JP2005263595A - Mortar composition containing flyash hollow particle, and heat insulator - Google Patents

Mortar composition containing flyash hollow particle, and heat insulator Download PDF

Info

Publication number
JP2005263595A
JP2005263595A JP2004081869A JP2004081869A JP2005263595A JP 2005263595 A JP2005263595 A JP 2005263595A JP 2004081869 A JP2004081869 A JP 2004081869A JP 2004081869 A JP2004081869 A JP 2004081869A JP 2005263595 A JP2005263595 A JP 2005263595A
Authority
JP
Japan
Prior art keywords
heat insulating
mortar
cement
hollow particles
mortar composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081869A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
浩志 林
Takeshi Meido
剛 明戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004081869A priority Critical patent/JP2005263595A/en
Publication of JP2005263595A publication Critical patent/JP2005263595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic insulating material which allows a hardened body to have high strength and is excellent in fire resistant property, has small environmental load and is excellent in heat insulating property. <P>SOLUTION: The heat insulating mortar composition contains flyash hollow particle and cement in the ratio of 9:1 to 5:5 by volume. The heat insulator is provided with a heat insulating layer formed by applying mortar obtained by adding water into the heat insulating mortar composition and kneading on the surface of a concrete hardened body, a mortar hardened body, a cement hardened body or a calcium silicate hardened body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、建築物の内装材または外装材に用いられる断熱材およびこれを使用した断熱体に関する。 The present invention relates to a heat insulating material used for an interior or exterior material of a building, and a heat insulator using the heat insulating material.

近年、地球温暖化等の地球環境に対する関心の高まりを背景に、省エネルギー化に関する取り組みが広く展開されている。その一つとして建築物の断熱化が挙げられる。現在、断熱材料としては比重が小さく、熱伝導率の低い、有機系断熱材が多用されている。
しかし、有機系断熱材は強度、耐火性能が十分ではなく、燃焼時に有毒ガスが発生する場合がある。さらに、有機系断熱材は、発泡剤としてブタン、ペンタン等の揮発性物質を用いる場合があるが、当該揮発性物質は二酸化炭素以上に地球温暖化を促進することが知られ、環境に対する負荷はきわめて大きい。
そこで、有機系断熱材が有する低強度、低耐火性および環境負荷等の欠点のない断熱材が求められている。
In recent years, efforts related to energy saving have been widely deployed against the background of increasing interest in the global environment such as global warming. One example is the heat insulation of buildings. At present, organic heat insulating materials having low specific gravity and low thermal conductivity are often used as heat insulating materials.
However, organic heat insulating materials do not have sufficient strength and fire resistance, and toxic gases may be generated during combustion. Furthermore, organic heat insulating materials may use volatile substances such as butane and pentane as foaming agents, but these volatile substances are known to promote global warming more than carbon dioxide, and the burden on the environment is Very big.
Therefore, there is a demand for a heat insulating material that does not have defects such as low strength, low fire resistance, and environmental load that the organic heat insulating material has.

かかる背景の下に、モルタルに断熱性を付与する方法がいくつか提案されている。例えば、当該方法として、モルタルに起泡性を有する材料を添加する方法(特許文献1参照)、または、モルタルに発泡粒子、若しくは独立気泡を有する中空粒子を添加する方法(特許文献2、3参照)が挙げられる。
しかし、ここで添加する中空粒子には、比重が小さく、熱伝導率の低い有機系中空粒子が多用されているが、この中空粒子は粒子自体の強度が小さいために、モルタルの混練時に破損し、またはセメントの水和反応熱により一部が破泡して収縮し、所期の硬化体の比重が得られない場合がある。加えて、有機系中空粒子の場合には、マトリックスであるセメントペーストとの接触界面における接着性が低いため、モルタル自体の強度が通常のモルタルに比べ低くなる傾向にある。この場合、有機系中空粒子とセメントマトリックスの接着性を改善するために、酢酸ビニル樹脂等の有機系樹脂を混和する必要があった。
Against this background, several methods for imparting thermal insulation to mortar have been proposed. For example, as the method, a method of adding a foaming material to a mortar (see Patent Document 1), or a method of adding expanded particles or hollow particles having closed cells to a mortar (see Patent Documents 2 and 3). ).
However, the hollow particles to be added here are organic hollow particles having a low specific gravity and a low thermal conductivity. However, since the hollow particles have a low strength, they are damaged when kneading mortar. In some cases, the cement hydration reaction heat partially breaks and shrinks, and the desired specific gravity of the cured product cannot be obtained. In addition, in the case of organic hollow particles, since the adhesiveness at the contact interface with the cement paste as a matrix is low, the strength of the mortar itself tends to be lower than that of ordinary mortar. In this case, in order to improve the adhesion between the organic hollow particles and the cement matrix, it is necessary to mix an organic resin such as a vinyl acetate resin.

他方、無機系中空粒子として、パーライトおよびシラスバルーン等の軽量骨材を使用した例があるが、この場合も同様に、粒子自体の強度が小さいため混練時に破壊しやすく、モルタル全体の圧縮強度が低下してしまう虞があった。また、当該軽量骨材は連続気泡を多く含み吸水性が高いために、建材にとって重要な要素である凍結融解抵抗性が低くなるという問題があった(特許文献4参照)。更に、軽量骨材とセメントマトリックスの接着性を改善するために、酢酸ビニル樹脂等の有機系樹脂を混和する必要があった。 On the other hand, there are examples using lightweight aggregates such as pearlite and shirasu balloon as inorganic hollow particles, but in this case as well, the strength of the particles themselves is small, so that they are easily broken during kneading, and the compressive strength of the entire mortar is high. There was a risk of lowering. Further, since the lightweight aggregate contains many open cells and has high water absorption, there has been a problem that resistance to freezing and thawing, which is an important element for building materials, is reduced (see Patent Document 4). Furthermore, in order to improve the adhesion between the lightweight aggregate and the cement matrix, it is necessary to mix an organic resin such as a vinyl acetate resin.

一方、従来から、断熱材を使用した施工法として、内断熱工法と外断熱工法が知られているが、現在、日本国内では、内断熱工法が普及している。内断熱工法は、コンクリート躯体の内側に断熱層を設ける工法であり、断熱工法のバリエーションが豊富で、安価な点が特徴となっているが、結露やカビが生じやすいこと、断熱防露施工等も一緒にしなければならない等の問題点がある。他方、外断熱工法はコンクリート躯体の外側に断熱層を設ける工法であり、躯体の温度変化が少ない、結露・カビ防止などの利点がある。外断熱工法では外装材と断熱材からなる複合断熱パネルを取り付ける乾式工法、断熱材を湿式で塗布する湿式工法、または、乾式断熱材を取り付けた後に外装材としてモルタル等を塗布する半乾式の湿式工法がある。 On the other hand, as a construction method using a heat insulating material, an inner heat insulating method and an outer heat insulating method are conventionally known, but at present, the inner heat insulating method is widespread in Japan. The inner heat insulation method is a method of providing a heat insulation layer inside the concrete frame, and there are many variations of the heat insulation method and it is characterized by low cost, but it is easy to cause condensation and mold, heat insulation dew prevention construction, etc. There are problems such as having to be together. On the other hand, the outer heat insulating method is a method of providing a heat insulating layer on the outside of the concrete frame, and has advantages such as little temperature change of the frame and prevention of condensation and mold. In the outer heat insulation method, a dry method for attaching a composite heat insulation panel composed of an outer material and a heat insulating material, a wet method for applying a heat insulating material in a wet manner, or a semi-dry type wet method in which mortar is applied as an outer material after installing a dry heat insulating material. There is a construction method.

安価な点等により今の日本国内の建築物のほとんどが内断熱であるため、断熱性能、結露防止に優れた外断熱工法による断熱改修のニーズは高まってきているが、乾式工法では対応が困難な場合が多く、また、旧来の建築基準法では、断熱改修現場における粉塵問題があって、施工性に優れた湿式外断熱工法の適用も困難であった。しかし、建築基準法の改正により、これまで不可能であった国内の建築物に対する湿式外断熱工法の適用が可能となった。
しかし、現在、外断熱工法で使用する断熱材としては、発泡ポリスチレン、発泡ウレタンボード等の有機系樹脂が主流であるが、上述した如く、これらの樹脂は強度、耐火性、環境負荷等に問題があるのである。
特公平6−45511 特開2000−355988 特開2002−201057 特開平9−12379
Because most of the buildings in Japan today have internal heat insulation due to their low cost, there is an increasing need for heat insulation renovation with an external heat insulation method that excels in heat insulation performance and condensation prevention, but it is difficult to cope with dry methods. In many cases, the old building standard method has a problem of dust at the heat insulation repair site, and it is difficult to apply the wet external heat insulation method with excellent workability. However, the revision of the Building Standards Law has made it possible to apply the wet external insulation method to domestic buildings, which was impossible before.
However, at present, organic resins such as expanded polystyrene and expanded urethane board are mainly used as heat insulating materials in the outer heat insulation method. However, as mentioned above, these resins have problems in strength, fire resistance, environmental load, etc. There is.
JP 6-45511 JP 2000-355988 A JP2002-201057 JP-A-9-12379

以上の問題点と現状に鑑み、本発明は、硬化体の強度が高く、耐火性に優れ、環境負荷が少なく、断熱性に優れた無機系断熱材を提供することを目的とする。 In view of the above problems and the present situation, an object of the present invention is to provide an inorganic heat insulating material having high strength of a cured body, excellent fire resistance, low environmental load, and excellent heat insulation.

本発明者らは、上記課題を解決するため研究した結果、セメントと特定のフライアッシュ中空粒子および混和剤を含むモルタルは、有機系中空粒子の欠点であったセメントペーストとの接着不良や、無機系発泡粒子または無機系中空粒子の欠点であった圧縮強度の低下が改善されると共に、断熱性に優れた不燃性の断熱材料としての特性を有することを見出し、本発明を完成するに至った。   As a result of studies conducted by the present inventors to solve the above-mentioned problems, mortar containing cement and specific fly ash hollow particles and an admixture has poor adhesion to cement paste, which is a drawback of organic hollow particles, and inorganic The reduction in compressive strength, which was a drawback of the expanded foam particles or the inorganic hollow particles, was improved, and the present invention was completed by finding that it has characteristics as a nonflammable heat insulating material with excellent heat insulating properties. .

本発明の断熱性モルタル組成物の硬化体は、強度が高く、耐火性に優れ、環境負荷が少なく、凍結融解抵抗性が高いとともに、断熱性に優れるものである。また、本発明の断熱性モルタル組成物に水を加えて混練してなるモルタルを用いて断熱層を設けた断熱体は、断熱層の吸水性が低く耐水性等の耐候性に優れ、屋内のみならず、風雨に晒される屋外にも長期にわたって使用できるものである。 The cured body of the heat insulating mortar composition of the present invention has high strength, excellent fire resistance, low environmental load, high freeze-thaw resistance, and excellent heat insulation. Further, a heat insulating body provided with a heat insulating layer using mortar obtained by adding water to the heat insulating mortar composition of the present invention and kneading is low in water absorption of the heat insulating layer and excellent in weather resistance such as water resistance, and indoors only. In addition, it can be used outdoors for a long time exposed to wind and rain.

以下に本発明について詳しく説明する。
本発明の第一は、フライアッシュ中空粒子とセメントを体積比で1:9〜5:5含むことを特徴とする断熱性モルタル組成物である。
本発明で用いるフライアッシュ中空粒子は石炭火力発電所の石炭燃焼時の副産物が好適である。
このフライアッシュ中空粒子の見掛け密度は0.5〜1kg/ ? が好ましい。見掛け密度が0.5kg/ ?未満では硬化体の強度が低くなり、1kg/ ?を超えると硬化体の断熱性が低下する傾向にある。また、この見掛け密度はASTM D2840に準拠して測定できる。
また、フライアッシュ中空粒子の粒径は1000μm以下が好ましい。フライアッシュ中空粒子の粒径が1000μmを超えると、モルタル硬化体の表面が粗くなり、断熱性も低下して好ましくない。フライアッシュ中空粒子の粒径は、レーザー回折法または光学顕微鏡によって測定できる。
また、フライアッシュ中空粒子の吸水率は5%以下が好ましい。フライアッシュ中空粒子の吸水率が5%を超えると硬化体の凍結融解抵抗性が低下し、耐久性が損なわれる。
また、本発明に用いるセメントは、特に制限されず、例えば普通ポルトランドセメント、早強セメント、高炉セメント、フライアッシュセメント、速硬性セメント、低収縮性セメントおよび低アルカリ性セメント等から選ばれる1種または2種以上が使用できる。
The present invention is described in detail below.
The first of the present invention is a heat insulating mortar composition comprising fly ash hollow particles and cement in a volume ratio of 1: 9 to 5: 5.
The fly ash hollow particles used in the present invention are preferably a by-product of coal combustion in a coal-fired power plant.
The apparent density of the fly ash hollow particles is preferably 0.5 to 1 kg / ?. When the apparent density is less than 0.5 kg / ?, the strength of the cured body is low, and when it exceeds 1 kg / ?, the heat insulating property of the cured body tends to be lowered. The apparent density can be measured according to ASTM D2840.
The particle size of the fly ash hollow particles is preferably 1000 μm or less. When the particle size of the fly ash hollow particles exceeds 1000 μm, the surface of the mortar cured body becomes rough, and the heat insulating property is lowered, which is not preferable. The particle size of the fly ash hollow particles can be measured by a laser diffraction method or an optical microscope.
The water absorption of the fly ash hollow particles is preferably 5% or less. If the water absorption rate of the fly ash hollow particles exceeds 5%, the freeze-thaw resistance of the cured product is lowered and the durability is impaired.
The cement used in the present invention is not particularly limited, and for example, one or two selected from ordinary Portland cement, early-strength cement, blast furnace cement, fly ash cement, fast-curing cement, low-shrinkage cement, low-alkaline cement, and the like. More than species can be used.

フライアッシュ中空粒子とセメントの混合割合は体積比で9:1〜5:5が好ましい。フライアッシュ中空粒子の混合割合が体積比で9:1を超えて多くなると、硬化体の強度が低くなるほか、混練および施工が困難となる。他方、フライアッシュ中空粒子の混合割合が体積比で5:5未満になると、十分な断熱性が得られない。 The mixing ratio of the fly ash hollow particles and cement is preferably 9: 1 to 5: 5 by volume ratio. If the mixing ratio of the fly ash hollow particles exceeds 9: 1 by volume, the strength of the cured product is lowered, and kneading and construction are difficult. On the other hand, when the mixing ratio of the fly ash hollow particles is less than 5: 5 in volume ratio, sufficient heat insulation cannot be obtained.

本発明の第二は、コンクリート硬化体、モルタル硬化体、セメント硬化体またはケイ酸カルシウム硬化体の表面に、上記の断熱性モルタル組成物に水を加えて混練してなるモルタルを用いて断熱層を設けた断熱体である。
断熱層を設ける方法としては、断熱性モルタル組成物に所定量の水を加えて混練し、モルタルスラリーまたはペーストを調整した後に、上記の硬化体表面にスプレー、刷毛若しくはコテ等で硬化体表面に塗布するか、または、所望の断熱性モルタルの厚さを確保するために、板状の硬化体の周囲に所定の高さの囲いを設けた後、モルタルスラリーまたはペーストを板の上に流し込み、硬化後、囲いを外して、断熱性モルタル硬化体を厚く積層させた断熱体を製造することができる。
モルタルスラリー等を作成するのに要する水量は、採用する施工方法やフライアッシュ中空粒子の配合量等により変動するが、一般に、フライアッシュ中空粒子とセメントの合計粉体量100重量部に対し、水20〜50重量部が好ましい。
また、モルタルスラリー等の調整において、目的に応じて混和剤を添加してもよい。添加する混和剤としては、例えば、減水剤、遅延剤、撥水剤等が挙げられる。
The second of the present invention is a heat insulating layer using a mortar obtained by adding water to the above heat insulating mortar composition and kneading the surface of the hardened concrete, mortar hardened, cement hardened or calcium silicate hardened. It is the heat insulating body which provided.
As a method for providing a heat insulating layer, a predetermined amount of water is added to a heat insulating mortar composition and kneaded to prepare a mortar slurry or paste, and then the surface of the cured body is sprayed, brushed, or troweled on the surface of the cured body. In order to ensure the desired insulating mortar thickness, a mortar slurry or paste is poured onto the plate after providing a predetermined height enclosure around the plate-like cured body, After curing, the enclosure can be removed and a heat insulating body in which the heat insulating mortar hardened body is laminated thickly can be manufactured.
The amount of water required to prepare a mortar slurry or the like varies depending on the construction method employed and the blending amount of fly ash hollow particles, but generally, the amount of water is 100 parts by weight of the total amount of fly ash hollow particles and cement. 20 to 50 parts by weight are preferred.
Moreover, in adjusting mortar slurry etc., you may add an admixture according to the objective. Examples of the admixture to be added include a water reducing agent, a retarder, and a water repellent.

以下に実験例を挙げ、発明を詳細に説明する。
1. セメント;商品名 GRCセメント(太平洋セメント社製)
アーウイン、石膏および高炉スラグを含有するセメント
2.中空粒子;
(1)商品名 イースフィアーズSL75(太平洋セメント社製)
フライアッシュ中空粒子、平均粒径45μm、見掛け密度0.5〜0.7kg/?
(2)商品名 イースフィアーズCS300(太平洋セメント社製)
フライアッシュ中空粒子、粒径300μm以下95質量%、見掛け密度0.95kg/?以下
(3)商品名 マイクロスフェアー80GCA(松本油脂社製)
アクリロニトリルとアクリル酸系モノマーを主モノマーとする共重合体バルーン
平均粒径20μm、見掛け密度0.2kg/?
(4)商品名 太平洋パーライトS(太平洋マテリアル社製)
粒径600μm以下、かさ密度0.06〜0.20kg/?
3.分散剤;商品名 コアフローNF100(太平洋セメント社製)
The invention will be described in detail below by giving experimental examples.
1. Cement: Brand name GRC cement (manufactured by Taiheiyo Cement)
1. Cement containing erwin, gypsum and blast furnace slag Hollow particles;
(1) Product name Spheres SL75 (manufactured by Taiheiyo Cement)
Fly ash hollow particles, average particle size 45 μm, apparent density 0.5-0.7 kg /?
(2) Product name Yspheres CS300 (manufactured by Taiheiyo Cement)
Fly ash hollow particles, particle size 300 μm or less, 95% by mass, apparent density 0.95 kg /? Or less (3) Product name Microsphere 80GCA (manufactured by Matsumoto Yushi Co., Ltd.)
Copolymer balloon with acrylonitrile and acrylic acid monomer as main monomers Average particle size of 20μm, Apparent density 0.2kg /?
(4) Product name Taiheiyo Perlite S (manufactured by Taiheiyo Materials Co., Ltd.)
Particle size 600μm or less, bulk density 0.06-0.20kg /?
3. Dispersant: Brand name Core Flow NF100 (manufactured by Taiheiyo Cement)

[モルタルペーストの調整]
表1の配合に従い、各種材料を調合・混練してモルタルペーストを調整した。
[Adjustment of mortar paste]
According to the composition shown in Table 1, various materials were prepared and kneaded to prepare a mortar paste.

Figure 2005263595
Figure 2005263595

[測定方法]
1.圧縮強度
モルタルペーストを160mm×40mm×40mmの型枠に入れ、気温20℃、湿度60%で1日間硬化させた後に脱型し、27日間、同じ条件で気中養生させて試験体を作成し、JIS R5201に従い圧縮強度を測定した。その結果を表2に示す。
2.熱伝導率
モルタルペーストを厚さ15mmのプレート形状に成形し、気温20℃、湿度60%で28日間硬化養生させて試験体を作製し、ASTMC518に従い熱伝導率を測定した。その結果を表2に示す。
3. 吸水率
上記1の圧縮強度測定のために作成したのと同じ試験体を、105℃の乾燥機で48時間乾燥後、デシケータ内で室温まで冷却し、質量を測定する。その後、20℃の水に24時間浸漬し、取り出した供試体の表面を拭いた後に再び質量を測り、吸水率を計算した。
その結果を、表2に示す。
[Measuring method]
1. Compressive strength Put the mortar paste into a 160mm x 40mm x 40mm mold, harden it at a temperature of 20 ° C and a humidity of 60% for 1 day, demold it, and let it cure in air under the same conditions for 27 days. The compressive strength was measured according to JIS R5201. The results are shown in Table 2.
2. Thermal conductivity A mortar paste was formed into a plate shape having a thickness of 15 mm, cured for 28 days at an air temperature of 20 ° C. and a humidity of 60% to prepare a test body, and the thermal conductivity was measured according to ASTM C518. The results are shown in Table 2.
3. The same specimen prepared for measuring the compressive strength having a water absorption rate of 1 is dried for 48 hours in a dryer at 105 ° C., then cooled to room temperature in a desiccator, and the mass is measured. Then, after immersing in 20 degreeC water for 24 hours and wiping off the surface of the taken-out test body, mass was measured again and the water absorption rate was calculated.
The results are shown in Table 2.

Figure 2005263595
Figure 2005263595

表2から分かるように、フライアッシュ中空粒子とセメントを体積比で9:1〜5:5含む組成物の試験体(実験例1〜4)は、当該体積比で4:6含む組成物の試験体(実験例5)と比べ熱伝導率と吸水率が顕著に低く、また、当該体積比で9.5:0.5含む組成物の試験体(実験例6)に比べ圧縮強度が格段に大きい。
また、フライアッシュ中空粒子とセメントを体積比で5:5含む組成物の試験体(実験例1)は圧縮強度が41.0N/mm2、熱伝導率が0.28W/mKであるのに対し、有機系中空粒子を含む組成物の試験体(実験例7)では圧縮強度が22.0N/mm2、熱伝導率が0.26W/mKである。この結果から、同じ体積置換率(すなわち中空粒子とセメントの体積比が同一)の場合は、フライアッシュ中空粒子を用いた試験体は、有機系中空粒子を用いた試験体と比べて、強度が格段に優れているのみならず、熱伝導率は無機系材料であるにも関わらず有機系材料とほぼ同レベルまで改善されていることが分かる。ちなみに、同じ無機系材料であるパーライトを用いた試験体(実験例8)の熱伝導率は0.32W/mKであり、有機系材料に比べ、顕著に劣っている。
また、同じ無機系材料であってもフライアッシュ中空粒子を用いた試験体(実験例1)は、パーライトを用いた試験体(実験例8)よりも、圧縮強度(前者は41.0N/mm2、後者は34.0N/mm2)が優れていることが分かる。
As can be seen from Table 2, the test specimens (Experimental Examples 1 to 4) containing fly ash hollow particles and cement in a volume ratio of 9: 1 to 5: 5 are in the composition containing 4: 6 in the volume ratio. Compared with the test specimen (Experimental Example 6), the thermal conductivity and water absorption are remarkably low, and the compressive strength is much higher than that of the test specimen (Experimental Example 6) containing 9.5: 0.5 in the volume ratio. Big.
In addition, the test specimen (Experimental Example 1) containing 5: 5 fly ash hollow particles and cement in a volume ratio has a compressive strength of 41.0 N / mm 2 and a thermal conductivity of 0.28 W / mK. On the other hand, the test body (Experimental Example 7) containing the organic hollow particles has a compressive strength of 22.0 N / mm 2 and a thermal conductivity of 0.26 W / mK. From this result, when the volume substitution rate is the same (that is, the volume ratio of the hollow particles and the cement is the same), the test body using fly ash hollow particles has higher strength than the test body using organic hollow particles. Not only is it markedly superior, it can be seen that the thermal conductivity is improved to almost the same level as that of the organic material although it is an inorganic material. Incidentally, the thermal conductivity of the test body (Experimental Example 8) using pearlite which is the same inorganic material is 0.32 W / mK, which is significantly inferior to the organic material.
Moreover, even if it is the same inorganic material, the test body (Experimental Example 1) using fly ash hollow particles has a compressive strength (the former is 41.0 N / mm) than the test body using Perlite (Experimental Example 8). 2 and the latter is found to be excellent at 34.0 N / mm 2 ).

Claims (2)

フライアッシュ中空粒子とセメントを体積比で9:1〜5:5含むことを特徴とする断熱性モルタル組成物。 A heat-insulating mortar composition comprising fly ash hollow particles and cement in a volume ratio of 9: 1 to 5: 5. コンクリート硬化体、モルタル硬化体、セメント硬化体またはケイ酸カルシウム硬化体の表面に、請求項1に記載の断熱性モルタル組成物に水を加えて混練してなるモルタルを用いて断熱層を設けたことを特徴とする断熱体。 A heat insulating layer is provided on the surface of a hardened concrete body, a hardened mortar body, a hardened cement body, or a hardened calcium silicate body using mortar obtained by adding water to the heat insulating mortar composition according to claim 1 and kneading. A thermal insulator characterized by that.
JP2004081869A 2004-03-22 2004-03-22 Mortar composition containing flyash hollow particle, and heat insulator Pending JP2005263595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081869A JP2005263595A (en) 2004-03-22 2004-03-22 Mortar composition containing flyash hollow particle, and heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081869A JP2005263595A (en) 2004-03-22 2004-03-22 Mortar composition containing flyash hollow particle, and heat insulator

Publications (1)

Publication Number Publication Date
JP2005263595A true JP2005263595A (en) 2005-09-29

Family

ID=35088518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081869A Pending JP2005263595A (en) 2004-03-22 2004-03-22 Mortar composition containing flyash hollow particle, and heat insulator

Country Status (1)

Country Link
JP (1) JP2005263595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637935B (en) * 2009-08-21 2011-02-16 李珠 Manufacturing method of inorganic insulating bearing building block
CN104058680A (en) * 2014-05-28 2014-09-24 安徽阜阳富龙建筑材料有限责任公司 Highly waterproof flame-retardant thermal-insulation mortar and preparation method thereof
JP2015010000A (en) * 2013-06-27 2015-01-19 宇部興産株式会社 Heat-preventive hydraulic composition, mortar composition, and mortar-hardened body
JP2018136160A (en) * 2017-02-21 2018-08-30 太平洋セメント株式会社 Method for measuring strength of hollow particles
JP7543287B2 (en) 2019-02-20 2024-09-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Honeycomb structure containing abradable material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637935B (en) * 2009-08-21 2011-02-16 李珠 Manufacturing method of inorganic insulating bearing building block
JP2015010000A (en) * 2013-06-27 2015-01-19 宇部興産株式会社 Heat-preventive hydraulic composition, mortar composition, and mortar-hardened body
CN104058680A (en) * 2014-05-28 2014-09-24 安徽阜阳富龙建筑材料有限责任公司 Highly waterproof flame-retardant thermal-insulation mortar and preparation method thereof
CN104058680B (en) * 2014-05-28 2016-03-02 安徽阜阳富龙建筑材料有限责任公司 High water proof fire retardant thermal insulation mortar and preparation method thereof
JP2018136160A (en) * 2017-02-21 2018-08-30 太平洋セメント株式会社 Method for measuring strength of hollow particles
JP7543287B2 (en) 2019-02-20 2024-09-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Honeycomb structure containing abradable material

Similar Documents

Publication Publication Date Title
JP6785379B2 (en) Fireproof coating and high strength, density controlled low temperature melting concrete cementum spray coating Fireproof processing (FIREPROOFING)
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
KR100770389B1 (en) Composite of fire-resisting mortar with ultra high ductility, and a combined methods of fire-proof coating and repair using its material
JP2014533213A (en) CONCRETE COMPOSITION COMPOSITION, MORTAR COMPOSITION COMPOSITION, CONCRETE OR MORTAR CURING AND MANUFACTURING METHOD, CONCRETE OR CONCRETE / CONCRETE OBJECT AND STRUCTURE
Türkmen et al. Several properties of mineral admixtured lightweight mortars at elevated temperatures
JP2009096657A (en) Cement mortar for plaster work
JP4947716B2 (en) Cement mortar for construction
JP2008050213A (en) Material for repairing cross section and method for repairing cross section
RU2404146C1 (en) Dry construction mixture based on gypsum binder and method for production of light concretes to make panels, walls, floors, roofs and heat insulation of building slabs
JP4634212B2 (en) Alumina cement composition and repair method using the same
KR100730787B1 (en) Polymer mortar composition having high permeability and preparing method thereof
JP2009084092A (en) Mortar-based restoring material
JP2008297170A (en) High strength repair material
KR100833871B1 (en) Mortar composite for section repair of concrete structure
KR101165666B1 (en) Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass
JP2005263595A (en) Mortar composition containing flyash hollow particle, and heat insulator
JP2005022931A (en) Method for reducing self-shrinkage of superhigh strength concrete
JP5164201B2 (en) Lightweight mortar for low temperature
JP2005154213A (en) Binder composition in high durable concrete, product of high durable concrete and method of manufacturing the same
KR101859113B1 (en) Functional flooring mortar composition and mortar flooring construction method therewith
JP5114910B2 (en) Repair method of ALC structure
JP4658362B2 (en) Manufacturing method for lightweight mortar
KR100547953B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Foamed concrete mortar composition with sound insulation function and method for producing same
CN108285308A (en) A kind of thermal insulation mortar, heat insulation layer structure and heat preserving exterior wall body structure
Rafi et al. Analytical study on special concretes with M20 & M25 grades for construction