JP2005268639A - レーザアレイユニット - Google Patents

レーザアレイユニット Download PDF

Info

Publication number
JP2005268639A
JP2005268639A JP2004081120A JP2004081120A JP2005268639A JP 2005268639 A JP2005268639 A JP 2005268639A JP 2004081120 A JP2004081120 A JP 2004081120A JP 2004081120 A JP2004081120 A JP 2004081120A JP 2005268639 A JP2005268639 A JP 2005268639A
Authority
JP
Japan
Prior art keywords
laser array
heat sink
laser
array unit
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004081120A
Other languages
English (en)
Other versions
JP4536404B2 (ja
Inventor
Masahiro Miyamoto
昌浩 宮本
Takeshi Kanzaki
武司 神崎
Toshiyuki Kawashima
利幸 川嶋
Hirobumi Suga
博文 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2004081120A priority Critical patent/JP4536404B2/ja
Publication of JP2005268639A publication Critical patent/JP2005268639A/ja
Application granted granted Critical
Publication of JP4536404B2 publication Critical patent/JP4536404B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 照射面積の大きな固体レーザ用励起光の生成に適したレーザアレイユニットを提供する。
【解決手段】 レーザアレイユニット10は、レーザアレイ11と、レーザアレイ11に取り付けられたヒートシンク14と、レーザアレイ11に接続された一対の引出電極24を備える。各引出電極24は基部25および延長部26を有する。基部25はレーザアレイ11に電気的に接続されており、ヒートシンクの側面14e、14f上を延在する。延長部26は基部25からヒートシンクの上面14cまたは底面14d上を延在する。引出電極がヒートシンクの側面から上面または底面に導かれているので、複数のレーザアレイユニットを横方向に並べて冷却マニホールドに取り付ける際、引出電極と冷却マニホールドとの干渉を防ぐことができる。
【選択図】 図1

Description

この発明は、多数のレーザダイオード(LD)を有するレーザアレイユニットに関する。
近年、LD励起の固体レーザが注目されている。LD励起の場合、フラッシュランプ励起と異なり、レーザ媒質の吸収波長に励起光の波長をマッチングさせることができる。このため、レーザ媒質中で発生する熱が低減され、レーザ効率が改善される。
LD励起固体レーザの出力を高めるためには、レーザ媒質への励起光の照射面積を大きくすればよい。そこで、一列に並べた複数のレーザアレイユニットを有するレーザアレイモジュールが励起光源として公開されている。個々のレーザアレイユニットでは、一列に並んだ複数のLDを有するLDバーパッケージが複数、積み重ねられている。各LDバーパッケージには、LDを冷却するためのヒートシンクが取り付けられる(非特許文献1を参照)。
Toshiyuki Kawashimaほか、「慣性核融合エネルギーレーザドライバ用の疑似CW110kW AlGaAsレーザダイオードアレイモジュール(Quasi-CW 110kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver)」、Japan Journal of Applied Physics、日本応用物理学会、2001年12月、第40巻、第1部、第12号、6852〜6858頁
本発明は、照射面積の大きな固体レーザ用励起光の生成に適したレーザアレイユニットの提供を課題とする。
本発明のレーザアレイユニットは、複数のレーザダイオードを有するレーザアレイと、レーザアレイに取り付けられ、冷媒流路を有するヒートシンクと、ヒートシンクに固定され、レーザアレイに駆動電力を供給するために使用される第1および第2の引出電極とを備えている。ヒートシンクは、レーザアレイが設置される前面と、冷媒入口および冷媒出口が設けられた背面と、前面から背面まで延在する上面および底面と、上面および底面の間で前面から背面まで延在する第1および第2の側面とを有している。第1の引出電極は第1の基部および第1の延長部を有する。第1の基部はレーザアレイに電気的に接続されており、ヒートシンクの第1の側面に沿って延在する。第1の延長部は第1の基部からヒートシンクの上面に沿って延在する。第2の引出電極は第2の基部および第2の延長部を有する。第2の基部はレーザアレイに電気的に接続されており、ヒートシンクの第2の側面に沿って延在する。第2の延長部は第2の基部からヒートシンクの底面に沿って延在する。
引出電極がヒートシンクの側面から上面または底面に導かれているので、複数のレーザアレイユニットを互いの側面同士を向かい合わせて配列し、単一の冷却マニホールドに取り付ける際、引出電極と冷却マニホールドとの干渉を防ぐことができる。したがって、複数のレーザアレイユニットを冷却しつつ駆動して、照射面積の大きな固体レーザ用励起光を生成することができる。
第1および第2の引出電極は、ヒートシンクの第1および第2の側面ならびに上面および底面上に配置された電気絶縁体の上に設置されていてもよい。
複数のレーザダイオードは、これらのレーザダイオードの速軸および遅軸の方向を揃えて配列されていてもよい。ヒートシンクの第1および第2の側面は、速軸の方向と実質的に垂直であってもよい。
このような構成を有するレーザアレイユニットは、スラブ型固体レーザ装置用の励起光の生成に適している。スラブ型固体レーザ装置では、共振器の光軸に沿って長尺のスラブ結晶に励起光を照射してレーザ発振を生じさせる。したがって、励起光の照射面積を拡大するためには、スラブ結晶の長手方向に沿って複数のレーザアレイユニットを配列することが好ましい。また、各レーザアレイユニットは、速軸の方向をスラブ結晶の長手方向に合致させて配置することが好ましい。以上の点から、複数のレーザアレイユニットを速軸方向に沿って配列して駆動することにより、スラブ型固体レーザ装置に適した励起光を生成することできる。引出電極は速軸方向に垂直なヒートシンクの側面から上面または底面に導かれているので、複数のレーザアレイユニットを速軸方向に配列して冷却マニホールドに取り付ける際、引出電極と冷却マニホールドとの干渉を防ぐことができる。この結果、大きな照射面積を有しスラブ型固体レーザの励起に適した励起光を生成することができる。
上面および底面の少なくとも一方に凹部が設けられており、第1および第2の延長部の少なくとも一方がその凹部の底に固定部品を用いて固定されていてもよい。その凹部は、その固定部品がその凹部から突出しないような深さを有することが好ましい。このような構造を採用すると、複数のレーザアレイユニットを積み重ねて使用する際、隣り合うレーザアレイユニットの発光領域の間隔が固定部品によって増すことはない。したがって、レーザアレイユニットを高密度に2次元配列して、照射面積がより大きく品質の良い固体レーザ用励起光を生成することができる。
上面および底面の少なくとも一方に凹部が設けられており、第1および第2の延長部の少なくとも一方がその凹部に埋設されていてもよい。このような構成を採用すると、複数のレーザアレイユニットを積み重ねて使用する際、隣り合うレーザアレイユニットの発光領域の間隔が延長部の厚さによって増すことはない。したがって、レーザアレイユニットを高密度に2次元配列して、照射面積がより大きく品質の良い固体レーザ用励起光を生成することができる。
本発明によれば、複数のレーザアレイユニットを横方向に配列して冷却マニホールドに取り付ける際、引出電極と冷却マニホールドとの干渉を防ぐことができる。したがって、本発明のレーザアレイユニットは、照射面積の大きな固体レーザ用励起光の生成に適している。
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)図1〜図3は、本実施形態のレーザアレイユニットを示す斜視図、平面図および側面図である。これらの図には、説明の便宜のために、XYZ直交座標系も描かれている。レーザアレイユニット10は、複数のLDバーパッケージ12、箱形のヒートシンク14、ニップル16および18、ならびに一対の引出電極24を有する。
各LDバーパッケージ12は、金属製の放熱板上にLDバーが搭載された構造を有する。LDバーは、ある方向(図1ではX方向)に沿って一次元的に配列された複数のLD(レーザダイオード)を含むレーザアレイであり、したがって、一列に並んだ複数のレーザ発光スポットを有する。本実施形態では、複数のLDがモノリシックに集積されたLDバーを使用する。このようなLDバーでは、通常、活性層や電極を複数のストライプに分割して並列に配置することにより、複数のストライプ導波路が設けられている。なお、本発明では、このような構造のLDバーに代えて、独立した複数のLDチップを一列に並べた構造のLDバーを使用することもできる。
各レーザアレイユニット10では、複数のLDバーパッケージ12がLDの配列方向と垂直な方向(図1ではY方向)に積み重ねられている。以下では、各LDバーパッケージ12の発光面が集合して構成される略長方形の領域28を、レーザアレイユニット10の発光領域と呼ぶことにする。また、複数のLDバーパッケージ12が積み重ねられた構造11をLDバースタックと呼ぶことにする。LDバースタック11は、マトリックス状に2次元配列された複数のLDおよびレーザ発光スポットを有するレーザアレイである。
LDバースタック11中のLDバーパッケージ12は、一つのLDバーパッケージ12の放熱板が別のLDバーパッケージ12中のLDバーの陰極に電気的に接続されるように積み重ねられている。また、各LDバーパッケージ12では、LDバーの陽極が放熱板に電気的に接続されている。このため、一つのLDバーの陽極と別のLDバーの陰極とが放熱板を介して電気的に接続される。つまり、LDバースタック11では、複数のLDバーが電気的に直列に接続されている。
なお、各LDバーパッケージ12内で、LDバーの陰極が放熱板に電気的に接続されていてもよい。この場合、LDバースタック11中のLDバーパッケージ12は、一つのLDバーパッケージ12の放熱板が別のLDバーパッケージ12に含まれるLDバーの陽極に電気的に接続されるように積み重ねられる。
LDの電気光変換効率は疑似CW(Quasi-CW)の場合で45〜50%である。したがって、LDに供給される電力の約半分が熱に変わる。LDで発生した熱はLDの動作特性を低下させ、活性層を破壊することすらある。したがって、発生した熱を効率良く除去することが重要である。そこで、LDバースタック11は、その動作中、ヒートシンク14および冷却マニホールドを用いて冷却される。
図4は、複数のレーザアレイユニット10を取り付けることの可能な冷却マニホールド30を示す斜視図である。以下では、図1〜図4を参照しながら、LDバースタック11を冷却するための機構を説明する。
ヒートシンク14は、実質的に平坦な前面14a、後面14b、上面14c、底面14d、左側面14eおよび右側面14fを有するブロック体である。前面14aと後面14b、上面14cと底面14d、左側面14eと右側面14fは、それぞれ互いに平行に配置されている。上面14cおよび底面14dの中央には、同じ寸法形状を有する凹部20が設けられている。この凹部20は、左側面14eから右側面14fまで延在し、一定の幅と深さを有する溝である。
ヒートシンク14は、高い熱伝導率を有する材料から構成されている。この材料は、通常、銅などの金属である。レーザアレイユニット10内のLDバーパッケージ12は、すべてヒートシンク14の前面14aに取り付けられている。LDバーパッケージ12とヒートシンク14の間には電気絶縁体13が挟まれており、それにより両者は電気的に絶縁されている。その電気絶縁体13は充分な熱伝導性を有しており、したがって、LDバーパッケージ12とヒートシンク14はその電気絶縁体13を介して熱的に接続されている。ヒートシンク14の内部には冷却水用の流路(図示せず)が設けられている。この流路内を冷媒として冷却水が流れることにより、LDバーパッケージ12中のLDが冷却される。
ニップル16および18は、レーザアレイユニット10を冷却マニホールド30に取り付けるために使用される管継手である。ニップル16の一端は、ヒートシンク14の背面14bに設けられた冷媒入口17に装着されている。同様に、ニップル18の一端は、ヒートシンク14の背面14bに設けられた冷媒出口19に装着されている。ニップル16および18は、それぞれ冷媒入口17および冷媒出口19を通じてヒートシンク14内の流路に連通している。冷媒入口17は、ヒートシンク14の外部から冷媒を受け入れるための開口であり、冷媒出口19はヒートシンク14の外部に冷媒を排出するための開口である。ニップル16は、ヒートシンク14内の流路に冷却水を供給するための冷媒流入管として働き、ニップル18は、ヒートシンク14内の流路から冷却水を排出するための冷媒流出管として働く。
ニップル16および18の他端は、冷却マニホールド30の前面30cに設けられた接続口32に差し込まれ、冷却マニホールド30内の流路に連通する。図4に示されるように、冷却マニホールド30は、実質的に平行な上面30aおよび底面30bを含む板状の形状を有している。冷却マニホールド30の内部には、冷却水用の流路(図示せず)が設けられている。冷却マニホールド30の前面30cには、n個(nは2以上の整数)のレーザアレイユニット10を横方向(Y方向)に並べて取り付けられるように、2n個の接続口32が配列されている。冷却マニホールド30の厚さ、すなわちX方向に沿った長さは、レーザアレイユニット10の厚さにほぼ等しい。冷却マニホールド30の厚さはレーザアレイユニット10の厚さ以下であることが好ましい。これは、冷却マニホールド30がレーザアレイユニット10よりも厚いと、複数のレーザアレイモジュール100をX方向に沿って積み重ねたときにレーザアレイユニット10の間に隙間が生じ、レーザアレイユニット10を高い密度で配列することが難しくなるからである。
冷却マニホールド30内の流路には、接続口32だけでなく、冷媒入口36および冷媒出口38も連通している。冷媒入口36は、冷却マニホールド30の外部から冷媒を受け入れるための管路であり、冷媒出口38は冷却マニホールド30の外部に冷媒を排出するための管路である。冷媒入口36および冷媒出口38は、冷却マニホールド30の両側部に一対づつ設けられている。冷媒入口36および38は、冷却マニホールド30の上面30aと底面30bの間をX方向に沿って延びている。冷媒入口36の上端部36aおよび下端部36bは、冷媒供給管52を封止接続できるような構造を有している。同様に、冷媒出口38の上端部38aおよび下端部38bは、冷媒排出管54を封止接続できるような構造を有している。本実施形態では、下端部36bおよび38bにそれぞれ冷媒供給管52および冷媒排出管54が封止接続されている。冷媒供給管52および冷媒排出管54は、図示しないチラー装置に接続されている。レーザアレイユニット10の冷却中は、チラー装置と冷却マニホールド30との間で冷却水が循環する。このとき、冷媒供給管52および冷媒排出管54が接続されない上端部36aおよび38aは封止部品を用いて封止される。
冷媒入口36を通じて冷却マニホールド30内の流路に供給された冷却水は、ニップル16および冷媒入口17を通ってヒートシンク14に流入し、ヒートシンク14内の流路を通ってLDバースタック11を冷却する。LDバースタック11から熱を奪った冷却水は、冷媒出口19およびニップル18を通ってヒートシンク14内の流路に戻り、冷媒出口38から排出される。LDバースタック11はこのようにして冷却される。
以下では、冷却マニホールド30に複数のレーザアレイユニット10を取り付けた構造をレーザアレイモジュール100と呼ぶことにする。冷媒入口36および冷媒出口38は、複数のレーザアレイモジュール100を積み重ねて使用することができるように、X方向に沿って冷却マニホールド30を貫通している。二つのレーザアレイモジュール100は、一方の冷媒入口36の上端部36aが他方の冷媒入口36の下端部36bと連通し、一方の冷媒出口38の上端部38aが他方の冷媒出口38の下端部38bと連通するように積み重ねられる。冷媒入口36同士および冷媒出口38同士は、管継手などの接続部品を用いて封止接続される。通常は、最も下に位置するレーザアレイモジュール100の冷媒入口36の下端部36aおよび冷媒出口38の下端部38aに、それぞれ冷媒供給管52および冷媒排出管54が封止接続される。この場合、最も上に位置するレーザアレイモジュール100の冷媒入口36の上端部36aおよび冷媒出口38の上端部38aは、封止部品を用いて封止される。積み重ねたレーザアレイモジュール100を固定する手法は任意である。例えば、各冷却マニホールド30に冷却マニホールド30をX方向に貫通するネジ穴を設けておき、そのネジ穴にネジを締め付けてレーザアレイモジュール100を固定してもよい。
レーザアレイモジュール100では、レーザアレイユニット10が一次元的に配列される。このようなレーザアレイモジュール100を複数、積み重ねると、レーザアレイユニット10が2次元的に配列される。これにより、より照射面積の大きな固体レーザ用励起光を生成することができる。
図2および図3に示されるように、ヒートシンク14の表面上には電気絶縁シート22が設置され、その上に一対の引出電極24が設置されている。この一対の引出電極24は、LDバースタック11中のすべてのLDバーに一括して駆動電力を供給するために使用される。一対の引出電極24は、同じ寸法形状を有しており、Z方向に沿ったレーザアレイユニット10の中心軸44(図1を参照)の周りにレーザアレイユニット10を180度回転させたとき、互いの位置が入れ替わるように配置されている。このように、レーザアレイユニット10は180度回転対称性を有する。
各引出電極24は、LDバースタック11に電気的に接続された基部25と、基部25から後方に延在する延長部26を有する。一方の引出電極24では、基部25がLDバースタック11の上面からヒートシンク14の左側面14eに沿って後方に延在し、延長部26が基部25からヒートシンク14の上面14cに沿って後方に延在する。他方の引出電極24では、基部25がLDバースタック11の底面からヒートシンク14の右側面14fに沿って後方に延在し、延長部26が基部25からヒートシンク14の底面14dに沿って後方に延在する。
各基部25は、LDバースタック11に電気的に接続された幅広部25aと、幅広部25aから後方に延在する幅狭部25bを有する。各延長部26は、対応する基部25の幅狭部25bから実質的に垂直に延在する幅広部26aと、幅広部26aから後方へ延在する幅狭部26bを有する。幅狭部25bと幅広部26aとは、折り曲げ部42において接続されている。幅狭部26bは、ヒートシンク14の背面14bのさらに後方まで延びている。
一方の引出電極24の幅広部25aは、LDバースタック11において最も上に位置するLDバーの陰極に電気的に接続されている。他方の引出電極24の幅広部25aは、LDバースタック11において最も下に位置するLDバーの陽極に電気的に接続されている。図2に示されるように、幅広部25aは、LDバースタック11の上面および底面に塗布された導電性接着剤23を用いてLDバースタック11に取り付けられている。導電性接着剤23の例としては、銀フィラーを含有するエポキシ樹脂が挙げられる。幅広部25aは、LDバーの陰極または陽極に直接取り付けてもよいし、LDバースタック11の上面および底面にLDバーの陰極および陽極を覆う導電部材が設けられている場合は、その導電部材に幅広部25aを取り付けてもよい。
これらの引出電極24は、ネジ40および座金41を用いてヒートシンク14の上面14cおよび底面14dに固定されている。ヒートシンク14と引出電極24との電気的な絶縁を確保するため、ネジ40および座金41は電気絶縁性の材料から構成されている。上面14cおよび底面14dには、凹部20が設けられており、ネジ40はその凹部20の底に幅広部26aを締結している。凹部20はネジ40が突出しないように充分な深さを有している。なお、本実施形態では1本のネジ40を用いて引出電極24を固定するが、複数のネジ40を用いて固定してもよい。
1パルス当たりのエネルギーが1Jを超えるような大出力固体レーザ装置では、より多くのエネルギーをレーザ媒質から抽出するために、レーザ媒質への励起光の照射面積を大きくすることが望ましい。そのため、複数のレーザアレイユニット10を2次元的に配列して励起光源として使用することが考えられる。すでに述べたように、レーザアレイユニット10を一列に並べて冷却マニホールド30を取り付けてなるレーザアレイモジュール100は、上下に積み重ねることができる。この積み重ねによって、レーザアレイユニット10が2次元的に配列され、照射面積の大きい励起光が得られる。品質の良い励起光を得るためには、配列されたレーザアレイユニット10の発光領域28の間隔が狭いことが望ましい。このため、本実施形態では、薄い導電性の板またはシートを引出電極24として使用し、レーザアレイユニット10を配列したときの発光領域28の間隔を狭めている。望ましくは、引出電極24の厚さは1mm以下である。
図5は、レーザアレイユニット10の前面図である。図5においてW2およびH2はレーザアレイユニット10の幅および高さを表し、W1およびH1はレーザアレイユニット10の幅方向および高さ方向に沿ったLDバースタック11の長さを表している。レーザアレイユニット10を密接させて2次元的に配列した場合、発光領域28の間隔は電気絶縁シート22および引出電極24の厚さに応じて決定される。品質の良い励起光を得るためには、
W2≦W1+2mm (1)
H2≦H1+2mm (2)
が満たされていることが望ましい。
一般に、LDに対しては、速軸(Fast Axis)および遅軸(Slow Axis)が定義される。速軸はLDのpn接合面に対して垂直であり、遅軸はpn接合面に対して平行である。LDから放射されるレーザ光の速軸方向の拡がり角は、遅軸方向の拡がり角よりも大きい。
LDバースタック11に含まれるすべてのLDは、互いの速軸および遅軸を揃えて配列されている。本実施形態では、遅軸方向がX方向に合致し、速軸方向がY方向に合致する。ヒートシンク14の前面14aおよび後面14bは、速軸方向および遅軸方向の双方に実質的に平行である。また、ヒートシンク14の上面14cおよび底面14dは遅軸方向と実質的に垂直であり、側面14eおよび14fは速軸方向と実質的に垂直である。
スラブ型固体レーザ装置では、共振器の光軸に沿って長尺のスラブ結晶に励起光を照射してレーザ発振を生じさせる。したがって、励起光の照射面積を拡大するためには、共振器の光軸方向、すなわちスラブ結晶の長手方向に沿って複数のレーザアレイユニット10を配列することが好ましい。また、各レーザアレイユニット10は、速軸方向をスラブ結晶の長手方向に合致させて配置することが好ましい。これはLD光の速軸方向の拡がり角が遅軸方向の拡がり角に比べて大きいことに起因する。つまり、速軸方向をスラブ結晶の長手方向に合致させれば、レーザ光の速軸方向における大きな拡がりを補正する必要がなくなるからである。以上の点から、レーザアレイユニット10は速軸方向に沿って配列することが好ましい。これは、ヒートシンク14の左側面14eが別のヒートシンク14の右側面14fと向かい合うように、ヒートシンク14を横方向に配列することを意味する。
LDの電極(陽極および陰極)はpn接合を速軸方向に沿って両側から挟むように配置される。これに応じて、引出電極24は、LDバースタック11を速軸方向(Y方向)に沿って両側から挟むように取り付けられる。したがって、引出電極24の基部25は、速軸方向に実質的に垂直な側面14eおよび14f上に取り付けられる。
基部25を側面14eおよび14fに沿ってヒートシンク14の後面14bのさらに後方まで延長すれば、レーザアレイユニット10の後方に配置される電源から基部25を通じてLDバースタック11に駆動電力を供給することができる。しかし、その場合、複数のレーザアレイユニット10を速軸方向に並べて単一の冷却マニホールド30へ取り付けることは難しい。側面14eおよび14fに沿って延びる引出電極が冷却マニホールド30と干渉するからである。
そこで、本実施形態では、側面14eおよび14f上に設置された引出電極24を途中で90度折り曲げて上面14cおよび底面14dにそれぞれ導き、上面14cおよび底面14dに沿ってレーザアレイユニット10の後方に延ばす。これにより、複数のレーザアレイユニット10を速軸方向に配列して冷却マニホールド30に取り付ける際、引出電極24と冷却マニホールド30との干渉を防ぐことができる。この結果、大きな照射面積を有し、スラブ型固体レーザの励起に適した光を生成することができる。
さらに、本実施形態では、引出電極24を固定するためのネジ40が充分に深い凹部20の底に締結されている。このため、レーザアレイユニット10を縦に積み重ねる際に、ネジ40が凹部20から突出してレーザアレイユニット10の発光領域28の間隔を増すことはない。したがって、レーザアレイユニット10を高密度に2次元配列して、照射面積がより大きく品質の良い固体レーザ用励起光を生成することができる。
(第2実施形態)以下では、図6〜図8を参照しながら、本実施形態のレーザアレイユニットを説明する。図6〜図8は、レーザアレイユニットを示す斜視図、平面図および側面図である。本実施形態のレーザアレイユニット10aは、引出電極24の延長部26のうち幅狭部26bを収容する一対の凹部34がヒートシンク14の上面14cおよび底面14dに設けられている点で、第1実施形態のレーザアレイユニット10と異なる。他の構成はレーザアレイユニット10と同じなので、重複する説明を省略する。
凹部34は幅狭部26bが凹部34から突出しないように充分な深さを有している。このような凹部34に電気絶縁シート22および幅狭部26bが埋設されているので、レーザアレイユニット10aを積み重ねる際に、電気絶縁シート22および幅狭部26bの厚さがレーザアレイユニット10aの発光領域28の間隔を増加させることはない。このため、レーザアレイユニット10aをより高密度に2次元配列して、より大きな照射面積を有する品質の良い固体レーザ用励起光を生成することができる。
なお、引出電極24のうちヒートシンク14の側面上に配置される基部25は凹部に埋設されていない。このため、複数のレーザアレイユニット10aを速軸方向(Y方向)に密接させて並べたとき、隣り合うレーザアレイユニット10aの発光領域28の間に基部25の厚さに応じた隙間が生じる。しかし、速軸方向ではレーザ光の拡がり角が大きいので、この隙間はレーザアレイユニット10aから放射されるレーザ光によって容易に充填される。したがって、ヒートシンク14の側面上に配置される基部25が凹部に埋設されていなくても、品質の良い固体レーザ用励起光を生成することができる。
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
上記実施形態では、ネジ40を用いて引出電極24をヒートシンク14に固定している。しかし、引出電極24を他の固定手法によって固定してもよい。例えば、電気絶縁シート22上に接着剤などを用いて引出電極24を貼り付けることにより引出電極24を固定してもよい。
第1実施形態のレーザアレイユニットを示す斜視図である 第1実施形態のレーザアレイユニットを示す平面図である。 第1実施形態のレーザアレイユニットを示す側面図である。 レーザアレイユニットの冷却マニホールドへの取り付けを示す斜視図である。 第1実施形態のレーザアレイユニットを示す前面図である。 第2実施形態のレーザアレイユニットを示す斜視図である 第2実施形態のレーザアレイユニットを示す平面図である。 第2実施形態のレーザアレイユニットを示す側面図である。
符号の説明
10…レーザアレイユニット、11…LDバースタック、12…LDバーパッケージ、14…ヒートシンク、16および18…ニップル、17…冷媒入口、19…冷媒出口、24…引出電極、25…基部、26…延長部、28…発光領域、30…冷却マニホールド、32…接続口、36…冷媒入口、38…冷媒出口、100…レーザアレイモジュール。

Claims (4)

  1. 複数のレーザダイオードを有するレーザアレイと、
    前記レーザアレイに取り付けられ、冷媒流路を有するヒートシンクと、
    前記ヒートシンクに固定され、前記レーザアレイに駆動電力を供給するために使用される第1および第2の引出電極と、
    を備えるレーザアレイユニットであって、
    前記ヒートシンクは、前記レーザアレイが設置される前面と、冷媒入口および冷媒出口が設けられた背面と、前記前面から前記背面まで延在する上面および底面と、前記上面および底面の間で前記前面から前記背面まで延在する第1および第2の側面とを有しており、
    前記第1の引出電極は、前記レーザアレイに電気的に接続され前記第1の側面に沿って延在する第1の基部と、前記第1の基部から前記上面に沿って延在する第1の延長部と、を有しており、
    前記第2の引出電極は、前記レーザアレイに電気的に接続され前記第2の側面に沿って延在する第2の基部と、前記第2の基部から前記底面に沿って延在する第2の延長部と、を有している、
    レーザアレイユニット。
  2. 前記複数のレーザダイオードは、これらのレーザダイオードの速軸および遅軸の方向を揃えて配列されており、
    前記ヒートシンクの第1および第2の側面は、前記速軸方向と実質的に垂直である、
    請求項1に記載のレーザアレイユニット。
  3. 前記ヒートシンクは、前記上面および前記底面の少なくとも一方に設けられた凹部を有しており、
    前記第1および第2の延長部の少なくとも一方は、前記凹部の底に固定部品を用いて固定されており、
    前記凹部は、前記固定部品が前記凹部から突出しないような深さを有している、
    請求項1または2に記載のレーザアレイユニット。
  4. 前記ヒートシンクは、前記上面および前記底面の少なくとも一方に設けられた凹部を有しており、
    前記第1および第2の延長部の少なくとも一方は、前記凹部に埋設されている、
    請求項1〜3のいずれかに記載のレーザアレイユニット。
JP2004081120A 2004-03-19 2004-03-19 レーザアレイユニット Expired - Fee Related JP4536404B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081120A JP4536404B2 (ja) 2004-03-19 2004-03-19 レーザアレイユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081120A JP4536404B2 (ja) 2004-03-19 2004-03-19 レーザアレイユニット

Publications (2)

Publication Number Publication Date
JP2005268639A true JP2005268639A (ja) 2005-09-29
JP4536404B2 JP4536404B2 (ja) 2010-09-01

Family

ID=35092842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081120A Expired - Fee Related JP4536404B2 (ja) 2004-03-19 2004-03-19 レーザアレイユニット

Country Status (1)

Country Link
JP (1) JP4536404B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716568A (en) * 1985-05-07 1987-12-29 Spectra Diode Laboratories, Inc. Stacked diode laser array assembly
US5913108A (en) * 1998-04-30 1999-06-15 Cutting Edge Optronics, Inc. Laser diode packaging
JPH11330131A (ja) * 1998-05-20 1999-11-30 Rohm Co Ltd 半導体装置
JP2002540640A (ja) * 1999-03-29 2002-11-26 カッティング エッジ オプトロニクス, インコーポレイテッド レーザーダイオードのパッケージング

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716568A (en) * 1985-05-07 1987-12-29 Spectra Diode Laboratories, Inc. Stacked diode laser array assembly
US5913108A (en) * 1998-04-30 1999-06-15 Cutting Edge Optronics, Inc. Laser diode packaging
JPH11330131A (ja) * 1998-05-20 1999-11-30 Rohm Co Ltd 半導体装置
JP2002540640A (ja) * 1999-03-29 2002-11-26 カッティング エッジ オプトロニクス, インコーポレイテッド レーザーダイオードのパッケージング

Also Published As

Publication number Publication date
JP4536404B2 (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
US7305016B2 (en) Laser diode package with an internal fluid cooling channel
ES2758438T3 (es) Módulo láser de diodo escalonado con estructura de refrigeración
US11362476B2 (en) System and device with laser array illumination
JP3816194B2 (ja) 冷却装置、光源装置、面発光装置、およびその製造方法
US8432945B2 (en) Laser diode combiner modules
US9434151B2 (en) LED unit
EP3588701B1 (en) Light source apparatus
JP5501724B2 (ja) 半導体放射光源
US20030099267A1 (en) Diode laser arrangement with several diode laser rows
WO2011111328A1 (ja) 半導体レーザ装置
JP2005072549A (ja) 液浸冷却のレーザ・ダイオード装置
JP4598422B2 (ja) レーザアレイモジュールおよび冷却マニホールド
US5031184A (en) Cooling arrangement for a semiconductor pump source
JPH04264789A (ja) 半導体レーザ装置
EP0973237A1 (en) Semiconductor laser device
JP2004186212A (ja) 半導体レーザーアレイ装置
JP2005079580A (ja) 複数の発光領域を有するレーザー装置
JP4536404B2 (ja) レーザアレイユニット
US20210126426A1 (en) Diode laser assembly and dwm module having a diode laser assembly of this type
JPH10200199A (ja) 半導体レーザアレイ装置
JP2009064932A (ja) レーザアレイ用冷却装置、レーザモジュール及びレーザ光源装置
CN216251620U (zh) 一种多波长cos阵列激光器
JP4017269B2 (ja) 平行光発生装置
US20230283043A1 (en) High peak power laser diode assembly
JP2009146973A (ja) レーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees