JP4787187B2 - Rapid hardened mortar and repair method using the same - Google Patents

Rapid hardened mortar and repair method using the same Download PDF

Info

Publication number
JP4787187B2
JP4787187B2 JP2007041769A JP2007041769A JP4787187B2 JP 4787187 B2 JP4787187 B2 JP 4787187B2 JP 2007041769 A JP2007041769 A JP 2007041769A JP 2007041769 A JP2007041769 A JP 2007041769A JP 4787187 B2 JP4787187 B2 JP 4787187B2
Authority
JP
Japan
Prior art keywords
mass
parts
mortar
cement
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007041769A
Other languages
Japanese (ja)
Other versions
JP2008201643A (en
Inventor
昭俊 荒木
隆典 山岸
巧 串橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007041769A priority Critical patent/JP4787187B2/en
Publication of JP2008201643A publication Critical patent/JP2008201643A/en
Application granted granted Critical
Publication of JP4787187B2 publication Critical patent/JP4787187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • C04B24/383Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、土木及び建築分野におけるコンクリート構造物の補修・補強工事で使用する急硬補修モルタルに関する。   The present invention relates to a quick-hardening mortar used for repairing and reinforcing a concrete structure in the civil engineering and construction fields.

コンクリート構造物は、塩害、中性化、凍結融解、及び化学的腐食等の作用により劣化が進行し、表面にひび割れや浮き等が発生する恐れがある。その対策として、劣化した部分を打音検査等で確認し、電動ピック、エアピック、ウォータージェット等により取り除き、新たに補修部材で充填し補修する工事が行われている。
修復断面が小さい小規模な補修工事では、ポリマーセメントモルタルを練り混ぜてコテ塗りで断面修復を行う場合が多い(特許文献1、2参照)。
特開2001−322858号公報 特開2003−89565号公報
Concrete structures may deteriorate due to salt damage, neutralization, freezing and thawing, chemical corrosion, and the like, and the surface may be cracked or floated. As countermeasures, a construction is performed in which a deteriorated portion is confirmed by a hammering inspection or the like, removed by an electric pick, an air pick, a water jet, or the like, and newly repaired with a repair member.
In small-scale repair work with a small repair cross section, the polymer cement mortar is often kneaded and the cross section is repaired with a trowel (see Patent Documents 1 and 2).
JP 2001-322858 A JP 2003-89565 A

コテ塗り等で補修する場合には、使用するモルタルの塗り易さ、保水性、及び付着性といった特性に優れた材料が好まれる。そのため、モルタルに適度な粘りや抗ダレ性を付与することを目的に特許文献1、2に記載されているようにフライアッシュ、シリカフューム等の無機微粉末を配合した材料や、非特許文献1、特許文献3〜6のようにセルロースエーテル類を配合した材料が使用されている。セルロースエーテル類は、通常、分子量が増加すると粘性が大きくなり保水性も良好になるが、左官仕上げを行ったときにコテに付着し、平滑に仕上げにくいという課題がある。分子量が小さいと粘性が小さくなりコテに付着しにくくなるので仕上げ性は良好となるが、下地との付着性の低下や保水性の低下による初期クラックの発生が起き易いといった課題もある。特許文献3〜5は、1%水溶液での粘度を規定したセルロースエーテルを含むセメントモルタル混和剤や、それらを配合したセメントモルタルに関する発明であり、2%水溶液とした場合は、詳細な説明の内容から500mPa・sを超える粘度を示すセルロースエーテルを使用している。特許文献6は、2%水溶液の20℃における粘度が100〜100000cPであるセルロースエーテルを配合したセメントモルタルに関する発明であるが、保水性はサッカロース及び/又はデキストリンを併用することで向上させている。
長友新治編集:新・水溶性ポリマーの応用と市場、株式会社シーエムシー発行、pp.173−192、1988 特開平11−349364号公報 特開2000−103662号公報 特開2000−128617号公報 特開平06−219807号公報
When repairing with a trowel or the like, a material excellent in properties such as ease of application of mortar, water retention, and adhesion is preferred. Therefore, a material containing inorganic fine powder such as fly ash and silica fume as described in Patent Documents 1 and 2 for the purpose of imparting moderate stickiness and anti-sag properties to the mortar, Non-Patent Document 1, The material which mix | blended cellulose ethers like patent documents 3-6 is used. Cellulose ethers usually have higher viscosity and better water retention when the molecular weight is increased, but there is a problem that when plastering is performed, it adheres to the iron and is difficult to finish smoothly. If the molecular weight is small, the viscosity becomes small and it is difficult to adhere to the iron, so the finish is good. However, there is a problem that initial cracks are likely to occur due to a decrease in adhesion to the base and a decrease in water retention. Patent Documents 3 to 5 are inventions related to a cement mortar admixture containing cellulose ether that defines the viscosity in a 1% aqueous solution, and a cement mortar containing the same. Cellulose ether having a viscosity exceeding 500 mPa · s is used. Patent Document 6 is an invention related to a cement mortar containing a cellulose ether having a viscosity of 100 to 100,000 cP in a 2% aqueous solution at 20 ° C., but water retention is improved by using saccharose and / or dextrin together.
Edited by Shinji Nagatomo: Application and Market of New Water-soluble Polymers, published by CMC Co., pp. 173-192, 1988 JP-A-11-349364 JP 2000-103662 A JP 2000-128617 A Japanese Patent Laid-Open No. 06-219807

また、ポリマーセメントモルタルは、ポリマーエマルジョンの混和により硬化組織が密実化することで炭酸ガス、塩化物イオン、水の透過性を抑制して耐久性を付与するものであるが、完全な遮断はできない。特に、硬化しない段階から水分の逸散によって収縮し、初期及び数ヶ月後にひび割れが発生する場合がある。これを解決するために、乾燥収縮低減剤を配合することも行われている(特許文献7、8参照)。
しかしながら、乾燥収縮低減剤は、凝結が遅れるため硬化しない段階での水分逸散によって初期クラックが入る場合がある。凝結が遅れるのは一般的にセルロースエーテル類も同様である。
特開2003−55018号公報 特開平10−324555号公報
In addition, polymer cement mortar provides durability by suppressing the permeability of carbon dioxide, chloride ions, and water by making the hardened structure dense by mixing with the polymer emulsion. Can not. In particular, the shrinkage may occur due to the diffusion of moisture from the stage where it does not cure, and cracks may occur in the initial stage and after several months. In order to solve this, a drying shrinkage reducing agent is also blended (see Patent Documents 7 and 8).
However, the drying shrinkage reducing agent may cause initial cracks due to moisture dissipation at a stage where it does not harden due to delay in setting. The cellulose ethers are generally the same as in the setting.
JP 2003-55018 A Japanese Patent Laid-Open No. 10-324555

さらに、セメント水和物に起因する乾燥収縮性と初期強度向上を目的とした急硬性ポリマーセメント組成物も知られている。(特許文献9、10参照)しかしながら、これら特許文献には仕上がり性が良く保水性も良好な特定したセルロースエーテルの記載がない。
特開平3−177346号公報 特開平4−321540号公報
Furthermore, a quick-hardening polymer cement composition for the purpose of improving drying shrinkage and initial strength due to cement hydrate is also known. (Refer to Patent Documents 9 and 10) However, these patent documents do not describe a specific cellulose ether having good finish and good water retention.
Japanese Patent Laid-Open No. 3-177346 JP-A-4-321540

上記のようにモルタルの塗り易さや付着性を考慮しフライアッシュやシリカフュームを配合した材料は、セメントに混和すると中性化抵抗性が悪くなるという課題があった。
また、ポリマーセメントモルタルを用いることでポリマーを含有しないモルタルよりも耐久性や硬化収縮は大幅に改善できるが、硬化しない段階の保水性は改善できないため初期にクラックが入る場合があった。さらに、通常のセルロースエーテルは凝結も遅れるといった課題があった。さらに、通常の急硬性の無いポリマーセメントモルタルは、1回の塗り付け厚みは50mm以下がほとんどであり、塗り付け厚みがそれ以上に大きい場合は1層目モルタルの凝結がある程度進行してから塗り付ける必要があり、通常は1時間〜2時間、冬場であると4〜5時間後に実施する必要があり、最終的に仕上がるまでに長時間を要するといった課題があった。
本発明は、特定のセルロースエーテルを使用することで、仕上がり性及び保水性が良好で短時間に施工可能な急硬補修モルタルを提供するものである。
As described above, the material blended with fly ash and silica fume in consideration of ease of application and adhesion of mortar has a problem that the neutralization resistance is deteriorated when mixed with cement.
Further, by using polymer cement mortar, durability and cure shrinkage can be greatly improved as compared with mortar not containing polymer, but water retention at a stage where it does not cure cannot be improved, and cracks may occur at an early stage. Further, ordinary cellulose ether has a problem that the setting is delayed. In addition, the usual polymer cement mortar having no rapid hardening has a coating thickness of 50 mm or less at one time, and when the coating thickness is larger than that, it is applied after the setting of the first layer mortar has progressed to some extent. There is a problem that it is necessary to carry out after 1 to 2 hours, usually 4 to 5 hours in winter, and it takes a long time to finally finish.
The present invention provides a quick-hardening mortar that can be constructed in a short time with good finish and water retention by using a specific cellulose ether.

すなわち、本発明は、(1)セメント、カルシウムアルミネート、セッコウ、ポリマーエマルジョン、凝結遅延剤、2質量%水溶液における20℃の粘度が100〜500mPa・sで保水率が80%以上を示すセルロースエーテルをセメント100質量部に対して、0.01〜3質量部、及び骨材を含有する急硬補修モルタル、(2)カルシウムアルミネート100質量部に対して、セッコウを100〜250質量部となる比率で配合する(1)の急硬補修モルタル、(3)密度2.4〜2.8g/cmの骨材100質量部に対して、かさ密度0.1〜1.0g/cmの軽量骨材が3〜200質量部となる比率で配合する(1)又は(2)の急硬補修モルタル、(4)無機微粉末を含有する(1)〜(3)のいずれかの急硬補修モルタル、(5)流動化剤を含有する(1)〜(4)のいずれかの急硬補修モルタル、(6)消泡剤を含有する(1)〜(5)のいずれかの急硬補修モルタル、(7)繊維を含有する(1)〜(6)のいずれかの急硬補修モルタル、(8)(1)〜(7)のいずれかの急硬補修モルタルを用いた補修方法、である。 That is, the present invention is as follows: (1) Cement, calcium aluminate, gypsum, polymer emulsion, setting retarder, cellulose ether exhibiting a water retention of 80% or more at a viscosity of 100 to 500 mPa · s at 20 ° C. in a 2% by mass aqueous solution. To 100 parts by mass of cement, 0.01 to 3 parts by mass, and quick-hardening mortar containing aggregate, (2) 100 to 250 parts by mass of gypsum to 100 parts by mass of calcium aluminate sudden hard repair mortar formulated at a ratio (1), (3) a density 2.4~2.8g / cm 3 with respect to the aggregate 100 parts by weight, a bulk density of 0.1 to 1.0 g / cm 3 The rapid hardening mortar of (1) or (2) blended at a ratio of 3 to 200 parts by weight of the lightweight aggregate, and (4) the rapid hardening of any of (1) to (3) containing inorganic fine powder Repair mortar (5) The quick-hardening mortar of any one of (1) to (4) containing a fluidizing agent, (6) The quick-hardening mortar of any of (1) to (5) containing an antifoaming agent , (7) A quick-hardening mortar according to any one of (1) to (6) containing a fiber, and a repairing method using any of the quick-hardening mortars according to (8) (1) to (7). .

本発明の急硬補修モルタル及びそれを用いた補修方法によれば、モルタルの仕上がり性が向上し、付着性の改善が可能となり、保水性が向上するので、硬化しない段階での初期クラックの発生を抑制できる。また、急硬性を付与したポリマーセメントモルタルであるので、耐久性が良好であるのに加え、初期強度発現に優れるため施工期間の短縮化を図ることが可能である。   According to the quick-hardening mortar and the repair method using the same according to the present invention, the finish of the mortar is improved, the adhesion can be improved, and the water retention is improved. Can be suppressed. Moreover, since it is a polymer cement mortar imparted with rapid hardening, it is possible to shorten the construction period because it has excellent durability and excellent initial strength.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で使用するセメントは、特に限定されるものではないが、JIS R 5210に規定されている各種ポルトランドセメント、JIS R 5211、 JIS R 5212、及びJIS R 5213に規定された各種混合セメント、JISに規定された以上の混和材混入率で製造した高炉セメント、フライアッシュセメント、及びシリカセメント、石灰石粉末等を混合したフィラーセメント、アルミナセメントから選ばれる1種又は2種以上等が挙げられる。   The cement used in the present invention is not particularly limited, but various portland cements defined in JIS R 5210, various mixed cements defined in JIS R 5211, JIS R 5212, and JIS R 5213, JIS 1 or 2 or more types selected from blast furnace cement, fly ash cement, silica cement, filler cement mixed with limestone powder and the like, alumina cement manufactured at the admixture mixing rate specified in the above.

本発明で使用するカルシウムアルミネートは、セメントモルタルに急硬性を付与するものであり、CaO原料やAl原料等を混合したものをキルンで焼成したり、電気炉等で溶融したり等の熱処理をして得られるものであり、CaOとして28〜55質量%、Alとして45〜72質量%の範囲内にあるカルシウムアルミネートである。例えば、カルシウムアルミネートの鉱物成分としては、CaOをC、AlをAとすると、CA、C12、CA、及びCA等で示されるカルシウムアルミネート熱処理物を粉砕したもの等が挙げられ、これらの1種又は2種以上を併用してもよい。
さらに、その他の鉱物成分として、ナトリウム、カリウム、及びリチウム等のアルカリ金属塩が一部固溶したカルシウムアルミネート等が挙げられる。これらの中では、反応活性の点で非晶質のカルシウムアルミネートが好ましい。また、SiOを含有するアルミノケイ酸カルシウム、C12の1つのCaOをCaF等のハロゲン化物で置き換えたC11・CaX(Xはフッ素等のハロゲン)も使用できる。
The calcium aluminate used in the present invention imparts rapid hardening to cement mortar, and a mixture of a CaO raw material, an Al 2 O 3 raw material, or the like is baked in a kiln or melted in an electric furnace or the like. This is a calcium aluminate obtained by heat treatment in the range of 28 to 55% by mass as CaO and 45 to 72% by mass as Al 2 O 3 . For example, as a mineral component of calcium aluminate, when CaO is C and Al 2 O 3 is A, a calcium aluminate heat treated product represented by C 3 A, C 12 A 7 , CA, CA 2 and the like is pulverized. These may be mentioned, and one or more of these may be used in combination.
Furthermore, other mineral components include calcium aluminate in which alkali metal salts such as sodium, potassium and lithium are partly dissolved. Among these, amorphous calcium aluminate is preferable in terms of reaction activity. Further, a calcium aluminosilicate containing SiO 2 and C 11 A 7 · CaX (X is a halogen such as fluorine) in which one CaO of C 12 A 7 is replaced with a halide such as CaF 2 can also be used.

カルシウムアルミネートの粒度は、ブレーン値で3000cm/g以上が好ましい。3000cm/g未満だと急硬性が低下する場合がある。 The particle size of the calcium aluminate is preferably 3000 cm 2 / g or more in terms of a brain value. If it is less than 3000 cm 2 / g, rapid hardening may be reduced.

カルシウムアルミネートの使用量は、セメント100質量部に対して、1〜20質量部が好ましく、2〜15質量部がより好ましい。1質量部未満では、急硬性を付与することが難しく、15質量部を超えるとハンドリング(可使時間)を調整することが難しくなる場合がある。   As for the usage-amount of a calcium aluminate, 1-20 mass parts is preferable with respect to 100 mass parts of cement, and 2-15 mass parts is more preferable. If it is less than 1 part by mass, it is difficult to impart rapid hardening, and if it exceeds 15 parts by mass, it may be difficult to adjust the handling (pot life).

本発明で使用するセッコウは、強度発現性を向上させるものである。セッコウとしては、無水セッコウ、半水セッコウ、及びニ水セッコウ等が挙げられ、これらの1種又は2種以上を併用することができる。これらの中では、強度発現性の点で無水セッコウの使用が好ましい。   The gypsum used in the present invention improves strength development. Examples of gypsum include anhydrous gypsum, semi-water gypsum, and dihydrate gypsum, and one or more of these can be used in combination. Among these, anhydrous gypsum is preferable in terms of strength development.

セッコウの使用量は、カルシウムアルミネート100質量部に対して、100〜250質量部が好ましく、100〜180質量部がより好ましい。100質量部未満だと強度発現性を改善できない場合があり、250質量部を超えると初期強度発現性が悪くなる場合がある。   100-250 mass parts is preferable with respect to 100 mass parts of calcium aluminate, and the usage-amount of gypsum is more preferable 100-180 mass parts. If it is less than 100 parts by mass, the strength development may not be improved, and if it exceeds 250 parts by mass, the initial strength development may be deteriorated.

カルシウムアルミネートとセッコウの混合物の使用量は、セメント100質量部に対して、5〜30質量部が好ましい。   As for the usage-amount of the mixture of a calcium aluminate and gypsum, 5-30 mass parts is preferable with respect to 100 mass parts of cement.

本発明で使用するポリマーエマルジョンは、特に限定されるものではないが、アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、天然ゴム等のゴムラテックスや、エチレン・酢酸ビニル共重合体、ポリアクリル酸エステル、スチレン・アクリル酸エステル共重合体やアクリロニトリル・アクリル酸エステルに代表されるアクリル酸エステル系共重合体、酢酸ビニルビニルバーサテート系共重合体等の樹脂エマルジョン等が挙げられる。
ポリマーの形態としては、再乳化型粉末タイプや液体タイプがあり、下地部分との付着性改善、さらに、モルタルの耐久性向上のために使用される。
The polymer emulsion used in the present invention is not particularly limited, but rubber latex such as acrylonitrile / butadiene rubber, styrene / butadiene rubber, chloroprene rubber, natural rubber, ethylene / vinyl acetate copolymer, polyacrylic acid, etc. Examples thereof include resin emulsions such as esters, styrene / acrylic acid ester copolymers, acrylic acid ester copolymers represented by acrylonitrile / acrylic acid esters, and vinyl acetate vinyl versatate copolymers.
As the polymer form, there are a re-emulsification type powder type and a liquid type, which are used for improving the adhesion to the base portion and further improving the durability of the mortar.

ポリマーエマルジョンの使用量は、通常、セメント100質量部に対して、固形分量で2〜15質量部が好ましく、4〜10質量部がより好ましい。2質量部未満では、中性化抵抗性や付着強度の改善ができない場合があり、15質量部を超えて配合してもその効果の向上が期待できない場合がある。   The amount of the polymer emulsion used is usually preferably from 2 to 15 parts by mass, more preferably from 4 to 10 parts by mass based on 100 parts by mass of cement. If the amount is less than 2 parts by mass, the neutralization resistance and the adhesion strength may not be improved. Even if the amount exceeds 15 parts by mass, the improvement in the effect may not be expected.

本発明で使用するセルロースエーテルは、2質量%水溶液における20℃の粘度が100〜500mPa・sであり、保水率が80%以上を示すセルロースエーテルである。
セルロースエーテルは、一般に、天然に存在するセルロースを原料に、アルカリ処理して各種エーテル化剤と反応させて得られる水溶性の高分子化合物である。種類としては、水酸基の水素原子の一部をメチル基、ヒドロキシプロピル基、ヒドロキシエチル基、カルボキシメチル基で置換したものが挙げられる。これら置換基が混在したものも使用できる。エーテル化された置換基の割合は2〜40%であるものが水溶性の点で好ましい。なかでも、ヒドロキシプロピル基やヒドロキシエチル基を持つセルロースエーテルが好ましい。
セルロースエーテルの粘度は、20℃において2質量%水溶液とした場合100〜500mPa・sであるものを使用する。100mPa・s未満では、充分な粘度が得られずモルタルに混和した場合のダレ性や付着性を改善できない場合があり、500mPa・sを超えるとモルタルに混和した場合に粘性が大きくなり仕上がり性が悪くなる場合がある。
The cellulose ether used in the present invention is a cellulose ether having a viscosity at 20 ° C. in a 2% by mass aqueous solution of 100 to 500 mPa · s and a water retention of 80% or more.
Cellulose ether is generally a water-soluble polymer compound obtained by subjecting naturally occurring cellulose as a raw material to alkali treatment and reaction with various etherifying agents. Examples of the type include those in which a part of the hydrogen atom of the hydroxyl group is substituted with a methyl group, a hydroxypropyl group, a hydroxyethyl group, or a carboxymethyl group. A mixture of these substituents can also be used. The ratio of the etherified substituent is preferably 2 to 40% from the viewpoint of water solubility. Of these, cellulose ethers having a hydroxypropyl group or a hydroxyethyl group are preferred.
A cellulose ether having a viscosity of 100 to 500 mPa · s when used as a 2% by mass aqueous solution at 20 ° C. is used. If it is less than 100 mPa · s, sufficient viscosity may not be obtained and the dripping property and adhesion when mixed with mortar may not be improved. If it exceeds 500 mPa · s, the viscosity increases when mixed with mortar, resulting in a finished product. It may get worse.

セルロースエーテルの保水率とは、所定のモルタル配合とした場合のモルタル中の水分の保持率であり80%以上保持する性能を示すものである。80%未満であるとモルタルの硬化前の段階や硬化後において水分の逸散速度が大きいので初期クラックの発生や硬化収縮が大きくなる場合がある。また、特に下地コンクリートに5mm程度に薄く塗り付けた場合は、下地への水分吸収と気中への水分逸散の影響を大きく受け、付着強度にも大きく悪影響を及ぼす場合がある。
本発明での保水率の試験方法は、住宅都市整備公団で定められているタイルモルタル試験法(化学濾紙法)に準拠し求めたもので、試験で用いたモルタルは、普通ポルトランドセメント100質量部に対して、5号珪砂と6号珪砂を同量混合した混合珪砂100質量部、セルロースエーテル0.2質量部、JIS R 5201に規定されているフロー値が170±5mmとなる水を加え練り混ぜて調製した。
The water retention rate of cellulose ether is the moisture retention rate in a mortar when a predetermined mortar composition is used, and indicates the performance of retaining 80% or more. If it is less than 80%, the rate of moisture dissipation is large at the stage before and after curing of the mortar, so that the occurrence of initial cracks and curing shrinkage may increase. In particular, when the base concrete is applied as thin as about 5 mm, it is greatly affected by moisture absorption to the ground and moisture dissipation to the air, and the adhesion strength may be greatly adversely affected.
The water retention test method according to the present invention was obtained based on the tile mortar test method (chemical filter paper method) defined by the Housing and Urban Development Corporation, and the mortar used in the test was usually 100 parts by weight of Portland cement. On the other hand, 100 parts by mass of mixed silica sand in which the same amounts of No. 5 silica sand and No. 6 silica sand are mixed, 0.2 parts by mass of cellulose ether, and water with a flow value specified in JIS R 5201 of 170 ± 5 mm are added and kneaded. Prepared by mixing.

セルロースエーテルの使用量は、セメント100質量部に対して、0.01〜3質量部が好ましく,0.05〜1質量部がより好ましい。0.01質量部未満では保水性を向上させる効果が小さく、3質量部を超えるとモルタルの粘性が強すぎ仕上げ性が悪くなる場合がある。   The amount of cellulose ether used is preferably 0.01 to 3 parts by mass and more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of cement. If it is less than 0.01 part by mass, the effect of improving water retention is small, and if it exceeds 3 parts by mass, the viscosity of the mortar is too strong and the finish may be poor.

本発明で使用する凝結遅延剤は、可使時間をコントロールする目的で使用する。凝結遅延剤の種類としては、クエン酸、酒石酸、グルコン酸、リンゴ酸等のオキシカルボン酸類とこれらの金属塩類、トリポリリン酸塩、第一リン酸ナトリウム等のリン酸塩、蔗糖、果糖等の糖類、ホウ酸ナトリウム等のホウ酸塩、ケイフッ化マグネシウム等のケイフッ化物等が挙げられる。これらの1種又は2種以上の併用も可能である。
また、これらの凝結遅延剤に炭酸塩、硫酸塩、硝酸塩、亜硝酸塩等を組み合わせたものを使用することも可能である。
The setting retarder used in the present invention is used for the purpose of controlling the pot life. The types of setting retarders include oxycarboxylic acids such as citric acid, tartaric acid, gluconic acid and malic acid and their metal salts, phosphates such as tripolyphosphate and sodium monophosphate, and sugars such as sucrose and fructose. , Borate salts such as sodium borate, silicofluoride such as magnesium silicofluoride, and the like. These 1 type, or 2 or more types combined use is also possible.
It is also possible to use a combination of these setting retarders with carbonates, sulfates, nitrates, nitrites and the like.

凝結遅延剤の使用量は、セメント100質量部に対して、0.05〜2質量部が好ましく、0.1〜1質量部がより好ましい。0.05質量部未満では、凝結を遅延させることが難しく、2質量部を超えると強度発現性を阻害する場合がある。   0.05-2 mass parts is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of a setting retarder, 0.1-1 mass part is more preferable. If it is less than 0.05 part by mass, it is difficult to delay the setting, and if it exceeds 2 parts by mass, strength development may be inhibited.

本発明で使用する骨材は、特に限定されるものではないが、川砂、海砂、山砂、軽量砂、重量細骨材が使用できる。これらの併用も可能である。川砂、海砂、山砂、軽量砂は、あらかじめ粒度調整されたものを適量混合して使用することが好ましい。
骨材は、川砂、海砂、山砂は、密度2.4〜2.8g/cmのものが好ましく、軽量骨材は、かさ密度0.1〜1.0g/cmのものが好ましい。密度2.4〜2.8g/cmの砂100質量部に軽量砂を混合して使用する場合の比率は、3〜200質量部となるようにすることが強度発現性の点で好ましい。
本発明の骨材は予めセメントと混合しておいてもよく、現場で混合してもよい。予めセメントと混合しておく場合は、骨材を乾燥させた乾燥骨材を使用すればよい。
The aggregate used in the present invention is not particularly limited, but river sand, sea sand, mountain sand, lightweight sand, and heavy fine aggregate can be used. These combinations can also be used. It is preferable that river sand, sea sand, mountain sand, and light sand are mixed in an appropriate amount and used in advance.
As for the aggregate, river sand, sea sand, and mountain sand preferably have a density of 2.4 to 2.8 g / cm 3 , and the lightweight aggregate preferably has a bulk density of 0.1 to 1.0 g / cm 3. . It is preferable from the point of strength development that the ratio when using light sand mixed with 100 parts by mass of sand having a density of 2.4 to 2.8 g / cm 3 is 3 to 200 parts by mass.
The aggregate of the present invention may be previously mixed with cement or may be mixed on site. When previously mixed with cement, a dry aggregate obtained by drying the aggregate may be used.

骨材の使用量は、セメント、カルシウムアルミネート、セッコウの合計100質量部に対して、100〜300質量部が好ましい。100質量部未満では塗り付けたときにダレが発生する場合があり、300質量部を超えると表面の仕上がり状態が悪くなる場合がある。   As for the usage-amount of an aggregate, 100-300 mass parts is preferable with respect to a total of 100 mass parts of cement, calcium aluminate, and gypsum. If it is less than 100 parts by mass, sagging may occur when it is applied, and if it exceeds 300 parts by mass, the surface finish may be deteriorated.

本発明で使用する無機微粉末は、塗り性の改善や抗ダレ性を付与するものである。種類としては、シリカフューム、フライアッシュ、スラグ、炭酸カルシウムや、ベントナイト、ヘクトライト、カオリン、ケイ藻土、セピオライト、アタパルジャイト等の粘土鉱物等が挙げられる。   The inorganic fine powder used in the present invention imparts improved coating properties and anti-sagging properties. Examples of the type include silica fume, fly ash, slag, calcium carbonate, and clay minerals such as bentonite, hectorite, kaolin, diatomaceous earth, sepiolite, and attapulgite.

無機微粉末の使用量は、セメント100質量部に対して、0.5〜30質量部が好ましく、1〜20質量部がより好ましい。0.5質量部未満ではコテ塗り性や抗ダレ性の向上の効果が現われない場合があり、30質量部を超えると耐久性に悪影響を与える場合がある。
無機微粉末の中で、シリカフュームや各種粘度鉱物については、0.5〜10質量部が流動性に悪影響を与えない点で好ましい。
0.5-30 mass parts is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of inorganic fine powder, 1-20 mass parts is more preferable. If the amount is less than 0.5 parts by mass, the effect of improving the troweling property and the anti-sagging property may not appear, and if it exceeds 30 parts by mass, the durability may be adversely affected.
Among inorganic fine powders, about silica fume and various viscosity minerals, 0.5 to 10 parts by mass is preferable in that the fluidity is not adversely affected.

本発明で使用する流動化剤は、特に限定されるものではないが、メラミン系、ナフタレン系、リグニン系、ポリカルボン酸系のものが挙げられ、モルタルの流動性の調整に使用される。   The fluidizing agent used in the present invention is not particularly limited, and examples thereof include melamine-based, naphthalene-based, lignin-based, and polycarboxylic acid-based agents, and are used for adjusting the fluidity of mortar.

流動化剤の使用量は、セメント100質量部に対して、0.01〜1.0質量部が好ましく、0.03〜0.5質量部がより好ましい。0.01質量部未満では、流動性を改善する効果が発揮されない場合があり、1.0質量部を超えると、流動性が良すぎて塗り付けたときにダレる場合がある。
本発明の流動化剤の混合方法は、特に限定されるものではないが、例えば、あらかじめセメントに、あるいは練り混ぜ水に分散しておくことが好ましい。
0.01-1.0 mass part is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of a fluidizing agent, 0.03-0.5 mass part is more preferable. If the amount is less than 0.01 part by mass, the effect of improving the fluidity may not be exhibited. If the amount exceeds 1.0 part by mass, the fluidity is too good and may be sag when applied.
The mixing method of the fluidizing agent of the present invention is not particularly limited, but for example, it is preferable to disperse in cement or water in advance.

本発明で使用する消泡剤は、練り混ぜで巻き込む空気量を抑制する目的で使用するものである。
消泡剤の種類としては、硬化モルタルの強度特性に著しく悪影響を与えるものでない限り特に限定されるものではなく、液体状及び粉末状いずれも使用できる。例えば、ポリエーテル系消泡剤、多価アルコールのエステル化物やアルキルエーテル等の多価アルコール系消泡剤、アルキルホスフェート系消泡剤、シリコーン系消泡剤等が挙げられる。
The antifoaming agent used in the present invention is used for the purpose of suppressing the amount of air entrained by kneading.
The type of antifoaming agent is not particularly limited as long as it does not significantly adversely affect the strength characteristics of the cured mortar, and both liquid and powder can be used. For example, polyether type antifoaming agents, polyhydric alcohol type antifoaming agents such as esterified products of polyhydric alcohols and alkyl ethers, alkyl phosphate type antifoaming agents, silicone type antifoaming agents and the like can be mentioned.

消泡剤の使用量は、セメント100質量部に対して、0.002〜0.5質量部が好ましい。0.002部未満では消泡効果が不充分な場合があり、0.5質量部を超えても効果はなく強度が低下する場合がある。   As for the usage-amount of an antifoamer, 0.002-0.5 mass part is preferable with respect to 100 mass parts of cement. If it is less than 0.002 parts, the defoaming effect may be insufficient, and if it exceeds 0.5 parts by mass, there is no effect and the strength may be reduced.

本発明で使用する繊維は、ダレ性を改善するものである。
繊維の種類としては、ビニロン繊維、プロピレン繊維、アクリル繊維、ナイロン繊維,アラミド繊維等の高分子繊維類や、鋼繊維、ガラス繊維、炭素繊維、及び玄武岩等の岩石を溶融紡糸した繊維等の無機繊維類が挙げられ、特に限定されるものではない。
The fiber used in the present invention improves the sagging property.
The types of fibers include inorganic fibers such as polymer fibers such as vinylon fibers, propylene fibers, acrylic fibers, nylon fibers, and aramid fibers, and fibers obtained by melt-spinning rocks such as steel fibers, glass fibers, carbon fibers, and basalts. A fiber is mentioned, It does not specifically limit.

繊維の使用量は、セメントモルタル100質量部に対して、0.02〜1.0質量部が好ましく、0.05〜0.5質量部がより好ましい。0.05質量部未満ではダレ性を改善する効果が発揮されない場合があり、1.0質量部を超えるとモルタルの流動性に悪影響を与える場合がある。繊維の長さはコテ仕上げ面の美観の点で15mm以下が好ましい。   The amount of fiber used is preferably 0.02 to 1.0 part by mass, more preferably 0.05 to 0.5 part by mass, with respect to 100 parts by mass of cement mortar. If the amount is less than 0.05 part by mass, the effect of improving the sagging property may not be exhibited. If the amount exceeds 1.0 part by mass, the flowability of the mortar may be adversely affected. The length of the fiber is preferably 15 mm or less in view of the beauty of the iron finish surface.

本発明では、性能に悪影響を与えない範囲で、AE剤、防錆剤、撥水剤、抗菌剤、着色剤、防凍剤等の各種セメント混和剤を併用することが可能である。   In the present invention, various cement admixtures such as an AE agent, a rust preventive agent, a water repellent agent, an antibacterial agent, a colorant, and an antifreeze agent can be used in combination as long as the performance is not adversely affected.

本発明の急硬補修モルタルと混合する水量は、急硬補修モルタル100質量部に対して、10〜20質量部が好ましい。10質量部未満ではモルタルの流動性が低下する場合があり、20質量部を超えると強度発現性が低下する場合がある。   The amount of water mixed with the quick-hardening mortar of the present invention is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the quick-hardening mortar. If it is less than 10 parts by mass, the fluidity of the mortar may be reduced, and if it exceeds 20 parts by mass, the strength development may be reduced.

本発明の急硬性モルタルを用いた補修方法は、所定の水を加え練り混ぜてコテを用いて補修箇所に塗り付ける方法や、場合によっては、施工に支障のない程度にポンプを用いて練り混ぜたモルタルを圧送し、補修箇所に圧縮空気を用いて吹き飛ばしコテで仕上げる方法が挙げられる。練混ぜ方法は、ペール缶等の容器に材料を投入しハンドミキサーで練り混ぜる方法や、パン型ミキサー等を用いて練り混ぜる方法であればよい。
具体的な補修方法を例に挙げると、劣化したコンクリート部分をウォータージェットで除去後、プライマーを塗布する。次に、練り混ぜたモルタルをコテで塗り付けるか、吹付けによって塗り付ける。壁面や天井面の場合は、30mm程度の修復厚みであれば、1回で塗り付けられるので表面をコテによって仕上げればよい。30mmを超える修復厚みの場合は、複数層に分割して修復を行う。その際、打ち継ぎ面は平滑にコテ仕上げを行うのではなく、粗い仕上げ状態とし付着力を確保できるようにする。また、打ち継ぐときのタイミングは外気温等で変化するが、先に塗り付けたモルタルを指で触って、へこまない程度に硬化が進んだ段階で行えばよい。最後に、表面が平滑となるようにコテ仕上げを行う。より念入りな施工を行うには、養生シートや養生剤等を用いて乾燥防止対策を実施することが好ましい。
The repair method using the quick-hardening mortar of the present invention is a method in which predetermined water is added and kneaded, and the method is applied to the repair site using a trowel, and in some cases, kneading is performed using a pump to the extent that does not hinder construction. There is a method in which mortar is pumped and blown off using compressed air at the repair site. The kneading method may be a method in which materials are put into a container such as a pail can and kneaded with a hand mixer, or a kneading method using a bread mixer or the like.
Taking a specific repair method as an example, a primer is applied after removing a deteriorated concrete portion with a water jet. Next, apply the mixed mortar with a trowel or by spraying. In the case of a wall surface or a ceiling surface, if the repair thickness is about 30 mm, the surface can be finished with a trowel since it is applied once. When the repair thickness exceeds 30 mm, the repair is performed by dividing into multiple layers. At this time, the joining surface is not subjected to a trowel finish smoothly, but is made into a rough finish so as to ensure adhesion. Moreover, although the timing at the time of handing over changes with external temperature etc., it should just be performed in the stage where hardening hardened to such an extent that it touches the mortar previously apply | coated with a finger | toe. Finally, a trowel finish is performed so that the surface is smooth. In order to perform more elaborate construction, it is preferable to implement a dry prevention measure using a curing sheet or a curing agent.

以下、実施例に基づき詳細に説明する。   Hereinafter, it demonstrates in detail based on an Example.

「実験例1」
セメント100質量部に対して、カルシウムアルミネート6質量部、凝結遅延剤0.5質量部、ポリマーエマルジョン7質量部、表1、2に示す種類と量のセルロースエーテル、さらに、カルシウムアルミネート100質量部に対して、セッコウを150質量部添加し、セメント、カルシウムアルミネート、セッコウの合計100質量部に対して、骨材A200質量部を添加して急硬補修モルタルとした。その急硬補修モルタル100質量部に対して、水を15質量部加え、ミキサーで練り混ぜて急硬補修モルタルを調製した。得られた急硬補修モルタルのダレ性、コテ仕上げ性、圧縮強度、付着強度を測定した。結果を表1、2に示す。
"Experiment 1"
For 100 parts by mass of cement, 6 parts by mass of calcium aluminate, 0.5 parts by mass of setting retarder, 7 parts by mass of polymer emulsion, cellulose ethers of the types and amounts shown in Tables 1 and 2, and 100 parts by mass of calcium aluminate 150 parts by mass of gypsum was added to the parts, and 200 parts by mass of aggregate A was added to 100 parts by mass of cement, calcium aluminate, and gypsum to obtain a hardened repair mortar. 15 parts by mass of water was added to 100 parts by mass of the quick-hardening mortar, and kneaded with a mixer to prepare a quick-hardening mortar. The drooping property, trowel finishing property, compressive strength, and adhesion strength of the obtained rapid hardening mortar were measured. The results are shown in Tables 1 and 2.

(使用材料)
セメント:普通ポルトランドセメント、市販品
カルシウムアルミネート:CaO:Al=40質量部:60質量部、非晶質、
ブレーン比表面積6200cm/g
凝結遅延剤A:クエン酸、市販品
ポリマーエマルジョン:アクリル−酢酸ビニル−バーサチック酸ビニル系再乳化型粉末樹脂、市販品
セッコウ:天然セッコウ粉砕品、ブレーン比表面積5200cm/g
骨材A:新潟県糸魚川市産石灰砂乾燥品、最大粒径1.2mm、密度2.66g/cm
セルロースエーテルA:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度320mPa・s、保水率86%、市販品
セルロースエーテルB:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度110mPa・s、保水率82%、市販品
セルロースエーテルC:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度460mPa・s、保水率93%、市販品
セルロースエーテルD:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度4000mPa・s、保水率69%、市販品
セルロースエーテルE:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度15000mPa・s、保水率75%、市販品
セルロースエーテルF:主成分ヒドロキシプロピルメチルセルロース、2質量%水溶液における20℃の粘度55mPa・s、保水率59%、市販品
セルロースエーテルG:主成分メチルセルロース、2質量%水溶液における20℃の粘度110mPa・s、保水率71%、市販品
(Materials used)
Cement: normal Portland cement, commercially available calcium aluminate: CaO: Al 2 O 3 = 40 parts by mass: 60 parts by mass, amorphous
Blaine specific surface area 6200cm 2 / g
Setting retarder A: citric acid, commercially available polymer emulsion: acrylic-vinyl acetate-vinyl versatic acid re-emulsifying powder resin, commercially available gypsum: natural gypsum ground product, Blaine specific surface area 5200 cm 2 / g
Aggregate A: Lime sand dried product from Itoigawa City, Niigata Prefecture, maximum particle size 1.2 mm, density 2.66 g / cm 3
Cellulose ether A: Main component hydroxypropyl methylcellulose, viscosity of 320 mPa · s at 20 ° C. in 2% by weight aqueous solution, water retention rate 86%, commercially available cellulose ether B: Main component hydroxypropyl methylcellulose, viscosity at 20 ° C. in 2% by weight aqueous solution 110 mPa S, water retention 82%, commercially available cellulose ether C: main component hydroxypropyl methylcellulose, viscosity at 460 mPa · s at 20 ° C. in 2% by weight aqueous solution, water retention 93%, commercially available cellulose ether D: main component hydroxypropyl methylcellulose, Viscosity of 4000 mPa · s at 20 ° C. in a 2% by weight aqueous solution, water retention of 69%, commercially available cellulose ether E: main component hydroxypropylmethylcellulose, viscosity of 15000 mPa · s at 20 ° C. in a 2% by weight aqueous solution, Water content 75%, commercially available cellulose ether F: main component hydroxypropyl methylcellulose, viscosity at 20 ° C. in a 2% by weight aqueous solution 55 mPa · s, water retention 59%, commercially available cellulose ether G: main component methylcellulose in a 2% by weight aqueous solution Viscosity of 110 mPa · s at 20 ° C, water retention of 71%, commercial product

(試験方法)
ダレ性:コンクリート壁面で,水を加えて練り混ぜた急硬補修モルタルを厚み5cm
で縦25cm×横15cmの枠内に塗り付け後、枠を外し、30分後に塗り付けたモ
ルタルのダレの有無を確認した。
コテ仕上げ性:水を加えて練り混ぜた急硬補修モルタルを壁面にコテを用いて塗り付
けたときコテに付着する量が多くきれいになかなか仕上がらない場合は×、付着する
量が少ない場合は△、ほとんど付着せずきれいに仕上がる場合は○とした。
圧縮強度:JIS R 5201に準拠した。養生は温度20℃、湿度40%、圧縮強度の測定材齢は5時間と28日。
付着強度:JIS A 1171に準拠した。塗り厚さは10mm、養生は温度20℃、湿度40%、付着強度の測定材齢は28日。
(Test method)
Sag: 5cm thick hardened repair mortar with water added and kneaded on the concrete wall
After coating in a frame of 25 cm long × 15 cm wide, the frame was removed, and after 30 minutes, the presence or absence of dripping of the mortar was confirmed.
Iron finish: When the hardened mortar with water added and kneaded is applied to the wall with a trowel, the amount that adheres to the iron is large and the finish is difficult to finish. In the case of a fine finish with almost no adhesion, it was marked as ◯.
Compressive strength: compliant with JIS R 5201. Curing temperature is 20 ° C, humidity is 40%, compression strength is 5 hours and 28 days.
Adhesive strength: Conforms to JIS A 1171. The coating thickness is 10 mm, the curing is 20 ° C., the humidity is 40%, and the adhesive strength measurement material age is 28 days.

表1、2から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れることが分かる。   From Tables 1 and 2, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sag and trowel finish) and adhesion, and is excellent in initial strength expression.

「実験例2」
セメント100質量部に対して、カルシウムアルミネート6質量部添加し、そのカルシウムアルミネート100質量部に対して、セッコウを表3に示す量を添加したこと以外は実験例1と同様に行った。結果を表3に示す.
"Experimental example 2"
6 parts by weight of calcium aluminate was added to 100 parts by weight of cement, and gypsum was added in the same manner as in Experimental Example 1 except that the amount shown in Table 3 was added to 100 parts by weight of calcium aluminate. The results are shown in Table 3.

表3から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れることが分かる。   From Table 3, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sag, trowel finish) and adhesion, and excellent initial strength.

「実験例3」
セメント100質量部に対して、ポリマーエマルジョンの添加量を変えた混合物を表4に示すように添加したこと以外は実験例1と同様に行った。結果を表3に示す。
"Experiment 3"
The experiment was performed in the same manner as in Experimental Example 1 except that a mixture in which the addition amount of the polymer emulsion was changed was added as shown in Table 4 with respect to 100 parts by mass of cement. The results are shown in Table 3.

表4から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れることが分かる。   From Table 4, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sagging and trowel finish) and adhesion, and is excellent in initial strength development.

「実験例4」
セメント100質量部に対して、表5に示すように凝結遅延剤の種類と量を添加し可使時間を測定したこと以外は実験例1と同様に行った。結果を表5に示す。
"Experimental example 4"
As shown in Table 5, it was carried out in the same manner as in Experimental Example 1 except that the kind and amount of setting retarder were added and the pot life was measured with respect to 100 parts by mass of cement. The results are shown in Table 5.

(使用材料)
凝結遅延剤B:クエン酸:炭酸カリウム=50質量部:50質量部の混合物
(Materials used)
Setting retarder B: Citric acid: Potassium carbonate = 50 parts by mass: 50 parts by mass of mixture

(測定方法)
可使時間:練り混ぜてからコテによる塗付けが可能な時間を触指で判断した。
(Measuring method)
Pot life: The time when it could be applied with a trowel after kneading was judged with the finger.

表5から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れ、さらに、ハンドリング(可使時間)が取れることが分かる。   From Table 5, the quick-hardening mortar of the present invention has improved mortar finish (sag, trowel finish), adhesion, excellent initial strength, and handling (pot life). I understand.

「実験例5」
セメント、カルシウムアルミネート、セッコウの合計100質量部に対して、骨材A100質量部に骨材B、Cを表6に示すように配合した混合骨材200質量部を添加したこと以外は実験例1と同様に行った。結果を表6に示す。
“Experimental Example 5”
Experimental example, except that 200 parts by mass of mixed aggregate in which aggregates B and C were blended as shown in Table 6 was added to 100 parts by mass of aggregate A with respect to 100 parts by mass of cement, calcium aluminate and gypsum 1 was performed. The results are shown in Table 6.

(使用材料)
骨材B:黒曜石を焼成発泡させた骨材、かさ密度0.62g/cm、市販品
骨材C:火力発電所で発生するフライアッシュバルーン、かさ密度0.29g/cm、市販品
(Materials used)
Aggregate B: Aggregate obtained by firing and foaming obsidian, bulk density 0.62 g / cm 3 , commercial product Aggregate C: fly ash balloon generated in thermal power plant, bulk density 0.29 g / cm 3 , commercial product

表6から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れることが分かる。   From Table 6, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sagging and trowel finish) and adhesion, and is excellent in initial strength development.

「実験例6」
セメント、カルシウムアルミネート、セッコウの合計100質量部に対して、骨材Aと実験No.5-5の骨材を表7に示すように添加し平滑性を測定したこと以外は実験例1と同様に行った。結果を表7に示す。
"Experimental example 6"
Example 1 except that the aggregate A and aggregate No. 5-5 were added as shown in Table 7 and the smoothness was measured with respect to a total of 100 parts by mass of cement, calcium aluminate and gypsum. The same was done. The results are shown in Table 7.

(測定方法)
平滑性:コテ仕上げを行って表面が平滑に仕上がる場合を○、表面がザラツキ、平滑に仕上がらない場合を×とした。
(Measuring method)
Smoothness: A case where the surface was finished with a trowel finish was evaluated as “◯”, and a case where the surface was rough and the surface was not finished smoothly was evaluated as “X”.

表7から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れ、さらに、平滑性が良いことが分かる。   From Table 7, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sagging, trowel finishing) and adhesion, excellent initial strength, and good smoothness.

「実験例7」
セメント100質量部に対して、表8に示す種類と量の無機微粉末を添加し、実験例6と同様に平滑性を測定したこと以外は実験例1と同様に行った。結果を表8に示す。
"Experimental example 7"
It carried out similarly to Experimental example 1 except having added the inorganic fine powder of the kind and quantity shown in Table 8 with respect to 100 mass parts of cement, and measuring smoothness similarly to Experimental example 6. FIG. The results are shown in Table 8.

(使用材料)
無機微粉末A:シリカフューム、BET比表面積10.7m/g、市販品
無機微粉末B:ヘクトライト、ブレーン比表面積4500cm/g、市販品
無機微粉末C:炭酸カルシウム、ブレーン比表面積5200cm/g、市販品
(Materials used)
Inorganic fine powder A: silica fume, BET specific surface area 10.7 m 2 / g, commercially available inorganic fine powder B: hectorite, Blaine specific surface area 4500 cm 2 / g, commercially available inorganic fine powder C: Calcium carbonate, Blaine specific surface area 5200 cm 2 / G, commercial product

表8から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れ、さらに、平滑性が良いことが分かる。   From Table 8, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sag, trowel finish), adhesion, excellent initial strength, and good smoothness.

「実験例8」
セメント100質量部に対して、表9に示す量の流動化剤を添加しフローを測定したこと以外は実験例1と同様に行った。結果を表9に示す。
"Experimental example 8"
It carried out similarly to Experimental example 1 except having added the fluidizing agent of the quantity shown in Table 9, and having measured the flow with respect to 100 mass parts of cement. The results are shown in Table 9.

(使用材料)
流動化剤:リグニンスルホン酸塩系流動化剤、市販品
(Materials used)
Fluidizer: Lignin sulfonate fluidizer, commercially available

(測定方法)
フロー:JIS R 5201に準じて測定した。
(Measuring method)
Flow: Measured according to JIS R 5201.

表9から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、付着性が向上し、初期強度発現に優れることが分かる。   From Table 9, it can be seen that the quick-hardening mortar of the present invention has improved mortar finish (sag, trowel finish) and adhesion, and is excellent in initial strength development.

「実験例9」
セメント100質量部に対して表10に示す量の消泡剤を添加し単位容積質量を測定したこと以外は実験例1と同様に行った。結果を表10に示す。
"Experimental example 9"
It carried out similarly to Experimental example 1 except having added the antifoamer of the quantity shown in Table 10 with respect to 100 mass parts of cement, and having measured unit volume mass. The results are shown in Table 10.

(使用材料)
消泡剤:シリコーン系消泡剤、市販品
(Materials used)
Defoamer: Silicone defoamer, commercial product

(測定方法)
単位容積質量:JIS A 1171に準じて測定した。
(Measuring method)
Unit volume mass: Measured according to JIS A 1171.

表10から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、単位容積質量が高く、付着性が向上し、初期強度発現に優れることが分かる。   From Table 10, it can be seen that the quick-hardening mortar of the present invention has a high mortar finish (sag, trowel finish), high unit volume mass, improved adhesion, and excellent initial strength.

「実験例10」
急硬補修モルタル100質量部に対して、表11に示す繊維の量を添加し、実験例8と同様にフローを測定したこと以外は実験例1と同様に行った。結果を表11に示す.
"Experimental example 10"
The same procedure as in Experimental Example 1 was performed except that the amount of fibers shown in Table 11 was added to 100 parts by mass of the quick-hardening mortar and the flow was measured in the same manner as in Experimental Example 8. The results are shown in Table 11.

(使用材料)
繊維:ビニロン繊維、繊維長6mm、繊維径26μm、収束タイプ、市販品
(Materials used)
Fiber: Vinylon fiber, fiber length 6 mm, fiber diameter 26 μm, convergence type, commercial product

表11から、本発明の急硬補修モルタルは、モルタルの仕上がり性(ダレ性、コテ仕上げ性)、単位容積質量が高く、付着性が向上し、初期強度発現に優れることが分かる。   From Table 11, it can be seen that the quick-hardening mortar of the present invention has a high mortar finish (sag, trowel finish), high unit volume mass, improved adhesion, and excellent initial strength.

「実験例11」
表12に示す実験No.の急硬補修モルタルをボックスカルバート外壁表面に、1回当たりの塗付け厚みを40mmとし、トータル厚み80mmとなるように2回に分けて塗り付けた。塗付け面積は500mm×500mmとした。塗り付ける前の下地処理は、サンドブラストで表面の目粗しを行い、市販のエチレン−酢酸ビニル系プライマーを塗布した。その時のコテ仕上げ性と材齢28日後の付着強度を測定した。
"Experimental example 11"
The rapid hardening mortar of Experiment No. shown in Table 12 was applied to the surface of the outer wall of the box culvert so that the coating thickness per application was 40 mm and the total thickness was 80 mm. The application area was 500 mm × 500 mm. The surface treatment before the coating was performed by sandblasting to roughen the surface, and a commercially available ethylene-vinyl acetate primer was applied. The iron finish at that time and the adhesion strength after 28 days of age were measured.

(測定方法)
付着強度:材齢25日目に直径50mmのコアドリルを用いて、下地コンクリートと急硬補修モルタル界面から下地コンクリート側へ5mm程度の深さまで削孔し、表面が乾燥したらエポキシ系接着剤で引き抜き用のアタッチメントを取り付けた。材齢28日時点で、建研式付着力試験器で削孔箇所を引き抜き、引き抜き荷重を引き抜き面積で除することで付着強度を求めた。
(Measuring method)
Adhesive strength: Use a 50 mm diameter core drill on the 25th day of age to drill holes from the base concrete and rapid hardening mortar interface to the base concrete side to a depth of about 5 mm. When the surface is dry, use epoxy adhesive to pull it out. The attachment of was attached. At the age of 28 days, adhesion strength was determined by pulling out a hole with a Kenken type adhesion tester and dividing the pulling load by the pulling area.

表12より、実施工を想定し施工した場合、本発明のセルロースエーテルを含有する急硬補修モルタルは含有しないモルタルに比べ倍程度の付着強度発現を示すことが分かる。 From Table 12, it can be seen that when the construction is carried out assuming the construction, the quick-hardening mortar containing the cellulose ether of the present invention exhibits about twice the adhesion strength as compared with the mortar not containing.

本発明の急硬補修モルタル及びそれを用いた補修方法によれば、モルタルの仕上がり性が向上し、付着性の改善が可能となり、保水性が向上するので、硬化しない段階での初期クラックの発生を抑制できる。また、急硬性を付与したポリマーセメントモルタルであるので、耐久性が良好であるのに加え、初期強度発現に優れるため施工期間の短縮化を図ることが可能である。そのため、土木、建築分野に幅広く適用できる。   According to the quick-hardening mortar and the repair method using the same according to the present invention, the finish of the mortar is improved, the adhesion can be improved, and the water retention is improved. Can be suppressed. Moreover, since it is a polymer cement mortar imparted with rapid hardening, it is possible to shorten the construction period because it has excellent durability and excellent initial strength. Therefore, it can be widely applied in the civil engineering and architectural fields.

Claims (8)

セメント、カルシウムアルミネート、セッコウ、ポリマーエマルジョン、凝結遅延剤、2質量%水溶液における20℃の粘度が100〜500mPa・sで保水率が80%以上を示すセルロースエーテルをセメント100質量部に対して、0.01〜3質量部、及び骨材を含有することを特徴とする急硬補修モルタル。 Cement, calcium aluminate, gypsum, polymer emulsion, setting retarder, cellulose ether showing a viscosity of 100 to 500 mPa · s at 20 ° C. in a 2% by mass aqueous solution and a water retention rate of 80% or more with respect to 100 parts by mass of cement. A rapid-hardening repair mortar characterized by containing 0.01 to 3 parts by mass and an aggregate. カルシウムアルミネート100質量部に対して、セッコウを100〜250質量部となる比率で配合することを特徴とする請求項1記載の急硬補修モルタル。 The quick-hardening repair mortar according to claim 1, wherein gypsum is blended at a ratio of 100 to 250 parts by mass with respect to 100 parts by mass of calcium aluminate. 密度2.4〜2.8g/cmの骨材100質量部に対して、かさ密度0.1〜1.0g/cmの軽量骨材が3〜200質量部となる比率で配合することを特徴とする請求項1又は2記載の急硬補修モルタル。 Against aggregate 100 parts by weight of a density 2.4~2.8g / cm 3, the lightweight aggregate having a bulk density of 0.1 to 1.0 g / cm 3 are blended at a ratio to be 3 to 200 parts by weight The rapid-hardening repair mortar according to claim 1 or 2. 無機微粉末を含有することを特徴とする請求項1〜3のいずれか一項に記載の急硬補修モルタル。 The quick-hardening repair mortar according to any one of claims 1 to 3, further comprising an inorganic fine powder. 流動化剤を含有することを特徴とする請求項1〜4のいずれか一項に記載の急硬補修モルタル。 The rapid hardening mortar according to any one of claims 1 to 4, further comprising a fluidizing agent. 消泡剤を含有することを特徴とする請求項1〜5のいずれか一項に記載の急硬補修モルタル。 The rapid-hardening repair mortar according to any one of claims 1 to 5, further comprising an antifoaming agent. 繊維を含有することを特徴とする請求項1〜6のいずれか一項に記載の急硬補修モルタル。 The rapid repair mortar according to any one of claims 1 to 6, wherein the mortar contains fibers. 請求項1〜7のいずれか一項に記載の急硬補修モルタルを用いた補修方法。 The repair method using the rapid-hardening repair mortar as described in any one of Claims 1-7.
JP2007041769A 2007-02-22 2007-02-22 Rapid hardened mortar and repair method using the same Active JP4787187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041769A JP4787187B2 (en) 2007-02-22 2007-02-22 Rapid hardened mortar and repair method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041769A JP4787187B2 (en) 2007-02-22 2007-02-22 Rapid hardened mortar and repair method using the same

Publications (2)

Publication Number Publication Date
JP2008201643A JP2008201643A (en) 2008-09-04
JP4787187B2 true JP4787187B2 (en) 2011-10-05

Family

ID=39779533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041769A Active JP4787187B2 (en) 2007-02-22 2007-02-22 Rapid hardened mortar and repair method using the same

Country Status (1)

Country Link
JP (1) JP4787187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584139A (en) * 2012-01-18 2012-07-18 中国铁道科学研究院金属及化学研究所 Self-densifying concrete as well as preparation method and application thereof
RU2485066C1 (en) * 2012-01-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Building mortar
CN103936358A (en) * 2013-01-18 2014-07-23 武汉奥捷高新技术有限公司 EPS line mechanical plastering dedicated mortar
CN106495579A (en) * 2016-10-13 2017-03-15 常州市鼎日环保科技有限公司 A kind of preparation method of bi-component cement based mending mortar

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0822793A2 (en) * 2008-09-22 2015-06-30 Dow Global Technologies Llc Composite structure and external thermal insulation system for bonding to wall substrate
JP5085497B2 (en) * 2008-10-10 2012-11-28 電気化学工業株式会社 Cement composition for injection
KR100941646B1 (en) 2009-08-31 2010-02-11 (주)우암건설 Concrete structure repair components
JP5741113B2 (en) * 2011-03-24 2015-07-01 宇部興産株式会社 Construction method for housing foundation structure and housing foundation structure constructed using the same
JP5664395B2 (en) * 2011-03-24 2015-02-04 宇部興産株式会社 Construction method for housing foundation structure and housing foundation structure constructed using the same
JP5768430B2 (en) * 2011-03-24 2015-08-26 宇部興産株式会社 High flow mortar composition
JP5768431B2 (en) * 2011-03-24 2015-08-26 宇部興産株式会社 High flow mortar composition
JP2013139348A (en) * 2011-12-28 2013-07-18 Taiheiyo Cement Corp Fast curing composition, mortar and concrete
GB2498770A (en) * 2012-01-27 2013-07-31 Hardie James Technology Ltd Jointing Compound
JP2015531737A (en) * 2012-08-21 2015-11-05 シーカ・テクノロジー・アーゲー Multi-purpose mortar or cement composition for building applications
JP6326819B2 (en) * 2013-02-18 2018-05-23 宇部興産株式会社 Cross-section repair material, mortar composition, and mortar cured body
JP6326820B2 (en) * 2013-02-18 2018-05-23 宇部興産株式会社 Repair method for concrete structures
JP6218239B2 (en) * 2014-09-02 2017-10-25 Jr東日本ビルテック株式会社 Curable filler, repair method using the filler, and method of taking out curable filler
JP7016659B2 (en) * 2017-10-04 2022-02-07 太平洋マテリアル株式会社 Polymer cement mortar for repair / reinforcement of concrete structures Polymer cement mortar for repair / reinforcement of concrete structures
CN108191372A (en) * 2018-03-16 2018-06-22 南京益夫新材料科技有限公司 A kind of Recompounded multielement desulfurated plaster light mortar and preparation method thereof
JP7229826B2 (en) * 2019-03-25 2023-02-28 太平洋マテリアル株式会社 Polymer-cement mortar composition, polymer-cement mortar and steel-concrete composite structure
KR102038133B1 (en) * 2019-07-03 2019-10-30 (주)한일카본 Mortar and surface protective composition and method of repairing concrete structure using same
JP7001784B1 (en) * 2020-09-30 2022-02-04 デンカ株式会社 Hard-hardening repair mortar material, hard-hardening repair mortar composition and hardened body
CN112876151A (en) * 2021-03-04 2021-06-01 江苏洋河新城新材料有限责任公司 Geopolymer-based rapid repair mortar and preparation method thereof
CN114409356A (en) * 2022-01-27 2022-04-29 东南大学 Improved lime material for repairing wall of legacy building and preparation method thereof
CN114671659B (en) * 2022-04-29 2023-01-20 上海潺沄建筑科技有限公司 Waterproof anti-cracking environment-friendly mortar and preparation method thereof
CN115321892B (en) * 2022-05-11 2023-08-08 沈阳市市政工程修建集团有限公司 Polymer repair mortar for municipal bridge anti-collision wall

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875701B2 (en) * 1993-01-26 1999-03-31 信越化学工業株式会社 Cement mortar composition
JP2003206170A (en) * 2002-01-10 2003-07-22 Nippon Paper Industries Co Ltd Additive for wall material and wall material composition obtained by using the same
JP4516293B2 (en) * 2003-09-08 2010-08-04 電気化学工業株式会社 Repair mortar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584139A (en) * 2012-01-18 2012-07-18 中国铁道科学研究院金属及化学研究所 Self-densifying concrete as well as preparation method and application thereof
RU2485066C1 (en) * 2012-01-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Building mortar
CN103936358A (en) * 2013-01-18 2014-07-23 武汉奥捷高新技术有限公司 EPS line mechanical plastering dedicated mortar
CN106495579A (en) * 2016-10-13 2017-03-15 常州市鼎日环保科技有限公司 A kind of preparation method of bi-component cement based mending mortar

Also Published As

Publication number Publication date
JP2008201643A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
KR101674923B1 (en) Repairing method of concrete structure using high-strength polymer mortar and fireproof mortar
JP4516293B2 (en) Repair mortar
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
JP5939776B2 (en) Repair mortar composition
KR101073892B1 (en) Repairing material composite having excellent durability and repairing method of the concrete structure using the composite
KR101460498B1 (en) Compositions of self water absorbing type retentive and repair method for concrete structures using the same
JP2010150075A (en) Large-sized tile adhesive
JP2006206404A (en) Spray material and spray construction method using the same
JP2007320783A (en) Thick applying mortar
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
JP4634213B2 (en) Alumina cement composition and repair method using the same
JP4634212B2 (en) Alumina cement composition and repair method using the same
JP2009263195A (en) Cement mortar composition, method for applying cement mortar composition, and wall body
JP5792056B2 (en) Mortar
KR102199459B1 (en) Water reacting modified ceramic mortar composition, and repairing method of concrete structure using the same
JP2019167273A (en) Mortar for plastering
JP5046472B2 (en) Cement admixture and cement composition
JP2002201057A (en) Adiabatic mortar
KR101859113B1 (en) Functional flooring mortar composition and mortar flooring construction method therewith
JP2008002176A (en) Composite body and method of producing the same
JP5114910B2 (en) Repair method of ALC structure
JP5173514B2 (en) Cement mortar composition, construction method of cement mortar composition, and wall body
JP2009215136A (en) Hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250