wavelength of 0.1 mm or more on the surface on which the polishing substrate is formed and the back surface. (See FIG. 4 of Non-Patent Document 1). In addition to the flatness, there are no defects such as scratches or leaks having a depth of 1 nm or more and defects such as minute irregularities having a polystyrene latex particle diameter conversion size of 50 nm or more on the surface on which the polishing substrate is formed. That is also sought.
 上記のような厳しい要求は、露光に使用する光の波長が、現在主流のArFリソグラフィの193nmと比べて1/10以下と、極端に短いことに主に起因するものであり、EUVL用反射型フォトマスクに特有のものである。 The strict requirements as described above are mainly due to the fact that the wavelength of light used for exposure is extremely short, 1/10 or less compared with 193 nm of the current mainstream ArF lithography. It is unique to photomasks.
 一方、上記要求水準に対して加工方法のレベルは必ずしも十分に追いついておらず、現実には、鏡面(平滑性)、低欠点数、高平坦度のすべてを同時に満足する研磨基板を得ることは極めて困難である。そのため、要求する平坦度に到達していない研磨基板を用いた反射型マスクを使用する方法が提案されている(特許文献1及び2、非特許文献1参照)。具体的には、電子線などを用いてマスクパターンを描画する際に、マスクブランクを構成する研磨基板の成膜される面と裏面の平坦度或いは研磨基板の板厚分布に応じて、マスクパターンの形成位置を調整する方法である。 On the other hand, the level of the processing method does not always catch up with the above required level, and in reality, it is possible to obtain a polished substrate that satisfies all of the mirror surface (smoothness), the number of low defects, and the high flatness at the same time. It is extremely difficult. Therefore, a method of using a reflective mask using a polishing substrate that does not reach the required flatness has been proposed (see Patent Documents 1 and 2, Non-Patent Document 1). Specifically, when drawing a mask pattern using an electron beam or the like, the mask pattern depends on the flatness of the surface and the back surface of the polishing substrate constituting the mask blank or the thickness distribution of the polishing substrate. This is a method of adjusting the formation position.
 例えば、上記のようなマスクパターン形成位置の調整方法を採用すると、例えば、マスクブランクを構成する研磨基板の平坦度に対する要求は300nm以下に緩和される。この場合、成膜される面及び裏面の平坦度300nm以下、成膜される面の表面粗さ(RMS)0.15nm以下、成膜される面におけるサイズ50nm以上の欠点数が少ない研磨基板を実現すればよく、表面粗さと欠点のみに注力して加工できるため、研磨基板の加工はかなり容易となる。 For example, when the method for adjusting the mask pattern forming position as described above is adopted, for example, the demand for the flatness of the polishing substrate constituting the mask blank is reduced to 300 nm or less. In this case, a polishing substrate having a small number of defects such as a flatness of 300 nm or less on the surface to be formed and a back surface, a surface roughness (RMS) of 0.15 nm or less on the surface to be formed, and a size of 50 nm or more on the surface to be formed. The polishing substrate can be processed considerably easily because it can be realized by focusing only on the surface roughness and defects.
 しかしながら、提案されている方法では電子線などを用いて反射型フォトマスクのマスクパターンをマスクブランク上に描画する際に、マスクパターン形成位置を、各マスクブランク一枚一枚についてその研磨基板の平坦度等表面形状に応じて個別に調整する必要があり、マスクパターン形成にかなりの時間と労力がかかるという問題点がある。そのため、生産性、原価面などの点から改善が強く求められている。 However, in the proposed method, when the mask pattern of the reflective photomask is drawn on the mask blank using an electron beam or the like, the mask pattern forming position is set flat for each mask blank. There is a problem in that it takes a considerable amount of time and labor to form a mask pattern because it is necessary to individually adjust the surface shape such as the degree. For this reason, there is a strong demand for improvements in terms of productivity and cost.
 なお、マスクパターン形成位置の調整は、EUVL用反射型フォトマスクだけに使用されるものではなく、それ以外のフォトマスク、すなわち、i線(波長365nm)、KrFエキシマレーザ(波長248nm)やArFエキシマレーザ(波長193nm)を光源とするリソグラフィ用透過型フォトマスクにも適用できることは、言うまでもない。 The adjustment of the mask pattern formation position is not used only for the EUVL reflective photomask, but other photomasks, i.e., i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer Needless to say, the present invention can also be applied to a transmissive photomask for lithography using a laser (wavelength: 193 nm) as a light source.
日本国特開2006-39223号公報(US7703066)Japanese Unexamined Patent Publication No. 2006-39223 (US7703066) 日本国特開2008-103512号公報Japanese Unexamined Patent Publication No. 2008-103512
 従来のフォトマスク(特に、EUVL用反射型フォトマスク)の製造方法では、電子線などを用いてフォトマスク(特に、EUVL用反射型フォトマスク)のマスクパターンをマスクブランク上に描画する際に、マスクパターン形成位置を、各マスクブランク一枚一枚についてその研磨基板の平坦度と板厚分布に応じて個別に調整する、すなわち、マスクブランク1枚毎に、マスクパターン形成位置の調整作業が必要となり、マスクパターン形成作業が煩雑になるという問題点があり、生産性、原価面などの点から改善が強く求められている。 In a conventional method for manufacturing a photomask (particularly, a reflective photomask for EUVL), when a mask pattern of a photomask (particularly, a reflective photomask for EUVL) is drawn on a mask blank using an electron beam or the like, The mask pattern formation position is individually adjusted according to the flatness and thickness distribution of the polishing substrate for each mask blank, that is, the mask pattern formation position needs to be adjusted for each mask blank. Therefore, there is a problem that the mask pattern forming operation becomes complicated, and improvement is strongly demanded from the viewpoint of productivity and cost.
 そこで、本発明は、マスクパターン形成位置を、各マスクブランク一枚一枚についてその研磨基板の平坦度と板厚分布に応じて個別に調整しなくてもよいフォトマスク(特に、EUVL用反射型フォトマスク)の製造方法の提供を目的とする。 Therefore, the present invention provides a photomask (particularly, a reflective type for EUVL) in which the mask pattern forming position does not have to be individually adjusted according to the flatness and thickness distribution of the polishing substrate for each mask blank. An object of the present invention is to provide a manufacturing method of a photomask.
 本発明によるフォトマスクの製造方法(以下、本製造法という)は、研磨基板と、該研磨基板上に形成された光吸収膜を少なくとも有するマスクブランクに、マスクパターン設計に基づいてマスクパターンを描画するフォトマスクの製造方法であって、
 複数枚の研磨基板の表面形状又は複数枚のマスクブランクの表面形状の少なくともどちらかを測定し、前記測定された表面形状に基づいて基準表面形状又は基準板厚分布を算出後、前記算出された基準表面形状又は基準板厚分布に基づいて前記マスクパターン描画時のマスクパターン形成位置を調整する。
A photomask manufacturing method according to the present invention (hereinafter referred to as the present manufacturing method) draws a mask pattern on a mask blank having at least a polishing substrate and a light absorption film formed on the polishing substrate based on the mask pattern design. A method of manufacturing a photomask,
Measured at least one of the surface shape of a plurality of polishing substrates or the surface shape of a plurality of mask blanks, and after calculating a reference surface shape or a reference plate thickness distribution based on the measured surface shape, the calculated A mask pattern forming position at the time of drawing the mask pattern is adjusted based on a reference surface shape or a reference plate thickness distribution.
 本製造法において、フォトマスクがEUVL用反射型フォトマスクであり、前記マスクブランクが研磨基板と光吸収膜との間に多層反射膜(ML膜)を有し、ML膜上に形成される光吸収膜がEUV光吸収膜であると好ましい。 In this manufacturing method, the photomask is a reflective photomask for EUVL, and the mask blank has a multilayer reflective film (ML film) between the polishing substrate and the light absorption film, and light formed on the ML film. The absorption film is preferably an EUV light absorption film.
 本製造法において、前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状それ自体又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状それ自体であることが好ましい。或いは、本製造法において、前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状を算出し、該算出された平均形状をルジャンドル多項式又はツエルニケ多項式などの多項式にて近似し得られるものであることも好ましい。さらに、本製造法において、前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の少なくともどちらかをルジャンドル多項式又はツエルニケ多項式などの多項式にて近似し、それらを平均して得られるものであることも好ましい。 In the present manufacturing method, the reference surface shape is the average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates, or the film formation surface and the back surface of the mask blanks, respectively. The average shape of the surface shape is preferably itself. Alternatively, in the present manufacturing method, the reference surface shape is an average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates or each of the film formation surface and the back surface of the plurality of mask blanks. It is also preferable that the average shape of the surface shape is calculated, and the calculated average shape is approximated by a polynomial such as a Legendre polynomial or a Zernike polynomial. Further, in the present manufacturing method, the reference surface shape is a surface shape of each of the surface and the back surface of the plurality of polishing substrates or a surface shape of each of the film formation surfaces and the back surface of the plurality of mask blanks. It is also preferable that at least one of these be approximated by a polynomial such as a Legendre polynomial or a Zernike polynomial, and obtained by averaging them.
 本製造法において、前記基準板厚分布は、前記複数枚の研磨基板の板厚分布の平均又は前記複数枚のマスクブランクの板厚分布の平均であることが好ましい。或いは、本製造法において、前記基準板厚分布は、前記複数枚の研磨基板の平均板厚分布又は前記複数枚のマスクブランクの平均板厚分布を算出し、該算出された平均板厚分布をルジャンドル多項式又はツエルニケ多項式などの多項式にて近似して得られたものであることも好ましい。さらに、本製造法において、前記基準板厚分布は、前記複数枚の研磨基板の板厚分布又は前記複数枚のマスクブランクの板厚分布の少なくともどちらかをルジャンドル多項式又はツエルニケ多項式などの多項式にて近似し、それらを平均して得られるものであることも好ましい。 In this manufacturing method, it is preferable that the reference plate thickness distribution is an average of plate thickness distributions of the plurality of polishing substrates or an average of plate thickness distributions of the plurality of mask blanks. Alternatively, in the present manufacturing method, the reference plate thickness distribution is calculated by calculating an average plate thickness distribution of the plurality of polishing substrates or an average plate thickness distribution of the plurality of mask blanks, and calculating the calculated average plate thickness distribution. It is also preferable that it is obtained by approximation with a polynomial such as a Legendre polynomial or a Zernike polynomial. Further, in the present manufacturing method, the reference plate thickness distribution is a polynomial such as a Legendre polynomial or a Zernike polynomial, wherein at least one of the plate thickness distribution of the plurality of polishing substrates or the plate thickness distribution of the plurality of mask blanks. It is also preferable that they are approximated and obtained by averaging them.
 研磨基板1枚毎に表面形状測定又は板厚分布測定をし、その測定データに基づいてマスクパターン形成位置を調整して、マスクパターンを描画していた従来技術に比べて、本製造法では、複数の研磨基板を同一の基準表面形状又は同一の基準板厚分布に基づいてマスクパターン形成位置を調整して描画するため、マスクパターン形成位置調整時間が大幅に短縮される。 Compared with the conventional technique in which the surface shape measurement or the plate thickness distribution measurement is performed for each polishing substrate, the mask pattern formation position is adjusted based on the measurement data, and the mask pattern is drawn, in this manufacturing method, Since a plurality of polishing substrates are drawn by adjusting the mask pattern formation position based on the same reference surface shape or the same reference plate thickness distribution, the mask pattern formation position adjustment time is greatly shortened.
 例えば、5枚のフォトマスクを製造する場合、従来の方法では、マスクパターン形成位置の調整を5回行う必要があったが、本方法によれば、5枚の研磨基板の基準表面形状又は基準板厚分布に基づいて1回調整するだけで良い。その結果、フォトマスクの生産性を著しく向上させる。 For example, in the case of manufacturing five photomasks, in the conventional method, it is necessary to adjust the mask pattern formation position five times. According to this method, however, the reference surface shape or the reference of the five polishing substrates is used. It only needs to be adjusted once based on the plate thickness distribution. As a result, the productivity of the photomask is significantly improved.
 本製造法により、フォトマスクの高生産性とEUVL用として充分な精度を有するフォトマスクの提供の両立を図ることができ、EUVL実施時の転写精度を安定して向上できる。 This manufacturing method makes it possible to achieve both high productivity of a photomask and provision of a photomask having sufficient accuracy for EUVL, and stably improve the transfer accuracy during EUVL implementation.
図1は、マスクブランク(EUVL用)の断面構造をあらわした模式図である。FIG. 1 is a schematic diagram showing a cross-sectional structure of a mask blank (for EUVL). 図2は、フォトマスク(EUVL用反射型)の断面構造をあらわした模式図である。FIG. 2 is a schematic diagram showing a cross-sectional structure of a photomask (reflection type for EUVL). 図3は、フォトマスク(EUVL用反射型)のパターン形成面側から見た、マスクブランクの上面図である。FIG. 3 is a top view of the mask blank as viewed from the pattern forming surface side of the photomask (EUVL reflective type). 図4(a)及び図4(b)は、研磨基板の側面図である。4 (a) and 4 (b) are side views of the polishing substrate. 図5(a)~図5(d)は、マスクブランクに使用する研磨基板の板厚分布を算出する手順を説明した図である。FIGS. 5A to 5D are diagrams for explaining the procedure for calculating the plate thickness distribution of the polishing substrate used for the mask blank. 図6は、マスクパターンの形成位置の調整方法を説明する概念図である。FIG. 6 is a conceptual diagram illustrating a method for adjusting the formation position of the mask pattern. 図7は、研磨基板5枚の成膜される面の表面形状の測定結果及びその平均形状(基準表面形状)である。FIG. 7 shows the measurement result of the surface shape of the surface on which five polishing substrates are deposited and the average shape (reference surface shape). 図8は、研磨基板5枚の裏面の表面形状の測定結果及びその平均形状(基準表面形状)である。FIG. 8 shows the measurement results of the surface shape of the back surface of five polishing substrates and the average shape (reference surface shape). 図9は、研磨基板5枚の成膜される面と裏面のそれぞれの表面形状の平均形状をルジャンドル多項式で近似して、それぞれの基準表面形状とした例である。FIG. 9 is an example in which the average surface shape of each of the surfaces on which the five polishing substrates are deposited is approximated by a Legendre polynomial to obtain the respective reference surface shapes. 図10は、研磨基板5枚の裏面の表面形状の測定結果を反転させたうえで成膜される面の表面形状の測定結果と足し合わせて算出した研磨基板の板厚分布及び当該5枚の研磨基板の平均板厚分布(基準板厚分布)である。FIG. 10 shows the thickness distribution of the polishing substrate calculated by adding the measurement result of the surface shape of the surface to be deposited after reversing the measurement result of the surface shape of the back surface of the five polishing substrates, It is an average plate thickness distribution (reference plate thickness distribution) of the polishing substrate. 図11は、研磨基板5枚の平均板厚分布をルジャンドル多項式で近似して基準板厚分布とした例である。FIG. 11 is an example in which the average plate thickness distribution of five polishing substrates is approximated by a Legendre polynomial to obtain a reference plate thickness distribution.
 本発明は、フォトマスクの製造方法に関する。最初にフォトマスクの製造方法の概略を以下の4つの手順(第1手順;研磨基板の準備、第2手順;MLブランクの作成、第3手順;マスクブランクの作成、及び第4手順;フォトマスクの作成)として説明する。なお、第2手順(MLブランクの作成)は、EUVL用フォトマスクの製造方法では必須であるが、EUVL用以外のフォトマスクの製造方法では必要ない。 The present invention relates to a photomask manufacturing method. First, an outline of a photomask manufacturing method is described in the following four procedures (first procedure; preparation of polishing substrate, second procedure; creation of ML blank, third procedure; creation of mask blank, and fourth procedure; photomask ). Note that the second procedure (creating an ML blank) is indispensable in the EUVL photomask manufacturing method, but is not necessary in any photomask manufacturing method other than EUVL.
 まず第1手順として、表面粗さが非常に小さく、空間波長0.1mm以上の緩やかな凹凸のない、なだらかで平坦な表面を有する対向する2面と、該対向する2面をつなぐ4つの側面を有する基板(以下、研磨基板と称す)を準備する。前記平坦な表面を有する対向2面の内、片面は、最終的に半導体デバイス回路パターンが形成される面(以下、成膜される面と称す)となり、残りはパターンが形成されない面(以下、裏面と称す)となる。 First, as a first procedure, two opposing surfaces having a smooth and flat surface with a very small surface roughness and no gentle irregularities with a spatial wavelength of 0.1 mm or more and four side surfaces connecting the two opposing surfaces A substrate having the following (hereinafter referred to as a polishing substrate) is prepared. Of the two opposing surfaces having the flat surface, one surface finally becomes a surface on which a semiconductor device circuit pattern is formed (hereinafter referred to as a film formation surface), and the remaining surface on which no pattern is formed (hereinafter referred to as a surface). Called the back side).
 なお、研磨基板には、温度変化による伸縮が極力生じないように低い熱膨張性が要求される。そのため、例えばTiOを含有するシリカガラス(以下、TiO2-SiO2ガラスと略す)やシリカガラス(SiO2ガラス)などが好ましい材料として挙げられる。前記材料製の直方体を製造し、それを切断、加工してスライス基板とし、それを研磨して研磨基板を作成する。 The polishing substrate is required to have low thermal expansion so that expansion and contraction due to temperature change does not occur as much as possible. Therefore, for example, silica glass containing TiO 2 (hereinafter abbreviated as TiO 2 —SiO 2 glass), silica glass (SiO 2 glass), and the like are preferable materials. A rectangular parallelepiped made of the material is manufactured, cut and processed into a slice substrate, and polished to create a polished substrate.
 第2手順(EUVL用フォトマスクの場合)として、第1手順で得られた研磨基板の成膜される面にEUV光を反射するML膜を形成したMLブランクを作製する。ML膜としては、EUV光における高屈折率膜(例えばSiなど)と低屈折率層(例えば、Moなど)と交互に積層することで、反射率を高めた多層反射膜が通常使用される。また、ML膜の酸化など劣化防止のため、通常、ML膜の上に保護膜(例えば、Ru、Si、TiOなど)を形成しても良い。 As a second procedure (in the case of a photomask for EUVL), an ML blank is produced in which an ML film that reflects EUV light is formed on the surface of the polishing substrate obtained in the first procedure. As the ML film, a multilayer reflective film having a high reflectance by stacking alternately a high refractive index film (for example, Si) and a low refractive index layer (for example, Mo) in EUV light is usually used. In order to prevent deterioration such as oxidation of the ML film, a protective film (eg, Ru, Si, TiO 2 or the like) may be usually formed on the ML film.
 次いで第3手順として、EUVL用以外のフォトマスクの場合、第1手順で得られた研磨基板上に光吸収膜を形成する。EUVL用フォトマスクの場合は、第2手順で得られたMLブランクのML膜上(ML膜の上に保護膜が形成されている場合には、その保護膜上)に、EUV光を吸収する吸収膜(例えばTaやTaNなど)を形成する。必要に応じて、マスクパターン検査光の波長にて低反射率を有する反射防止膜(例えばTaONやTaOなど)を吸収膜の上に形成してもよい。次いで、吸収膜(反射防止膜が形成されている場合には、その反射防止膜上)に、レジスト膜を形成する。このようにMLブランク上に吸収膜、さらに必要に応じて反射防止膜、レジスト膜がこの順に形成されたものがマスクブランク(断面構造は、図1を参照)である。 Next, as a third procedure, in the case of a photomask other than for EUVL, a light absorption film is formed on the polishing substrate obtained in the first procedure. In the case of a photomask for EUVL, EUV light is absorbed on the ML film of the ML blank obtained in the second procedure (or on the protective film if a protective film is formed on the ML film). An absorption film (for example, Ta or TaN) is formed. If necessary, an antireflection film (for example, TaON or TaO) having a low reflectance at the wavelength of the mask pattern inspection light may be formed on the absorption film. Next, a resist film is formed on the absorption film (on the antireflection film if an antireflection film is formed). A mask blank (see FIG. 1 for the cross-sectional structure) is such that an absorption film, an antireflection film, and a resist film are formed in this order on the ML blank in this order.
 最後の第4手順としては、マスクパターンの形成である。すなわち、(4-1)電子線や紫外光を光源とする描画装置を用いて、マスクブランクの側面もしくは表裏面の外周部付近をクランプするなど、マスクブランクを何らかの方法で保持した状態で、レジスト膜に設計したマスクパターンを描画する、(4-2)加熱する、(4-3)不要な部分のレジスト膜を除去する、(4-4)不要な部分のレジスト膜が除去されて、露出した吸収膜(反射防止膜が形成されている場合には、反射防止膜と吸収膜の両膜)をエッチング除去する、(4-5)残ったレジスト膜を除去する、といった一連のプロセスからなる。 The final fourth procedure is the formation of a mask pattern. That is, (4-1) using a drawing apparatus that uses an electron beam or ultraviolet light as a light source, clamping the side of the mask blank or the vicinity of the outer periphery of the front and back surfaces, and holding the mask blank in some way, Drawing the designed mask pattern on the film, (4-2) heating, (4-3) removing the unnecessary resist film, (4-4) removing the unnecessary resist film, and exposing it This process consists of a series of processes such as etching away the absorbed film (both antireflective film and absorption film when antireflection film is formed) and (4-5) removing the remaining resist film. .
 本発明は、フォトマスクの製造方法に関するが、特に、マスクパターン形成位置調整に特徴を有する。以下、これを中心にして本発明を詳述する。 The present invention relates to a method of manufacturing a photomask, and is particularly characterized by adjusting a mask pattern forming position. Hereinafter, the present invention will be described in detail focusing on this.
 [研磨基板の準備(第1手順)]
 研磨基板は、材料塊から所望の形状精度に加工された基板を得て、該基板の、研磨基板の成膜される面及び裏面になる面を両面ラップ(ポリッシュ)機を使用し、研磨剤と水とを含有する研磨スラリーを研磨パッド等に供給して両面を同時研磨し、得ることができる。その後、さらに、得られた研磨基板の成膜される面及び/又は裏面に対して、局所的に部分的に研磨する局所研磨法を使用することが好ましい。局所研磨法としては、機械的、化学機械的、磁性砥粒を使用するMRF、ビーム(レーザー)照射法、ガスクラスターイオンビームエッチング法などが挙げられる。
[Preparation of polishing substrate (first procedure)]
A polishing substrate is obtained by obtaining a substrate processed to a desired shape accuracy from a lump of material, and using a double-sided lapping (polishing) machine on the surface of the substrate on which the polishing substrate is to be formed and the back surface. A polishing slurry containing water and water can be supplied to a polishing pad or the like to simultaneously polish both surfaces. Thereafter, it is preferable to use a local polishing method in which the surface and / or the back surface of the obtained polishing substrate is locally partially polished. Examples of the local polishing method include mechanical, chemical mechanical, MRF using magnetic abrasive grains, a beam (laser) irradiation method, a gas cluster ion beam etching method, and the like.
 [研磨基板に要求される特性]
 本発明において研磨基板としては、成膜される面及び裏面の表面平滑性に優れることが求められる。具体的には、EUVL用フォトマスクの場合は、品質保証領域における成膜される面及び裏面の表面粗さを、10μm×10μm角の領域で原子間力顕微鏡により測定した結果(RMS)が0.5nm以下であることが好ましく、0.3nm以下であることがより好ましく、0.15nm以下であることがさらに好ましい。
[Characteristics required for polishing substrate]
In the present invention, the polishing substrate is required to have excellent surface smoothness on the surface to be formed and the back surface. Specifically, in the case of a photomask for EUVL, the result (RMS) of the surface roughness of the surface to be deposited and the back surface in the quality assurance region measured with an atomic force microscope in a 10 μm × 10 μm square region is 0. It is preferably 0.5 nm or less, more preferably 0.3 nm or less, and further preferably 0.15 nm or less.
 ここで品質保証領域とは、成膜される面の場合、該研磨基板を用いて作製されたマスクブランク及びフォトマスクにおいて、露光やアライメントのためのEUV光等の光が照射される領域及びアライメントやマスク識別のためのEUV光や紫外~可視光が照射される領域である。 Here, in the case of a surface on which a film is formed, the quality assurance region is a region in which light such as EUV light for exposure or alignment is irradiated and alignment in a mask blank and a photomask manufactured using the polishing substrate. This is a region irradiated with EUV light or ultraviolet to visible light for mask identification.
 また、裏面の品質保証領域は、EUVL用マスクブランク及び反射型マスクを静電チャックで吸着保持するための領域である。この品質保証領域は、図3に示すマスクブランク(EUVL用)10の場合、11が品質保証領域である。品質保証領域の範囲はマスクブランク(EUVL用)の寸法、より具体的には、研磨基板の成膜される面及び裏面の寸法によっても異なるが、例えば、成膜される面及び裏面の寸法が152×152mm角の場合、品質保証領域の範囲は、端部から5mmの外縁部を除いた142mm×142mm角の領域である。 Also, the quality assurance area on the back surface is an area for attracting and holding the EUVL mask blank and the reflective mask with an electrostatic chuck. In the case of the mask blank (for EUVL) 10 shown in FIG. 3, the quality assurance area 11 is the quality assurance area. The range of the quality assurance region varies depending on the dimensions of the mask blank (for EUVL), more specifically, the dimensions of the surface and the back surface on which the polishing substrate is formed. In the case of 152 × 152 mm square, the range of the quality assurance region is a 142 mm × 142 mm square region excluding the outer edge portion of 5 mm from the end.
 また本発明において研磨基板としては、その成膜される面の表面に、パーティクルなどの凸欠点やスクラッチやスリーク、ピットなどの凹欠点が存在しないことが求められる。具体的には、成膜される面の表面品質領域における、ポリスチレンラテックス粒子径換算サイズ150nm以上の大きさの凹凸両欠点数が10個以下であることが好ましく、5個以下であることがより好ましく、0個であることがさらに好ましい。また成膜される面の表面品質領域における、シリカ粒子径換算サイズ70nm以上の大きさの凹凸両欠点数が100個以下であることが好ましく、80個以下であることがより好ましく、60個以下であることがさらに好ましい。 In the present invention, the polishing substrate is required to have no convex defects such as particles and concave defects such as scratches, leaks, and pits on the surface of the surface on which the film is formed. Specifically, in the surface quality region of the surface to be deposited, the number of both concave and convex defects having a polystyrene latex particle size conversion size of 150 nm or more is preferably 10 or less, and more preferably 5 or less. Preferably, it is 0. Further, in the surface quality region of the surface on which the film is formed, the number of both concave and convex defects having a silica particle diameter conversion size of 70 nm or more is preferably 100 or less, more preferably 80 or less, and 60 or less. More preferably.
 [研磨基板(マスクブランク)の表面形状測定方法]
 本発明において、研磨基板の成膜される面及び裏面の表面形状の測定装置としては、レーザ干渉式の平坦度計(例えばZygo社製Verifire、MarkIVや、フジノン社製G310S、Tropel社製FlatMasterなど)やレーザ変位計、超音波変位計、接触式変位計などが使用できる。ここで各種測定装置を用いて得られた結果からチルト成分を除いた残さが表面形状であり、表面形状の最大値と最小値の差が平坦度である。
[Method for measuring surface shape of polishing substrate (mask blank)]
In the present invention, the apparatus for measuring the surface shape of the surface on which the polishing substrate is formed and the back surface is a laser interference type flatness meter (for example, Verifire, Mark IV manufactured by Zygo, G310S manufactured by Fujinon, FlatMaster manufactured by Tropel, etc. ), A laser displacement meter, an ultrasonic displacement meter, a contact displacement meter, or the like can be used. Here, the residue obtained by removing the tilt component from the results obtained using various measuring devices is the surface shape, and the difference between the maximum value and the minimum value of the surface shape is the flatness.
 本発明において、研磨基板の板厚分布を測定する方法としては、該基板が波長300~800nmの可視光域にて透過率30%以上の十分な光線透過性を有する場合、波長300~800nmの可視光を光源とする干渉計(例えばZygo社製Verifire、MarkIVや、フジノン社製G310S、Tropel社製FlatMasterなど)を用いて、成膜される面と裏面から反射された光の光路差から該基板の板厚分布を測定し、得られた板厚分布からチルト成分を差し引いた残さとして板厚分布を得る方法がある。 In the present invention, as a method for measuring the thickness distribution of the polishing substrate, when the substrate has a sufficient light transmittance of 30% or more in the visible light region having a wavelength of 300 to 800 nm, the wavelength of 300 to 800 nm is used. By using an interferometer that uses visible light as a light source (for example, Zirgo Verifire, Mark IV, Fujinon G310S, Tropel FlatMaster, etc.) There is a method of measuring a plate thickness distribution of a substrate and obtaining a plate thickness distribution as a residue obtained by subtracting a tilt component from the obtained plate thickness distribution.
 本発明において、別の研磨基板の成膜される面及び裏面の表面形状をそれぞれ前述のレーザ干渉式の平坦度測定機などにより測定し、それらを足し合わせることによって研磨基板の板厚分布を算出することもできる。ここで、研磨基板の板厚分布を算出するためには、成膜される面及び裏面の表面形状(或いは、表面プロファイル)のうち、一方の表面形状測定結果を反転させたうえで他方の表面形状測定結果と足し合わせる必要がある。前者の方法は、得られた最大板厚分布に基板材料の屈折率分布が含まれるため、屈折率分布がある材料を用いて得た基板の場合は、後者の方が好ましい。以下、後者の測定方法についてさらに詳しく説明する。 In the present invention, the surface shape of the surface on which another polishing substrate is formed and the surface shape of the back surface are measured by the above-described laser interference type flatness measuring machine, and the thickness is calculated by adding them together. You can also Here, in order to calculate the plate thickness distribution of the polishing substrate, the surface shape measurement result of one of the surface shape (or the surface profile) of the surface to be deposited and the back surface is reversed, and then the other surface It is necessary to add to the shape measurement result. In the former method, since the obtained maximum plate thickness distribution includes the refractive index distribution of the substrate material, the latter is preferable in the case of a substrate obtained using a material having a refractive index distribution. Hereinafter, the latter measurement method will be described in more detail.
 図5は、研磨基板(EUVL用)の板厚分布を算出する手順を説明した図である。以下、図5により手順を説明する。まず、図5(a)、図5(b)に示すように、成膜される面C及び裏面Dの表面形状(或いは、表面プロファイル)を測定した後、図5(c)に示すように裏面Dの表面形状(或いは、表面プロファイル)の測定結果を反転させたうえで成膜される面Cの表面形状(或いは、表面プロファイル)の測定結果と足し合わせ、足し合わせたものからチルト成分を除くことにより、図5(d)に示すEUVL用研磨基板の板厚分布を算出する。 FIG. 5 is a diagram illustrating a procedure for calculating a plate thickness distribution of the polishing substrate (for EUVL). The procedure will be described below with reference to FIG. First, as shown in FIG. 5A and FIG. 5B, after measuring the surface shapes (or surface profiles) of the surface C and the back surface D to be formed, as shown in FIG. 5C. Invert the measurement result of the surface shape (or surface profile) of the back surface D, add the measurement result of the surface shape (or surface profile) of the surface C to be deposited, and add the tilt component from the addition result. By removing, the plate thickness distribution of the polishing substrate for EUVL shown in FIG. 5D is calculated.
 なお、両者の方法で得られた板厚分布の最大値と最小値との差として最大板厚分布を得る。また、ここで記載した表面形状測定方法は、測定対象を研磨基板からマスクブランクに変更することにより、そのままマスクブランクの表面形状測定方法として適用できる。 The maximum thickness distribution is obtained as the difference between the maximum value and the minimum value of the thickness distribution obtained by both methods. Moreover, the surface shape measuring method described here can be applied as it is as a surface shape measuring method of a mask blank by changing a measuring object from a polishing substrate to a mask blank.
 [MLブランクの作成(第2手順;EUVL用フォトマスクの場合)]
 研磨基板1の成膜される面に、EUV反射光における高い反射率を有するML膜2として、高屈折率膜と低屈折率膜を交互に複数回積層させた多層反射膜を形成する。ここで、EUV反射光とは、EUV光の波長域の光線を入射角6~10度で照射した際に生じる反射光をいい、EUV反射光の反射率とは、波長12~15nmにおけるEUV反射光のうち波長13.5nm付近の光線の反射率を意図している。
[ML blank creation (second procedure; photomask for EUVL)]
A multilayer reflective film in which a high refractive index film and a low refractive index film are alternately laminated a plurality of times is formed as an ML film 2 having a high reflectance in EUV reflected light on the surface on which the polishing substrate 1 is formed. Here, EUV reflected light refers to reflected light generated when a light ray in the wavelength range of EUV light is irradiated at an incident angle of 6 to 10 degrees, and the reflectance of EUV reflected light refers to EUV reflected light at a wavelength of 12 to 15 nm. It is intended to reflect light having a wavelength of around 13.5 nm.
 ML膜表面からのEUV反射光は、その反射率の最大値が60%以上であると好ましく、63%以上であるとより好ましい。ML膜の高屈折率膜にはSi(屈折率=0.999(λ=13.5nm))が、低屈折率膜にはMo(同屈折率=0.924)がそれぞれ広く使用される(Mo/Si多層反射膜)。 The EUV reflected light from the ML film surface preferably has a maximum reflectance of 60% or more, and more preferably 63% or more. Si (refractive index = 0.999 (λ = 13.5 nm)) is widely used for the high refractive index film of the ML film, and Mo (same refractive index = 0.924) is widely used for the low refractive index film ( Mo / Si multilayer reflective film).
 但し、ML膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Rh/Si多層反射膜、Pt/Si多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜なども使用できる。 However, the ML film is not limited to this, and the Ru / Si multilayer reflective film, the Mo / Be multilayer reflective film, the Rh / Si multilayer reflective film, the Pt / Si multilayer reflective film, the Mo compound / Si compound multilayer reflective film, the Si / Mo / Ru multilayer reflective films, Si / Mo / Ru / Mo multilayer reflective films, Si / Ru / Mo / Ru multilayer reflective films, and the like can also be used.
 ML膜を構成する各層の膜厚及び層の繰り返し単位の数は、使用する膜材料及びML膜に要求されるEUV反射光の反射率に応じて適宜選択できる。Mo/Si多層反射膜を例にとると、EUV反射光の反射率の最大値を60%以上とするためには、膜厚4.5±0.1nmのSi層と、膜厚2.3±0.1nmのMo層と、を繰り返し単位数が30~60になるようにこの順に積層させると好ましい。 The film thickness of each layer constituting the ML film and the number of repeating units of the layer can be appropriately selected according to the film material to be used and the reflectance of EUV reflected light required for the ML film. Taking a Mo / Si multilayer reflective film as an example, in order to set the maximum reflectance of EUV reflected light to 60% or more, a Si layer with a film thickness of 4.5 ± 0.1 nm and a film thickness of 2.3 It is preferable to stack a Mo layer of ± 0.1 nm in this order so that the number of repeating units is 30 to 60.
 なお、ML膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の膜厚に成膜すればよい。 Note that each layer constituting the ML film may be formed to have a desired film thickness using a known film forming method such as a magnetron sputtering method or an ion beam sputtering method.
 ML膜2表面及びその近傍が、保管時に自然酸化されたり洗浄時に酸化されたりするのを防止するため、ML膜2表面上に保護膜3を設けることができる。保護膜3としては、Si、Ti、Ru、Rh、C、SiC、又はこれら元素・化合物の混合物、或いはこれら元素・化合物にN、OやBなどを添加したものなどが使用できる。 The protective film 3 can be provided on the surface of the ML film 2 in order to prevent the surface of the ML film 2 and the vicinity thereof from being naturally oxidized during storage or oxidized during cleaning. As the protective film 3, Si, Ti, Ru, Rh, C, SiC, a mixture of these elements / compounds, or those obtained by adding N, O, B or the like to these elements / compounds can be used.
 保護膜としてRuを用いた場合、膜厚は2~3nmと薄くでき、後述するバッファー膜の機能を兼用できるため、特に好ましい。またML膜がMo/Si多層反射膜の場合、最上層をSi膜とすることによって、該最上層を保護膜として機能させることができる。その場合保護膜としての役割も果たす最上層のSi膜の膜厚は、通常の4.5nmより厚い、5~15nmであることが好ましい。また、保護膜としてSi膜を成膜した後、該Si膜上に保護膜とバッファー膜とを兼ねるRu膜を成膜してもよい。 When Ru is used as the protective film, the film thickness can be as thin as 2 to 3 nm, which is particularly preferable because it can also function as a buffer film described later. When the ML film is a Mo / Si multilayer reflective film, the uppermost layer can be made to function as a protective film by making the uppermost layer an Si film. In this case, the thickness of the uppermost Si film that also serves as a protective film is preferably 5 to 15 nm, which is larger than the usual 4.5 nm. Further, after forming a Si film as a protective film, a Ru film serving as both a protective film and a buffer film may be formed on the Si film.
 なお、ML膜や保護膜などの膜は、必ずしも1層である必要はなく、2層以上であってもよい。ML膜上に保護膜を設けた場合、保護膜表面からのEUV反射光の反射率の最大値が上記範囲を満たす必要がある。すなわち、保護膜表面からのEUV反射光の反射率の最大値が60%以上であることが好ましく、63%以上であることがより好ましい。なお、保護膜は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の膜厚になるように成膜すればよい。 Note that the film such as the ML film or the protective film is not necessarily one layer, and may be two or more layers. When a protective film is provided on the ML film, the maximum value of the reflectance of EUV reflected light from the surface of the protective film needs to satisfy the above range. That is, the maximum value of the reflectance of EUV reflected light from the protective film surface is preferably 60% or more, and more preferably 63% or more. Note that the protective film may be formed to have a desired film thickness using a known film formation method such as a magnetron sputtering method or an ion beam sputtering method.
 [マスクブランクの形成(第3手順)]
 次いで、EUVL用以外のフォトマスクの場合、第1手順で得られた研磨基板上に光吸収膜を形成する。EUVL用フォトマスクの場合は、MLブランク表面(ML膜上、或いはML膜の上に保護膜が形成されている場合には、その保護膜上)に吸収膜4を形成する。吸収膜4に特に要求される特性は、EUV反射マスク上に形成されたパターンが、EUVL露光機の投影光学系を介してウェハー上のレジスト膜に忠実に転写されるように、吸収膜4からの反射光の強度、位相を調整することである。
[Formation of mask blank (third procedure)]
Next, in the case of a photomask other than for EUVL, a light absorption film is formed on the polishing substrate obtained in the first procedure. In the case of an EUVL photomask, the absorption film 4 is formed on the ML blank surface (on the ML film or on the protective film when a protective film is formed on the ML film). The characteristic particularly required for the absorption film 4 is that the pattern formed on the EUV reflection mask is transferred from the absorption film 4 so that the pattern is faithfully transferred to the resist film on the wafer via the projection optical system of the EUVL exposure machine. Adjusting the intensity and phase of the reflected light.
 この具体的な方法は2種類あり、一つ目は、吸収膜4からの反射光の強度を極力小さくする方法であり、吸収膜4(吸収膜表面に反射防止膜が形成されている場合は反射防止膜)表面からのEUV光の反射率を1%以下、特に0.7%以下となるように、吸収膜4の膜厚及び材料を調整する。また2つ目は、ML膜2からの反射光と吸収膜4(吸収膜表面に反射防止膜が形成されている場合は反射防止膜)からの反射光の干渉効果を利用する方法であり、吸収膜4(吸収膜表面に反射防止膜が形成されている場合は反射防止膜)からのEUV光の反射率を5~15%とし、かつML膜2からの反射光と吸収膜4(吸収膜表面に反射防止膜が形成されている場合は反射防止膜)からの反射光の位相差が175~185度となるように、吸収膜4の膜厚及び材料を調整する。 There are two specific methods. The first method is to reduce the intensity of reflected light from the absorption film 4 as much as possible. The absorption film 4 (when an antireflection film is formed on the absorption film surface) The film thickness and material of the absorption film 4 are adjusted so that the reflectance of EUV light from the antireflection film) surface is 1% or less, particularly 0.7% or less. The second is a method that uses the interference effect of the reflected light from the ML film 2 and the reflected light from the absorption film 4 (or the antireflection film when an antireflection film is formed on the absorption film surface), The reflectance of EUV light from the absorption film 4 (antireflection film when an antireflection film is formed on the absorption film surface) is set to 5 to 15%, and the reflected light from the ML film 2 and the absorption film 4 (absorption) When an antireflection film is formed on the film surface, the film thickness and material of the absorption film 4 are adjusted so that the phase difference of reflected light from the antireflection film) is 175 to 185 degrees.
 いずれの方法においても、吸収膜4を構成する材料としては、Taを40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料が好ましい。吸収膜4に用いるTaを主成分とする材料は、Ta以外にHf、Si、Zr、Ge、B、Pd、H及びNのうち少なくとも1種以上の元素を含有することが好ましい。 In any method, the material constituting the absorption film 4 is preferably a material containing Ta at least 40 at%, preferably at least 50 at%, more preferably at least 55 at%. The material mainly composed of Ta used for the absorption film 4 preferably contains at least one element of Hf, Si, Zr, Ge, B, Pd, H, and N in addition to Ta.
 Ta以外の上記の元素を含有する材料の具体例としては、例えば、TaN、TaNH、TaHf、TaHfN、TaBSi、TaBSiN、TaB、TaBN、TaSi、TaSiN、TaGe、TaGeN、TaZr、TaZrN、TaPdなどが挙げられる。但し、吸収膜4中には、酸素を含まないことが好ましい。具体的には、吸収膜4中の酸素の含有率は25at%未満が好ましい。 Specific examples of the material containing the above elements other than Ta include TaN, TaNH, TaHf, TaHfN, TaBSi, TaBSiN, TaB, TaBN, TaSi, TaSiN, TaGe, TaGeN, TaZr, TaZrN, TaPd, and the like. It is done. However, it is preferable that the absorption film 4 does not contain oxygen. Specifically, the oxygen content in the absorption film 4 is preferably less than 25 at%.
 マスクブランクの吸収膜にマスクパターンを形成してEUVマスクを作成する際には、通常はドライエッチングプロセスが用いられ、エッチングガスとしては、塩素ガス(混合ガスを含む)或いはフッ素系ガス(混合ガスを含む)が通常使用される。 When an EUV mask is formed by forming a mask pattern on an absorption film of a mask blank, a dry etching process is usually used. As an etching gas, chlorine gas (including mixed gas) or fluorine-based gas (mixed gas) is used. Are usually used.
 エッチングプロセスによるML膜のダメージ防止目的で、ML膜上に保護膜としてRu又はRu化合物を含む膜を形成する場合、保護膜のダメージが少ないことから、吸収膜4のエッチングガスとして主に塩素ガスが使われる。しかしながら、塩素ガスを用いて吸収膜4のドライエッチングプロセスを実施する場合に、吸収膜4が酸素を含有していると、エッチング速度が低下し、レジスト膜のダメージが大きくなり好ましくない。吸収膜4中の酸素の含有率としては、15at%以下がより好ましく、10at%以下がさらに好ましく、5at%以下が特に好ましい。 In order to prevent damage to the ML film due to the etching process, when a film containing Ru or a Ru compound is formed on the ML film as a protective film, the protective film is less damaged. Is used. However, when the dry etching process of the absorption film 4 is performed using chlorine gas, if the absorption film 4 contains oxygen, the etching rate is lowered, and the damage to the resist film is increased. The oxygen content in the absorption film 4 is more preferably 15 at% or less, further preferably 10 at% or less, and particularly preferably 5 at% or less.
 吸収膜4の厚さは、前述の一つ目の方法の場合、吸収膜4表面からのEUV光の反射率を1%以下、特に0.7%以下とするためには、60nm以上であることが好ましく、特に70nm以上であることが好ましい。また前述の2つ目の方法の場合、40nm~60nmの範囲が好ましく、特に45nm~55nmの範囲が好ましい。 In the case of the first method described above, the thickness of the absorption film 4 is 60 nm or more so that the reflectance of EUV light from the surface of the absorption film 4 is 1% or less, particularly 0.7% or less. It is particularly preferable that the thickness is 70 nm or more. In the case of the second method described above, the range of 40 nm to 60 nm is preferable, and the range of 45 nm to 55 nm is particularly preferable.
 また上記した構成の吸収膜4は、公知の成膜方法、例えば、マグネトロンスパッタリング法又はイオンビームスパッタリング法により形成できる。 The absorption film 4 having the above-described configuration can be formed by a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
 本発明において、マスクブランクの吸収膜4にマスクパターンを形成してEUVマスクを作成する際に実施されるエッチングプロセス、通常はドライエッチングプロセスによって、ML膜2がダメージを受けるのを防止するため、エッチングストッパーとしての役割を果たすバッファー膜をML膜2(ML膜上に保護膜3が形成されている場合は保護膜3)と、吸収膜4との間に設けてもよい。バッファー膜の材質としては、吸収膜4のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収膜4よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、例えばCr、Al、Ru、Ta及びこれらの窒化物、ならびにSiO、Si、Alやこれらの混合物が例示される。これらの中でも、Ru、CrN及びSiOが好ましく、CrN及びRuがより好ましく、保護膜とバッファー膜の機能を兼ね備えるため特にRuが好ましい。バッファー膜の膜厚は1~60nmであることが好ましい。バッファー膜は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜することができる。 In the present invention, in order to prevent the ML film 2 from being damaged by an etching process, usually a dry etching process, performed when forming an EUV mask by forming a mask pattern on the absorption film 4 of the mask blank, A buffer film serving as an etching stopper may be provided between the ML film 2 (the protective film 3 when the protective film 3 is formed on the ML film) and the absorption film 4. As the material of the buffer film, a material that is not easily affected by the etching process of the absorption film 4, that is, the etching rate is slower than that of the absorption film 4 and is not easily damaged by this etching process is selected. Examples of the material satisfying this condition include Cr, Al, Ru, Ta, and nitrides thereof, and SiO 2 , Si 3 N 4 , Al 2 O 3, and mixtures thereof. Among these, Ru, CrN, and SiO 2 are preferable, CrN and Ru are more preferable, and Ru is particularly preferable because it combines the functions of a protective film and a buffer film. The thickness of the buffer film is preferably 1 to 60 nm. The buffer film can be formed using a known film formation method such as a magnetron sputtering method or an ion beam sputtering method.
 また本発明において、マスクブランクとして、吸収膜4上には低反射性の反射防止膜を設けてもよい。反射防止膜によりマスクパターンの検査時におけるコントラストが良好となり正確なマスクパターン欠陥検査が容易となる。具体的には、マスクパターンの検査光を反射防止膜表面に照射した際に生じる反射光の反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。検査光としては、通常257nm程度の光が使用される。反射防止膜は、上記の特性を達成するため、検査光の波長の屈折率が吸収膜よりも低い材料で構成されることが好ましい。具体的には、Taを主成分とする材料が挙げられる。また、Ta以外にHf、Ge、Si、B、N、H、及びOのうち少なくとも1種以上の元素を含有することができる。具体例としては、例えば、TaO、TaON、TaONH、TaHfO、TaHfON、TaBSiO、TaBSiON、SiN、SiON等が挙げられる。 In the present invention, a low-reflective antireflection film may be provided on the absorption film 4 as a mask blank. The antireflection film provides a good contrast when inspecting the mask pattern and facilitates accurate mask pattern defect inspection. Specifically, the reflectance of the reflected light generated when the mask pattern inspection light is irradiated on the surface of the antireflection film is preferably 15% or less, more preferably 10% or less, and more preferably 5% or less. More preferably it is. As inspection light, light of about 257 nm is usually used. In order to achieve the above characteristics, the antireflection film is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption film. Specifically, a material mainly containing Ta can be used. In addition to Ta, at least one element of Hf, Ge, Si, B, N, H, and O can be contained. Specific examples include TaO, TaON, TaONH, TaHfO, TaHfON, TaBSiO, TaBSiON, SiN, and SiON.
 吸収膜上に反射防止膜を形成する場合、吸収膜及び反射防止膜の厚さの合計が10~65nmであると好ましく、30~65nmであるとより好ましく、35~60nmであるとさらに好ましい。また、反射防止膜の膜厚が吸収膜の膜厚よりも厚いと、吸収膜でのEUV光吸収特性が低下するおそれがあるので、反射防止膜の膜厚は吸収膜の膜厚よりも薄いことが好ましい。このため、反射防止膜の厚さは1~20nmであることが好ましく、3~15nmであることがより好ましく、5~10nmであることがさらに好ましい。 When an antireflection film is formed on the absorption film, the total thickness of the absorption film and the antireflection film is preferably 10 to 65 nm, more preferably 30 to 65 nm, and further preferably 35 to 60 nm. In addition, if the thickness of the antireflection film is larger than the thickness of the absorption film, the EUV light absorption characteristics in the absorption film may be deteriorated. Therefore, the thickness of the antireflection film is smaller than the thickness of the absorption film. It is preferable. Therefore, the thickness of the antireflection film is preferably 1 to 20 nm, more preferably 3 to 15 nm, and further preferably 5 to 10 nm.
 また本発明において、ハードマスクなどの機能膜を設けてもよい。ハードマスクは、吸収膜(吸収膜上に反射防止膜が形成されており、かつハードマスクが反射防止膜の機能を有していない場合は、反射防止膜)の面上に形成するものであり、前述のドライエッチング速度が、吸収膜及び/或いは反射防止膜と比べて遅いために、レジスト膜の膜厚を薄くでき、より微細なパターンを作製できる。このようなハードマスクの材料としては、Cr、Ru、Cr(N、O)などが使用でき、その膜厚は2~10nmが好ましい。 In the present invention, a functional film such as a hard mask may be provided. The hard mask is formed on the surface of an absorption film (an antireflection film when an antireflection film is formed on the absorption film and the hard mask does not have an antireflection film function). Since the dry etching rate described above is slower than that of the absorption film and / or the antireflection film, the resist film can be made thinner and a finer pattern can be produced. As a material for such a hard mask, Cr 2 O 3 , Ru, Cr (N, O) or the like can be used, and the film thickness is preferably 2 to 10 nm.
 本発明において、マスクブランクとしては、EUVL用以外のフォトマスクの場合、研磨基板の表面に、少なくとも光吸収膜を有することを基本構成とする。EUVL用フォトマスクの場合は、研磨基板の表面に、EUV光を反射するML膜、当該ML膜の上にEUV光を吸収する吸収膜を少なくとも有することを基本構成とするが、ML膜面上に保護膜を形成してもよいし、保護膜とバッファー膜の両者を形成してもよいし、吸収膜の面上に反射防止膜、ハードマスクを形成してもよい。 In the present invention, in the case of a photomask other than for EUVL, the basic configuration of the mask blank is to have at least a light absorption film on the surface of the polishing substrate. In the case of a photomask for EUVL, the basic structure is to have at least an ML film that reflects EUV light on the surface of the polishing substrate and an absorption film that absorbs EUV light on the ML film. A protective film may be formed, both the protective film and the buffer film may be formed, or an antireflection film and a hard mask may be formed on the surface of the absorption film.
 [導電膜の形成]
 EUVL用のマスクブランクや反射フォトマスクを静電チャックで吸着保持するために、研磨基板の裏面に高誘電性材料から成る導電膜を形成することが好ましい。導電膜としては、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。構成材料としては、具体的には、Si、Mo、Cr、TiN、CrO、CrN、CrON、TaSiからなる単層膜又はこれらの積層膜が適用できる。
[Formation of conductive film]
In order to attract and hold an EUVL mask blank or a reflective photomask with an electrostatic chuck, it is preferable to form a conductive film made of a high dielectric material on the back surface of the polishing substrate. As the conductive film, the electrical conductivity and thickness of the constituent materials are selected so that the sheet resistance is 100Ω / □ or less. Specifically, a single layer film made of Si, Mo, Cr, TiN, CrO, CrN, CrON, or TaSi or a laminated film thereof can be applied as the constituent material.
 導電膜の厚さは、例えば10~1000nmとすると好ましい。導電膜の成膜方法としては、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて成膜できる。また導電膜の成膜は、手順1~4のいずれかの間に実施すれば良い。例えば、手順1と手順2の間、すなわち、手順1で準備した研磨基板の裏面に、成膜される面にML膜を形成する手順2の前に、実施しても良い。また手順2と手順3の間、すなわち、手順2で作成したMLブランクの裏面に、成膜される面に吸収膜などを形成する手順3の前に、実施しても良い。また手順3と手順4の間、すなわち、手順3で作成したマスクブランクの裏面に、レジスト膜形成など手順4の前に、実施しても良い。 The thickness of the conductive film is preferably 10 to 1000 nm, for example. As a method for forming the conductive film, the film can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method. The conductive film may be formed during any one of procedures 1 to 4. For example, it may be performed between the procedure 1 and the procedure 2, that is, before the procedure 2 in which the ML film is formed on the surface to be formed on the back surface of the polishing substrate prepared in the procedure 1. Moreover, you may implement between the procedure 2 and the procedure 3, ie, before the procedure 3 which forms an absorption film etc. in the surface formed into a film on the back surface of the ML blank produced by the procedure 2. Moreover, you may implement between the procedure 3 and the procedure 4, ie, before the procedure 4, such as resist film formation, on the back surface of the mask blank created by the procedure 3.
 [フォトマスクの作成(第4手順)]
 本発明において、フォトマスクの製造方法は、研磨基板の成膜される面及び裏面の基準表面形状に応じて、又は研磨基板の基準板厚分布に応じて、マスクパターン形成位置を調整して電子線描画を行う点を除けば、従来どおりのマスク作製プロセスに準拠して作製できる。
[Create photomask (fourth procedure)]
In the present invention, the photomask manufacturing method adjusts the mask pattern formation position according to the reference surface shape of the surface and the back surface on which the polishing substrate is formed, or the reference plate thickness distribution of the polishing substrate. Except for the point of performing line drawing, the mask can be manufactured in accordance with a conventional mask manufacturing process.
 すわなち、上述の方法にて作製したマスクブランクにレジスト膜を塗布し、加熱を行う。その後、研磨基板の成膜される面及び裏面の基準表面形状に応じて、或いは研磨基板の基準板厚分布に応じて、マスクパターン形成位置を調整して電子線や紫外光による描画を行い、続く現像・エッチングにより不要な吸収膜や反射防止膜、レジストが除去されてフォトマスクを得る。 In other words, a resist film is applied to the mask blank produced by the above-described method and heated. Then, according to the reference surface shape of the surface and the back surface of the polishing substrate to be formed or according to the reference plate thickness distribution of the polishing substrate, the mask pattern formation position is adjusted to perform drawing with an electron beam or ultraviolet light, Subsequent development and etching remove unnecessary absorption films, antireflection films, and resists to obtain a photomask.
 [マスクパターン形成位置調整法]
 具体的に図6を用いて説明する。ここでは、簡単のために、EUV光を光源とする露光装置のマスクステージの表面平坦度が0nmで、反射型フォトマスクは、同マスクステージに隙間なく吸着されるものとする。表裏面の平坦度が0nmでかつ板厚分布が0nmの研磨基板を用いて作製した理想的な反射型フォトマスクを、露光装置のマスクステージに吸着した場合、反射型フォトマスクの表面は、図6の破線で示したように、静電チャック表面と平行となるため、反射型フォトマスクのマスクパターンは、この状態においてウェハー上の所望の位置にパターンを転写するように形成されている。
[Mask pattern formation position adjustment method]
This will be specifically described with reference to FIG. Here, for simplicity, it is assumed that the surface flatness of the mask stage of the exposure apparatus using EUV light as a light source is 0 nm, and the reflective photomask is adsorbed to the mask stage without a gap. When an ideal reflective photomask manufactured using a polishing substrate having a flatness of 0 nm on the front and back surfaces and a thickness distribution of 0 nm is adsorbed to the mask stage of the exposure apparatus, the surface of the reflective photomask is As indicated by the broken line 6, the mask pattern of the reflective photomask is formed so as to transfer the pattern to a desired position on the wafer in this state because it is parallel to the surface of the electrostatic chuck.
 例えば、点Aから、マスクステージ法線からθ傾いた角度にて、反射型フォトマスクに入射するEUV光は、理想的な反射型フォトマスク表面の点Bにて反射され、投影光学系の点Cを通りウェハー上の点Dに投影される。本態様の投影光学系の倍率が1/4倍であるため、ウェハー上の点Dに形成したいパターンを4倍に等倍したものが、理想的な反射型フォトマスクの点Bに形成される。なお、θは、例えば6°程度である。 For example, EUV light incident on the reflective photomask at an angle inclined from the mask stage normal by θ from the point A is reflected at the point B on the ideal reflective photomask surface, and is a point of the projection optical system. Projected to point D on the wafer through C. Since the magnification of the projection optical system of this aspect is ¼, a pattern to be formed at the point D on the wafer is formed at the point B of the ideal reflection type photomask by equaling four times. . Note that θ is, for example, about 6 °.
 しかしながら、実際の反射型フォトマスクは、反射型フォトマスクを構成する研磨基板の表裏平坦度と最大板厚分布の少なくともいずれかが0nmではないため、露光装置のマスクステージに吸着された状態の反射型フォトマスクの表面は、図6の実線で示すように、なだらかな凹凸を有し、図6の破線からずれたものとなる。 However, in an actual reflective photomask, at least one of the front and back flatness and the maximum thickness distribution of the polishing substrate constituting the reflective photomask is not 0 nm, so that the reflection in the state of being adsorbed to the mask stage of the exposure apparatus As shown by the solid line in FIG. 6, the surface of the mold photomask has gentle irregularities and is shifted from the broken line in FIG.
 このため、同様に点Aから入射したEUV光は、破線より高さ方向にzずれた点B’にて、反射型フォトマスク表面から反射され、投影光学系の点C’を通りウェハー上の点D’に投影される。このため、ウェハー上の点Dに形成されるはずのパターンは、それからΔXずれた点D’に投影されてしまい、微細な回路パターンを所望の位置に形成することができず、好ましくない。ここでΔXとzとの関係は
ΔX=(z・tanθ)/4
となる。
For this reason, the EUV light incident from the point A is similarly reflected from the surface of the reflective photomask at a point B ′ shifted in the height direction from the broken line, passes through the point C ′ of the projection optical system, and is on the wafer. Projected to point D ′. For this reason, the pattern that should be formed at the point D on the wafer is projected to the point D ′ that is shifted by ΔX, and a fine circuit pattern cannot be formed at a desired position, which is not preferable. Here, the relationship between ΔX and z is ΔX = (z · tan θ) / 4.
It becomes.
 マスクパターンの形成位置調整方法としては、この例の場合、反射型フォトマスクパターンの形成位置を、破線からの高さ方向の変位zに応じて、δx(=z・tanθ)だけ調整するものであり、この場合、反射型フォトマスク上のパターンをウェハー上の所望の位置に形成できる。 As a mask pattern formation position adjusting method, in this example, the reflective photomask pattern formation position is adjusted by δx (= z · tan θ) in accordance with the displacement z in the height direction from the broken line. In this case, the pattern on the reflective photomask can be formed at a desired position on the wafer.
 これは、前記仮定を前提にした単純な場合であり、実際の調整は、反射型フォトマスクを構成する研磨基板の表裏表面形状や板厚分布に加えて、露光装置のマスクステージの表面形状や、マスクステージに反射型フォトマスクを吸着保持した場合の隙間、反射型フォトマスクへのパターン描画時の重力などによる反射型フォトマスクの変形など考慮する必要があり、より複雑な調整となる。 This is a simple case based on the above assumption, and the actual adjustments include the surface shape of the mask stage of the exposure apparatus in addition to the surface shape and thickness distribution of the polishing substrate constituting the reflective photomask. Further, it is necessary to consider the gap when the reflective photomask is sucked and held on the mask stage, the deformation of the reflective photomask due to the gravity at the time of drawing the pattern on the reflective photomask, etc., which is a more complicated adjustment.
 マスクパターンの形成位置調整をすることを前提にすれば、研磨基板の平坦度に対する要求は300nm以下に緩和される。この場合、成膜される面及び裏面の平坦度300nm以下、表面粗さ(RMS)0.15nm以下、サイズ50nm以上の欠点数が少ない研磨基板を実現すればよく、表面粗さと欠点のみに注力して加工できるため、研磨基板の加工は比較的容易となる。 Assuming that the mask pattern formation position is adjusted, the demand for the flatness of the polishing substrate is reduced to 300 nm or less. In this case, it is only necessary to realize a polished substrate having a flatness of 300 nm or less, a surface roughness (RMS) of 0.15 nm or less, and a size of 50 nm or more on the surface to be formed and the back surface, focusing only on the surface roughness and the defects. Therefore, the polishing substrate can be processed relatively easily.
 本発明においては、このずれ量の算出を、研磨基板の成膜される面と裏面の基準表面形状ないしは基準板厚分布、又はマスクブランクの成膜面と裏面の基準表面形状ないしは基準板厚分布に基づいて行う。しかも、前記基準表面形状及び前記基準板厚分布は、1枚の研磨基板又は1枚のマスクブランクを対象とするのではなく、複数枚の研磨基板又は複数枚のマスクブランクを対象として求める点に特徴を有する。 In the present invention, the amount of deviation is calculated by calculating the reference surface shape or reference plate thickness distribution on the surface and the back surface of the polishing substrate, or the reference surface shape or reference plate thickness distribution on the film forming surface and the back surface of the mask blank. Based on. In addition, the reference surface shape and the reference plate thickness distribution are determined not for a single polishing substrate or a single mask blank but for a plurality of polishing substrates or a plurality of mask blanks. Has characteristics.
 [本発明における基準表面形状]
 本発明では、基準表面形状として、下記3種類の基準表面形状を定め、その内のいずれかを使用することが好ましい。基準表面形状を定める一つ目の方法(以下、第1基準表面形状という)は、複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状又は複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状を、成膜される面(或いは成膜面)と裏面の基準表面形状とする。なお、複数枚とは、2以上の枚数であれば特に制限されるものではないが、例えば、4~15枚などが好ましい枚数の一例として挙げられる。なお、平均形状は、対象とする複数枚の表面形状を単純に平均して算出して求める。
[Reference surface shape in the present invention]
In the present invention, it is preferable to define the following three types of reference surface shapes as the reference surface shape, and use one of them. The first method for determining the reference surface shape (hereinafter referred to as the first reference surface shape) is the average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates or the mask blanks. The average shape of the surface shapes of the film formation surface and the back surface is defined as a reference surface shape of the film formation surface (or film formation surface) and the back surface. The number of sheets is not particularly limited as long as it is 2 or more, but 4 to 15 sheets, for example, are preferable examples. The average shape is obtained by simply averaging a plurality of target surface shapes.
 基準表面形状を定める二つ目の方法(以下、第2基準表面形状という)は、複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状又は複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状を算出し、それを多項式でフィッティング(近似)したものを、成膜される面(或いは成膜面)と裏面の基準表面形状とする。多項式としては、ルジャンドル多項式やツエルニケ多項式などが好ましい多項式として挙げられる。xyz直交座標系におけるルジャンドル多項式(6次まで)及びツエルニケ多項式(8次まで)をそれぞれ下記式1及び式2に示す。多項式近似としては、例えば、ルジャンドル多項式の場合、6次までの近似を使用するのが精度と時間とのバランスが取れて好ましい。 A second method for determining a reference surface shape (hereinafter referred to as a second reference surface shape) is an average shape of the surface shapes of the surface and the back surface of a plurality of polishing substrates or a plurality of mask blanks. An average shape of the surface shapes of the film formation surface and the back surface is calculated, and a fitting (approximation) of the surface shape is expressed as a reference surface shape of the film formation surface (or film formation surface) and the back surface. As a polynomial, a Legendre polynomial, a Zernike polynomial, etc. are mentioned as a preferable polynomial. The Legendre polynomial (up to the 6th order) and the Zernike polynomial (up to the 8th order) in the xyz orthogonal coordinate system are shown in the following formulas 1 and 2, respectively. As a polynomial approximation, for example, in the case of a Legendre polynomial, it is preferable to use an approximation up to the sixth order in terms of balance between accuracy and time.
 [式1]
Z(x,y)=

+a
+a(3x-1)(3y-1)/4
+a(5x-3x)(5y-3y)/4
+a(35x-30x+3)(35y-30y+3)/64
+a(63x-70x+15x)(63y-70y+15x)/64
+a(231x-315x+105x-5)(231y-315y+105y-5)/256
ここで、aは係数。
[Formula 1]
Z (x, y) =
a 0
+ A 1
+ A 2 (3x 2 -1) (3y 2 -1) / 4
+ A 3 (5x 3 -3x) (5y 3 -3y) / 4
+ A 4 (35x 4 -30x 2 +3) (35y 4 -30y 2 +3) / 64
+ A 5 (63x 5 -70x 3 + 15x) (63y 5 -70y 3 + 15x) / 64
+ A 6 (231x 6 −315x 4 + 105x 2 −5) (231y 6 −315y 4 + 105y 2 −5) / 256
Here, a n is a coefficient.
 [式2]
Z(x,y)=

+a(x+y0.5cos(tan-1(y/x))
+a(x+y0.5sin(tan-1(y/x))
+a(2(x+y)-1)
+a(x+y)cos(2tan-1(y/x))
+a(x+y)sin(2tan-1(y/x))
+a(3(x+y)-2)(x+y0.5cos(tan-1(y/x))
+a(3(x+y)-2)(x+y0.5sin(tan-1(y/x))
+a(6(x+y-6(x+y)+1)
ここで、aは係数。
[Formula 2]
Z (x, y) =
a 0
+ A 1 (x 2 + y 2 ) 0.5 cos (tan −1 (y / x))
+ A 2 (x 2 + y 2 ) 0.5 sin (tan −1 (y / x))
+ A 3 (2 (x 2 + y 2 ) -1)
+ A 4 (x 2 + y 2 ) cos ( 2 tan −1 (y / x))
+ A 5 (x 2 + y 2 ) sin ( 2 tan −1 (y / x))
+ A 6 (3 (x 2 + y 2 ) −2) (x 2 + y 2 ) 0.5 cos (tan −1 (y / x))
+ A 7 (3 (x 2 + y 2 ) −2) (x 2 + y 2 ) 0.5 sin (tan −1 (y / x))
+ A 8 (6 (x 2 + y 2 ) 2 -6 (x 2 + y 2 ) +1)
Here, a n is a coefficient.
 基準表面形状を定める三つ目の方法(以下、第3基準表面形状という)は、複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状又は複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の少なくともどちらかを多項式にて近似し、それらを平均したものを成膜される面(或いは成膜面)と裏面の基準表面形状とする。多項式としては、第2基準表面形状で挙げられるものが好ましく使用される。 A third method for determining a reference surface shape (hereinafter referred to as a third reference surface shape) is a method of forming a surface of a plurality of polishing substrates and a surface shape of each of a back surface or a film formation surface of a plurality of mask blanks. And at least one of the surface shapes of the back surface and the back surface is approximated by a polynomial, and the average of them is defined as the surface (or film forming surface) on which the film is formed and the reference surface shape of the back surface. As the polynomial, those listed in the second reference surface shape are preferably used.
 [本発明における基準板厚分布]
 本発明では、基準板厚分布として、下記3種類の基準板厚分布を定め、その内のいずれかを使用することが好ましい。板厚分布は、研磨基板の成膜される面と裏面のそれぞれの表面形状又はマスクブランクの成膜面と裏面のそれぞれの表面形状を測定し、裏面の表面形状の測定結果を反転させたうえで成膜される面(或いは成膜面)の表面形状の測定結果と足し合わせたものからチルト成分を差し引くことにより、研磨基板又はマスクブランクの板厚分布を算出した。なお、得られた板厚分布の最大値と最小値との差として最大板厚分布が求まる。
[Reference thickness distribution in the present invention]
In the present invention, as the reference plate thickness distribution, the following three types of reference plate thickness distributions are defined, and any one of them is preferably used. The plate thickness distribution is determined by measuring the surface shape of each surface on the polishing substrate and the back surface, or measuring the surface shape of each mask blank film forming surface and the back surface, and reversing the measurement results of the back surface shape. The thickness distribution of the polishing substrate or the mask blank was calculated by subtracting the tilt component from the sum of the measurement results of the surface shape of the surface to be deposited (or the deposition surface). The maximum thickness distribution is obtained as the difference between the maximum value and the minimum value of the obtained thickness distribution.
 基準板厚分布を定める一つ目の方法(以下、第1基準板厚分布という)は、複数枚の研磨基板の板厚分布の平均又は複数枚のマスクブランクの板厚分布の平均を基準板厚分布とするものである。基準板厚分布を定める二つ目の方法(以下、第2基準板厚分布という)は、複数の研磨基板の平均板厚分布又は複数枚のマスクブランクの平均板厚分布を多項式でフィッティング(近似)したものを基準板厚分布とするものである。基準板厚分布を定める三つ目の方法(以下、第3基準板厚分布という)は、複数枚(n枚)の研磨基板の板厚分布又は複数枚のマスクブランクの板厚分布の少なくともどちらかを多項式でフィッティング(近似)し、それらの平均を基準板厚分布とするものである。 The first method for determining the reference plate thickness distribution (hereinafter referred to as the first reference plate thickness distribution) uses the average of the thickness distribution of a plurality of polishing substrates or the average of the thickness distribution of a plurality of mask blanks as a reference plate. The thickness distribution is assumed. The second method for determining the reference plate thickness distribution (hereinafter referred to as the second reference plate thickness distribution) is to fit (approximate) an average plate thickness distribution of a plurality of polishing substrates or an average plate thickness distribution of a plurality of mask blanks with a polynomial. ) Is used as a reference thickness distribution. The third method for determining the reference plate thickness distribution (hereinafter referred to as the third reference plate thickness distribution) is at least either the plate thickness distribution of a plurality (n) of polishing substrates or the plate thickness distribution of a plurality of mask blanks. These are fitted (approximate) with a polynomial, and the average of them is used as a reference plate thickness distribution.
 第2基準板厚分布及び第3基準板厚分布において、多項式としては、前述の基準表面形状の場合と同様に、ルジャンドル多項式やツエルニケ多項式などが好ましい多項式として挙げられる。多項式近似としては、例えば、ルジャンドル多項式の場合、6次までの近似を使用するのが精度と時間とのバランスの点で好ましい。また、基準板厚分布を算出する際の研磨基版又はマスクブランクの枚数としては、2以上の枚数であれば特に制限されないが、例えば、4~15枚などが好ましい枚数の一例として挙げられる。 In the second reference plate thickness distribution and the third reference plate thickness distribution, as a polynomial, a Legendre polynomial, a Zernike polynomial, or the like can be cited as a preferable polynomial, as in the case of the reference surface shape described above. As the polynomial approximation, for example, in the case of Legendre polynomial, it is preferable to use approximation up to the sixth order in terms of balance between accuracy and time. Further, the number of polishing base plates or mask blanks for calculating the reference plate thickness distribution is not particularly limited as long as it is 2 or more, but 4 to 15 is an example of a preferable number.
 本発明において、マスクパターンの形成位置調整方法としては、前述の基準表面形状又は基準板厚分布の少なくとも片方に基づいて調整することが好ましい。すなわち、基準表面形状又は基準板厚分布のいずれか片方に基づいて調整してもよいし、基準表面形状及び基準板厚分布の両方に基づいて調整してもよい。 In the present invention, the mask pattern formation position adjustment method is preferably adjusted based on at least one of the aforementioned reference surface shape or reference plate thickness distribution. That is, the adjustment may be made based on either the reference surface shape or the reference plate thickness distribution, or may be adjusted based on both the reference surface shape and the reference plate thickness distribution.
 なお、前述の基準表面形状又は基準板厚分布は、複数枚の研磨基板又は複数枚のマスクブランクの少なくともどちらかの形状を測定し、それに基づいて基準表面形状及び/又は基準板厚分布を算出してもよいし、複数枚の研磨基板及び複数枚のマスクブランクの両方の形状を測定し、それらに基づいて基準表面形状及び/又は基準板厚分布を算出してもよい。 The above-mentioned reference surface shape or reference plate thickness distribution is obtained by measuring at least one of a plurality of polishing substrates or a plurality of mask blanks and calculating a reference surface shape and / or a reference plate thickness distribution based on the measured shape. Alternatively, the shapes of both the plurality of polishing substrates and the plurality of mask blanks may be measured, and the reference surface shape and / or the reference plate thickness distribution may be calculated based on them.
 以下、実施例(例1~10)に基づいて本発明をより具体的に説明する。但し、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples (Examples 1 to 10). However, the present invention is not limited to this.
 [研磨基板作成方法]
 四塩化ケイ素と四塩化チタンを火炎加水分解して得られたTiO-SiOガラス(TiO2ドープ量は7質量%)から成るスライス基板(大きさ153mm角×厚さ6.75mm)を準備する。このスライス基板を、NC面取り機を用いて、#120のダイヤモンド砥石により、面取り幅が0.2~0.4mmになるように、面取り加工して、外径寸法が152mm角、厚さ6.75mmとなるように仕上げ加工を実施した。次いで、スライス基板を鋳鉄製の定盤に挟持させ、Alを主成分とする研磨砥粒を含有する研磨スラリーを供給し、スライス基板の表面をラップ研磨した。スライス基板の側面については、ナイロンブラシ、酸化セリウムスラリーを用いた側面研磨を行い、その表面粗さを1nm(RMS)以下と鏡面にした。その後、側面研磨を行ったスライス基板の成膜される面と裏面の両面を、硬質発泡ポリウレタンパッド、酸化セリウムスラリーを用いた1段目の研磨、軟質発泡ポリウレタンスウェードパッド、酸化セリウムスラリーを用いた2段目の研磨、軟質発泡ポリウレタンスウェードパッド、コロイダルシリカを用いた3段目の研磨を、両面ポリッシュ機を用いて順次研磨し、成膜される面と裏面の表面粗さが0.15nm(RMS)以下の研磨基板(例1~5)を得た。
[Polishing substrate preparation method]
A slice substrate (size: 153 mm square x thickness: 6.75 mm) made of TiO 2 —SiO 2 glass (TiO 2 doped amount: 7% by mass) obtained by flame hydrolysis of silicon tetrachloride and titanium tetrachloride is prepared. To do. This sliced substrate is chamfered using an NC chamfering machine with a # 120 diamond grindstone so that the chamfering width becomes 0.2 to 0.4 mm, the outer diameter is 152 mm square, and the thickness is 6. Finishing was performed to 75 mm. Subsequently, the slice substrate was sandwiched between cast iron surface plates, a polishing slurry containing abrasive grains mainly composed of Al 2 O 3 was supplied, and the surface of the slice substrate was lapped. The side surface of the slice substrate was subjected to side surface polishing using a nylon brush and cerium oxide slurry, and the surface roughness was mirrored to 1 nm (RMS) or less. After that, both the film forming surface and the back surface of the sliced substrate subjected to the side polishing were subjected to first-stage polishing using a hard foam polyurethane pad and a cerium oxide slurry, a soft foam polyurethane suede pad and a cerium oxide slurry. Second stage polishing, soft foamed polyurethane suede pad, third stage polishing using colloidal silica are sequentially polished using a double-side polishing machine, and the surface roughness of the film-formed surface and the back surface is 0.15 nm ( RMS) The following polishing substrates (Examples 1 to 5) were obtained.
 [研磨基板の表面性状]
 得られた研磨基板をアルカリ洗剤とPVAスポンジを用いてスクラブ洗浄後、バッチ式洗浄機を用いて、超純水、硫酸・過酸化水素水混合溶液、超純水、アルカリ洗剤、超純水の各種溶液それぞれにこの順に、浸漬し、イソプロピルアルコール(IPA)に浸漬した後80℃で乾燥させた。得られた研磨基板の成膜される面と裏面の表面品質領域(中央142mm角)の表面形状と平坦度を、フィゾー型レーザ干渉式平坦度測定機(Fujinon社製、商品名:G310S)を用いて測定した。得られた研磨基板の成膜される面と裏面の表面形状はいずれも、中心が相対的に低く周辺が相対的に高い凹状であり、成膜される面の平坦度は200~300nm、裏面の平坦度は500~600nmであった。
[Surface properties of polishing substrate]
After scrub cleaning the obtained polishing substrate using an alkaline detergent and PVA sponge, using a batch type cleaning machine, ultrapure water, sulfuric acid / hydrogen peroxide mixed solution, ultrapure water, alkaline detergent, ultrapure water Each solution was dipped in this order, dipped in isopropyl alcohol (IPA), and then dried at 80 ° C. The surface shape and flatness of the surface quality area (center 142 mm square) on the surface and the back surface of the obtained polishing substrate were measured using a Fizeau laser interference flatness measuring machine (manufactured by Fujinon, trade name: G310S). And measured. Both the surface shape of the surface on which the polishing substrate is formed and the back surface are concave shapes having a relatively low center and a relatively high periphery, and the flatness of the film forming surface is 200 to 300 nm. The flatness of the film was 500 to 600 nm.
 [研磨基板の加工方法]
 EUVL用研磨基板としては、成膜される面と裏面の平坦度が比較的大きく、その表面形状の基板間差異も大きく使用に適さないため、研磨基板の成膜される面及び裏面に、ガスクラスタイオンビームエッチング(Epion社製、商品名:US50XP)を用いて局所研磨を実施した。ここで、各部位の局所研磨量は、修正研磨工程後の研磨基板の成膜される面と裏面の所望の表面形状(中心が相対的に低く周辺が相対的に高い凹状であり、成膜される面と裏面の平坦度がそれぞれ330nm、600nm)と、局所研磨前の研磨基板の成膜される面と裏面の表面形状測定結果の差異とし、局所研磨量の調整はガスクラスタイオンビームのスキャン速度を調整することにより実施した。その他の主な局所研磨の加工条件を以下に示す。
[Processing method of polishing substrate]
As the polishing substrate for EUVL, the flatness of the surface to be formed and the back surface is relatively large, and the difference in surface shape between the substrates is not suitable for use. Local polishing was performed using cluster ion beam etching (trade name: US50XP, manufactured by Epion). Here, the local polishing amount of each part is a desired surface shape of the surface and the back surface of the polishing substrate after the correction polishing step (a concave shape having a relatively low center and a relatively high periphery). The flatness of the surface to be polished and the back surface is 330 nm and 600 nm, respectively, and the difference between the surface shape measurement results of the surface and the back surface of the polishing substrate before the local polishing is formed. This was done by adjusting the scan speed. Other main local polishing processing conditions are shown below.
 <局所研磨加工条件>
 ソースガス:NF 5%とN 95%の混合ガス、
 加速電圧:30kV、
 イオン化電流:100μA、
 ガスクラスタイオンビームのビーム径(FWHM値):6mm
 エッチング速度:50nm・cm/秒。
<Local polishing conditions>
Source gas: NF 3 5% and N 2 95% mixed gas,
Accelerating voltage: 30 kV
Ionization current: 100 μA,
Gas cluster ion beam diameter (FWHM value): 6 mm
Etching rate: 50 nm · cm 2 / sec.
 局所研磨した研磨基板の成膜される面と裏面の表面粗さは約0.5nm(RMS)と大きく、EUVL用研磨基板として適さないため、さらに以下に示す条件で研磨基板の成膜される面及び裏面に仕上げ研磨を実施し、その表面粗さを0.15nm(RMS)以下にした。 The surface roughness of the polishing substrate that has been locally polished is as large as about 0.5 nm (RMS) and is not suitable as a polishing substrate for EUVL. Therefore, the polishing substrate is formed under the following conditions. Final polishing was performed on the surface and the back surface, and the surface roughness was adjusted to 0.15 nm (RMS) or less.
 <仕上げ研磨条件>
 研磨試験機:浜井産業社製 両面24B研磨機、
 研磨パッド:カネボウ社製 ベラトリックスN7512、
 研磨常盤回転数:10rpm 、
 研磨時間:30分、
 研磨荷重:51cN/cm
 研磨量:0.06μm/面、
 希釈水:純水(0.1μm以上異物濾過)、
 スラリー流量:10リットル/min、
 研磨スラリー:平均一次粒径20nm未満のコロイダルシリカを20質量%含有、
 研磨量:0.02μm。
<Finishing polishing conditions>
Polishing tester: Double-sided 24B polishing machine manufactured by Hamai Sangyo Co., Ltd.
Polishing pad: Bellatrix N7512 manufactured by Kanebo Corporation
Polishing plate rotation speed: 10 rpm
Polishing time: 30 minutes,
Polishing load: 51 cN / cm 2
Polishing amount: 0.06 μm / surface,
Dilution water: Pure water (0.1 μm or more foreign matter filtration),
Slurry flow rate: 10 l / min,
Polishing slurry: 20% by mass of colloidal silica having an average primary particle size of less than 20 nm,
Polishing amount: 0.02 μm.
 [加工後の研磨基板の表面性状]
 得られた研磨基板を前述と同様の方法にて洗浄し、成膜される面と裏面の表面品質領域(中央142mm角)の表面形状と平坦度を前述と同様の方法にて測定した。こうして得られたEUVL用研磨基板5枚の成膜される面と裏面の表面形状と平坦度の測定値を図7、図8、表1にそれぞれ示す。
[Surface properties of the polished substrate after processing]
The obtained polishing substrate was washed by the same method as described above, and the surface shape and flatness of the surface quality regions (center 142 mm square) on the surface to be formed and the back surface were measured by the same method as described above. 7 and 8 and Table 1 show measured values of the surface shape and the flatness of the surfaces and back surfaces of the five EUVL polishing substrates thus obtained.
 [第1基準表面形状との差異]
 研磨基板5枚の成膜される面と裏面のそれぞれの表面形状の平均形状から成膜される面と裏面の基準表面形状を求め、それぞれ図7、図8に示す。図中、左から第2列は、表面形状(surface porfile)を、第3列は表面形状と基準表面形状(reference;最終行の第2列)との差異(residual)をそれぞれ示す。成膜される面と裏面の基準表面形状の平坦度は68nm、56nmであった。研磨基板5枚の成膜される面と裏面の表面形状の、第1基準表面形状からの差異の最大値を算出した結果を、表1に示す。差異はいずれも46nm以下であり、成膜される面と裏面の基準表面形状に基づいてマスクパターン形成位置の調整を行ってマスクパターン描画を行うことにより、EUVL実施時に十分な転写精度を有するEUVL用反射型フォトマスクの製造方法を得ることができる。
[Difference from the first reference surface shape]
The reference surface shapes of the surface and the back surface to be formed are obtained from the average shape of the surface shapes of the surface and the back surface of the five polishing substrates, which are shown in FIGS. 7 and 8, respectively. In the figure, the second column from the left indicates the surface shape, and the third column indicates the difference between the surface shape and the reference surface shape (reference; second column in the last row). The flatness of the reference surface shape of the surface to be formed and the back surface was 68 nm and 56 nm. Table 1 shows the result of calculating the maximum value of the difference between the surface shapes of the five polishing substrates to be formed and the back surface from the first reference surface shape. The difference is 46 nm or less, and EUVL having sufficient transfer accuracy when EUVL is performed by adjusting the mask pattern formation position based on the reference surface shape of the film formation surface and the back surface and performing mask pattern drawing. A reflective photomask manufacturing method can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [第2基準表面形状との差異]
 基準表面形状を定める二つ目の方法は、研磨基板5枚の成膜される面と裏面のそれぞれの表面形状の平均形状を5次までのルジャンドル多項式(関数)でフィッティング(近似)し、成膜される面と裏面の基準表面形状とするものである。成膜される面(Front surface)と裏面(Back surface)の基準表面形状を図9に示す。成膜される面と裏面の基準表面形状の平坦度は52nm、45nmであった。
[Difference from the second reference surface shape]
The second method for determining the reference surface shape is to fit (approximate) the average shape of each surface shape of the surface on which the five polishing substrates are deposited and the back surface with a Legendre polynomial (function) up to the fifth order. The reference surface shape of the surface to be filmed and the back surface is used. FIG. 9 shows the reference surface shapes of the surface (Front surface) and the back surface (Back surface) to be formed. The flatness of the reference surface shape of the surface to be formed and the back surface was 52 nm and 45 nm.
 研磨基板5枚の成膜される面と裏面の表面形状の、第2基準表面形状からの差異の最大値を算出した結果を、表2に示す。差異はいずれも57nm以下であり、成膜される面と裏面の基準表面形状に基づいてマスクパターン形成位置の調整を行ってマスクパターン描画を行うことにより、EUVL実施時に十分な転写精度を有するEUVL用反射型フォトマスクの製造方法を得ることができる。 Table 2 shows the result of calculating the maximum value of the difference between the surface shape of the surface to be deposited and the back surface of the five polishing substrates from the second reference surface shape. The difference is 57 nm or less, and EUVL having sufficient transfer accuracy when EUVL is performed by adjusting the mask pattern formation position based on the reference surface shape of the film formation surface and the back surface and performing mask pattern drawing. A reflective photomask manufacturing method can be obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [加工後の研磨基板の板厚分布]
 例1~5と同様の方法にて研磨基板を作製した。こうして得られた研磨基板5枚の成膜される面と裏面の表面形状を例1~5と同様の方法にて測定し、裏面の表面形状の測定結果を反転させたうえで成膜される面の表面形状の測定結果と足し合わせたものからチルト成分を差し引くことにより、研磨基板の板厚分布を算出した(例6~10)。得られた板厚分布の最大値と最小値との差として最大板厚分布を得た。研磨基板5枚の板厚分布を図10に、最大板厚分布を表3に示す。図中、左から第2列は板厚分布(Thickness variation)を、第3列は板厚分布と基準板厚分布(reference;最終行の第2列)との差異(residual)をそれぞれ示す。
[Thickness distribution of the polished substrate after processing]
A polishing substrate was produced in the same manner as in Examples 1-5. The surface shapes of the surface and the back surface of the five polishing substrates thus obtained were measured by the same method as in Examples 1 to 5, and the film was formed after reversing the measurement results of the surface shape of the back surface. The thickness distribution of the polishing substrate was calculated by subtracting the tilt component from the measurement result of the surface shape of the surface (Examples 6 to 10). The maximum sheet thickness distribution was obtained as the difference between the maximum value and the minimum value of the obtained sheet thickness distribution. FIG. 10 shows the plate thickness distribution of five polishing substrates, and Table 3 shows the maximum plate thickness distribution. In the figure, the second column from the left shows the plate thickness distribution (Thickness variation), and the third column shows the difference between the plate thickness distribution and the reference plate thickness distribution (reference; second column in the last row).
 [第1基準板厚分布との差異]
 研磨基板5枚の研磨基板の平均板厚分布から第1基準板厚分布を求めた。基準板厚分布を図10に示す。基準板厚分布の最大値は93nmであった。研磨基板5枚の板厚分布の、第1基準板厚分布からの差異の最大値を算出した結果を、表3に示す。差異はいずれも50nm以下であり、基準板厚分布に基づいてマスクパターン形成位置の調整を行ってマスクパターン描画を行うことにより、EUVL実施時に十分な転写精度を有するEUVL用反射型フォトマスクの製造方法を得ることができる。
[Difference from the first reference plate thickness distribution]
The first reference plate thickness distribution was determined from the average plate thickness distribution of the five polishing substrates. The reference plate thickness distribution is shown in FIG. The maximum value of the reference plate thickness distribution was 93 nm. Table 3 shows the result of calculating the maximum difference between the thickness distributions of the five polishing substrates from the first reference thickness distribution. The difference is 50 nm or less, and the production of a reflective photomask for EUVL having sufficient transfer accuracy during EUVL by adjusting the mask pattern formation position based on the reference plate thickness distribution and performing mask pattern drawing. You can get the method.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [第2基準板厚分布との差異]
 基準板厚分布を定める二つ目の方法は、EUVL用研磨基板5枚の平均板厚分布を5次までのルジャンドル多項式(関数)でフィッティング(近似)したものを、基準板厚分布(第2基準板厚分布)とするものである。基準板厚分布を図11に示す。基準板厚分布の最大値は75nmであった。準備したEUVL用研磨基板5枚の板厚分布の、該基準板厚分布からの差異の最大値を算出した結果を、表4に示す。差異はいずれも75nm以下であり、基準板厚分布に基づいてマスクパターン形成位置の調整を行ってマスクパターン描画を行うことにより、EUVL実施時に十分な転写精度を有するEUVL用反射型フォトマスクの製造方法を得ることができる。
[Difference from the second reference plate thickness distribution]
The second method for determining the reference plate thickness distribution is a method of fitting (approximate) an average plate thickness distribution of five EUVL polishing substrates with a Legendre polynomial (function) up to the fifth order to obtain a reference plate thickness distribution (second Reference thickness distribution). The reference plate thickness distribution is shown in FIG. The maximum value of the reference plate thickness distribution was 75 nm. Table 4 shows the result of calculating the maximum value of the difference in thickness from the reference thickness distribution of the five prepared EUVL polishing substrates. The difference is 75 nm or less in all cases, and the production of a reflective photomask for EUVL having sufficient transfer accuracy during EUVL by adjusting the mask pattern formation position based on the reference plate thickness distribution and performing mask pattern drawing You can get the method.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年1月26日出願の日本特許出願2011-014460に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2011-014460 filed on Jan. 26, 2011, the contents of which are incorporated herein by reference.
 本発明の研磨基板及びマスクブランクを用いることにより、また本発明に従ってEUVL用反射型フォトマスクを作製することにより、EUVL実施時の転写精度を安定して向上できる。 By using the polishing substrate and mask blank of the present invention and producing a reflective photomask for EUVL according to the present invention, the transfer accuracy during EUVL can be stably improved.
 1:研磨基板、2:多層反射膜、3:保護膜、4:吸収膜、5:反射防止膜、6:レジスト膜、7:導電膜、10:マスクブランク、11:品質保証領域 1: Polishing substrate, 2: Multi-layer reflection film, 3: Protection film, 4: Absorption film, 5: Antireflection film, 6: Resist film, 7: Conductive film, 10: Mask blank, 11: Quality assurance area

Claims (12)

  1.  研磨基板と、該研磨基板上に形成された光吸収膜を少なくとも有するマスクブランクに、マスクパターン設計に基づいてマスクパターンを描画するフォトマスクの製造方法であって、
     複数枚の研磨基板の表面形状又は複数枚のマスクブランクの表面形状の少なくともどちらかを測定し、前記測定された表面形状に基づいて基準表面形状又は基準板厚分布を算出後、前記算出された基準表面形状又は基準板厚分布に基づいて前記マスクパターン描画時のマスクパターン形成位置を調整する、フォトマスクの製造方法。
    A photomask manufacturing method for drawing a mask pattern based on a mask pattern design on a polishing substrate and a mask blank having at least a light absorbing film formed on the polishing substrate,
    Measured at least one of the surface shape of a plurality of polishing substrates or the surface shape of a plurality of mask blanks, and after calculating a reference surface shape or a reference plate thickness distribution based on the measured surface shape, the calculated A method for manufacturing a photomask, comprising adjusting a mask pattern formation position at the time of drawing the mask pattern based on a reference surface shape or a reference plate thickness distribution.
  2.  フォトマスクがEUVL用反射型フォトマスクであり、前記マスクブランクが研磨基板と光吸収膜との間に多層反射膜(ML膜)を有し、ML膜上に形成される光吸収膜がEUV光吸収膜である、請求項1に記載のフォトマスクの製造方法。 The photomask is a reflective photomask for EUVL, the mask blank has a multilayer reflective film (ML film) between the polishing substrate and the light absorption film, and the light absorption film formed on the ML film is EUV light The photomask manufacturing method according to claim 1, wherein the photomask is an absorption film.
  3.  前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状それ自体又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状それ自体である、請求項1又は2に記載のフォトマスクの製造方法。 The reference surface shape is an average shape of the surface shape of the surface and the back surface of the plurality of polishing substrates, or an average of the surface shape of the surface and the back surface of the plurality of mask blanks. The method for producing a photomask according to claim 1, wherein the shape is the shape itself.
  4.  前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状の平均形状又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の平均形状を算出し、該算出された平均形状を多項式にて近似して得られる、請求項1又は2に記載のフォトマスクの製造方法。 The reference surface shape is an average shape of the surface shapes of the surface and the back surface of the plurality of polishing substrates or an average shape of the surface shapes of the film surface and the back surface of the plurality of mask blanks. The photomask manufacturing method according to claim 1, wherein the photomask is calculated and obtained by approximating the calculated average shape with a polynomial.
  5.  前記多項式がルジャンドル多項式又はツエルニケ多項式である、請求項4に記載のフォトマスクの製造方法。 The method of manufacturing a photomask according to claim 4, wherein the polynomial is a Legendre polynomial or a Zernike polynomial.
  6.  前記基準表面形状は、前記複数枚の研磨基板の成膜される面と裏面のそれぞれの表面形状又は前記複数枚のマスクブランクの成膜面と裏面のそれぞれの表面形状の少なくともどちらかを多項式にて近似し、それらを平均して得られる、請求項1に記載のフォトマスクの製造方法。 The reference surface shape is a polynomial in at least one of the surface shape of each of the surface and the back surface of the plurality of polishing substrates or the surface shape of each of the film surface and the back surface of the plurality of mask blanks. The photomask manufacturing method according to claim 1, wherein the photomask manufacturing method is obtained by approximating and averaging.
  7.  前記多項式がルジャンドル多項式又はツエルニケ多項式である、請求項6に記載のフォトマスクの製造方法。 The method for producing a photomask according to claim 6, wherein the polynomial is a Legendre polynomial or a Zernike polynomial.
  8.  前記基準板厚分布は、前記複数枚の研磨基板の板厚分布の平均又は前記複数枚のマスクブランクの板厚分布の平均である、請求項1に記載のフォトマスクの製造方法。 The photomask manufacturing method according to claim 1, wherein the reference plate thickness distribution is an average of the plate thickness distribution of the plurality of polishing substrates or the average of the plate thickness distribution of the plurality of mask blanks.
  9.  前記基準板厚分布は、前記複数枚の研磨基板の平均板厚分布又は前記複数枚のマスクブランクの平均板厚分布を算出し、該算出された平均板厚分布を多項式にて近似して得られる、請求項1に記載のフォトマスクの製造方法。 The reference plate thickness distribution is obtained by calculating an average plate thickness distribution of the plurality of polishing substrates or an average plate thickness distribution of the plurality of mask blanks, and approximating the calculated average plate thickness distribution by a polynomial expression. The method for producing a photomask according to claim 1, wherein:
  10.  前記多項式がルジャンドル多項式又はツエルニケ多項式である、請求項9に記載のフォトマスクの製造方法。 The method for manufacturing a photomask according to claim 9, wherein the polynomial is a Legendre polynomial or a Zernike polynomial.
  11.  前記基準板厚分布は、前記複数枚の研磨基板の板厚分布又は前記複数枚のマスクブランクの板厚分布の少なくともどちらかを多項式にて近似しそれらを平均して得られる、請求項1に記載のフォトマスクの製造方法。 The reference plate thickness distribution is obtained by approximating at least one of the plate thickness distribution of the plurality of polishing substrates or the plate thickness distribution of the plurality of mask blanks by a polynomial and averaging them. The manufacturing method of the photomask as described.
  12.  前記多項式がルジャンドル多項式又はツエルニケ多項式である、請求項11に記載のフォトマスクの製造方法。 The photomask manufacturing method according to claim 11, wherein the polynomial is a Legendre polynomial or a Zernike polynomial.
PCT/JP2012/051574 2011-01-26 2012-01-25 Method for manufacturing photomask WO2012102313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554824A JP5880449B2 (en) 2011-01-26 2012-01-25 Photomask manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014460 2011-01-26
JP2011-014460 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102313A1 true WO2012102313A1 (en) 2012-08-02

Family

ID=46580878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051574 WO2012102313A1 (en) 2011-01-26 2012-01-25 Method for manufacturing photomask

Country Status (3)

Country Link
JP (1) JP5880449B2 (en)
TW (1) TWI572974B (en)
WO (1) WO2012102313A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040985A (en) * 2013-08-22 2015-03-02 Hoya株式会社 Method for producing substrate for mask blank, method for producing mask blank, method for producing transfer mask, and method for producing semiconductor device
WO2015037564A1 (en) * 2013-09-11 2015-03-19 Hoya株式会社 Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
JP2015111283A (en) * 2013-06-21 2015-06-18 Hoya株式会社 Mask blank substrate, mask blank, transfer mask, method for manufacturing the same, and method for manufacturing semiconductor device
JP2016004821A (en) * 2014-06-13 2016-01-12 旭硝子株式会社 Manufacturing method of glass substrate for mask blank
WO2016098452A1 (en) * 2014-12-19 2016-06-23 Hoya株式会社 Substrate for mask blank, mask blank, methods for manufacturing substrate for mask blank and mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
KR20160144312A (en) * 2015-06-08 2016-12-16 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography
JP6094708B1 (en) * 2015-09-28 2017-03-15 旭硝子株式会社 Mask blank
JP2017102475A (en) * 2017-02-06 2017-06-08 旭硝子株式会社 Reflection type mask blank for euv lithography and reflection type mask for euv lithography
JP2017516129A (en) * 2014-04-02 2017-06-15 ザイゴ コーポレーションZygo Corporation Photomask for lithography
JP2017173578A (en) * 2016-03-24 2017-09-28 Hoya株式会社 Method of recycling substrate for photomask, method of manufacturing substrate for photomask, method of manufacturing photomask blank, method of manufacturing photomask, and method of transcribing pattern
JP2018106183A (en) * 2018-02-07 2018-07-05 旭硝子株式会社 Reflection type mask blank for euv lithography, and, reflection type mask for euv lithography
JP2019197768A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Synthetic quartz glass substrate for imprint mold
JP2020086363A (en) * 2018-11-30 2020-06-04 Hoya株式会社 Defect inspection method, mask blank, transfer mask and method for manufacturing semiconductor device
JP2021021948A (en) * 2014-07-11 2021-02-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor
JP2022505694A (en) * 2018-10-26 2022-01-14 アプライド マテリアルズ インコーポレイテッド TA-CU alloy for extreme UV mask absorber
JP2022098257A (en) * 2020-12-21 2022-07-01 Jx金属株式会社 Indium phosphide substrate, method for manufacturing the same, and semiconductor epitaxial wafer
US11513437B2 (en) 2021-01-11 2022-11-29 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11592738B2 (en) 2021-01-28 2023-02-28 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11609490B2 (en) 2020-10-06 2023-03-21 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11630385B2 (en) 2020-01-24 2023-04-18 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11640109B2 (en) 2020-01-27 2023-05-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11644741B2 (en) 2020-04-17 2023-05-09 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11675263B2 (en) 2020-07-13 2023-06-13 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11754917B2 (en) 2016-07-27 2023-09-12 Applied Materials, Inc. Extreme ultraviolet mask blank with multilayer absorber and method of manufacture
US11860533B2 (en) 2020-03-27 2024-01-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219307B1 (en) 2013-02-22 2021-02-23 호야 가부시키가이샤 Method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP6229807B1 (en) 2017-02-22 2017-11-15 旭硝子株式会社 Mask blank
US10552569B2 (en) * 2017-09-11 2020-02-04 Globalfoundries Inc. Method for calculating non-correctable EUV blank flatness for blank dispositioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274953A (en) * 2004-03-24 2005-10-06 Toshiba Corp Method for generating drawing pattern data and method for drawing mask
JP2008205291A (en) * 2007-02-21 2008-09-04 Jeol Ltd Pattern drawing method
JP2009253119A (en) * 2008-04-09 2009-10-29 Nuflare Technology Inc Electron beam lithography device and method of correcting displacement amount
JP2010191162A (en) * 2009-02-18 2010-09-02 Canon Inc Method for manufacturing reticle, apparatus for measuring surface shape, and computer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387220A3 (en) * 2002-07-29 2007-01-03 Canon Kabushiki Kaisha Adjustment method and apparatus of optical system, and exposure apparatus
JP4005910B2 (en) * 2002-12-27 2007-11-14 株式会社東芝 Pattern drawing method and drawing apparatus
WO2005078775A1 (en) * 2004-02-13 2005-08-25 Nikon Corporation Measurement method, transfer characteristic measurement method, exposure device adjustment method, and device manufacturing method
JP5087258B2 (en) * 2005-11-04 2012-12-05 株式会社ニューフレアテクノロジー Charged particle beam drawing method, charged particle beam drawing apparatus, positional deviation amount measuring method, and position measuring apparatus
JP4856798B2 (en) * 2006-10-18 2012-01-18 Hoya株式会社 Reflective mask blank manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method
JP5335351B2 (en) * 2008-10-01 2013-11-06 Hoya株式会社 Mask blank substrate set, mask blank set, photomask set, and semiconductor device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274953A (en) * 2004-03-24 2005-10-06 Toshiba Corp Method for generating drawing pattern data and method for drawing mask
JP2008205291A (en) * 2007-02-21 2008-09-04 Jeol Ltd Pattern drawing method
JP2009253119A (en) * 2008-04-09 2009-10-29 Nuflare Technology Inc Electron beam lithography device and method of correcting displacement amount
JP2010191162A (en) * 2009-02-18 2010-09-02 Canon Inc Method for manufacturing reticle, apparatus for measuring surface shape, and computer

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111283A (en) * 2013-06-21 2015-06-18 Hoya株式会社 Mask blank substrate, mask blank, transfer mask, method for manufacturing the same, and method for manufacturing semiconductor device
KR20160021899A (en) * 2013-06-21 2016-02-26 호야 가부시키가이샤 Mask blank substrate, mask blank, transfer mask, manufacturing methods therefor, and manufacturing method for semiconductor device
KR101992711B1 (en) 2013-06-21 2019-06-25 호야 가부시키가이샤 Mask blank substrate, mask blank, transfer mask, manufacturing methods therefor, and manufacturing method for semiconductor device
JP2015040985A (en) * 2013-08-22 2015-03-02 Hoya株式会社 Method for producing substrate for mask blank, method for producing mask blank, method for producing transfer mask, and method for producing semiconductor device
WO2015037564A1 (en) * 2013-09-11 2015-03-19 Hoya株式会社 Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
US9720317B2 (en) 2013-09-11 2017-08-01 Hoya Corporation Substrate with a multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography and method of manufacturing the same, and method of manufacturing a semiconductor device
JPWO2015037564A1 (en) * 2013-09-11 2017-03-02 Hoya株式会社 Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
JP2017516129A (en) * 2014-04-02 2017-06-15 ザイゴ コーポレーションZygo Corporation Photomask for lithography
JP2016004821A (en) * 2014-06-13 2016-01-12 旭硝子株式会社 Manufacturing method of glass substrate for mask blank
JP2021021948A (en) * 2014-07-11 2021-02-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor
US10578961B2 (en) 2014-12-19 2020-03-03 Hoya Corporation Mask blank substrate, multi-layer reflective film coated substrate, and mask blank
JP6033987B1 (en) * 2014-12-19 2016-11-30 Hoya株式会社 Mask blank substrate, mask blank and manufacturing method thereof, transfer mask manufacturing method, and semiconductor device manufacturing method
WO2016098452A1 (en) * 2014-12-19 2016-06-23 Hoya株式会社 Substrate for mask blank, mask blank, methods for manufacturing substrate for mask blank and mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
KR102612131B1 (en) 2015-06-08 2023-12-08 에이지씨 가부시키가이샤 Reflective mask blank for euv lithography
JP2017003977A (en) * 2015-06-08 2017-01-05 旭硝子株式会社 Reflective mask blank for EUV lithography
KR20160144312A (en) * 2015-06-08 2016-12-16 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography
US10146125B2 (en) 2015-09-28 2018-12-04 AGC Inc. Glass substrate for mask blank, mask blank, photomask, and method for manufacturing glass substrate for mask blank
JP6094708B1 (en) * 2015-09-28 2017-03-15 旭硝子株式会社 Mask blank
JP2017068237A (en) * 2015-09-28 2017-04-06 旭硝子株式会社 Mask Blank
US10146126B2 (en) 2015-09-28 2018-12-04 AGC Inc. Glass substrate for mask blank, mask blank, photomask, and method for manufacturing glass substrate for mask blank
JP2017107222A (en) * 2015-09-28 2017-06-15 旭硝子株式会社 Mask Blank
JP2017173578A (en) * 2016-03-24 2017-09-28 Hoya株式会社 Method of recycling substrate for photomask, method of manufacturing substrate for photomask, method of manufacturing photomask blank, method of manufacturing photomask, and method of transcribing pattern
US11754917B2 (en) 2016-07-27 2023-09-12 Applied Materials, Inc. Extreme ultraviolet mask blank with multilayer absorber and method of manufacture
JP2017102475A (en) * 2017-02-06 2017-06-08 旭硝子株式会社 Reflection type mask blank for euv lithography and reflection type mask for euv lithography
JP2018106183A (en) * 2018-02-07 2018-07-05 旭硝子株式会社 Reflection type mask blank for euv lithography, and, reflection type mask for euv lithography
JP2019197768A (en) * 2018-05-08 2019-11-14 信越化学工業株式会社 Synthetic quartz glass substrate for imprint mold
JP2022505694A (en) * 2018-10-26 2022-01-14 アプライド マテリアルズ インコーポレイテッド TA-CU alloy for extreme UV mask absorber
JP2020086363A (en) * 2018-11-30 2020-06-04 Hoya株式会社 Defect inspection method, mask blank, transfer mask and method for manufacturing semiconductor device
JP7202861B2 (en) 2018-11-30 2023-01-12 Hoya株式会社 Defect inspection method, mask blank, transfer mask, and semiconductor device manufacturing method
US11630385B2 (en) 2020-01-24 2023-04-18 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11640109B2 (en) 2020-01-27 2023-05-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11860533B2 (en) 2020-03-27 2024-01-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11644741B2 (en) 2020-04-17 2023-05-09 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11675263B2 (en) 2020-07-13 2023-06-13 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11609490B2 (en) 2020-10-06 2023-03-21 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
JP2022098257A (en) * 2020-12-21 2022-07-01 Jx金属株式会社 Indium phosphide substrate, method for manufacturing the same, and semiconductor epitaxial wafer
US11513437B2 (en) 2021-01-11 2022-11-29 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11592738B2 (en) 2021-01-28 2023-02-28 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Also Published As

Publication number Publication date
TW201243487A (en) 2012-11-01
TWI572974B (en) 2017-03-01
JP5880449B2 (en) 2016-03-09
JPWO2012102313A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5880449B2 (en) Photomask manufacturing method
JP5725015B2 (en) Manufacturing method of substrate for EUV lithography optical member
US10620527B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US10295900B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
TWI755085B (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask base, reflective mask and manufacturing method of semiconductor device
JP6422873B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
JP2017003977A (en) Reflective mask blank for EUV lithography
US20220121109A1 (en) Substrate for mask blank, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12740000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12740000

Country of ref document: EP

Kind code of ref document: A1